

Received 5 February 2024 Accepted 1 March 2024

Edited by C. Schulzke, Universität Greifswald, Germany

Phosphane chalcogenides and their metal complexes, Part 7. Part 6: Upmann et al. (2024).

Keywords: crystal structure; gold(III) halides; phosphane chalcogenides; secondary interactions.

CCDC references: 2156390; 2156786; 2156787; 2156789; 2156790; 2156867; 2156868; 2156869; 2156870; 2338821; 2338822; 2338823; 2338824

Supporting information: this article has supporting information at journals.iucr.org/e

Daniel Upmann, Dirk Bockfeld, Peter G. Jones* and Eliza Târcoveanu

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-braunschweig.de

The structures of ten phosphane chalcogenide complexes of gold(III) halides, with general formula $R_{3-n}^1 R_n^2 PEAuX_3$ ($R^1 = t$ -butyl; $R^2 = i$ -propyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and thecorresponding bromido derivatives are 9b-16b in the same order. Structures were obtained for 9a, 10a (and a second polymorph 10aa), 11a (and its deuterochloroform monosolvate 11aa), 12a (as its dichloromethane monosolvate), 14a, 15a (as its deuterochloroform monosolvate 15aa, in which the solvent molecule is disordered over two positions), 9b, 11b, 13b and 15b. The structures of **11a**, **15a**, **11b** and **15b** form an isotypic set, and those of compounds **10aa** and **14a** form an isotypic pair. All structures have Z' = 1. The gold(III) centres show square-planar coordination geometry and the chalcogenide atoms show approximately tetrahedral angles (except for the very wide angle in 12a, probably associated with the bulky t-butyl groups). The bond lengths at the gold atoms are lengthened with respect to the known gold(I) derivatives, and demonstrate a considerable *trans* influence of S and Se donor atoms on a *trans* Au-Cl bond. Each compound with an isopropyl group shows a short intramolecular contact of the type $C-H_{methine}\cdots X_{cis}$; these may be regarded as intramolecular 'weak' hydrogen bonds, and they determine the orientation of the Au X_3 groups. The molecular packing is analysed in terms of various short contacts such as weak hydrogen bonds $C-H\cdots X$ and contacts between the heavier atoms, such as $X \cdots X$ (9a, 10aa, 11aa, 15aa and 9b), $S \cdots S$ (10aa, 11a and 12a) and S···Cl (10a). The packing of the polymorphs 10a and 10aa is thus quite different. The solvent molecules take part in C-H...Cl hydrogen bonds; for **15aa**, a disordered solvent region at $z \simeq 0$ is observed. Structure **13b** involves unusual inversion-symmetric dimers with Se \cdots Au and Se \cdots Br contacts, further connected by Br...Br contacts.

1. Chemical context

In Part 6 of this series (Upmann *et al.*, 2024), we presented the structures of sixteen halogenido-gold(I) complexes of various trialkylphosphane chalcogenides. Appropriate background material, together with a summary of our previous results, can be found in that publication and is not repeated here.

In this paper, we report the structures of ten trialkylphosphane chalcogenide complexes of gold(III) trihalides, with general formula (${}^{t}Bu_{3-n}{}^{i}Pr_{n}P=E$)AuX₃, of which there are sixteen possible permutations of *n*, the chalcogenide *E* (restricted to S or Se) and *X* (for *X* = Cl or Br; triiodido complexes are generally not accessible). The eight theoretically obtainable trichlorido derivatives are: **9a**, *n* = 3, *E* = S; **10a**, *n* = 2, *E* = S; **11a**, *n* = 1, *E* = S; **12a**, *n* = 0, *E* = S; **13a**, *n* = 3, *E* = Se; **14a**, *n* = 2, *E* = Se; **15a**, *n* = 1, *E* = Se; and **16a**, *n* = 0, *E* = Se, and the corresponding tribromido derivatives are **9b**-**16b** in the same order. These are generally obtained from the

research communications

gold(I) precursors (numbered analogously as **1a–8a** and **1b–8b** in our previous publication: Upmann et al., 2024) using one mole equivalent of elemental bromine or PhICl₂ [commonly known as iodobenzene dichloride; systematic name dichloro-(phenyl)- λ^3 -iodane] as oxidizing agents. However, ^tBu₃P = SeAuCl, 8a, was found to be unstable, thus ruling out the preparation of 16a; 13a also proved to be unstable; and the attempted syntheses of 10b, 12b, 14b and 16b led to different products, to be described in future publications. This left ten successfully synthesized compounds, leading to thirteen structures; 10a was obtained as two polymorphs (the second termed 10aa), whereas structures of 11a and 15a were determined both solvent-free and as the deuterochloroform monosolvates 11aa and 15aa. Compound 12a was obtained as a dichloromethane monosolvate. The structures of 10a, 11a, 14a and 15aa were briefly presented in a preliminary communication (Upmann & Jones, 2013), but have been rerefined using a much more recent version of SHELXL (2019 rather than 1997; Sheldrick, 2015) and are discussed in more detail here. Details of the composition of each compound studied are given in Table 1.

We had earlier synthesized all four permutations (E = S or Se, X = Cl or Br) of Ph₃PEAuX₃ (Taouss *et al.*, 2015), but were unable to determine any of the structures because of extensive 'streaking' of the diffraction images.

Table 1

Compositions of the $R^1 R^2 R^3 P E A u X_3$ structures presented in this paper (see Scheme).

Compound	R^1	R^2	R^3	Ε	X	Comments
9a	ⁱ Pr	ⁱ Pr	ⁱ Pr	S	Cl	
10a	ⁱ Pr	ⁱ Pr	^t Bu	S	Cl	
10aa	ⁱ Pr	ⁱ Pr	^t Bu	S	Cl	Second polymorph of 10a
11a	ⁱ Pr	^t Bu	^t Bu	S	Cl	
11aa	ⁱ Pr	^t Bu	^t Bu	S	Cl	CDCl ₃ solvate of 11 <i>a</i>
12a	^t Bu	^t Bu	^t Bu	S	Cl	CH ₂ Cl ₂ solvate
14a	ⁱ Pr	ⁱ Pr	^t Bu	Se	Cl	
15a	ⁱ Pr	^t Bu	^t Bu	Se	Cl	
15aa	ⁱ Pr	^t Bu	^t Bu	Se	Cl	CDCl ₃ solvate of 15a
9b	ⁱ Pr	ⁱ Pr	ⁱ Pr	S	Br	
11b	ⁱ Pr	^t Bu	^t Bu	S	Br	
13b	ⁱ Pr	ⁱ Pr	ⁱ Pr	Se	Br	
15b	ⁱ Pr	^t Bu	^t Bu	Se	Br	

2. Structural commentary

General comments: All compounds crystallize with one formula unit in the asymmetric unit. The molecular structures are shown in Figs. 1–13; selected molecular dimensions are given in Tables 2–14. The *trans* (to E) halogen atoms are numbered as X1 throughout. All comparisons to the analo-

Table 2

Selected	geometric	parameters	(A, °) for	9a.
----------	-----------	------------	-------	-------	-----

Au1-Cl3	2.2818 (5)	S1-P1	2.0574 (7)
Au1-Cl2	2.2846 (5)	P1-C2	1.829 (2)
Au1-Cl1	2.3064 (5)	P1-C3	1.8317 (19)
Au1-S1	2.3250 (5)	P1-C1	1.8387 (19)
Cl3-Au1-Cl2	175.341 (18)	C2-P1-C3	108.01 (9)
Cl3-Au1-Cl1	90.151 (18)	C2-P1-C1	115.39 (9)
Cl2-Au1-Cl1	88.999 (19)	C3-P1-C1	106.80 (9)
Cl3-Au1-S1	92.249 (18)	C2-P1-S1	111.92 (7)
Cl2-Au1-S1	88.545 (18)	C3-P1-S1	113.32 (7)
Cl1-Au1-S1	177.472 (17)	C1-P1-S1	101.34 (7)
P1-S1-Au1	106.70 (2)		
Cl3-Au1-S1-P1	-72.41 (3)	Au1-S1-P1-C3	-51.87 (8)
Cl2-Au1-S1-P1	112.19 (3)	Au1-S1-P1-C1	-165.92(7)
Au1-S1-P1-C2	70.57 (7)		

Figure 1

The structure of compound **9a** in the crystal. Ellipsoids represent 50% probability levels. The dashed line represents an intramolecular hydrogen bond (see text).

Figure 2

The structure of compound **10a** (the first polymorph) in the crystal. Ellipsoids represent 50% probability levels.

2.0592 (11)

Table 3 Selected geometric parameters (Å, °) for 10a. Au1-Cl3 2.2818 (6) S1-P1 2.0538 (9) 2.2837 (6) 1.843 (3) Au1-Cl2 P1-C22.2989 (7) 1.845 (2) Au1-Cl1 P1-C3Au1-S1 2.3294(7)P1-C11.875 (3) 109.58 (12) Cl3-Au1-Cl2 C2-P1-C3 177.46 (2) Cl3-Au1-Cl1 88.54 (2) C2-P1-C1 109.67 (13) Cl2-Au1-Cl1 109.94 (12) 89.23 (3) C3 - P1 - C1Cl3-Au1-S1 94.93 (2) C2-P1-S1 102.70 (10) Cl2-Au1-S1 87.39 (2) C3-P1-S1 111.45 (9) 174.30 (2) Cl1-Au1-S1 C1-P1-S1 113.25 (9) P1-S1-Au1 111.29 (3)

Au1-S1-P1-C3

Au1-S1-P1-C1

-77.45(10)

47.12 (11)

56.17 (4)

-122.80(4)

165.31 (9)

Cl3-Au1-S1-P1

Cl2-Au1-S1-P1

Au1-S1-P1-C2

Table 4 Selected geometr	ic parameters (Å, °) for 10aa .	
Au1-Cl3	2.2815 (8)	S1-P1	
Au1-Cl2	2.2851 (8)	P1-C3	
Au1-Cl1	2.3116 (8)	P1-C2	
	a aa at (a)	D 4 O 4	

Au1-Cl2	2.2851 (8)	P1-C3	1.836 (3)
Au1-Cl1	2.3116 (8)	P1-C2	1.839 (3)
Au1-S1	2.3281 (8)	P1-C1	1.871 (3)
Cl3-Au1-Cl2	176.43 (3)	C3 - P1 - C2	110.36 (15)
Cl3-Au1-Cl1	90.10(3)	C3-P1-C1	108.88 (16)
Cl2-Au1-Cl1	89.18 (3)	C2-P1-C1	111.39 (14)
Cl3-Au1-S1	93.11 (3)	C3-P1-S1	111.66 (12)
Cl2-Au1-S1	87.51 (3)	C2-P1-S1	101.38 (11)
Cl1-Au1-S1	176.43 (3)	C1-P1-S1	113.03 (11)
P1-S1-Au1	111.18 (4)		
Cl3-Au1-S1-P1	61.27 (5)	Au1-S1-P1-C2	168.88 (11)
Cl2-Au1-S1-P1	-122.25 (5)	Au1-S1-P1-C1	49.55 (12)
Au1-S1-P1-C3	-73.62 (13)	-	

 Table 5

 Selected geometric parameters (Å, $^{\circ}$) for 11a.

e	1 ()	/	
Au1-Cl2	2.2881 (5)	S1-P1	2.0665 (6)
Au1-Cl3	2.2889 (5)	P1-C3	1.8442 (19)
Au1-Cl1	2.3080 (5)	P1-C2	1.8741 (18)
Au1-S1	2.3346 (5)	P1-C1	1.8765 (18)
Cl2-Au1-Cl3	175.769 (17)	C3-P1-C2	112.66 (9)
Cl2-Au1-Cl1	89.44 (2)	C3-P1-C1	108.88 (9)
Cl3-Au1-Cl1	89.35 (2)	C2-P1-C1	113.61 (8)
Cl2-Au1-S1	87.963 (19)	C3-P1-S1	109.17 (7)
Cl3-Au1-S1	93.175 (19)	C2-P1-S1	101.48 (6)
Cl1-Au1-S1	177.237 (19)	C1-P1-S1	110.81 (6)
P1-S1-Au1	111.35 (2)		
Cl2-Au1-S1-P1	-117.55 (3)	Au1-S1-P1-C2	169.16 (6)
$Cl3{-}Au1{-}S1{-}P1$	66.53 (3)	Au1-S1-P1-C1	48.21 (7)
Au1-S1-P1-C3	-71.70(7)		

gous series of gold(I) compounds refer to our previous paper (Upmann *et al.*, 2024). As expected, all compounds show square planar coordination geometry (angle ranges *ca* 87–95 and 172–179°) at the gold(III) centres; the largest mean deviation from the plane containing the gold atom and all donor atoms is 0.078 Å for **11b**. The approximately tetrahedral

Structure 10aa (the second polymorph of 10a) in the crystal. Ellipsoids

Figure 4

The structure of compound **11a** (the solvent-free form) in the crystal. Ellipsoids represent 50% probability levels.

Figure 5

Structure **11aa** (the CDCl₃ solvate of **11a**) in the crystal. Ellipsoids represent 50% probability levels. The dashed lines represent 'weak' hydrogen bonds.

represent 50% probability levels.

research communications

Table 6Selected geometric	parameters (Å, °) for 11aa .	
Au1-Cl3	2.2871 (5)	S1-P1	2.0622 (6)
Au1-Cl2	2.2903 (5)	P1-C3	1.8465 (19)
Au1-Cl1	2.3060 (4)	P1-C1	1.8737 (18)
Au1-S1	2.3312 (4)	P1-C2	1.8778 (18)
Cl3-Au1-Cl2	177.050 (16)	C3-P1-C1	108.94 (8)
Cl3-Au1-Cl1	88.505 (17)	C3-P1-C2	112.62 (8)
Cl2-Au1-Cl1	89.783 (17)	C1 - P1 - C2	114.39 (8)
Cl3-Au1-S1	92.936 (17)	C3-P1-S1	108.73 (6)
Cl2-Au1-S1	88.609 (16)	C1-P1-S1	110.75 (6)
Cl1-Au1-S1	175.816 (16)	C2-P1-S1	101.09 (6)
P1-S1-Au1	111.96 (2)		
Cl3-Au1-S1-P1	69.79 (3)	Au1-S1-P1-C1	52.74 (7)
Cl2-Au1-S1-P1	-112.73 (3)	Au1-S1-P1-C2	174.37 (6)
Au1-S1-P1-C3	-66.93 (7)		()

Table 8Selected geometric p	parameters (Å, °)	for 14a .	
Au1-Cl3	2.2803 (19)	Se1-P1	2.211 (2)
Au1-Cl2	2.283 (2)	P1-C3	1.832 (8)
Au1-Cl1	2.326 (2)	P1-C2	1.845 (8)
Au1-Se1	2.4393 (8)	P1-C1	1.864 (8)
Cl3-Au1-Cl2	176.18 (8)	C3-P1-C2	110.8 (4)
Cl3-Au1-Cl1	90.53 (7)	C3-P1-C1	108.9 (4)
Cl2-Au1-Cl1	89.72 (8)	C2-P1-C1	111.3 (4)
Cl3-Au1-Se1	92.70 (5)	C3-P1-Se1	111.7 (3)
Cl2-Au1-Se1	86.98 (6)	C2-P1-Se1	101.0 (3)
Cl1-Au1-Se1	176.59 (6)	C1-P1-Se1	113.0 (3)
P1-Se1-Au1	108.25 (6)		
Cl3-Au1-Se1-P1	58.66 (8)	Au1-Se1-P1-C2	169.6 (3)
Cl2-Au1-Se1-P1	-125.16 (8)	Au1-Se1-P1-C1	50.7 (3)
Au1-Se1-P1-C3	-72.6 (3)		

Table 7

Selected geometric parameters (Å, $^\circ)$ for 12a.

e	1	, ,	
Au1-Cl3	2.2860 (5)	P1-C3	1.888 (2)
Au1-Cl2	2.2894 (6)	P1-C2	1.8906 (19)
Au1-Cl1	2.3013 (5)	P1-C1	1.906 (2)
Au1-S1	2.3323 (5)	P1-S1	2.0658 (6)
Cl3-Au1-Cl2	176.996 (18)	C3-P1-C1	111.29 (9)
Cl3-Au1-Cl1	88.53 (2)	C2-P1-C1	111.38 (9)
Cl2-Au1-Cl1	89.55 (2)	C3-P1-S1	110.17 (6)
Cl3-Au1-S1	93.402 (18)	C2-P1-S1	111.66 (6)
Cl2-Au1-S1	88.30 (2)	C1-P1-S1	99.33 (6)
Cl1-Au1-S1	174.441 (19)	P1-S1-Au1	117.50 (3)
C3-P1-C2	112.33 (9)		
C3-P1-S1-Au1	-78.75 (7)	Cl3-Au1-S1-P1	82.19 (3)
C2-P1-S1-Au1	46.80 (8)	Cl2-Au1-S1-P1	-100.28(3)
C1-P1-S1-Au1	164.36 (6)		

Figure 7

🖉 CI4

The structure of compound **14a** in the crystal. Ellipsoids represent 30% probability levels.

