CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 25 March 2024
Accepted 15 April 2024

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA

Keywords: crystal structure; monoorganotin(IV); dihalide; hydroxide; hydrolysis; transstrengthening; hydrogen bonds; DMF.

CCDC reference: 2348369

Supporting information: this article has supporting information at journals.iucr.org/e

Dimeric ethyltin(IV)-dibromide-hydroxide-N,Ndimethylformamide

Christopher Jan Klecker and Hans Reuter*

Chemistry, Osnabrück University, Barbarastrasse 7, 49069 Osnabrück, Germany. *Correspondence e-mail: hreuter@uos.de

Di- μ-hydroxido-bis[dibromido(dimethylformamide- κO)ethyltin(IV)], $\left[\mathrm{Sn}_{2} \mathrm{Br}_{4}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$, was prepared from ethyltin(IV) bromide and N, N dimethylformamide (DMF) in air. The crystal structure exhibits the typical structural features of dimeric Lewis-base-stabilized monoorganotin(IV)-diha-lide-hydroxides, $R \mathrm{SnHal}_{2}(\mathrm{OH})$, i.e. two octahedrally coordinated Sn atoms are linked together via two bridging hydroxide groups, resulting in a centrosymmetric four-membered rhomboid-like $\mathrm{Sn}-\mathrm{OH}$ ring with acute angles at the Sn atom, obtuse angles at the O atoms and two different tin-oxygen bond lengths. With the shorter bond trans to the ethyl group, this observation underlines once more the so-called trans-strengthening effect in monoorganotin(IV) compounds with octahedrally coordinated Sn atoms. Differences and similarities in the bond lengths and angles in the four-membered $\mathrm{Sn}-\mathrm{OH}$ rings have been worked out for the rings in dimeric diorganotin(IV)-halide-hydroxides, $\left[R_{2} \mathrm{SnHal}(\mathrm{OH})\right]_{2}$, and hydrates of dimeric tin(IV)-trihalide-hydroxide-aqua-hydrates, [$\mathrm{SnHal} 3^{-}$ $\left.(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot n \mathrm{H}_{2} \mathrm{O}$.

1. Chemical context

The title compound ethyltin(IV)-dibromide-hydroxide N, N dimethylformamide solvate, $\left[\mathrm{EtSnBr}_{2}(\mathrm{OH}) \cdot \mathrm{DMF}\right]_{2}$, belongs to the class of monoorganotin(IV)-dihalide-hydroxides, RSn $\mathrm{Hal}_{2}(\mathrm{OH})$, representing the first hydrolysis products of the corresponding monoorganotin(IV)-trihalides, RSnHal_{3}. Since the basic work of Lecomte et al. (1976), it has been well established that this class of compounds crystallizes as dimeric Lewis base (LB)-Brønstedt base (BB)-stabilized adducts, $\left[R \mathrm{SnHal}_{2}(\mathrm{OH}) \mathrm{LB}\right]_{2} \cdot n \mathrm{BB}$. Depending on LB and BB , four different subclasses of dimeric monoorganotin(IV)-dihalidehydroxides can be distinguished: (i) the subclass of dimeric dihalide-hydroxide-aqua complexes, $\left[R \mathrm{SnHal}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$, with $\mathrm{LB}=\mathrm{H}_{2} \mathrm{O}$ and $n=0$, (ii) the subclass of dihalide-hydroxide-solvate complexes, $\left[R \mathrm{SnHal}_{2}(\mathrm{OH}) \mathrm{LB}\right]_{2}$, with LB other than $\mathrm{H}_{2} \mathrm{O}$ and $n=0$, (iii) the subclass of dihalide-hydroxide-aqua-hydrates, $\left[R \mathrm{SnHal}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot n \mathrm{BB}$, with $\mathrm{LB}=\mathrm{BB}=\mathrm{H}_{2} \mathrm{O}$, and (iv) the subclass of dihalide-hydroxide-aqua-solvates, $\left[R \mathrm{SnHal}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot n \mathrm{BB}$, with $\mathrm{LB}=\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BB}=$ other than $\mathrm{H}_{2} \mathrm{O}$.