Figure 6

The structure of compound **12a** in the crystal. Ellipsoids represent 50% probability levels. The dashed line represents a 'weak' hydrogen bond.

Figure 8

The structure of compound **15a** (the solvent-free form) in the crystal. Ellipsoids represent 50% probability levels.

Table 9 Selected geometric parameters (Å, °) for 15a .					
Au1-Cl2	2.2871 (5)	Se1-P1	2.2240 (5)		
Au1-Cl3	2.2889 (5)	P1-C3	1.8435 (18)		
Au1-Cl1	2.3207 (5)	P1-C2	1.8762 (18)		
Au1-Se1	2.4460 (2)	P1-C1	1.8802 (17)		
Cl2-Au1-Cl3	176.794 (17)	C3-P1-C2	112.81 (8)		
Cl2-Au1-Cl1	89.966 (18)	C3-P1-C1	108.96 (8)		
Cl3-Au1-Cl1	89.946 (18)	C2 - P1 - C1	114.08 (8)		
Cl2-Au1-Se1	87.383 (14)	C3-P1-Se1	109.45 (6)		
Cl3-Au1-Se1	92.617 (13)	C2-P1-Se1	101.19 (6)		
Cl1-Au1-Se1	176.951 (14)	C1-P1-Se1	110.07 (5)		
P1-Se1-Au1	108.487 (14)				
Cl2-Au1-Se1-P1	-118.493 (18)	Au1-Se1-P1-C2	170.76 (6)		
Cl3-Au1-Se1-P1	64.717 (19)	Au1-Se1-P1-C1	49.76 (6)		
Au1-Se1-P1-C3	-69.97 (6)				

Selected geometric p	arameters (Å, °)) for 15aa .	
Au1-Cl3	2.2825 (7)	Se1-P1	2.2232 (6)
Au1-Cl2	2.2889 (6)	P1-C3	1.844 (3)
Au1-Cl1	2.3172 (6)	P1-C2	1.874 (2)
Au1-Se1	2.4476 (3)	P1-C1	1.878 (2)
Cl3-Au1-Cl2	177.64 (2)	C3-P1-C2	112.97 (12)
Cl3-Au1-Cl1	89.67 (2)	C3-P1-C1	108.44 (11)
Cl2-Au1-Cl1	89.66 (2)	C2-P1-C1	114.23 (11)
Cl3-Au1-Se1	92.332 (18)	C3-P1-Se1	108.64 (9)
Cl2-Au1-Se1	88.238 (18)	C2-P1-Se1	101.78 (8)
Cl1-Au1-Se1	176.855 (18)	C1-P1-Se1	110.54 (8)
P1-Se1-Au1	107.617 (18)		
Cl3-Au1-Se1-P1	68.16 (3)	Au1-Se1-P1-C2	170.69 (8)
Cl2-Au1-Se1-P1	-114.14 (3)	Au1-Se1-P1-C1	48.97 (9)
Au1-Se1-P1-C3	-69.90 (9)		

Table T	I					
Selected	geometric	parameters	(Å,	°)	for	9b.

Table 10

Au1-S1	2.3413 (7)	P1-C2	1.828 (3)
Au1-Br3	2.4233 (3)	P1-C3	1.830 (3)
Au1-Br2	2.4333 (3)	P1-C1	1.832 (3)
Au1-Br1	2.4341 (3)	P1-S1	2.0523 (10)
S1-Au1-Br3	92.317 (19)	C2-P1-C1	114.26 (14)
S1-Au1-Br2	88.43 (2)	C3-P1-C1	106.86 (14)
Br3-Au1-Br2	175.188 (12)	C2-P1-S1	111.90 (10)
S1-Au1-Br1	177.35 (2)	C3-P1-S1	113.79 (11)
Br3-Au1-Br1	89.771 (11)	C1-P1-S1	102.26 (11)
Br2-Au1-Br1	89.350 (11)	P1-S1-Au1	107.77 (4)
C2-P1-C3	107.76 (14)		
C2-P1-S1-Au1	72.07 (10)	Br3-Au1-S1-P1	-74.36 (4)
C3-P1-S1-Au1	-50.38 (12)	Br2-Au1-S1-P1	110.40 (4)
C1-P1-S1-Au1	-165.21 (10)		. ,

Figure 9

The structure of **15aa** (the CDCl₃ solvate of **15a**) in the crystal. Ellipsoids represent 50% probability levels. Only one position of the disordered solvent is shown. The dashed line indicates a weak $D \cdots Cl$ hydrogen bond.

angles (except for **12a**) at the chalcogenide atoms would also be expected (discussed below in more detail).

Isotypy: In an extensive series of closely analogous structures, several would be expected to be isotypic. Indeed, the

The structure of compound **9b** in the crystal. Ellipsoids represent 50% probability levels.

Figure 11

The structure of compound **11b** in the crystal. Ellipsoids represent 50% probability levels.

Table 12	
Selected geometric parameters (Å, °) for 11b .	

Au1-S1	2.3477 (6)	P1-C3	1.847 (2)
Au1-Br3	2.4310 (3)	P1-C2	1.872 (2)
Au1-Br2	2.4330 (3)	P1-C1	1.877 (2)
Au1-Br1	2.4399 (4)	P1-S1	2.0640 (8)
S1-Au1-Br3	93.532 (19)	C3-P1-C1	108.53 (11)
S1-Au1-Br2	87.959 (19)	C2-P1-C1	113.56 (10)
Br3-Au1-Br2	172.720 (9)	C3-P1-S1	109.09 (8)
S1-Au1-Br1	177.293 (16)	C2-P1-S1	101.70(7)
Br3-Au1-Br1	89.099 (14)	C1-P1-S1	111.23 (7)
Br2-Au1-Br1	89.510 (14)	P1-S1-Au1	111.56 (3)
C3-P1-C2	112.57 (10)		
C3-P1-S1-Au1	-70.82(8)	Br3-Au1-S1-P1	70.22 (3)
C2-P1-S1-Au1	170.07 (8)	Br2-Au1-S1-P1	-116.91(3)
C1-P1-S1-Au1	48.86 (9)		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Table 13

Selected geometric parameters (Å, $^\circ)$ for 13b.

Au1-Br2	2.4241 (4)	P1-C2	1.831 (4)
Au1-Br3	2.4321 (4)	P1-C1	1.835 (4)
Au1-Se1	2.4535 (4)	P1-C3	1.835 (4)
Au1-Br1	2.4597 (5)	P1-Se1	2.2085 (11)
Br2-Au1-Br3	178.373 (15)	C2-P1-C3	107.15 (18)
Br2-Au1-Se1	87.616 (16)	C1-P1-C3	107.53 (19)
Br3-Au1-Se1	91.709 (14)	C2-P1-Se1	112.81 (14)
Br2-Au1-Br1	90.566 (17)	C1-P1-Se1	101.08 (14)
Br3-Au1-Br1	90.031 (16)	C3-P1-Se1	112.75 (13)
Se1-Au1-Br1	176.522 (15)	P1-Se1-Au1	107.24 (3)
C2-P1-C1	115.50 (19)		
C2-P1-Se1-Au1	67.97 (14)	Br2-Au1-Se1-P1	114.96 (3)
C1-P1-Se1-Au1	-168.10(13)	Br3-Au1-Se1-P1	-66.53(3)
C3-P1-Se1-Au1	-53.58 (15)		

four compounds **11a**, **15a**, **11b** and **15b** form an isotypic set, and compounds **10aa** and **14a** form an isotypic pair.

Bond lengths and angles (1). $P-E-Au-X_3$ groups: The P-S and P-Se bond lengths lie in the ranges 2.0523–2.0665

The structure of compound **13b** in the crystal. Ellipsoids represent 50% probability levels.

Au1-Br2	2.4302 (3)	P1-C3	1.847 (2)
Au1-Br3	2.4320 (3)	P1-C2	1.875 (3)
Au1-Br1	2.4549 (3)	P1-C1	1.883 (3)
Au1-Se1	2.4606 (3)	P1-Se1	2.2247 (7)
Br2-Au1-Br3	174.078 (10)	C3-P1-C1	108.84 (11)
Br2-Au1-Br1	90.066 (11)	C2-P1-C1	114.02 (11)
Br3-Au1-Br1	89.729 (12)	C3-P1-Se1	109.35 (9)
Br2-Au1-Se1	87.317 (11)	C2-P1-Se1	101.46 (8)
Br3-Au1-Se1	92.892 (11)	C1-P1-Se1	110.34 (8)
Br1-Au1-Se1	177.377 (9)	P1-Se1-Au1	108.81 (2)
C3-P1-C2	112.60 (11)		
C3-P1-Se1-Au1	-69.41 (9)	Br2-Au1-Se1-P1	-117.58 (2)
C2-P1-Se1-Au1	171.47 (8)	Br3-Au1-Se1-P1	68.34 (2)
C1-P1-Se1-Au1	50.27 (9)		

(av. 2.0602) and 2.2085–2.2247 (av. 2.2183) Å, respectively, significantly longer than in the gold(I) derivatives (av. 2.0368 and 2.1938 Å, respectively); this further lengthening with respect to the 'standard' bond lengths of *ca* 1.95 and 2.11 Å, respectively, in the free ligands implies a slightly higher contribution of the 'resonance' form with a P–*E* single bond to the overall bonding. The bond lengths at the gold atoms are in general considerably lengthened with respect to the gold(I) derivatives; the average bond lengths (Å), with the corresponding Au^I values in square brackets, are Au–S 2.3337 [2.2760], Au–Se 2.4494 [2.3845], Au–Cl *trans* to *E* 2.3107 [2.2840], *cis* to *E* 2.2855, Au–Br *trans* to *E* 2.4471 [2.3979], *cis* to *E* 2.4336.

The considerable *trans* influence of S and Se donor atoms on a *trans* Au–Cl bond is striking. Thus the six Au–Cl bonds *trans* to S have an average length of 2.3054 Å, with twelve shorter *cis* bond lengths, average 2.2857 Å; three Au–Cl bond lengths *trans* to Se have an average length of 2.3213 Å, with six shorter *cis* bond lengths, average 2.2851 Å. However, few other clear trends can be recognized; the Au–S and Au–Se bonds are slightly longer *trans* to Br (av. 2.3445 and 2.4571 Å)

Figure 13

The structure of compound **15b** in the crystal. Ellipsoids represent 50% probability levels.

than *trans* to Cl (av. 2.3301 and 2.4443 Å), but the differences and the sample sizes are both small. This would be consistent with similar *trans* influences for S, Se and Br.

The angles P-S-Au lie in the range 106.70–111.96 (av. 110.29°), with P-Se-Au = 107.24-108.49 (av. 108.08°). The angles are appreciably wider than for the Au^I derivatives (av. 106.17 and 103.86°). Here we have, however, excluded the extreme outlier **12a**, with a P-S-Au angle of 117.50 (3)°, which we tentatively attribute to steric effects; **12a** is the only ${}^{I}Bu_{3}P=E$ derivative reported in this paper (see also Section 4).

Bond lengths and angles (2). Phosphane chalcogenide *ligands*: For the Au^I derivatives involving both types of alkyl groups, the carbon atom antiperiplanar to Au across the Au-E-P-C sequence generally belongs to an *i*-propyl group (the exceptions are the ${}^{t}Bu_{2}{}^{i}PrP = E$ derivatives **3a** and **3b**). For the Au^{III} derivatives, however, all six structures involving such ligands have an antiperiplanar *t*-butyl group. Because of the bulky alkyl substituents at phosphorus, most C-P-C bond angles are greater than the ideal tetrahedral value. As compensation for this, the E-P-C angles to the carbon atom antiperiplanar to E are narrower, with values in the range 99.3–102.7°. The steric crowding is also reflected in several short intramolecular contacts involving the hydrogen atoms. These are listed for convenience in the tables of hydrogen bonds. In particular, contacts of the type $C-H \cdots X_{cis}$, invariably involving a methine hydrogen (except for the ^tBu₃P=S derivative **12a**, which has no methine hydrogens), are short enough to be regarded as intramolecular 'weak' hydrogen bonds; we suggest that the formation of these hydrogen bonds overrides the tendency for the *i*-propyl group to adopt the antiperiplanar position. The halogen atoms are numbered such that X3 is the intramolecular hydrogen-bond acceptor. This hydrogen bond is drawn explicitly only for compound 9a (Fig. 1), although the C-H group pointing towards X3 can easily be recognized for several other compounds. Another effect associated with these hydrogen bonds is the consistent positioning of the AuX_3 group, with X-Au-E-P torsion angles of ca 65° for the hydrogenbonded X atom and ca 115° (with the opposite sign) for the other cis X; again, the ^tBu₃P=S derivative 12a behaves

Figure 14

A least-squares fit of structures **10a/10aa** (the latter with dashed bonds). The fitted atoms (which exclude the methyl carbons) are labelled. The r.m.s. deviation is 0.10 Å for all fitted atoms (max. 0.23 Å for Cl3).

differently, with X-Au-E-P torsion angles of 82.19 (3) and -100.28 (3)°. The C-H···Au contacts (the latter with H···Au as short as 2.68 Å) all involve methyl groups and could be regarded as an inevitable consequence of the crowding effects rather than any significant interaction. This applies *a fortiori* to the short C-H···*E* contacts, which have very narrow angles at the hydrogen atom.

For the compounds with two structure determinations, least-squares fits were performed (for non-hydrogen atoms) using the program XP (Bruker, 1998). The r.m.s. deviations were 0.20 Å for **10a/10aa** (0.10 Å if methyl carbon atoms were omitted; Fig. 14), 0.13 Å for **11a/11aa** and 0.05 Å for **15a/15aa** (the latter were fitted with one structure inverted).

Molecular volumes: For the gold(I) species, the change in molecular volume (cell volume/Z) on changing the elements Eor X (for the same phosphine) was calculated for six pairs S/Se and for six pairs Cl/Br. The values thus obtained were generally consistent with the atomic volumes calculated by Hofmann (2002), namely S 25.5, Se 30.3, Cl 25.8 and Br 32.7 Å³. For the gold(III) series, fewer pairs are available, but the results are less convincing. The two polymorphs 10a/10aa already differ by 4.4 \AA^3 , which is comparable to the difference in volume between S and Se according to the density rule postulated by Kitaigorodskii (1961). More 'rational' (denser) crystal packing should correspond to a more stable polymorph, so that 10aa ($D_x = 2.073 \text{ Mg m}^{-3}$) should be more stable than 10a ($D_x = 2.051$ Mg m⁻³). For three pairs Cl/Br, the volume increases range from 13 to 20 \AA^3 , but for four pairs S/ Se, the differences range from 1.5 to 7 \AA^3 and for the pair **9b**/ 13b the difference has the wrong sign (the sulfur-containing 9b has a slightly larger volume, by 1 $Å^3$). Clearly such a simple additive model for the molecular volumes does not apply well here.

3. Supramolecular features

For general aspects of packing and types of secondary interaction, as applied to these compounds, a series of general articles are quoted in our previous paper (Upmann et al., 2024). Hydrogen bonds are given in Tables 15-27; these include intramolecular contacts (see above) and several borderline cases. The corresponding symmetry operators, not given explicitly in the following discussion, may also be found in those Tables. In all packing diagrams presented here, hydrogen atoms not involved in hydrogen bonding are omitted for clarity, and the atom labels indicate the asymmetric unit. It is worth repeating the caveat that X-ray methods reveal short intermolecular contacts, but not the corresponding energies, so that descriptions of molecular packing in terms of particular secondary contacts must to some extent be subjective. Similarly, there is no clear objective judgement, on the basis of contact lengths and angles, as to which contacts should be regarded as more important or less important for the packing. Finally, the exposed nature of the one-coordinate halogen atoms, combined with the large number of hydrogen atoms, means that some short $H \cdots X$

Table 15Hydrogen-bond geometry (Å, $^{\circ}$) for 9a.

		• • • •				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$		
C32−H32C···Au1	0.98	2.69	3.485 (2)	138		
$C2-H2\cdots Cl3$	1.00	2.68	3.437 (2)	133		
$C12-H12B\cdots S1$	0.98	2.73	3.310 (2)	118		
$C1-H1\cdots Cl2^{i}$	1.00	2.82	3.506 (2)	126		
$C11 - H11C \cdot \cdot \cdot Cl2^{i}$	0.98	2.91	3.582 (2)	127		
$C22-H22A\cdots Cl1^{ii}$	0.98	2.86	3.803 (2)	161		
$C2-H2\cdots Cl3^{ii}$	1.00	2.86	3.688 (2)	141		
$C32-H32A\cdots Cl2^{iii}$	0.98	2.87	3.847 (2)	180		
$C3-H3\cdots Cl2^{iv}$	1.00	2.95	3.881 (2)	155		

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y, -z; (iv) x - 1, y, z.

Table 16

Hydrogen-bond geometry (Å, $^\circ)$ for 10a.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C32-H32B\cdots Cl3$	0.98	2.75	3.452 (3)	130
$C3-H3\cdots Cl3$	1.00	2.89	3.476 (3)	118
$C13-H13A\cdots Cl3$	0.98	2.85	3.729 (3)	150
$C13-H13B\cdots Cl2^{i}$	0.98	2.77	3.704 (3)	160
$C31-H31A\cdots Cl1^{ii}$	0.98	2.87	3.372 (3)	113
$C13-H13C\cdots Cl2^{iii}$	0.98	2.91	3.878 (3)	170
$C32-H32A\cdots Cl3^{iv}$	0.98	2.91	3.800 (3)	152

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) -x + 1, -y + 1, -z + 2; (iv) -x, -y + 1, -z + 1.

contacts are inevitable. Nevertheless, it is possible to obtain informative packing diagrams.

For compound **9a**, five H···Cl contacts (from H1, H2, H3, H22*A* and H11*C*) combine to form a layer structure parallel to (011) (Fig. 15). A short Cl3···Cl3 contact of 3.625 (1) Å, operator 1 - x, -y, 1 - z, is also observed. We have previously noted the tendency of tetrahalogenidoaurate(III) anions to display short $X \cdot \cdot X$ contacts (Döring & Jones, 2016), and

Figure 15

Packing diagram of 9a, showing the formation of a layer structure parallel to (011) in the region $y \simeq 0.25$, $z \simeq 0.25$. Dashed lines indicate H····Cl contacts (thin) or Cl···Cl contacts (thick).

Table 17				
Hydrogen-bond geometry	(Å.	°)	for	10aa.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C3-H3···Cl3	1.00	2.70	3.427 (3)	130
$C3 - H3 \cdots Cl2^{i}$	1.00	2.95	3.665 (3)	129
$C21 - H21C \cdots Cl2^{ii}$	0.98	2.99	3.706 (4)	131
$C22 - H22A \cdots Cl2^{ii}$	0.98	2.94	3.675 (4)	133
C13−H13C···Cl3 ⁱⁱⁱ	0.98	2.99	3.832 (4)	145

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 18Hydrogen-bond geometry (Å, °) for 11a.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13—H13A···Au1	0.98	2.71	3.6142 (19)	154
$C12 - H12C \cdot \cdot \cdot S1$	0.98	2.86	3.391 (2)	115
C3-H3···Cl3	1.00	2.62	3.451 (2)	140
$C12 - H12C \cdot \cdot \cdot Cl2$	0.98	2.81	3.788 (2)	174
$C13 - H13C \cdot \cdot \cdot Cl2^{i}$	0.98	2.91	3.851 (2)	161

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

these are also observed in some neutral trihalogenidogold(III) complexes such as tribromido(piperidine)gold(III) (Döring & Jones, 2023).

Compound **10a** also forms a layer structure, parallel to the *ac* plane, involving three H···Cl contacts (from H13*B*, H13*C* and H32*A*) and one S···Cl contact [S1···Cl3(1 - x, 1 - y, 1 - z) = 3.6746 (9) Å] (Fig. 16). The second polymorph **10aa** has a completely different packing; there are no H···Cl contacts < 2.94 Å, but instead the molecules associate to form dimers (Fig. 17) with a short S1···S1 contact of 3.622 (2) Å (operator 1 - x, -y, 1 - z). The corresponding S1···Au1

Figure 16

Packing diagram of **10a** viewed parallel to the *b* axis in the region $y \simeq 0.5$. Dashed lines indicate H···Cl contacts (thin) or S···Cl contacts (thick).

Table 19Hydrogen-bond geometry (Å, $^{\circ}$) for 11aa.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C13−H13 <i>B</i> ···Au1	0.98	2.68	3.6027 (19)	156
$C21 - H21A \cdot \cdot \cdot S1$	0.98	2.63	3.1082 (19)	110
$C12-H12C \cdot \cdot \cdot S1$	0.98	2.86	3.411 (2)	116
$C3 - H3 \cdots Cl3$	1.00	2.65	3.4471 (18)	137
$C12 - H12C \cdot \cdot \cdot Cl2$	0.98	2.78	3.755 (2)	171
C99-D99Cl1	1.00	2.74	3.537 (2)	137
C99−D99…Cl2	1.00	2.69	3.489 (2)	137
$C12-H12A\cdots Cl1^{i}$	0.98	2.91	3.596 (2)	128

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 20

Hydrogen-bond geometry (Å, $^\circ)$ for 12a.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C23-H23A···Au1	0.98	2.69	3.438 (2)	134
$C13-H13B\cdots S1$	0.98	2.61	3.131 (2)	114
$C32-H32A\cdots S1$	0.98	2.83	3.323 (2)	112
$C23 - H23A \cdots Cl2$	0.98	2.82	3.778 (2)	168
$C32 - H32A \cdots Cl3$	0.98	2.88	3.759 (2)	150
$C33 - H33B \cdot \cdot \cdot Cl3$	0.98	2.73	3.623 (2)	152
$C99 - H99A \cdots Cl2$	0.99	2.84	3.749 (3)	153
$C99-H99B\cdots Cl3^{i}$	0.99	2.96	3.903 (3)	160
$C22-H22A\cdots Cl3^{i}$	0.98	2.82	3.791 (2)	171

Symmetry code: (i) x + 1, y, z.

distance is 4.0282 (8) Å, and there is a borderline H22C···Au1 contact of 3.18 Å. Dimers are linked to form a chain parallel to the *a* axis by the contact Cl2···Cl3 3.5885 (11) Å (operator -1 + x, y, z; Fig. 18). The packing of **11a** is similar to that of **10a**, again involving inversion-symmetric dimers [S1···S1 = 3.4257 (9), S1···Au1 = 4.0467 (5), H21C···Au1 = 3.03 Å, operator 1 - x, 1 - y, -z], but with these being linked by the contact H13···Cl2 to form chains parallel to the *c* axis (Fig. 19). Compound **14a** (isotypic to **10aa**) has contact distances Se1···Se1' = 3.615 (2) and Cl2···Cl3' = 3.511 (3) Å. Compounds **11b**, **15a** and **15b** (isotypic to **11a**) have distances Se1···Se1' = 3.3447 (4), S1···S1' = 3.4513 (11) and Se1···Se1'

Figure 17

The inversion-symmetric dimer of **10aa**. The short $S1\cdots S1$ contact is shown by the thick dashed line. Thin dashed lines indicate the borderline contacts $S1\cdots Au1$ and $H22C\cdots Au1$.

 Table 21

 Hydrogen-bond geometry (Å, °) for 14a.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C3-H3···Cl3	1.00	2.74	3.445 (9)	128
$C3-H3\cdots Cl2^{i}$	1.00	2.99	3.714 (8)	130
$C21 - H21C \cdot \cdot \cdot Cl2^{ii}$	0.98	2.98	3.730 (10)	135
$C22 - H22A \cdots Cl2^{ii}$	0.98	2.94	3.646 (11)	130
$C13-H13C\cdots Cl3^{iii}$	0.98	2.98	3.860 (10)	151

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$

Table 22Hydrogen-bond geometry (Å, $^{\circ}$) for 15a.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13A···Au1	0.98	2.76	3.6818 (18)	158
C21−H21C···Se1	0.98	2.68	3.1887 (19)	113
C12−H12C···Se1	0.98	2.92	3.4566 (18)	116
C3-H3···Cl3	1.00	2.65	3.4842 (19)	141
$C12-H12C\cdots Cl2$	0.98	2.94	3.9145 (19)	174
$C13-H13C\cdots Cl2^{i}$	0.98	2.93	3.8489 (19)	157

Table 23Hydrogen-bond geometry (Å, $^{\circ}$) for 15aa.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C99−D99…Cl2	1.00	2.76	3.580 (7)	139
$C13 - H13A \cdots Au1$	0.98	2.69	3.618 (3)	158
$C21 - H21C \cdot \cdot \cdot Se1$	0.98	2.70	3.208 (3)	112
C3-H3···Cl3	1.00	2.65	3.497 (3)	142
$C13-H13C\cdots Cl2^{i}$	0.98	2.92	3.866 (3)	163

Symmetry code: (i) -x, -y + 1, -z + 1.

= 3.3734(5) Å, respectively. The primes indicate the operators given above for the parent structures.

For compound **11aa**, which is the deuterochloroform solvate of **11a**, the solvent molecule is well-ordered, and its deuterium atom is involved in a three-centre hydrogen bond to Cl1 and Cl2. The residues are further linked by the short contact Cl3···Cl6 = 3.6706 (7) Å (operator x, -1 + y, z), forming chains parallel to the b axis (Fig. 20). There are no H···Cl contacts < 2.91 Å.

Structure **10aa**: Association of dimers to form chains parallel to the *a* axis. The two chains lie in the regions $y \simeq 0.5$, $z \simeq 0$ and $y \simeq 0$, $z \simeq 0.5$. Thick dashed lines indicate Cl···Cl and S···S contacts; the latter are viewed almost end-on. Hydrogen atoms are omitted.

research communications

Table 24

Hydrogen-bond geometry (Å, $^\circ)$ for 9b.

$D = H \cdots A$	D - H	$H \cdots A$	$D \cdots A$	$D = H \cdots A$
	<i>D</i> 11	11 /1	<i>D</i> 11	
C32−H32C···Au1	0.98	2.76	3.473 (3)	131
$C12-H12B\cdots S1$	0.98	2.68	3.261 (3)	118
$C2-H2\cdots Br3$	1.00	2.71	3.560 (3)	143
$C22-H22B\cdots Au1^{i}$	0.98	2.98	3.551 (3)	119
$C21 - H21C \cdot \cdot \cdot Br1^{ii}$	0.98	3.02	3.829 (3)	141
$C3-H3\cdots Br2^{i}$	1.00	2.91	3.796 (3)	148
$C32-H32A\cdots Br2^{iii}$	0.98	3.06	3.900 (3)	145
$C11-H11C\cdots Br2^{iv}$	0.98	2.91	3.661 (3)	134

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1.

Table 25

Hydrogen-bond geometry (Å, °) for 11b.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C13−H13 <i>B</i> ···Au1	0.98	2.69	3.607 (2)	156
$C21 - H21A \cdot \cdot \cdot S1$	0.98	2.63	3.109 (2)	110
$C12-H12A\cdots S1$	0.98	2.89	3.417 (2)	114
C3-H3···Br3	1.00	2.71	3.546 (2)	141
$C12-H12A\cdots Br2$	0.98	2.89	3.863 (2)	174
$C13-H13A\cdots Br2^{i}$	0.98	3.00	3.931 (2)	159

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Compound **12a**, which is a dichloromethane solvate, has a three-dimensional packing in which the most striking feature is the formation of dimers *via* the contact $S1 \cdots S1(1 - x, 1 - y, 1 - z) = 3.4357$ (10) Å. The packing involves layers parallel to (011); these include the solvent contacts H99 $A \cdots$ Cl2 (also shown in Fig. 6) = 2.84, H99 $B \cdots$ Cl3 = 2.96 and Cl5 \cdots Cl5(2 - x, 2 - y, -z) = 3.3990 (14) Å (Fig. 21). The alkyl groups of one layer project into the gaps of neighbouring layers. The contacts H22 $A \cdots$ Cl3 are not shown in Fig. 21.

Compound **15aa**, the deuterochloroform solvate of **15a**, has few short contacts between the molecules of the gold complex itself; the contact $Cl1 \cdots Cl1(-x, 2 - y, 1 - z) = 3.5208$ (13) Å

Figure 19

Compound **11a**: Association of dimers to form chains parallel to the *c* axis. The view direction is perpendicular to the *ab* plane. Dashed lines indicate $H \cdots Cl$ and $S \cdots S$ contacts (thick) or borderline $S \cdots Au$ and $H \cdots Au$ contacts (thin).

Table	26
-------	----

Hydrogen-bond geometry (Å, $^{\circ}$) for **13b**.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C32−H32C···Au1	0.98	2.77	3.578 (5)	140
$C12 - H12B \cdots Se1$	0.98	2.90	3.479 (5)	119
C2−H2···Br3	1.00	2.71	3.497 (4)	136
C11−H11C···Br3 ⁱ	0.98	2.78	3.752 (5)	171
$C32-H32A\cdots Br2^{ii}$	0.98	2.99	3.933 (4)	163

Symmetry codes: (i) x, y - 1, z; (ii) -x + 2, -y + 1, -z + 1.

Table 27

Hydrogen-bond geometry (Å, $^{\circ}$) for **15b**.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C13−H13B···Au1	0.98	2.74	3.679 (3)	160
$C21 - H21A \cdots Se1$	0.98	2.69	3.197 (3)	113
$C12-H12A\cdots$ Se1	0.98	2.96	3.484 (3)	115
C3-H3···Br3	1.00	2.75	3.585 (3)	142
$C12 - H12A \cdots Br2$	0.98	3.01	3.980 (3)	173
$C13-H13A\cdots Br2^{i}$	0.98	3.02	3.929 (3)	156

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

links the molecules into simple dimers. Instead it is the disordered solvent, occupying the region at $z \simeq 0$, that lies between and thus connects the molecules of the gold complex. Fig. 22 shows this pattern for the major disorder component, with D99···Cl2 = 2.76, Au1···Cl5 = 3.547 (2) and Cl2···Cl5 = 3.603 (2) Å (both -x, 2 - y, -z) and Cl6···Cl6 = 3.546 (6) Å (-x, 1 - y, -z). The minor component, somewhat displaced

Figure 20

Compound **11aa**: Association of residues to form chains parallel to the *b* axis. The view direction is perpendicular to the *ab* plane. Dashed lines indicate hydrogen bonds or $Cl \cdots Cl$ contacts.

Figure 21

Compound **12a**: The layer structure parallel to (011), viewed perpendicular to this plane in the region $x \simeq 1$. Dashed lines indicate S···S and Cl···Cl contacts (thick) or H···Cl contacts (thin).

Figure 22

Compound **15aa**: The disordered solvent, only the major component of which is shown here, lies between the molecules of the gold complex, forming a variety of short contacts Au···Cl, H···Cl and Cl···Cl (dashed lines). The view direction is perpendicular to the *ab* plane in the region $x \simeq 0$.

from its major counterpart $[C99 \cdots C99' = 0.59 (1) \text{ Å}$, angle between C–D vectors = 9°], makes a similar series of contacts, which we do not discuss explicitly.

Compound **9b** has a short Br1...Br3 $(-x, \frac{1}{2} + y, \frac{1}{2} - z)$ contact of 3.7110 (4) Å. This combines with four H...Br contacts and one H...Au contact to form a layer structure parallel to (102) (Fig. 23).