Up to now, the solid-state structures of subclass \mathbf{i} have been described for $\mathrm{Hal}=\mathrm{Cl}$ and $R=\mathrm{Et}$ (Lecomte et al., 1976), $R=$
${ }^{i} \mathrm{Pr},{ }^{i} \mathrm{Bu}$ (Puff \& Reuter, 1989), $R={ }^{n} \mathrm{Bu}$ (Holmes et al., 1988) and $R=$ (6,6-dimethylbicyclo[3.1.1]hept-2-yl)methyl (Beckmann et al., 2009), but for subclass ii, only the crystal structure of the isobutyl compound with $\mathrm{Hal}=\mathrm{Cl}$ and $\mathrm{LB}=\mathrm{DMF}$ (Reuter \& Ye, 2013) is known. In the case of subclass iii, only the single-crystal structure determination of the methyl compound with Hal $=\mathrm{Cl}$ and $n=3$ (Johnson \& Knobler, 1994) exists and for subclass iv, the n-butyl compounds with $\mathrm{Hal}=$ $\mathrm{Cl}, \mathrm{BB}=$ methylbenzothiazole and $n=4$ (Wei, 1994), and $\mathrm{BB}=$ dimethyl cyanocarbonodithioimidate and $n=4$ (Mbaye et al., 2023) or $n=2$ (Diop et al., 2022) are available.

The title compound, belonging to subclass ii, was found accidentally as a hydrolysis product of humid air during an attempt to synthesize a complex of ethyltin(IV)-tribromide with DMF and represents the first structurally characterized monoorganotin(IV)-hydroxide-dihalide with bromine as the halide.

2. Structural commentary

The title compound crystallizes in the monoclinic space group $P 2_{1} / c$, as was unambiguously confirmed from systematic absence conditions. The unit cell contains two dimeric centrosymmetric molecules (Fig. 1), resulting in half a molecule in the asymmetric unit. The molecule exhibits the typical structural features of the monoorganotin(IV)-dihalide-hydroxides, i.e. two octahedrally coordinated Sn atoms are

Figure 1
Displacement ellipsoid plot of the dimeric centrosymmetric molecule found in the crystal of $\left[\mathrm{EtSnBr}_{2}(\mathrm{OH}) \cdot \mathrm{DMF}\right]_{2}$, showing the atom numbering of the asymmetric unit. With the exception of the H atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level.
linked together via two bridging hydroxide groups whereby a planar four-membered $\mathrm{Sn}-\mathrm{OH}$ ring results.

This $\mathrm{Sn}-\mathrm{OH}$ ring (Fig. 2) has a characteristic rhomboid-like shape with acute $\left[70.01(8)^{\circ}\right]$ angles at the Sn atoms, obtuse angles $\left[109.99(8)^{\circ}\right]$ at the O atoms and two distinct different tin-oxygen bond lengths $[2.071$ (2) and 2.1461 (1) \AA], the shorter of which is opposite to the organic group. This kind of bond-length shortening, designated in the literature as transstrengthening (Paseshnitchenko et al., 1985; Buslaev et al., 1989), is typically found in the case of monoorganotin(IV) compounds with tin in a sixfold octahedral coordination.

Four-membered $\mathrm{Sn}-\mathrm{OH}$ rings are structure-dominating features in many organic and inorganic tin(IV) compounds. Thus, they occur, for example, in the dimeric diorganotin(IV)-halide-hydroxides, $\left[R_{2} \mathrm{SnHal}(\mathrm{OH})\right]_{2}$, with trigonal-bipyramidally coordinated Sn atoms. There the bond angles are in the same order; different $\mathrm{Sn}-\mathrm{O}$ bond lengths, however, result from the axial and equatorial positions of the hydroxide groups within the trigonal-bipyramidal coordination of the Sn atoms ($c f$. Reuter, 2022). A somewhat different geometry is observed in the case of the four-membered $\mathrm{Sn}-\mathrm{OH}$ rings of the dimeric tin(IV)-trihalide-hydroxide-aqua complexes, $\left[\mathrm{SnHal}_{3}\right.$ $\left.(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$, where the Sn atoms are also octahedrally coordinated. These compounds constitute the pure inorganic equivalents of the class of compounds discussed here with an additional halide atom instead of the organic group R. In analogy to the dimeric monoorganotin(IV)-dihalide-aquacomplexes, these inorganic counterparts can be divided into similar subclasses. For $\mathrm{Hal}=\mathrm{Br}$, the structures of only two polymorphs (Howie et al., 2005; de Lima et al., 2010) of a hydrate (subclass iii), with 3.5 additional water molecules, are actually known. In both, the dimeric molecules are noncentrosymmetric and the $\mathrm{Sn}-\mathrm{OH}$ rings are not planar, but only slightly buckled. Nevertheless, these rings exhibit a geometry