The packing of compound **13b** involves the formation of striking inversion-symmetric dimers, with short contacts

Figure 23

Compound **9b**: The layer structure parallel to $(10\overline{2})$, formed by Br...Br contacts (thick dashed lines) and five weak hydrogen bonds (thin dashed lines).

Compound **13b**: Dimer formation *via* short Se \cdots Au and Se \cdots Br contacts (thick dashed lines)

Au1...Se1' = 3.7472 (5) and Se1...Br3' = 3.4874 (6) Å, *via* the operator 1 - x, 1 - y, -z (Fig. 24). The corresponding Au1...Au1' and Au1...Br2' distances of 4.1897 (3) and 4.0038 (5) Å are probably too long to represent any significant interaction. The dimer formation is reminiscent of the stacking of AuX₃ moieties, as observed for example for the infinite stacks in four polymorphs of trichlorido(tetrahydrothiophene)gold(III) (Upmann & Jones, 2017), but with the important difference that the Se atom of **13b** is also involved. The dimers are linked by a short Br2...Br3 contact of 3.5478 Å (operator 1 + x, *y*, *z*), forming a chain parallel to the *a* axis (Fig. 25).

4. Database survey

The searches employed the routine ConQuest (Bruno *et al.*, 2002), part of Version 2022.3.0 of the Cambridge Structural Database (Groom *et al.*, 2016).

Figure 25 Compound **13b**: Linkage of dimers parallel to the *a* axis *via* a short $Br \cdots Br$ interaction. The view direction is parallel to the *b* axis.

A search for all structures containing the moiety $R_3P=S-TM$ (coordination numbers of 4 for P and 2 for S, bond orders unspecified, TM = any transition metal), excluding any structure in which the P=S or S-TM bonds were involved in rings, gave 83 hits. The 108 bond angles at sulfur ranged from 95.6–127.9°, so that this angle is clearly highly variable. The largest value of 127.88 (2)° was observed for the only structure involving ^{*I*}Bu₃P=S, namely [(^{*I*}Bu₃PS) Fe(CO)₂Cp][PF₆] (RIDJUK; Kuckmann *et al.*, 2007), *cf.* structure **12a** above. Similarly, 39 hits for R_3P =Se – *TM* were registered, with 58 angles at selenium in the range 92.1–113.3°. One of the smallest angles, 92.91 (12)°, was observed for (9-phenanthryl)Ph₂PSeAuCl (as its benzene solvate); the analogous sulfur derivative (solvent-free) had a P–S–Au angle of 100.85 (6)° (DUGSAB & DUGFOC; Breshears *et al.*, 2015).

Searches for other compounds of the type $(R_3P=E)AuX_3$ gave only our own structures, *i.e.* all four permutations (E = Sor Se, X = Cl or Br) of $(PCP)^i Pr_2 EAuX_3$ (PCP = [2.2]paracyclophanyl; Upmann *et al.*, 2019).

5. Synthesis and crystallization

For several of the compounds, the syntheses can be found in the PhD thesis of D. Upmann (Upmann, 2015). The following do not appear there:

Compound **9a**. 125 mg (0.3 mmol) of ${}^{i}Pr_{3}PSAuCl$ were dissolved in 5 mL of dichloromethane, and a solution of iodobenzene dichloride (82 mg, 0.3 mmol) in 5 mL of dichloromethane was added. The red solution was stirred for 30 min. The solvent was removed under vacuum. The product, a red solid, was precipitated with *n*-pentane and dried under vacuum. The yield was not recorded. ³¹P-NMR (200 MHz, CDCl₃, 300 K): δ (ppm) 78.64 (*s*). Elemental analysis (%): calculated: C 21.81, H 4.27, S 6.47; found: C 22.06, H 4.07, S 6.26. Single crystals were obtained by liquid diffusion of *n*-pentane into a solution of **9a** in dichloromethane. Similar attempts to synthesize the selenium analogue (which would have been compound **13a**) were unsuccessful; the product was always an intractable gum that decomposed.

Compound **9b.** 187.4 mg (0.399 mmol) of ${}^{t}\text{Pr}_{3}\text{PSAuBr}$ were dissolved in 3 mL of dichloromethane, and 4.16 mL of a 0.096 *M* solution of bromine in dichloromethane were added. The product, a red solid, was precipitated with *n*-pentane and dried under vacuum. Yield: 132.6 mg (0.211 mmol, 53%). ³¹P-NMR (81 MHz, CDCl₃, 300 K): δ (ppm) 77.17 (*s*). Elemental analysis (%): calculated: C 17.19, H 3.37, S 5.10; found: C 17.42, H 3.40, S 5.31. Single crystals were obtained by liquid diffusion of *n*-pentane into a solution of **9b** in dichloromethane.

Compound **11b**. 336 mg (0.675 mmol) of ${}^{i}Pr_{2}{}^{t}BuPSAuBr$ were dissolved in 3 mL of dichloromethane, and 6.7 mL of a 0.1 *M* solution of bromine in dichloromethane were added. The solution was overlayered with *n*-pentane and stored in a refrigerator (278 K) overnight. Crystals suitable for structure determination formed. After removal of the solvent under vacuum, the product was recrystallized from a mixture of dichloromethane and *n*-pentane as a dark-red solid. Yield:

341 mg (0.685 mmol, quantitative). ³¹P-NMR (81 MHz, CDCl₃, 300 K): δ (ppm) 85.18 (*s*). Elemental analysis (%): calculated: C 20.11, H 3.84, S 4.88; found: C 20.98, H 4.01, S 4.97.

Compound 12a was synthesized by the same general method as the other chloro derivatives (*e.g.* 9a, see above), but the details have unfortunately been lost.

Compound **13b**. 194.7 mg (0.377 mmol) of ^{*i*}Pr₃PSeAuBr were dissolved in 3 mL of dichloromethane, and 3.93 mL of a 0.096 *M* solution of bromine in dichloromethane were added. The product, a red solid, was precipitated with *n*-pentane and dried under vacuum. Yield: 141.2 mg (0.209 mmol, 55%). ³¹P-NMR (81 MHz, CDCl₃, 300 K): δ (ppm) 74.46 (*s*, ¹*J*_{P-Se} = 520 Hz). Single crystals were obtained by liquid diffusion of *n*-pentane into a solution of **13b** in dichloromethane. Elemental analysis (%): calculated: C 15.99, H 3.13; found: C 16.22, H 3.18.

Compound **15b.** 303 mg (0.557 mmol) of ${}^{1}Pr^{T}Bu_{2}PSeAuBr$ were dissolved in 3 mL of dichloromethane, and 5.6 mL of a 0.1 *M* solution of bromine in dichloromethane were added. The solution was overlayered with *n*-pentane and stored in a refrigerator (278 K) overnight. After removal of the solvent under vacuum, the product was recrystallized twice from a mixture of dichloromethane and *n*-pentane as a dark red solid, from which a crystal was selected for measurement. The yield was only *ca* 20%, and neither the elemental analyses nor the ³¹P-NMR results were satisfactory (despite the successful structure determination). We suspect partial decomposition of the product.

The conditions under which the polymorph **10aa** arose were unfortunately not recorded. Crystals of the deuterochloroform solvates **11aa** and **15aa** were obtained fortuitously by evaporation from the corresponding NMR solutions.

6. Refinement

Details of the measurements and refinements are given in Table 28. Structures were refined anisotropically on F^2 . Methine and methylene hydrogens were included at calculated positions and refined using a riding model with C-H =1.00 or 0.99 Å respectively and $U_{iso}(H) = 1.2 \times U_{eq}(C)$. Methyl groups were refined, using the command AFIX 137, as idealized rigid groups allowed to rotate but not tip, with C-H =0.98 Å, H-C-H = 109.5° and $U_{iso}(H) = 1.5 \times U_{eq}(C)$. The use of this command determines the initial hydrogen positions (before refinement) by analysis of maxima in the residual electron density at suitable C-H distances, and these peaks may not be entirely reliable in the presence of a very heavy atom (although in general the refinement seemed to proceed satisfactorily), so that any postulated hydrogen bonds involving methyl hydrogen atoms should be interpreted with caution.

Special features: The deuterochloroform molecule of **15aa** is disordered over two positions with occupation factors 0.525 (4) and 0.475 (4). Appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should always be interpreted with caution. The

Table 28

Experimental details.

	9a	10a	10aa	11a	11aa
Crystal data					
Chemical formula	$[\mathrm{AuCl}_3(\mathrm{C}_9\mathrm{H}_{21}\mathrm{PS})]$	$[AuCl_3(C_{10}H_{23}PS)]$	$[AuCl_3(C_{10}H_{23}PS)]$	$[AuCl_3(C_{11}H_{25}PS)]$	[AuCl ₃ (C ₁₁ H ₂₅ PS)]- CDCl ₂
Mr	495.60	509.63	509.63	523.66	644.03
Crystal system, space	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	100	100	100	100	101
a, b, c (Å)	8.0262 (3), 9.0839 (3), 10.7162 (3) 86 185 (2) 85 730 (3)	8.4533 (2), 17.0563 (4), 11.4826 (3)	7.9363 (3), 14.4096 (4), 14.2851 (4)	8.6034 (4), 9.7779 (4), 11.4231 (4) 78.876 (2), 71.456 (4)	9.6382 (4), 10.2787 (3), 11.8483 (5) 75 115 (2) 68 875 (4)
α, β, γ (*)	86.185 (2), 85.750 (5), 84.468 (3)	90, 94.323 (2), 90	90, 91.774 (3), 90	78.876 (3), 71.436 (4), 72.702 (4)	89.728 (3)
V (A ²) Z	7/4.13 (4) 2	1650.43 (7)	1632.85 (9)	864.69 (7)	1053.13 (8)
Radiation type	Μο Κα	- Μο Κα	- Μο Κα	Μο Κα	Δ Μο Κα
$\mu (\text{mm}^{-1})$	10.23	9.60	9.70	9.16	7.91
Crystal size (mm)	$0.22\times0.05\times0.01$	$0.3 \times 0.2 \times 0.02$	$0.3 \times 0.2 \times 0.2$	$0.15 \times 0.15 \times 0.08$	$0.15 \times 0.06 \times 0.05$
Data collection					
Diffractometer	Oxford Diffraction	Oxford Diffraction	Oxford Diffraction	Oxford Diffraction	Oxford Diffraction
Absorption correction	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD,	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD,	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD,	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD,	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD,
	2020)	2020)	2020)	2020)	2020)
T_{\min}, T_{\max}	0.421, 1.000	0.192, 1.000	0.159, 0.247	0.577, 1.000	0.454, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$	56439, 4632, 4428	40041, 4863, 4483	42542, 4881, 4296	68815, 5155, 4939	76947, 6247, 5976
Rint	0.037	0.040	0.046	0.038	0.038
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.720	0.722	0.721	0.721	0.723
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.015, 0.033, 1.05	0.021, 0.046, 1.07	0.025, 0.045, 1.12	0.016, 0.036, 1.08	0.016, 0.033, 1.05
No. of reflections	4632	4863	4881	5155	6247
No. of parameters	142	152	152	163	199
No. of restraints	0	0	0	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A)$ Extinction method	None	None	None	$F_{c}^{*} = kF_{c}[1 + 0.001$ $F_{c}^{*2}\lambda^{3}/\sin(2\theta)]^{-1/4}$ (SHELXL2019/3; Sheldrick 2015)	$F_{c}^{*} = kF_{c}[1 + 0.001]$ $F_{c}^{*} 2\lambda^{3}/\sin(2\theta)]^{-1/4}$ (SHELXL2019/3; Sheldrick 2015)
Extinction coefficient	-	_	_	0.00097 (14)	0.00133 (9)
	12a	14a	15a	15aa	9b
Crystal data Chemical formula	$[AuCl_3(C_{12}H_{27}PS)] - CH_2Cl_2$	[AuCl ₃ (C ₁₀ H ₂₃ PSe)]	[AuCl ₃ (C ₁₁ H ₂₅ PSe)]	[AuCl ₃ (C ₁₁ H ₂₅ PSe)]- CDCl ₃	[AuBr ₃ (C ₁₀ H ₂₃ PS)]
$M_{\rm r}$	622.61	556.53	570.55	690.93	628.98
Crystal system, space group	Triclinic, P1	Monoclinic, $P2_1/n$	Triclinic, P1	Triclinic, P1	Monoclinic, $P2_1/c$
Temperature (K)	100	100	100	100	100
a, b, c (Å)	8.4202 (3), 11.2194 (4), 11.8355 (4)	7.92516 (18), 14.5559 (4), 14.3635 (4)	8.5878 (4), 9.8435 (4), 11.5022 (5)	8.5343 (2), 9.7185 (3), 14.0759 (4)	9.1341 (2), 7.9039 (2), 22.6420 (4)
<i>α</i> , <i>β</i> , <i>γ</i> (°)	98.398 (3), 101.174 (3), 95.991 (3)	90, 91.264 (2), 90	78.391 (3), 71.168 (4), 73.463 (4)	74.398 (2), 78.121 (2), 73.257 (2)	90, 94.519 (2), 90
$V(\dot{A}^{3})$ Z	1074.95 (7) 2	1656.54 (7) 4	875.78 (7) 2	1066.31 (5) 2	1629.56 (6) 4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	7.63	11.64	11.01	9.42	16.58
Crystal size (mm)	$0.15\times0.1\times0.1$	$0.15 \times 0.15 \times 0.1$	$0.18\times0.15\times0.12$	$0.4 \times 0.25 \times 0.08$	$0.15\times0.1\times0.1$
Data collection					
Diffractometer	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos

research communications

Table 28 (continued)

	12a	14a	15a	15aa	9b
Absorption correction	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2020)
T_{\min}, T_{\max}	0.783, 1.000	0.483, 1.000	0.700, 1.000	0.151, 1.000	0.486, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	157605, 6558, 6124	196706, 4112, 3878	54532, 5231, 4984	76069, 6287, 6060	64266, 4964, 4633
$R_{\rm int}$	0.054	0.084	0.032	0.040	0.037
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.727	0.667	0.722	0.721	0.722
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.021, 0.037, 1.05	0.043, 0.093, 1.32	0.014, 0.030, 1.10	0.021, 0.048, 1.10	0.022, 0.038, 1.23
No. of reflections	6558	4112	5231	6287	4964
No. of parameters	199	152	163	235	143
No. of restraints	0	0	0	39	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.76, -1.01	3.81, -2.41	0.84, -0.73	1.88, -1.30	1.58, -0.95
Extinction method	None	None	$F_{c}^{*} = kF_{c}[1 + 0.001 F_{c}^{2}\lambda^{3}/\sin(2\theta)]^{-1/4} (SHELXL2019/3; Sheldrick, 2015)$	None	$F_{c}^{*} = kF_{c}[1 + 0.001 F_{c}^{2}\lambda^{3}/\sin(2\theta)]^{-1/4} (SHELXL2019/3; Sheldrick, 2015)$
Extinction coefficient	_	_	0.00113 (8)	_	0.00043 (2)

	11b	13b	15b
Crystal data			
Chemical formula	$[AuBr_3(C_{11}H_{25}PS)]$	$[AuBr_3(C_9H_{21}PSe)]$	$[AuBr_3(C_{11}H_{25}PSe)]$
M _r	657.04	675.88	703.93
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	100	100	100
a, b, c (Å)	8.6067 (8), 10.1161 (12), 11.5123 (12)	8.3928 (2), 10.1417 (4), 10.7567 (4)	8.6000 (5), 10.2045 (7), 11.5987 (7)
$lpha,eta,\gamma(^\circ)$	77.873 (10), 70.257 (10), 71.867 (10)	94.419 (3), 105.612 (3), 110.113 (3)	77.475 (6), 69.764 (6), 72.601 (6)
$V(Å^3)$	890.37 (18)	813.33 (5)	904.02 (11)
Z	2	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	15.18	18.72	16.85
Crystal size (mm)	$0.2 \times 0.2 \times 0.2$	$0.2 \times 0.1 \times 0.01$	$0.2 \times 0.06 \times 0.04$
Data collection			
Diffractometer	Oxford Diffaction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)
T_{\min}, T_{\max}	0.447, 1.000	0.200, 1.000	0.376, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	65025, 5297, 5057	44535, 4825, 4278	25566, 5282, 4719
R _{int}	0.038	0.059	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.721	0.724	0.721
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.017, 0.036, 1.14	0.028, 0.074, 1.05	0.020, 0.036, 1.05
No. of reflections	5297	4825	5282
No. of parameters	163	142	163
No. of restraints	0	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.08, -1.43	1.43, -1.49	1.04, -0.80
Extinction method	$F_{c}^{*} = kF_{c}[1 + 0.001 F_{c}^{-2}\lambda^{3}/\sin(2\theta)]^{-1/4}$ $\frac{4}{(SHELXL2019/3; Sheldrick, 2015)}$	None	$F_{c}^{*} = kF_{c}[1 + 0.001 F_{c}^{2}\lambda^{3}/\sin(2\theta)]^{-1/4}$ (SHELXL2019/3; Sheldrick, 2015)
Extinction coefficient	0.00557 (11)	_	0.00115 (6)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXS97 (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015) and XP (Bruker, 1998).

data for **14a** were significantly affected by the presence of a small (and at first undetected) satellite crystal, rotated by $ca 5^{\circ}$ from the main crystal. Attempts to treat the structure using procedures developed for non-merohedral twins did not lead to any improvement, and no better crystals were found. The *U* values are significantly higher than for the other structures, and the ellipsoid plot (Fig. 7) is drawn at 30% rather than 50% levels.