Figure 2
Displacement ellipsoid plot of the centrosymmetric four-membered tinoxygen ring of the $\left[\mathrm{EtSnBr}_{2}(\mathrm{OH}) \cdot \mathrm{DMF}\right]_{2}$ molecule, highlighting selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and distances (\AA) from the $\mathrm{Sn}-\mathrm{O}$ reference plane in square brackets. With the exception of the H atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn with displacement ellipsoids at the 40% probability level. For clarity, ethyl groups are stripped down to the $\mathrm{Sn}-\mathrm{C}$ bonds drawn as shortened sticks. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds are indicated as dashed sticks in brown. Descriptors trans and cis refer to the position of the corresponding bonds with respect to the tin-carbon bond of the ethyl group.

Figure 3
Displacement ellipsoid plot of the DMF molecule, with selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and distances ((\AA) from the least-squares plane through the non-H atoms in square brackets. The dative $\mathrm{Sn} \cdots \mathrm{O}$ bond is indicated as a shortened stick.
with similar bond angles at the oxygen [mean value: $108.4(5)^{\circ}$, 4 data points] and the Sn atoms [mean value: $71.6(3)^{\circ}, 4$ data points], but the $\mathrm{Sn}-\mathrm{O}$ bond lengths become more equal [2.081 (1) $-2.072(8) \AA$] so that the rings adopt a more rhombus-like shape.

The $\mathrm{C}-\mathrm{C}$ distance $[\mathrm{C} 1-\mathrm{C} 2=1.485(5) \AA$] in the ethyl group is to some extent shorter than the value of 1.513 (14) \AA evaluated by Allen et al. (1987) for the mean distance between two $s p^{3}$-hybridized C atoms. This deviation is probably caused by atom vibration, as indicated by the displacement ellipsoids (Fig. 1). The $\mathrm{Sn}-\mathrm{C}$ distance $[\mathrm{Sn}-\mathrm{C}=2.228$ (2) \AA] is enlarged compared to the sum $(2.15 \AA)$ of the normal covalent radii (Cordero et al., 2008) of tin ($1.39 \AA$) and carbon $(0.76 \AA)$, but is in the same order of magnitude as the $\mathrm{Sn}-\mathrm{C}$ bond length

Figure 4
Space-filling model of the $\left[\mathrm{EtSn}(\mathrm{OH}) \mathrm{Br}_{2} \cdot \mathrm{DMF}\right]_{2}$ molecule, showing the overlap of the H and Br atoms in the region of the hydrogen-bridging bond. These atoms are visualized as truncated two-coloured spheres. Atom colours and van der Waals radii (\AA) are as follows: $\mathrm{Br}=$ brown/ 1.83, $\mathrm{H}=$ white $/ 1.10, \mathrm{C}=$ grey $/ 1.70, \mathrm{O}=$ red $/ 1.52, \mathrm{~N}=$ blue $/ 1.55$ and $\mathrm{Sn}=$ brass/2.17.

Figure 5
Stick-model showing in detail the chain-like arrangement of the $\left[\mathrm{EtSn}(\mathrm{OH}) \mathrm{Br}_{2} \cdot \mathrm{DMF}\right]_{2}$ molecules resulting from intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (red dashed sticks). The image shows three complete molecules with their hydrogen bonds to neighbouring molecules. Two-coloured sticks based on atom colours are as follows: $\mathrm{Br}=$ brown, $\mathrm{H}=$ white, $\mathrm{C}=$ grey, $\mathrm{O}=$ red, $\mathrm{N}=$ blue and $\mathrm{Sn}=$ brass
[2.20 (3) \AA] found in $\left[\mathrm{EtSnCl}_{2}(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$ (Lecomte et al., 1976). Much shorter tin-carbon bonds [2.139 (4) and 2.130 (4) \AA] have been reported for the corresponding DMF compound with $R={ }^{i} \mathrm{Bu}$ and $\mathrm{Hal}=\mathrm{Cl}$ (Reuter \& Ye, 2013).