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

Breshears, A. T., Behrle, A. C., Barnes, C. L., Laber, C. H., Baker, G. A. & Walensky, J. R. (2015). *Polyhedron*, **100**, 333–343.

Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.

Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936. Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017–1027.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.
- Kitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.
- Kuckmann, T. J., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989–2003.
- Rigaku OD (2020). *CrysAlis PRO*, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911–927.
- Upmann, D. (2015). Phosphanchalkogenide und ihre Edelmetallkomplexe. Dissertation, Technical University of Braunschweig, Germany (ISBN: 978-3-8439-1972-2).
- Upmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526-7528.
- Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024). *Acta Cryst.* E80, 34–49.
- Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389–404.
- Upmann, D., Näther, C., Jess, I. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311–316.

Acta Cryst. (2024). E80, 355-369 [https://doi.org/10.1107/S2056989024002032]

Crystal structures of ten phosphane chalcogenide complexes of gold(III) chloride and bromide

Daniel Upmann, Dirk Bockfeld, Peter G. Jones and Eliza Târcoveanu

Computing details

Trichlorido(tripropan-2-ylphosphane sulfide-*kS*)gold(III) (9a)

Crystal data

[AuCl₃(C₉H₂₁PS)] $M_r = 495.60$ Triclinic, $P\overline{1}$ a = 8.0262 (3) Å b = 9.0839 (3) Å c = 10.7162 (3) Å a = 86.185 (2)° $\beta = 85.730$ (3)° $\gamma = 84.468$ (3)° V = 774.13 (4) Å³

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray source Detector resolution: 16.1419 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{\min} = 0.421, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.033$ S = 1.054632 reflections 142 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 472 $D_x = 2.126 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25652 reflections $\theta = 2.3-30.7^{\circ}$ $\mu = 10.23 \text{ mm}^{-1}$ T = 100 KPlate, dichroic orange / yellow $0.22 \times 0.05 \times 0.01 \text{ mm}$

56439 measured reflections 4632 independent reflections 4428 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 30.8^\circ, \ \theta_{min} = 2.3^\circ$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0167P)^2 + 0.4566P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.05$ e Å⁻³ $\Delta\rho_{min} = -0.96$ e Å⁻³

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Aul	0.74127 (2)	0.15601 (2)	0.24499 (2)	0.01058 (3)
Cl1	0.90254 (7)	-0.06826 (5)	0.24307 (5)	0.02024 (10)
C13	0.67060 (6)	0.11336 (6)	0.45357 (5)	0.01749 (9)
Cl2	0.83231 (6)	0.20433 (6)	0.04060 (4)	0.01903 (10)
S1	0.58505 (6)	0.38531 (5)	0.23869 (5)	0.01309 (9)
P1	0.33654 (6)	0.34414 (5)	0.25253 (4)	0.01036 (9)
C1	0.2343 (2)	0.5273 (2)	0.20553 (19)	0.0136 (4)
H1	0.278877	0.550333	0.117475	0.016*
C2	0.2705 (2)	0.2697 (2)	0.40925 (18)	0.0136 (4)
H2	0.342680	0.174844	0.423351	0.016*
C3	0.2864 (3)	0.2158 (2)	0.13891 (19)	0.0152 (4)
Н3	0.161322	0.217320	0.143959	0.018*
C11	0.0440 (3)	0.5277 (2)	0.2004 (2)	0.0235 (5)
H11A	-0.008072	0.516636	0.285805	0.035*
H11B	0.019245	0.445182	0.152445	0.035*
H11C	-0.001015	0.621446	0.159793	0.035*
C12	0.2796 (3)	0.6527 (2)	0.2818 (2)	0.0257 (5)
H12A	0.238861	0.748320	0.241944	0.039*
H12B	0.401672	0.647672	0.285129	0.039*
H12C	0.227092	0.642306	0.367069	0.039*
C21	0.3038 (3)	0.3672 (2)	0.5135 (2)	0.0214 (4)
H21A	0.225900	0.457144	0.510729	0.032*
H21B	0.419396	0.394310	0.501883	0.032*
H21C	0.287352	0.312734	0.594864	0.032*
C22	0.0893 (3)	0.2277 (3)	0.4200 (2)	0.0211 (4)
H22A	0.066095	0.175991	0.501716	0.032*
H22B	0.073806	0.162680	0.353195	0.032*
H22C	0.012040	0.317689	0.411899	0.032*
C31	0.3395 (3)	0.2667 (3)	0.0039 (2)	0.0232 (5)
H31A	0.462041	0.264402	-0.006264	0.035*
H31B	0.289704	0.367907	-0.014347	0.035*
H31C	0.300690	0.200277	-0.053941	0.035*
C32	0.3543 (3)	0.0551 (2)	0.1703 (2)	0.0203 (4)
H32A	0.306801	-0.010584	0.116174	0.030*
H32B	0.322688	0.027578	0.258217	0.030*
H32C	0.476851	0.045590	0.156468	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.00962 (4)	0.01142 (4)	0.01073 (4)	-0.00084 (2)	-0.00111 (2)	-0.00061 (2)
Cl1	0.0213 (2)	0.0167 (2)	0.0215 (2)	0.00572 (18)	-0.00174 (19)	-0.00262 (19)
C13	0.0157 (2)	0.0213 (2)	0.0138 (2)	0.00148 (17)	0.00099 (17)	0.00419 (18)
Cl2	0.0198 (2)	0.0250 (2)	0.0116 (2)	-0.00060 (19)	0.00136 (17)	-0.00064 (18)
S 1	0.0115 (2)	0.0108 (2)	0.0169 (2)	-0.00201 (16)	-0.00067 (17)	0.00050 (17)

P1 C1 C2 C3 C11 C12 C21 C22 C31	$\begin{array}{c} 0.0103 \ (2) \\ 0.0149 \ (9) \\ 0.0120 \ (9) \\ 0.0135 \ (9) \\ 0.0144 \ (10) \\ 0.0358 \ (13) \\ 0.0293 \ (12) \\ 0.0141 \ (9) \\ 0.0294 \ (12) \end{array}$	0.0095 (2) 0.0102 (8) 0.0155 (9) 0.0157 (9) 0.0197 (10) 0.0118 (9) 0.0221 (10) 0.0290 (11) 0.0268 (11)	0.0114 (2) 0.0152 (9) 0.0131 (9) 0.0344 (13) 0.0303 (12) 0.0131 (9) 0.0200 (10) 0.0147 (10)	-0.00047 (16) 0.0012 (7) -0.0022 (7) -0.0004 (7) 0.0032 (8) 0.0047 (9) -0.0061 (9) -0.0058 (8) -0.0027 (9)	-0.00153 (17) -0.0019 (7) -0.0006 (7) -0.0033 (7) -0.0019 (9) -0.0124 (10) 0.0016 (8) -0.0013 (8) -0.0048 (9)	-0.00085 (17) 0.0012 (7) 0.0012 (7) -0.0061 (7) 0.0055 (9) -0.0050 (8) -0.0023 (8) 0.0062 (9) -0.0057 (8)
C31 C32	0.0294 (12) 0.0228 (10)	0.0268 (11) 0.0131 (9)	0.0147 (10) 0.0264 (11)	-0.0027(9) -0.0026(8)	-0.0048(9) -0.0044(9)	-0.0057 (8) -0.0070 (8)
C32	0.0228 (10)	0.0131 (9)	0.0264 (11)	-0.0026 (8)	-0.0044 (9)	-0.0070 (8)

Geometric parameters (Å, °)

Au1—Cl3	2.2818 (5)	C11—H11B	0.9800
Au1—Cl2	2.2846 (5)	C11—H11C	0.9800
Au1—Cl1	2.3064 (5)	C12—H12A	0.9800
Au1—S1	2.3250 (5)	C12—H12B	0.9800
S1—P1	2.0574 (7)	C12—H12C	0.9800
P1—C2	1.829 (2)	C21—H21A	0.9800
P1—C3	1.8317 (19)	C21—H21B	0.9800
P1—C1	1.8387 (19)	C21—H21C	0.9800
C1—C12	1.531 (3)	C22—H22A	0.9800
C1—C11	1.532 (3)	C22—H22B	0.9800
C1—H1	1.0000	C22—H22C	0.9800
C2—C21	1.525 (3)	C31—H31A	0.9800
C2—C22	1.534 (3)	C31—H31B	0.9800
С2—Н2	1.0000	C31—H31C	0.9800
C3—C31	1.531 (3)	C32—H32A	0.9800
C3—C32	1.533 (3)	С32—Н32В	0.9800
С3—Н3	1.0000	С32—Н32С	0.9800
C11—H11A	0.9800		
Cl3—Au1—Cl2	175.341 (18)	C1-C11-H11C	109.5
Cl3—Au1—Cl1	90.151 (18)	H11A—C11—H11C	109.5
Cl2—Au1—Cl1	88.999 (19)	H11B—C11—H11C	109.5
Cl3—Au1—S1	92.249 (18)	C1—C12—H12A	109.5
Cl2—Au1—S1	88.545 (18)	C1—C12—H12B	109.5
Cl1—Au1—S1	177.472 (17)	H12A—C12—H12B	109.5
P1—S1—Au1	106.70 (2)	C1—C12—H12C	109.5
C2—P1—C3	108.01 (9)	H12A—C12—H12C	109.5
C2—P1—C1	115.39 (9)	H12B-C12-H12C	109.5
C3—P1—C1	106.80 (9)	C2-C21-H21A	109.5
C2—P1—S1	111.92 (7)	C2—C21—H21B	109.5
C3—P1—S1	113.32 (7)	H21A—C21—H21B	109.5
C1—P1—S1	101.34 (7)	C2—C21—H21C	109.5
C12—C1—C11	111.53 (18)	H21A—C21—H21C	109.5
C12—C1—P1	113.93 (14)	H21B—C21—H21C	109.5
C11—C1—P1	112.89 (14)	C2—C22—H22A	109.5

C12—C1—H1	105.9	C2—C22—H22B	109.5
C11—C1—H1	105.9	H22A—C22—H22B	109.5
P1—C1—H1	105.9	C2—C22—H22C	109.5
C21—C2—C22	111.88 (17)	H22A—C22—H22C	109.5
C21—C2—P1	113.49 (14)	H22B—C22—H22C	109.5
C22—C2—P1	113.14 (14)	C3—C31—H31A	109.5
С21—С2—Н2	105.8	C3—C31—H31B	109.5
С22—С2—Н2	105.8	H31A—C31—H31B	109.5
Р1—С2—Н2	105.8	С3—С31—Н31С	109.5
C31—C3—C32	111.51 (17)	H31A—C31—H31C	109.5
C31—C3—P1	112.32 (14)	H31B—C31—H31C	109.5
C32—C3—P1	113.08 (14)	С3—С32—Н32А	109.5
С31—С3—Н3	106.5	С3—С32—Н32В	109.5
С32—С3—Н3	106.5	H32A—C32—H32B	109.5
Р1—С3—Н3	106.5	С3—С32—Н32С	109.5
C1-C11-H11A	109.5	H32A—C32—H32C	109.5
C1-C11-H11B	109.5	H32B—C32—H32C	109.5
H11A—C11—H11B	109.5		
Cl3—Au1—S1—P1	-72.41 (3)	C1—P1—C2—C21	-60.06 (17)
Cl2—Au1—S1—P1	112.19 (3)	S1—P1—C2—C21	55.13 (16)
Au1—S1—P1—C2	70.57 (7)	C3—P1—C2—C22	-50.58 (17)
Au1—S1—P1—C3	-51.87 (8)	C1—P1—C2—C22	68.81 (17)
Au1—S1—P1—C1	-165.92 (7)	S1—P1—C2—C22	-176.00 (13)
C2—P1—C1—C12	66.59 (18)	C2—P1—C3—C31	-179.04 (14)
C3—P1—C1—C12	-173.36 (16)	C1—P1—C3—C31	56.26 (17)
S1—P1—C1—C12	-54.51 (16)	S1—P1—C3—C31	-54.47 (16)
C2—P1—C1—C11	-61.96 (17)	C2—P1—C3—C32	-51.75 (17)
C3—P1—C1—C11	58.09 (17)	C1—P1—C3—C32	-176.45 (15)
S1—P1—C1—C11	176.93 (14)	S1—P1—C3—C32	72.83 (16)
C3—P1—C2—C21	-179.45 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C32—H32 <i>C</i> ···Au1	0.98	2.69	3.485 (2)	138
C2—H2···Cl3	1.00	2.68	3.437 (2)	133
C12—H12B…S1	0.98	2.73	3.310 (2)	118
C1—H1····Cl2 ⁱ	1.00	2.82	3.506 (2)	126
C11—H11C···Cl2 ⁱ	0.98	2.91	3.582 (2)	127
C22—H22A···Cl1 ⁱⁱ	0.98	2.86	3.803 (2)	161
C2—H2···Cl3 ⁱⁱ	1.00	2.86	3.688 (2)	141
C32—H32A····Cl2 ⁱⁱⁱ	0.98	2.87	3.847 (2)	180
C3—H3····Cl2 ^{iv}	1.00	2.95	3.881 (2)	155

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*, -*z*; (iv) *x*-1, *y*, *z*.

(tert-Butyldipropan-2-ylphosphane sulfide-*kS*)trichloridogold(III) (10a)

Crystal data

[AuCl₃(C₁₀H₂₃PS)] $M_r = 509.63$ Monoclinic, $P2_1/n$ a = 8.4533 (2) Å b = 17.0563 (4) Å c = 11.4826 (3) Å $\beta = 94.525$ (2)° V = 1650.43 (7) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos	40041 measured reflections
Padiation source: Enhance (Mo) X ray Source	4805 independent reflections 4483 reflections with $L > 2\sigma(D)$
Detector resolution: 16 1419 nivels mm ⁻¹	$R_{\rm c} = 0.040$
w scan	$A_{\text{int}} = 0.040$ $A_{\text{int}} = 2.00^{\circ} A_{\text{int}} = 2.4^{\circ}$
Absorption correction: multi-scon	$b_{\text{max}} = 30.9$, $b_{\text{min}} = 2.4$
(CrysAlisPro: Rigaku OD 2020)	$k = -24 \rightarrow 23$
$T_{\rm min} = 0.192, T_{\rm max} = 1.000$	$l = -15 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.046$	neighbouring sites
S = 1.07	H-atom parameters constrained
4863 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0188P)^2 + 1.7957P]$
152 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.004$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.15 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.41 \text{ e } \text{\AA}^{-3}$

F(000) = 976

 $\theta = 2.1 - 30.8^{\circ}$

 $\mu = 9.60 \text{ mm}^{-1}$ T = 100 K

 $D_x = 2.051 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 16512 reflections

Plate, dichroic red / orange

 $0.3 \times 0.2 \times 0.02 \text{ mm}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.53732 (2)	0.45811 (2)	0.69892 (2)	0.01252 (3)	
Cl1	0.60148 (8)	0.33007 (4)	0.74376 (6)	0.02142 (13)	
Cl2	0.78118 (7)	0.49571 (4)	0.77945 (6)	0.01953 (13)	
C13	0.29411 (8)	0.41592 (4)	0.62396 (6)	0.01961 (13)	
S1	0.49553 (7)	0.58842 (4)	0.64406 (6)	0.01545 (12)	
P1	0.29578 (8)	0.63290 (4)	0.71079 (5)	0.01203 (12)	
C1	0.2845 (3)	0.61053 (17)	0.8698 (2)	0.0175 (5)	
C2	0.3186 (3)	0.73939 (16)	0.6906 (2)	0.0181 (5)	
H2	0.225743	0.765191	0.723585	0.022*	
C3	0.1136 (3)	0.59893 (16)	0.6267 (2)	0.0136 (5)	
H3	0.086801	0.546807	0.659853	0.016*	
C11	0.1916 (4)	0.6760 (2)	0.9271 (3)	0.0302 (7)	
H11A	0.087035	0.681955	0.884754	0.045*	
H11B	0.250247	0.725398	0.924447	0.045*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11C	0.178412	0.662105	1.008626	0.045*
C12	0.4522 (3)	0.60526 (18)	0.9316 (2)	0.0210 (6)
H12A	0.444865	0.599219	1.015825	0.032*
H12B	0.511144	0.653237	0.916622	0.032*
H12C	0.507673	0.559959	0.901581	0.032*
C13	0.2002 (4)	0.53228 (19)	0.8846 (3)	0.0255 (7)
H13A	0.251077	0.491559	0.840353	0.038*
H13B	0.088482	0.537125	0.855490	0.038*
H13C	0.206934	0.517989	0.967533	0.038*
C21	0.4686 (4)	0.77242 (18)	0.7570 (3)	0.0269 (7)
H21A	0.562457	0.747474	0.728384	0.040*
H21B	0.465404	0.761735	0.840654	0.040*
H21C	0.473607	0.829162	0.744403	0.040*
C22	0.3144 (4)	0.76266 (18)	0.5614 (3)	0.0255 (6)
H22A	0.327366	0.819562	0.555111	0.038*
H22B	0.212447	0.747082	0.521601	0.038*
H22C	0.400784	0.736199	0.524910	0.038*
C31	-0.0295 (3)	0.65284 (17)	0.6416 (2)	0.0181 (5)
H31A	-0.008746	0.704791	0.609683	0.027*
H31B	-0.046308	0.657606	0.724769	0.027*
H31C	-0.124461	0.630425	0.599796	0.027*
C32	0.1375 (3)	0.58531 (16)	0.4971 (2)	0.0165 (5)
H32A	0.038294	0.566233	0.456976	0.025*
H32B	0.221306	0.546296	0.490133	0.025*
H32C	0.168064	0.634707	0.461534	0.025*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U ¹³	U ²³
Aul	0.01036 (5)	0.01403 (6)	0.01301 (5)	-0.00005 (4)	-0.00001 (3)	-0.00017 (3)
Cl1	0.0212 (3)	0.0170 (3)	0.0257 (3)	0.0027 (3)	-0.0009(2)	0.0029 (3)
Cl2	0.0117 (3)	0.0263 (4)	0.0201 (3)	-0.0019 (3)	-0.0024 (2)	0.0002 (3)
C13	0.0141 (3)	0.0168 (3)	0.0270 (3)	-0.0017 (2)	-0.0045 (2)	-0.0010 (3)
S 1	0.0124 (3)	0.0152 (3)	0.0192 (3)	-0.0010 (2)	0.0032 (2)	0.0019 (2)
P1	0.0111 (3)	0.0123 (3)	0.0124 (3)	-0.0007(2)	-0.0011 (2)	-0.0005 (2)
C1	0.0145 (12)	0.0266 (15)	0.0110 (11)	0.0018 (11)	-0.0019 (9)	0.0000 (10)
C2	0.0157 (12)	0.0137 (13)	0.0244 (13)	-0.0018 (10)	-0.0016 (10)	-0.0023 (10)
C3	0.0120 (11)	0.0154 (12)	0.0128 (11)	-0.0020 (10)	-0.0023 (9)	-0.0008 (9)
C11	0.0291 (16)	0.045 (2)	0.0170 (13)	0.0155 (15)	0.0014 (11)	-0.0051 (13)
C12	0.0196 (13)	0.0261 (15)	0.0165 (12)	0.0013 (12)	-0.0041 (10)	-0.0012 (11)
C13	0.0257 (15)	0.0347 (18)	0.0157 (13)	-0.0060 (13)	-0.0006 (11)	0.0074 (12)
C21	0.0222 (15)	0.0180 (14)	0.0392 (17)	-0.0055 (12)	-0.0059 (12)	-0.0050 (13)
C22	0.0287 (16)	0.0194 (15)	0.0284 (15)	-0.0054 (13)	0.0026 (12)	0.0058 (12)
C31	0.0119 (12)	0.0204 (14)	0.0214 (13)	0.0011 (11)	-0.0020 (9)	-0.0029 (10)
C32	0.0185 (13)	0.0181 (13)	0.0124 (11)	-0.0003 (11)	-0.0026 (9)	-0.0005 (10)

Geometric parameters (Å, °)

Au1—Cl3	2.2818 (6)	C11—H11C	0.9800
Au1—Cl2	2.2837 (6)	C12—H12A	0.9800
Au1—Cl1	2.2989 (7)	C12—H12B	0.9800
Au1—S1	2.3294 (7)	C12—H12C	0.9800
S1—P1	2.0538 (9)	C13—H13A	0.9800
P1—C2	1.843 (3)	C13—H13B	0.9800
P1—C3	1.845 (2)	C13—H13C	0.9800
P1C1	1.875 (3)	C21—H21A	0.9800
C1—C13	1.529 (4)	C21—H21B	0.9800
C1-C12	1.537 (4)	C21—H21C	0.9800
C1-C11	1 542 (4)	C22—H22A	0.9800
C^2 — C^2 1	1.512(1) 1 534(4)	C^{22} H22R	0.9800
$C_2 = C_2^2$	1.534(4)	C^{22} H22D	0.9800
C2H2	1.0000	C31_H31A	0.9800
$C_{2} = C_{12}$	1.535 (3)	C31_H31B	0.9800
C_{3} C_{31}	1.535(5) 1 540(4)		0.9800
C3 H3	1.0000	C_{32} H32A	0.9800
	0.0800	C32 H32R	0.9800
	0.9800	C_{32} H_{32C}	0.9800
СП—ппв	0.9800	С32—п32С	0.9800
Cl3—Au1—Cl2	177.46 (2)	C1—C12—H12A	109.5
Cl3—Au1—Cl1	88.54 (2)	C1—C12—H12B	109.5
Cl2—Au1—Cl1	89.23 (3)	H12A—C12—H12B	109.5
Cl3—Au1—S1	94.93 (2)	C1—C12—H12C	109.5
Cl2—Au1—S1	87.39 (2)	H12A—C12—H12C	109.5
Cl1—Au1—S1	174.30 (2)	H12B—C12—H12C	109.5
P1—S1—Au1	111.29 (3)	C1—C13—H13A	109.5
C2—P1—C3	109.58 (12)	C1—C13—H13B	109.5
C2—P1—C1	109.67 (13)	H13A—C13—H13B	109.5
C3—P1—C1	109.94 (12)	C1—C13—H13C	109.5
C2—P1—S1	102.70 (10)	H13A—C13—H13C	109.5
C3—P1—S1	111.45 (9)	H13B—C13—H13C	109.5
C1—P1—S1	113.25 (9)	C2—C21—H21A	109.5
C13—C1—C12	108.6 (2)	C2—C21—H21B	109.5
C13—C1—C11	109.1 (3)	H21A—C21—H21B	109.5
C12—C1—C11	109.1 (2)	C2—C21—H21C	109.5
C13—C1—P1	110.25 (18)	H21A—C21—H21C	109.5
C12—C1—P1	110.19 (19)	H21B—C21—H21C	109.5
C11—C1—P1	109.59 (19)	C2—C22—H22A	109.5
C21—C2—C22	109.9 (2)	C2—C22—H22B	109.5
C21—C2—P1	113.0 (2)	H22A—C22—H22B	109.5
C22—C2—P1	112.4 (2)	C2—C22—H22C	109.5
С21—С2—Н2	107.0	H22A—C22—H22C	109.5
С22—С2—Н2	107.0	H22B—C22—H22C	109.5
P1—C2—H2	107.0	С3—С31—Н31А	109.5
C32—C3—C31	111.2 (2)	С3—С31—Н31В	109.5

C32—C3—P1	112.74 (18)	H31A—C31—H31B	109.5
C31—C3—P1	112.65 (18)	С3—С31—Н31С	109.5
С32—С3—Н3	106.6	H31A—C31—H31C	109.5
С31—С3—Н3	106.6	H31B—C31—H31C	109.5
Р1—С3—Н3	106.6	С3—С32—Н32А	109.5
C1-C11-H11A	109.5	С3—С32—Н32В	109.5
C1-C11-H11B	109.5	H32A—C32—H32B	109.5
H11A—C11—H11B	109.5	С3—С32—Н32С	109.5
C1-C11-H11C	109.5	H32A—C32—H32C	109.5
H11A—C11—H11C	109.5	H32B—C32—H32C	109.5
H11B—C11—H11C	109.5		
Cl3—Au1—S1—P1	56.17 (4)	S1—P1—C1—C11	150.83 (18)
Cl2—Au1—S1—P1	-122.80 (4)	C3—P1—C2—C21	-179.5 (2)
Au1—S1—P1—C2	165.31 (9)	C1—P1—C2—C21	59.7 (2)
Au1—S1—P1—C3	-77.45 (10)	S1—P1—C2—C21	-60.9 (2)
Au1—S1—P1—C1	47.12 (11)	C3—P1—C2—C22	-54.4 (2)
C2—P1—C1—C13	156.8 (2)	C1—P1—C2—C22	-175.1 (2)
C3—P1—C1—C13	36.3 (2)	S1—P1—C2—C22	64.2 (2)
S1—P1—C1—C13	-89.1 (2)	C2—P1—C3—C32	81.7 (2)
C2—P1—C1—C12	-83.3 (2)	C1—P1—C3—C32	-157.68 (19)
C3—P1—C1—C12	156.11 (19)	S1—P1—C3—C32	-31.3 (2)
S1—P1—C1—C12	30.7 (2)	C2—P1—C3—C31	-45.2 (2)
C2—P1—C1—C11	36.8 (2)	C1—P1—C3—C31	75.4 (2)
C3—P1—C1—C11	-83.8 (2)	S1—P1—C3—C31	-158.18 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C32—H32 <i>B</i> ···C13	0.98	2.75	3.452 (3)	130
C3—H3…Cl3	1.00	2.89	3.476 (3)	118
C13—H13A···Cl3	0.98	2.85	3.729 (3)	150
C13—H13 <i>B</i> ···Cl2 ⁱ	0.98	2.77	3.704 (3)	160
C31—H31A···Cl1 ⁱⁱ	0.98	2.87	3.372 (3)	113
C13—H13 <i>C</i> ···Cl2 ⁱⁱⁱ	0.98	2.91	3.878 (3)	170
C32—H32A····Cl3 ^{iv}	0.98	2.91	3.800 (3)	152

Symmetry codes: (i) x-1, y, z; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+1.

(tert-Butyldipropan-2-ylphosphane sulfide-*kS*)trichloridogold(III) (10aa)

Crystal data	
$[AuCl_3(C_{10}H_{23}PS)]$	$V = 1632.85 (9) \text{ Å}^3$
$M_r = 509.63$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 976
a = 7.9363 (3) Å	$D_{\rm x} = 2.073 {\rm ~Mg} {\rm ~m}^{-3}$
b = 14.4096 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 14.2851 (4) Å	Cell parameters from 14677 reflections
$\beta = 91.774 \ (3)^{\circ}$	$\theta = 2.8 - 30.4^{\circ}$

 $\mu = 9.70 \text{ mm}^{-1}$ T = 100 K

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{min} = 0.159, T_{max} = 0.247$ Refinement	42542 measured reflections 4881 independent reflections 4296 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 30.8^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -20 \rightarrow 19$ $l = -20 \rightarrow 20$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.045$	neighbouring sites
S = 1.12	H-atom parameters constrained
4881 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0115P)^2 + 2.5557P]$
152 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 2.52$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.50$ e Å ⁻³

Block, red

 $0.3 \times 0.2 \times 0.2 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.47137 (2)	0.07045 (2)	0.32157 (2)	0.01326 (4)	
Cl1	0.43370 (11)	0.01606 (6)	0.17013 (5)	0.02278 (17)	
Cl2	0.18806 (10)	0.09762 (6)	0.32608 (6)	0.02314 (17)	
C13	0.75081 (10)	0.03377 (6)	0.31862 (6)	0.02016 (16)	
S 1	0.49165 (10)	0.12326 (5)	0.47552 (5)	0.01625 (16)	
P1	0.65482 (10)	0.23397 (5)	0.48821 (5)	0.01177 (15)	
C1	0.6113 (4)	0.3267 (2)	0.3991 (2)	0.0177 (7)	
C2	0.6125 (4)	0.2749 (2)	0.6072 (2)	0.0164 (6)	
H2	0.701534	0.321315	0.624880	0.020*	
C3	0.8755 (4)	0.1971 (2)	0.4808 (2)	0.0217 (7)	
Н3	0.889522	0.177394	0.414348	0.026*	
C11	0.6778 (4)	0.4205 (2)	0.4368 (2)	0.0226 (7)	
H11A	0.664136	0.467885	0.387920	0.034*	
H11B	0.797448	0.414501	0.454791	0.034*	
H11C	0.614084	0.438648	0.491501	0.034*	
C12	0.4234 (5)	0.3349 (3)	0.3759 (3)	0.0324 (9)	
H12A	0.363374	0.349423	0.433018	0.049*	
H12B	0.381545	0.276083	0.349810	0.049*	
H12C	0.404201	0.384591	0.329903	0.049*	
C13	0.7034 (6)	0.3016 (2)	0.3089 (2)	0.0331 (9)	
H13A	0.669156	0.239351	0.288111	0.050*	
H13B	0.825429	0.302658	0.321490	0.050*	
H13C	0.673948	0.346738	0.259745	0.050*	

C21	0.4421 (5)	0.3221 (2)	0.6167 (2)	0.0247 (8)	
H21A	0.351900	0.277980	0.600347	0.037*	
H21B	0.434612	0.375598	0.574483	0.037*	
H21C	0.430237	0.342953	0.681460	0.037*	
C22	0.6245 (5)	0.1950 (3)	0.6794 (2)	0.0278 (8)	
H22A	0.612684	0.220219	0.742566	0.042*	
H22B	0.734042	0.164198	0.675259	0.042*	
H22C	0.534206	0.150064	0.666093	0.042*	
C31	1.0042 (5)	0.2758 (3)	0.4984 (4)	0.0467 (13)	
H31A	0.987941	0.302640	0.560531	0.070*	
H31B	0.987610	0.323988	0.450586	0.070*	
H31C	1.118712	0.250844	0.495347	0.070*	
C32	0.9210 (5)	0.1124 (3)	0.5405 (3)	0.0389 (11)	
H32A	1.025232	0.084618	0.518326	0.058*	
H32B	0.829555	0.066760	0.535428	0.058*	
H32C	0.937441	0.131286	0.606022	0.058*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Aul	0.01406 (6)	0.01090 (6)	0.01491 (6)	-0.00074 (5)	0.00199 (4)	-0.00097 (4)
Cl1	0.0267 (4)	0.0249 (4)	0.0166 (4)	0.0004 (3)	-0.0017 (3)	-0.0040 (3)
Cl2	0.0141 (4)	0.0280 (4)	0.0274 (4)	0.0012 (3)	0.0008 (3)	-0.0010 (3)
Cl3	0.0158 (4)	0.0216 (4)	0.0232 (4)	0.0025 (3)	0.0025 (3)	-0.0077 (3)
S 1	0.0198 (4)	0.0138 (4)	0.0154 (4)	-0.0050 (3)	0.0055 (3)	-0.0016 (3)
P1	0.0117 (4)	0.0104 (4)	0.0132 (4)	0.0005 (3)	0.0017 (3)	-0.0007 (3)
C1	0.0267 (17)	0.0126 (15)	0.0141 (15)	0.0007 (13)	0.0026 (13)	0.0024 (12)
C2	0.0171 (15)	0.0186 (16)	0.0136 (14)	0.0001 (12)	0.0031 (12)	-0.0049 (12)
C3	0.0162 (16)	0.0229 (18)	0.0261 (18)	0.0047 (13)	0.0000 (13)	-0.0079 (14)
C11	0.0268 (18)	0.0126 (16)	0.0287 (18)	-0.0035 (13)	0.0069 (14)	0.0010 (13)
C12	0.036 (2)	0.0202 (19)	0.040 (2)	0.0030 (16)	-0.0183 (18)	0.0052 (16)
C13	0.064 (3)	0.0171 (18)	0.0192 (17)	0.0021 (18)	0.0139 (18)	0.0036 (14)
C21	0.0299 (19)	0.0241 (18)	0.0205 (17)	0.0074 (15)	0.0094 (15)	0.0023 (14)
C22	0.036 (2)	0.033 (2)	0.0152 (16)	0.0104 (17)	0.0005 (15)	0.0009 (15)
C31	0.0168 (19)	0.046 (3)	0.077 (3)	-0.0011 (18)	-0.001 (2)	-0.037 (2)
C32	0.032 (2)	0.054 (3)	0.031 (2)	0.029 (2)	0.0032 (17)	0.0061 (19)