Both tin-bromine bonds are of different lengths with the longer one [2.6360 (3) \AA] in the case of the in-plane (ip) Br 1 atom and the shorter one $[2.5893$ (4) \AA] in the case of the out-of-plane (oop) Br 2 atom. The reason for this obviously arises from the fact that the first is involved in a hydrogen bond with

Figure 6
Perspective view into the crystal structure of $\left[\mathrm{EtSn}(\mathrm{OH}) \mathrm{Br}_{2} \cdot \mathrm{DMF}\right]_{2}$ looking down the crystallographic a axis and showing the arrangement of the chains of hydrogen-bonded $\left[\mathrm{EtSn}(\mathrm{OH}) \mathrm{Br}_{2} \cdot \mathrm{DMF}\right]_{2}$ molecules in relation to the unit cell $(a$ axis $=$ red, b axis $=$ green and c axis $=$ blue $)$.
the hydroxide group of a neighbouring molecule (see below), while the second is only involved in van der Waals interactions. It is notable that both values are markedly longer (0.069 and $0.080 \AA$) than the tin-bromine distances in the above-mentioned $\operatorname{tin}(I V)$-tribromide-hydroxide-aqua-hydrates [mean $\mathrm{Sn}-\mathrm{Br}_{\mathrm{ip}}=2.509(5) \AA$, 8 data points; mean $\mathrm{Sn}-\mathrm{Br}_{\text {oop }}=2.567$ (14) $\AA, 4$ data points].

The coordinated DMF molecule is almost planar, as the distances of the O, C and N atoms from the least-squares plane indicate (Fig. 3). The coordinative bond has a length of 2.177 (2) \AA, while the bond angle at the O atom is $126.2(2)^{\circ}$. Both values differ significantly from the corresponding values [2.210 (3)/2.202 (4) \AA and 120.8 (3)/124.8 (4) ${ }^{\circ}$] observed in the noncentrosymmetric molecules of $\left[{ }^{i} \mathrm{BuSnCl}_{2}(\mathrm{OH})(\mathrm{DMF})\right]_{2}$ (Reuter \& Ye, 2013). The angle between the least-squares plane through the non-H atom of the DMF molecule and the $\mathrm{Sn}-\mathrm{O}_{\mathrm{DMF}}$ bond length is 3.12 (8) ${ }^{\circ}$.

Structural distortion of the DMF molecule as a result of its coordinative bond to the Sn atom is well expressed and concerns not only the bond lengths but also the bond angles. Structural data for pure DMF have been determined twice (Borrmann et al., 2000; Ratajczyk et al., 2019) under normal pressure and at a temperature of 100 K . Both crystallize in the triclinic space group $P \overline{1}$, with two different molecules in the asymmetric unit. As the individual structure parameters within both molecules and between the different measurements differ to some extent, in the following, the mean values of each four data points are used. Most notable are the changes in bond lengths: thus, the carbon-oxygen distance increases by $0.031 \AA$ from 1.229 (2) \AA in pure DMF to 1.260 (4) \AA in the coordinated molecule; simultaneously, the carbon-nitrogen distance decreases by $0.038 \AA$ from 1.339 (2) to 1.301 (4) \AA, while the distances between the methyl C atoms and the N atoms remain mostly unaffected [cis-$\mathrm{CH}_{3}-\mathrm{N}($ pure/coordinated $)=1.453(2) / 1.457(6) \AA$ and trans -$\mathrm{CH}_{3}-\mathrm{N}($ pure/coordinated) $=1.454(2) / 1.461(5) \AA]$. The greatest changes of the bond angles are observed for $\mathrm{O}-\mathrm{C}-\mathrm{N}$, decreasing by 2.3° from 125.4 (2) ${ }^{\circ}$ in pure DMF to $123.1(3)^{\circ}$ in the coordinated molecule, and to a smaller extent (0.8 ${ }^{\circ}$) for $\mathrm{CH}_{3}-\mathrm{N}-\mathrm{CH}_{3}$, increasing from 117.2 (3) to $118.0(3)^{\circ}$. The changes of the $\mathrm{CH}-\mathrm{N}-\mathrm{CH}_{3}$ angles range from -0.4 to -0.5°.

3. Supramolecular features

In the solid, hydrogen bonds exist between the hydroxide groups and the Br 1 atoms of adjacent molecules, as the spacefilling model (Fig. 4) using the van der Waals radii of Mantina et al. (2009) indicates. The resulting chain-like arrangement of the hydrogen-bonded molecules (Fig. 5) takes place in the direction of the crystallographic a axis. With a donor-acceptor distance of 3.283 (2) A between the Br and O atoms, they rank as strong. The bridging angle at the H atom is 164.8°. As the second Br atom (Br 2) does not take part in any hydrogen bonds, the interactions between the individual chains are confined to van der Waals contacts (Fig. 6).