Geometric parameters (Å, °)

Au1—Cl3	2.2815 (8)	C11—H11C	0.9800	
Au1—Cl2	2.2851 (8)	C12—H12A	0.9800	
Au1—Cl1	2.3116 (8)	C12—H12B	0.9800	
Au1—S1	2.3281 (8)	C12—H12C	0.9800	
S1—P1	2.0592 (11)	C13—H13A	0.9800	
P1—C3	1.836 (3)	C13—H13B	0.9800	
P1—C2	1.839 (3)	C13—H13C	0.9800	
P1—C1	1.871 (3)	C21—H21A	0.9800	
C1-C12	1.522 (5)	C21—H21B	0.9800	

C1—C11	1.541 (4)	C21—H21C	0.9800
C1—C13	1.544 (4)	С22—Н22А	0.9800
C2—C21	1.524 (4)	C22—H22B	0.9800
C2—C22	1.546 (5)	C22—H22C	0.9800
C2—H2	1.0000	C31—H31A	0.9800
$C_3 - C_3^2$	1 527 (5)	C31—H31B	0.9800
C3—C31	1 542 (5)	C31—H31C	0.9800
C3—H3	1 0000	C32—H32A	0.9800
C11—H11A	0.9800	C32—H32R	0.9800
C11—H11B	0.9800	C_{32} H32D	0.9800
	0.9000	0.52 11.520	0.9000
Cl3—Au1—Cl2	176.43 (3)	C1—C12—H12A	109.5
Cl3—Au1—Cl1	90 10 (3)	C1-C12-H12B	109.5
Cl2—Au1—Cl1	89.18 (3)	H12A—C12—H12B	109.5
C_{13} Au ₁ S_{1}	93 11 (3)	C1-C12-H12C	109.5
C12—Au1—S1	87 51 (3)	$H_{12}A = C_{12} = H_{12}C_{12}$	109.5
C12 Au1 $S1$	176 43 (3)	H12B - C12 - H12C	109.5
$P1_S1_\Delta u1$	111 18 (4)	C1 - C13 - H13A	109.5
$C_3 P_1 C_2$	110.36 (15)	C1 - C13 - H13R	109.5
$C_3 = P_1 = C_1$	108.88 (16)	H13A C13 H13B	109.5
$C_2 = P_1 = C_1$	108.88(10) 111.30(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_2 = 11 = C_1$	111.59 (14)		109.5
$C_{2} = P_{1} = S_{1}$	111.00(12) 101.38(11)	H13R C13 H13C	109.5
$C_2 = 1 = 31$	101.30(11) 112.02(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 = r_1 = S_1$	115.05(11) 100.2(2)	$C_2 = C_2 = H_2 I A$	109.5
C12 - C1 - C12	109.3(3)	$C_2 = C_2 I = H_2 I B$	109.5
C12 - C1 - C13	108.8(3)	$H_2IA = C_2I = H_2IB$	109.5
C12 = C1 = D1	109.5 (3)	$C_2 = C_2 I = H_2 I C$	109.5
CI2—CI—PI	111.3(2)	$H_2IA = C_2I = H_2IC$	109.5
CII = CI = PI	109.5 (2)	$H_2IB = C_2I = H_2IC$	109.5
CI3—CI—PI	108.6 (2)	C2-C22-H22A	109.5
$C_{21} = C_{22} = C_{22}$	108.0 (3)	C2—C22—H22B	109.5
C2I—C2—PI	114.4 (2)	H22A—C22—H22B	109.5
C22—C2—P1	111.6 (2)	C2—C22—H22C	109.5
C21—C2—H2	107.5	H22A—C22—H22C	109.5
C22—C2—H2	107.5	H22B—C22—H22C	109.5
PI—C2—H2	107.5	C3—C31—H31A	109.5
$C_{32} = C_{3} = C_{31}$	110.7 (3)	C3—C31—H31B	109.5
C32—C3—P1	114.1 (3)	H31A—C31—H31B	109.5
C31—C3—P1	113.9 (2)	C3—C31—H31C	109.5
С32—С3—Н3	105.8	H31A—C31—H31C	109.5
С31—С3—Н3	105.8	H31B—C31—H31C	109.5
Р1—С3—Н3	105.8	C3—C32—H32A	109.5
C1—C11—H11A	109.5	C3—C32—H32B	109.5
C1—C11—H11B	109.5	H32A—C32—H32B	109.5
H11A—C11—H11B	109.5	C3—C32—H32C	109.5
C1—C11—H11C	109.5	H32A—C32—H32C	109.5
H11A—C11—H11C	109.5	H32B—C32—H32C	109.5
H11B—C11—H11C	109.5		

Cl3—Au1—S1—P1	61.27 (5)	S1—P1—C1—C13	-85.6 (3)
Cl2—Au1—S1—P1	-122.25 (5)	C3—P1—C2—C21	170.2 (2)
Au1—S1—P1—C3	-73.62 (13)	C1—P1—C2—C21	49.1 (3)
Au1—S1—P1—C2	168.88 (11)	S1—P1—C2—C21	-71.3 (2)
Au1—S1—P1—C1	49.55 (12)	C3—P1—C2—C22	-66.8 (3)
C3—P1—C1—C12	158.8 (2)	C1—P1—C2—C22	172.2 (2)
C2—P1—C1—C12	-79.2 (3)	S1—P1—C2—C22	51.7 (2)
S1—P1—C1—C12	34.1 (3)	C2—P1—C3—C32	65.5 (3)
C3—P1—C1—C11	-80.2 (2)	C1—P1—C3—C32	-172.0 (3)
C2—P1—C1—C11	41.7 (3)	S1—P1—C3—C32	-46.5 (3)
S1—P1—C1—C11	155.07 (19)	C2—P1—C3—C31	-63.0 (3)
C3—P1—C1—C13	39.1 (3)	C1—P1—C3—C31	59.6 (3)
C2—P1—C1—C13	161.0 (2)	S1—P1—C3—C31	-174.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
С3—Н3…Сl3	1.00	2.70	3.427 (3)	130
C3—H3···Cl2 ⁱ	1.00	2.95	3.665 (3)	129
C21—H21C···Cl2 ⁱⁱ	0.98	2.99	3.706 (4)	131
C22—H22A···Cl2 ⁱⁱ	0.98	2.94	3.675 (4)	133
C13—H13 <i>C</i> ···Cl3 ⁱⁱⁱ	0.98	2.99	3.832 (4)	145

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1/2, -*y*+1/2, *z*+1/2; (iii) -*x*+3/2, *y*+1/2, -*z*+1/2.

Trichlorido[di-tert-butyl(propan-2-yl)phosphane sulfide-*kS*]gold(III) (11a)

Crystal data

$[AuCl_{3}(C_{11}H_{25}PS)]$ $M_{r} = 523.66$ Triclinic, P1 $a = 8.6034 (4) \text{ Å}$ $b = 9.7779 (4) \text{ Å}$ $c = 11.4231 (4) \text{ Å}$ $a = 78.876 (3)^{\circ}$ $\beta = 71.456 (4)^{\circ}$ $\gamma = 72.702 (4)^{\circ}$ $V = 864.69 (7) \text{ Å}^{3}$	Z = 2 F(000) = 504 $D_x = 2.011 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 31596 reflections $\theta = 2.2-30.8^{\circ}$ $\mu = 9.16 \text{ mm}^{-1}$ T = 100 K Plate, red $0.15 \times 0.15 \times 0.08 \text{ mm}$
Data collection Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{absorption} = 0.577$, $T_{absorption} = 1.000$	68815 measured reflections 5155 independent reflections 4939 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 30.8^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $I = -16 \rightarrow 16$
$I_{\min} = 0.5 / /, I_{\max} = 1.000$	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.036$ S = 1.08	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0168P)^2 + 0.7385P]$ where $P = (F_o^2 + 2F_c^2)/3$
5155 reflections 163 parameters	$(\Delta/\sigma)_{\text{max}} = 0.003$ $\Delta \sigma = 1.64 \text{ e} ^{\text{A}^{-3}}$
0 restraints	$\Delta \rho_{\rm min} = -0.93 \text{ e} \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL-2019/3 (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001]$
Secondary atom site location: difference Fourier map	$F_{\rm c}^2 \lambda^3 / \sin(2\theta)$] ^{-1/4} Extinction coefficient: 0.00097 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.46476 (2)	0.35014 (2)	0.24072 (2)	0.01322 (3)	
Cl1	0.53637 (8)	0.12179 (5)	0.34127 (5)	0.02358 (11)	
Cl2	0.73242 (6)	0.37151 (5)	0.21222 (5)	0.02016 (10)	
C13	0.20542 (7)	0.31734 (5)	0.25815 (5)	0.02182 (10)	
S1	0.40624 (6)	0.58036 (5)	0.13465 (4)	0.01345 (9)	
P1	0.21575 (6)	0.72281 (5)	0.24712 (4)	0.00958 (8)	
C1	0.2568 (2)	0.7093 (2)	0.40129 (16)	0.0120 (3)	
C2	0.2277 (2)	0.8996 (2)	0.15054 (16)	0.0129 (3)	
C3	0.0119 (2)	0.6799 (2)	0.27290 (18)	0.0144 (4)	
Н3	0.028473	0.577669	0.311603	0.017*	
C11	0.1566 (3)	0.8445 (2)	0.46903 (18)	0.0166 (4)	
H11A	0.175463	0.830339	0.551228	0.025*	
H11B	0.035482	0.860654	0.478365	0.025*	
H11C	0.195308	0.928404	0.420505	0.025*	
C12	0.4458 (2)	0.6884 (2)	0.38625 (18)	0.0160 (4)	
H12A	0.464884	0.674279	0.468368	0.024*	
H12B	0.481411	0.773860	0.338457	0.024*	
H12C	0.511838	0.603622	0.342337	0.024*	
C13	0.2023 (3)	0.5771 (2)	0.48235 (17)	0.0154 (4)	
H13A	0.261577	0.491274	0.438534	0.023*	
H13B	0.079670	0.592422	0.499118	0.023*	
H13C	0.230881	0.563523	0.560995	0.023*	
C21	0.2573 (3)	0.8834 (2)	0.01298 (18)	0.0187 (4)	
H21A	0.249579	0.978272	-0.035494	0.028*	
H21B	0.170971	0.841459	0.005595	0.028*	
H21C	0.370012	0.820130	-0.018603	0.028*	
C22	0.0615 (3)	1.0154 (2)	0.19359 (19)	0.0172 (4)	
H22A	0.073803	1.109141	0.148052	0.026*	
H22B	0.036261	1.020447	0.282805	0.026*	
H22C	-0.031281	0.990337	0.177297	0.026*	
C23	0.3768 (3)	0.9485 (2)	0.15964 (19)	0.0179 (4)	
H23A	0.481893	0.873138	0.135293	0.027*	

H23B	0.357471	0.966281	0.245317	0.027*	
H23C	0.386403	1.037364	0.104132	0.027*	
C31	-0.0281 (3)	0.6790 (2)	0.1513 (2)	0.0231 (4)	
H31A	-0.116373	0.627857	0.168074	0.035*	
H31B	0.074582	0.630193	0.092018	0.035*	
H31C	-0.067901	0.778349	0.116337	0.035*	
C32	-0.1431 (3)	0.7650(2)	0.3650 (2)	0.0204 (4)	
H32A	-0.166224	0.867347	0.333210	0.031*	
H32B	-0.120054	0.753022	0.445560	0.031*	
H32C	-0.241804	0.728860	0.374972	0.031*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01600 (5)	0.01034 (4)	0.01333 (4)	0.00004 (3)	-0.00561 (3)	-0.00404 (2)
Cl1	0.0333 (3)	0.0125 (2)	0.0272 (2)	-0.00151 (19)	-0.0165 (2)	-0.00033 (18)
Cl2	0.0157 (2)	0.0205 (2)	0.0245 (2)	0.00003 (18)	-0.00744 (18)	-0.00704 (18)
C13	0.0195 (2)	0.0144 (2)	0.0338 (3)	-0.00423 (18)	-0.0088(2)	-0.00533 (18)
S1	0.0157 (2)	0.0119 (2)	0.01053 (18)	-0.00038 (16)	-0.00253 (16)	-0.00305 (15)
P1	0.0100 (2)	0.00913 (19)	0.00972 (19)	-0.00157 (16)	-0.00349 (16)	-0.00143 (15)
C1	0.0121 (9)	0.0137 (8)	0.0104 (7)	-0.0006 (7)	-0.0049 (6)	-0.0026 (6)
C2	0.0159 (9)	0.0111 (8)	0.0114 (8)	-0.0040 (7)	-0.0039 (7)	0.0006 (6)
C3	0.0118 (9)	0.0122 (8)	0.0209 (9)	-0.0040 (7)	-0.0074 (7)	0.0008 (7)
C11	0.0174 (10)	0.0167 (9)	0.0146 (8)	0.0000 (7)	-0.0041 (7)	-0.0067 (7)
C12	0.0121 (9)	0.0194 (9)	0.0176 (9)	-0.0008 (7)	-0.0066 (7)	-0.0053 (7)
C13	0.0185 (10)	0.0145 (9)	0.0115 (8)	-0.0015 (7)	-0.0050 (7)	-0.0003 (6)
C21	0.0268 (11)	0.0170 (9)	0.0128 (8)	-0.0073 (8)	-0.0065 (8)	0.0017 (7)
C22	0.0186 (10)	0.0113 (8)	0.0205 (9)	-0.0012 (7)	-0.0074 (8)	0.0004 (7)
C23	0.0198 (10)	0.0167 (9)	0.0179 (9)	-0.0086 (8)	-0.0034 (7)	0.0000 (7)
C31	0.0244 (12)	0.0246 (11)	0.0282 (11)	-0.0105 (9)	-0.0169 (9)	0.0023 (8)
C32	0.0096 (9)	0.0199 (10)	0.0283 (10)	-0.0027 (7)	-0.0033 (8)	0.0007 (8)

Geometric parameters (Å, °)

Au1—Cl2	2.2881 (5)	C12—H12B	0.9800
Au1—Cl3	2.2889 (5)	C12—H12C	0.9800
Au1—Cl1	2.3080 (5)	C13—H13A	0.9800
Au1—S1	2.3346 (5)	C13—H13B	0.9800
S1—P1	2.0665 (6)	C13—H13C	0.9800
P1—C3	1.8442 (19)	C21—H21A	0.9800
P1—C2	1.8741 (18)	C21—H21B	0.9800
P1—C1	1.8765 (18)	C21—H21C	0.9800
C1—C12	1.534 (3)	C22—H22A	0.9800
C1—C13	1.540 (3)	C22—H22B	0.9800
C1—C11	1.543 (3)	C22—H22C	0.9800
C2—C23	1.535 (3)	C23—H23A	0.9800
C2—C22	1.541 (3)	С23—Н23В	0.9800
C2—C21	1.542 (3)	C23—H23C	0.9800