Table 1
Experimental details.

Crystal data

Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
Bruker APEXII CCD
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Sn}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
795.35

Monoclinic, $P 2_{1} / c$
100
7.0415 (3), 17.9349 (8), 9.0148 (5)
100.812 (2)
1118.26 (9)

2
Mo $K \alpha$
9.39
$0.26 \times 0.16 \times 0.12$

Multi-scan (SADABS; Krause et al., 2015)
0.514, 0.723

84799, 2687, 2455
0.037
0.661

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

4. Synthesis and crystallization

In a fumehood, $0.39 \mathrm{~g}(1 \mathrm{mmol})$ of ethyltin(IV) tribromide, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{Sn}$, prepared from ethyltin(IV) trichloride via halide exchange with an excess of potassium bromide in dry acetone was mixed with $2 \mathrm{ml} N, N$-dimethylformamide (DMF) on a petri dish with a glass lid. Crystal formation was checked every day using an optical microscope. The first crystals of the title compound appeared after two weeks.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The positions of all H atoms were clearly identified in difference Fourier syntheses. Those of the organic groups were refined with calculated positions $\left(-\mathrm{CH}_{3}=\right.$ $0.96 \AA,-\mathrm{CH}_{2^{-}}=0.97 \AA$ and $-\mathrm{CH}-=0.93 \AA$) and common $U_{\text {iso }}(\mathrm{H})$ parameters for each individual group. The position of the H atom of the OH group was refined with a fixed $\mathrm{O}-\mathrm{H}$ distance of $0.96 \AA$ before it was fixed and allowed to ride on the parent O atom with an isotropic displacement parameter.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by Deutsche Forschungsge-
meinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.
Beckmann, J., Duthie, A. \& Grassmann, M. (2009). J. Organomet. Chem. 694, 161-166.
Borrmann, H., Persson, I., Sandström, M. \& Stålhandske, C. M. V. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 393-402.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Buslaev, Yu. A. (1989). Coord. Chem. Rev. 93, 185-204.
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. \& Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.
Diop, M. B., Diop, L. \& Oliver, A. G. (2022). Z. Naturforsch. B, 77, 619-623.
Holmes, R. R., Shafieezad, S., Chandrasekhar, V., Holmes, J. M. \& Day, R. O. (1988). J. Am. Chem. Soc. 110, 1174-1180.
Howie, R. A., Skakle, J. M. S. \& Wardell, J. L. (2005). Inorg. Chim. Acta, 358, 3283-3286.

Johnson, S. E. \& Knobler, C. B. (1994). Organometallics, 13, 49284938.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lecomte, C., Protas, J. \& Devaud, M. (1976). Acta Cryst. B32, 923924.

Lima, G. M. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. \& Wardell, S. M. S. V. (2010). Acta Cryst. E66, i18-i19.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. \& Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.

Mbaye, B., Diop, M. B., Boye, M. S., Maris, T., Diassé-Sarr, A. \& Diop, L. (2023). J. Chem. Crystallogr. 53, 547-554.

Paseshnitchenko, K. A., Aslanov, L. A., Jatsenko, A. V. \& Medvedev, S. V. (1985). J. Organomet. Chem. 287, 187-194.

Puff, H. \& Reuter, H. (1989). J. Organomet. Chem. 364, 57-65.
Ratajczyk, P., Sobczak, S. \& Katrusiak, A. (2019). Cryst. Growth Des. 19, 896-901.
Reuter, H. (2022). Acta Cryst. E78, 633-637.
Reuter, H. \& Ye, F. (2013). Main Group Met. Chem. 36, 225-227.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Wei, C. (1994). J. Organomet. Chem. 471, 69-70.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Dimeric ethyltin(IV)-dibromide-hydroxide-N,N-dimethylformamide

Christopher Jan Klecker and Hans Reuter

Computing details

Di- μ-hydroxido-bis[dibromido(dimethylformamide- κ O)ethyltin(IV)]

Crystal data

$\left[\mathrm{Sn}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=795.35$
Monoclinic, $P 2_{1} / c$
$a=7.0415$ (3) Å
$b=17.9349(8) \AA$
$c=9.0148(5) \AA$
$\beta=100.812$ (2) ${ }^{\circ}$
$V=1118.26(9) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.514, T_{\text {max }}=0.723$
84799 measured reflections
$F(000)=744$
$D_{\mathrm{x}}=2.362 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9635 reflections
$\theta=2.9-29.1^{\circ}$
$\mu=9.39 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.26 \times 0.16 \times 0.12 \mathrm{~mm}$

2687 independent reflections
2455 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-23 \rightarrow 23$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.046$
$S=1.07$
2687 reflections
107 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Only H-atom displacement parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0201 P)^{2}+2.2958 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=1.07 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}
Extinction correction: SHELXL2014
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00097 (16)
Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Sn1	$0.13007(2)$	$0.55518(2)$	$0.14030(2)$	$0.01599(6)$
C1	$0.0660(3)$	$0.59933(18)$	$0.3566(3)$	$0.0203(6)$
H11	0.0714	0.6534	0.3552	$0.078(7)^{*}$
H12	-0.0642	0.5850	0.3656	$0.078(7)^{*}$
C2	$0.2042(6)$	$0.5712(3)$	$0.4897(4)$	$0.0549(12)$
H21	0.2043	0.5177	0.4886	$0.078(7)^{*}$
H22	0.1660	0.5885	0.5805	$0.078(7)^{*}$
H23	0.3316	0.5892	0.4861	$0.078(7)^{*}$
Br1	$0.50184(4)$	$0.58619(2)$	$0.17646(3)$	$0.02061(8)$
Br2	$0.04385(4)$	$0.67775(2)$	$-0.00891(4)$	$0.02626(8)$
O1	$0.1412(2)$	$0.49890(10)$	$-0.0585(2)$	$0.0179(4)$
H1	0.2590	0.4824	-0.0870	$0.051(12)^{*}$
O2	$0.2199(3)$	$0.44926(11)$	$0.2493(2)$	$0.0226(4)$
N1	$0.3916(4)$	$0.34269(14)$	$0.2843(3)$	$0.0251(5)$
C3	$0.3503(4)$	$0.40693(15)$	$0.2192(3)$	$0.0204(5)$
H3	0.4204	0.4223	0.1469	$0.056(5)^{*}$
C4	$0.2812(6)$	$0.3145(2)$	$0.3939(5)$	$0.0461(10)$
H41	0.3403	0.3310	0.4933	$0.056(5)^{*}$
H42	0.2795	0.2610	0.3910	$0.056(5)^{*}$
H43	0.1512	0.3331	0.3697	$0.056(5)^{*}$
C5	$0.5454(5)$	$0.29569(19)$	$0.2467(4)$	$0.0390(8)$
H51	0.6023	0.3198	$0.056(5)^{*}$	
H52	0.4924	0.2485	$0.056(5)^{*}$	
H53	0.6425	0.2880	$0.056(5)^{*}$	
			0.3354	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.01125(9)$	$0.01715(10)$	$0.01884(10)$	$0.00173(6)$	$0.00092(7)$	$-0.00585(7)$
C1	$0.0071(10)$	$0.0454(17)$	$0.0086(12)$	$0.0054(11)$	$0.0023(9)$	$-0.0085(11)$
C2	$0.039(2)$	$0.099(4)$	$0.0262(19)$	$0.000(2)$	$0.0046(16)$	$-0.019(2)$
Br1	$0.01178(12)$	$0.02018(14)$	$0.02940(16)$	$0.00052(9)$	$0.00265(10)$	$-0.00779(11)$
Br2	$0.02073(14)$	$0.01634(14)$	$0.03855(18)$	$0.00282(10)$	$-0.00257(12)$	$-0.00237(11)$
O1	$0.0115(8)$	$0.0210(10)$	$0.0212(10)$	$0.0010(7)$	$0.0031(7)$	$-0.0074(8)$
O2	$0.0190(9)$	$0.0265(10)$	$0.0218(10)$	$0.0020(8)$	$0.0024(8)$	$0.0001(8)$
N1	$0.0238(12)$	$0.0240(13)$	$0.0248(13)$	$-0.0017(10)$	$-0.0028(10)$	$0.0061(10)$
C3	$0.0200(13)$	$0.0194(13)$	$0.0195(14)$	$-0.0023(10)$	$-0.0020(11)$	$-0.0005(11)$
C4	$0.047(2)$	$0.046(2)$	$0.046(2)$	$-0.0021(17)$	$0.0109(18)$	$0.0257(18)$
C5	$0.0422(19)$	$0.0231(16)$	$0.048(2)$	$0.0112(14)$	$-0.0003(16)$	$0.0047(15)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Sn} 1-\mathrm{O} 1$	$2.071(2)$	$\mathrm{O} 1-\mathrm{H} 1$	0.9600
$\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.146(2)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.260(3)$
$\mathrm{Sn} 1-\mathrm{O} 2$	$2.177(2)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.301(4)$

Sn1-C1	2.228 (2)
$\mathrm{Sn} 1-\mathrm{Br} 2$	2.5893 (4)
$\mathrm{Sn} 1-\mathrm{Br} 1$	2.6360 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.485 (5)
C1-H11	0.9700
C1-H12	0.9700
$\mathrm{C} 2-\mathrm{H} 21$	0.9600
C 2 - H 22	0.9600
C 2 - H 23	0.9600
$\mathrm{O} 1-\mathrm{Sn} 1^{\text {i }}$	2.146 (2)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Ol}^{\text {i }}$	70.01 (8)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	84.87 (8)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{O} 2$	85.71 (7)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 1$	167.78 (9)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{C} 1$	98.51 (8)
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 1$	90.26 (10)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Br} 2$	90.42 (5)
$\mathrm{Ol}^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Br} 2$	95.65 (5)
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Br} 2$	174.34 (5)
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Br} 2$	94.97 (8)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Br} 1$	90.69 (5)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Br} 1$	159.59 (5)
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Br} 1$	86.02 (5)
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Br} 1$	100.16 (7)
$\mathrm{Br} 2-\mathrm{Sn} 1-\mathrm{Br} 1$	90.900 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Sn} 1$	112.1 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 11$	109.2
$\mathrm{Sn} 1-\mathrm{C} 1-\mathrm{H} 11$	109.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 12$	109.2
$\mathrm{Sn} 1-\mathrm{C} 1-\mathrm{H} 12$	109.2
$\mathrm{H} 11-\mathrm{C} 1-\mathrm{H} 12$	107.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 22$	109.5
H21-C2-H22	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 23$	109.5

$\mathrm{N} 1-\mathrm{C} 4$	$1.457(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.461(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{H} 41$	0.9600
$\mathrm{C} 4-\mathrm{H} 42$	0.9600
$\mathrm{C} 4-\mathrm{H} 43$	0.9600
$\mathrm{C} 5-\mathrm{H} 51$	0.9600
$\mathrm{C} 5-\mathrm{H} 52$	0.9600
$\mathrm{C} 5-\mathrm{H} 53$	0.9600

$\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 23$	109.5
$\mathrm{H} 22-\mathrm{C} 2-\mathrm{H} 23$	109.5
$\mathrm{Sn} 1-\mathrm{O} 1-\mathrm{Sn} 1^{\mathrm{i}}$	$109.99(8)$
$\mathrm{Sn} 1-\mathrm{O} 1-\mathrm{H} 1$	123.8
$\mathrm{Sn} 1-\mathrm{O} 1-\mathrm{H} 1$	121.8
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{Sn} 1$	$126.16(18)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$120.7(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 5$	$121.2(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	$118.0(3)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 1$	$123.1(3)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{H} 3$	118.4
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3$	118.4
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 41$	109.5
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 42$	109.5
$\mathrm{H} 41-\mathrm{C} 4-\mathrm{H} 42$	109.5
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 43$	109.5
$\mathrm{H} 41-\mathrm{C} 4-\mathrm{H} 43$	109.5
$\mathrm{H} 42-\mathrm{C} 4-\mathrm{H} 43$	109.5
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 51$	109.5
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 52$	109.5
$\mathrm{H} 51-\mathrm{C} 5-\mathrm{H} 52$	109.5
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 53$	109.5
$\mathrm{H} 51-\mathrm{C} 5-\mathrm{H} 53$	109.5
$\mathrm{H} 52-\mathrm{C} 5-\mathrm{H} 53$	109.5

Symmetry code: (i) $-x,-y+1,-z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Br}^{1 \mathrm{ii}}$	0.96	2.35	$3.283(2)$	165

Symmetry code: (ii) $-x+1,-y+1,-z$.