C3—C31	1.535 (3)	C31—H31A	0.9800
C3—C32	1.537 (3)	C31—H31B	0.9800
С3—Н3	1.0000	C31—H31C	0.9800
C11—H11A	0.9800	С32—Н32А	0.9800
C11—H11B	0.9800	С32—Н32В	0.9800
C11—H11C	0.9800	С32—Н32С	0.9800
C12—H12A	0.9800		
Cl2—Au1—Cl3	175.769 (17)	C1—C12—H12C	109.5
Cl2—Au1—Cl1	89.44 (2)	H12A—C12—H12C	109.5
Cl3—Au1—Cl1	89.35 (2)	H12B—C12—H12C	109.5
Cl2—Au1—S1	87.963 (19)	C1—C13—H13A	109.5
Cl3—Au1—S1	93.175 (19)	C1—C13—H13B	109.5
Cl1—Au1—S1	177.237 (19)	H13A—C13—H13B	109.5
P1—S1—Au1	111.35 (2)	C1—C13—H13C	109.5
C3—P1—C2	112.66 (9)	H13A—C13—H13C	109.5
C3—P1—C1	108.88 (9)	H13B—C13—H13C	109.5
C2—P1—C1	113.61 (8)	C2—C21—H21A	109.5
C3—P1—S1	109.17 (7)	C2—C21—H21B	109.5
C2—P1—S1	101.48 (6)	H21A—C21—H21B	109.5
C1—P1—S1	110.81 (6)	C2—C21—H21C	109.5
C12—C1—C13	108.33 (16)	H21A—C21—H21C	109.5
C12—C1—C11	108.22 (16)	H21B—C21—H21C	109.5
C13—C1—C11	108.84 (15)	C2—C22—H22A	109.5
C12—C1—P1	111.17 (13)	C2—C22—H22B	109.5
C13—C1—P1	108.09 (13)	H22A—C22—H22B	109.5
C11—C1—P1	112.11 (13)	C2—C22—H22C	109.5
C23—C2—C22	109.55 (16)	H22A—C22—H22C	109.5
C23—C2—C21	107.67 (16)	H22B—C22—H22C	109.5
C22—C2—C21	108.83 (16)	C2—C23—H23A	109.5
C23—C2—P1	110.43 (13)	С2—С23—Н23В	109.5
C22—C2—P1	110.44 (13)	H23A—C23—H23B	109.5
C21—C2—P1	109.85 (13)	С2—С23—Н23С	109.5
C31—C3—C32	110.93 (17)	H23A—C23—H23C	109.5
C31—C3—P1	112.85 (14)	H23B—C23—H23C	109.5
C32—C3—P1	116.89 (14)	C3—C31—H31A	109.5
С31—С3—Н3	105.0	C3—C31—H31B	109.5
С32—С3—Н3	105.0	H31A—C31—H31B	109.5
Р1—С3—Н3	105.0	С3—С31—Н31С	109.5
C1-C11-H11A	109.5	H31A—C31—H31C	109.5
C1-C11-H11B	109.5	H31B—C31—H31C	109.5
H11A—C11—H11B	109.5	С3—С32—Н32А	109.5
C1—C11—H11C	109.5	С3—С32—Н32В	109.5
H11A—C11—H11C	109.5	H32A—C32—H32B	109.5
H11B—C11—H11C	109.5	С3—С32—Н32С	109.5
C1—C12—H12A	109.5	H32A—C32—H32C	109.5
C1—C12—H12B	109.5	H32B—C32—H32C	109.5
H12A—C12—H12B	109.5		

-117.55 (3)	C1—P1—C2—C23	41.02 (16)
-71.70 (7)	C3—P1—C2—C25	44.11 (16)
169.16 (6)	C1—P1—C2—C22	-80.31 (15)
48.21 (7)	S1—P1—C2—C22	160.72 (12)
159.11 (13)	C3—P1—C2—C21	-75.95 (16)
-74.46 (15)	C1—P1—C2—C21	159.63 (13)
39.02 (14)	S1—P1—C2—C21	40.66 (14)
40.34 (15)	C2—P1—C3—C31	56.54 (17)
166.77 (12)	C1—P1—C3—C31	-176.48 (14)
-79.75 (13)	S1—P1—C3—C31	-55.39 (15)
-79.62 (15)	C2—P1—C3—C32	-73.88 (16)
46.82 (16)	C1—P1—C3—C32	53.10 (16)
160.30 (12)	S1—P1—C3—C32	174.19 (13)
165.44 (13)		
	$\begin{array}{c} -117.55 (3) \\ 66.53 (3) \\ -71.70 (7) \\ 169.16 (6) \\ 48.21 (7) \\ 159.11 (13) \\ -74.46 (15) \\ 39.02 (14) \\ 40.34 (15) \\ 166.77 (12) \\ -79.75 (13) \\ -79.62 (15) \\ 46.82 (16) \\ 160.30 (12) \\ 165.44 (13) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···· A	D—H···A
C13—H13A····Au1	0.98	2.71	3.6142 (19)	154
C12—H12C…S1	0.98	2.86	3.391 (2)	115
C3—H3…Cl3	1.00	2.62	3.451 (2)	140
C12—H12C···Cl2	0.98	2.81	3.788 (2)	174
C13—H13C····Cl2 ⁱ	0.98	2.91	3.851 (2)	161

Symmetry code: (i) -x+1, -y+1, -z+1.

Trichlorido[di-tert-butyl(propan-2-yl)phosphane sulfide-κS]gold(III) chloroform-d monosilvate (11aa)

$[AuCl_3(C_{11}H_{25}PS)] \cdot CDCl_3$	Z = 2
$M_r = 644.03$	F(000) = 620
Triclinic, $P1$	$D_x = 2.031 \text{ Mg m}^{-3}$
a = 9.6382 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
b = 10.2787 (3) Å	Cell parameters from 35195 reflections
c = 11.8483 (5) Å	$\theta = 2.3-30.9^{\circ}$
$\alpha = 75.115 (3)^{\circ}$	$\mu = 7.91 \text{ mm}^{-1}$
$\beta = 68.875 (4)^{\circ}$	T = 101 K
$\gamma = 89.728 (3)^{\circ}$	Plate, dichroic red / orange
$V = 1053.13 (8) \text{ Å}^{3}$	$0.15 \times 0.06 \times 0.05 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur, Eos	76947 measured reflections
diffractometer	6247 independent reflections
Radiation source: fine-focus sealed tube	5976 reflections with $I > 2\sigma(I)$
Detector resolution: 16.1419 pixels mm ⁻¹	$R_{int} = 0.038$
ω scan	$\theta_{max} = 30.9^{\circ}, \theta_{min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(CrysAlisPro; Rigaku OD, 2020)	$k = -14 \rightarrow 14$
$T_{min} = 0.454, T_{max} = 1.000$	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.016$	H-atom parameters constrained
$WR(F^2) = 0.033$	$w = 1/[\sigma^2(F_0^2) + (0.0135P)^2 + 0.8433P]$
S = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
100 means store	$(\Delta/\sigma)_{\text{max}} = 0.002$
199 parameters	$\Delta \rho_{\rm max} = 1.02 \text{ e A}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.93 \ {\rm e \ A}^3$
direct methods	Extinction correction: SHELXL-2019/3 (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001]$
Secondary atom site location: difference Fourier	$F_{\rm c}^2\lambda^3/\sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.00133 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Au1	0.71266 (2)	0.36753 (2)	0.29738 (2)	0.01055 (3)
Cl1	0.85075 (5)	0.38930 (5)	0.41619 (4)	0.01711 (9)
Cl2	0.62356 (5)	0.57177 (5)	0.31290 (5)	0.01741 (9)
C13	0.81385 (5)	0.16897 (5)	0.27791 (4)	0.01599 (9)
S1	0.58436 (5)	0.35877 (5)	0.16572 (4)	0.01218 (8)
P1	0.41142 (5)	0.20633 (5)	0.24806 (4)	0.00919 (8)
C1	0.28613 (19)	0.21927 (19)	0.40702 (17)	0.0122 (3)
C2	0.3218 (2)	0.23846 (19)	0.12786 (17)	0.0124 (3)
C3	0.4907 (2)	0.04179 (18)	0.26592 (18)	0.0130 (3)
Н3	0.553904	0.045302	0.316195	0.016*
C11	0.1340 (2)	0.1352 (2)	0.45315 (18)	0.0163 (4)
H11A	0.080315	0.173434	0.397891	0.024*
H11B	0.074531	0.137380	0.539288	0.024*
H11C	0.150519	0.041430	0.451538	0.024*
C12	0.2587 (2)	0.3669 (2)	0.40576 (19)	0.0171 (4)
H12A	0.203030	0.371837	0.491747	0.026*
H12B	0.200708	0.400980	0.353136	0.026*
H12C	0.354755	0.422152	0.371587	0.026*
C13	0.3657 (2)	0.1650 (2)	0.49907 (18)	0.0168 (4)
H13A	0.304536	0.174026	0.582547	0.025*
H13B	0.463110	0.216998	0.468932	0.025*
H13C	0.379886	0.069480	0.504286	0.025*
C21	0.4419 (2)	0.2753 (2)	-0.00570 (18)	0.0168 (4)
H21A	0.498151	0.361608	-0.021724	0.025*
H21B	0.393993	0.283422	-0.067086	0.025*
H21C	0.510291	0.204345	-0.013415	0.025*
C22	0.2238 (2)	0.1106 (2)	0.14607 (19)	0.0164 (4)
H22A	0.172467	0.130120	0.086540	0.025*
H22B	0.149695	0.083415	0.232245	0.025*
H22C	0.287056	0.037131	0.130972	0.025*
C23	0.2252 (2)	0.3569 (2)	0.13874 (19)	0.0175 (4)
H23A	0.191371	0.380526	0.067932	0.026*

H23B	0.284111	0.435102	0.137323	0.026*
H23C	0.138221	0.330673	0.217906	0.026*
C31	0.5994 (2)	0.0242 (2)	0.1402 (2)	0.0194 (4)
H31A	0.542761	0.004996	0.091357	0.029*
H31B	0.658640	-0.051177	0.156429	0.029*
H31C	0.666269	0.107416	0.092779	0.029*
C32	0.3807 (2)	-0.0861 (2)	0.3403 (2)	0.0188 (4)
H32A	0.435800	-0.166423	0.339373	0.028*
H32B	0.307285	-0.090300	0.301368	0.028*
H32C	0.329015	-0.082875	0.427331	0.028*
C99	0.9953 (2)	0.7075 (2)	0.19499 (19)	0.0174 (4)
D99	0.908901	0.650866	0.267327	0.021*
Cl4	1.15235 (7)	0.69803 (6)	0.23818 (6)	0.03287 (13)
C15	1.02700 (7)	0.64377 (7)	0.06444 (5)	0.03256 (13)
Cl6	0.94906 (6)	0.87534 (5)	0.16252 (6)	0.02991 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.00947 (3)	0.00984 (4)	0.01275 (4)	-0.00047 (2)	-0.00505 (2)	-0.00240 (2)
Cl1	0.0184 (2)	0.0171 (2)	0.0213 (2)	0.00185 (17)	-0.01281 (18)	-0.00659 (18)
Cl2	0.0179 (2)	0.0133 (2)	0.0260 (2)	0.00321 (16)	-0.01179 (18)	-0.00836 (18)
C13	0.01472 (19)	0.0135 (2)	0.0228 (2)	0.00333 (16)	-0.00933 (17)	-0.00660 (17)
S1	0.01193 (18)	0.0116 (2)	0.01239 (19)	-0.00215 (15)	-0.00557 (16)	-0.00065 (16)
P1	0.00947 (18)	0.0086 (2)	0.0102 (2)	0.00033 (15)	-0.00460 (16)	-0.00252 (16)
C1	0.0111 (7)	0.0147 (9)	0.0112 (8)	0.0001 (6)	-0.0038 (6)	-0.0045 (7)
C2	0.0139 (8)	0.0125 (9)	0.0126 (8)	0.0009 (6)	-0.0074 (7)	-0.0029 (7)
C3	0.0146 (8)	0.0104 (8)	0.0168 (9)	0.0029 (6)	-0.0089 (7)	-0.0037 (7)
C11	0.0116 (8)	0.0188 (10)	0.0167 (9)	-0.0022 (7)	-0.0029 (7)	-0.0049 (7)
C12	0.0163 (8)	0.0169 (10)	0.0192 (9)	0.0021 (7)	-0.0051 (7)	-0.0093 (8)
C13	0.0170 (9)	0.0215 (10)	0.0116 (8)	0.0005 (7)	-0.0059 (7)	-0.0031 (7)
C21	0.0206 (9)	0.0180 (10)	0.0128 (8)	0.0012 (7)	-0.0079 (7)	-0.0034 (7)
C22	0.0183 (9)	0.0157 (9)	0.0192 (9)	-0.0001 (7)	-0.0111 (7)	-0.0055 (7)
C23	0.0179 (9)	0.0155 (9)	0.0229 (10)	0.0046 (7)	-0.0122 (8)	-0.0049 (8)
C31	0.0216 (9)	0.0184 (10)	0.0230 (10)	0.0086 (8)	-0.0102 (8)	-0.0112 (8)
C32	0.0227 (9)	0.0109 (9)	0.0251 (10)	-0.0003 (7)	-0.0134 (8)	-0.0025 (8)
C99	0.0163 (8)	0.0164 (10)	0.0190 (9)	0.0002 (7)	-0.0071 (7)	-0.0034 (8)
Cl4	0.0319 (3)	0.0245 (3)	0.0538 (4)	0.0034 (2)	-0.0308 (3)	-0.0084 (3)
C15	0.0323 (3)	0.0471 (4)	0.0242 (3)	0.0140 (3)	-0.0109 (2)	-0.0191 (3)
Cl6	0.0246 (2)	0.0168 (2)	0.0473 (3)	0.0038 (2)	-0.0153 (2)	-0.0042 (2)

Geometric parameters (Å, °)

Au1—Cl3	2.2871 (5)	C13—H13A	0.9800	
Au1—Cl2	2.2903 (5)	C13—H13B	0.9800	
Au1—Cl1	2.3060 (4)	C13—H13C	0.9800	
Au1—S1	2.3312 (4)	C21—H21A	0.9800	
S1—P1	2.0622 (6)	C21—H21B	0.9800	

P1—C3	1.8465 (19)	C21—H21C	0.9800
P1—C1	1.8737 (18)	C22—H22A	0.9800
P1—C2	1.8778 (18)	C22—H22B	0.9800
C1—C12	1.537 (3)	C22—H22C	0.9800
C1—C13	1.541 (2)	C23—H23A	0.9800
C1—C11	1.545 (2)	C23—H23B	0.9800
C2—C23	1.532 (3)	С23—Н23С	0.9800
C2—C21	1.538 (3)	C31—H31A	0.9800
C2—C22	1.544 (3)	C31—H31B	0.9800
C3—C31	1.536 (3)	C31—H31C	0.9800
C3—C32	1.540 (3)	C32—H32A	0.9800
С3—Н3	1.0000	C32—H32B	0.9800
C11—H11A	0.9800	C32—H32C	0.9800
C11—H11B	0.9800	C99—C15	1.758 (2)
C11—H11C	0.9800	C99—Cl4	1.759 (2)
C12—H12A	0.9800	C99—Cl6	1.761 (2)
C12—H12B	0.9800	C99—D99	1.0000
C12—H12C	0.9800		
Cl3—Au1—Cl2	177.050 (16)	C1—C13—H13A	109.5
Cl3—Au1—Cl1	88.505 (17)	C1—C13—H13B	109.5
Cl2—Au1—Cl1	89.783 (17)	H13A—C13—H13B	109.5
Cl3—Au1—S1	92.936 (17)	C1—C13—H13C	109.5
Cl2—Au1—S1	88.609 (16)	H13A—C13—H13C	109.5
Cl1—Au1—S1	175.816 (16)	H13B—C13—H13C	109.5
P1—S1—Au1	111.96 (2)	C2—C21—H21A	109.5
C3—P1—C1	108.94 (8)	C2—C21—H21B	109.5
C3—P1—C2	112.62 (8)	H21A—C21—H21B	109.5
C1—P1—C2	114.39 (8)	C2—C21—H21C	109.5
C3—P1—S1	108.73 (6)	H21A—C21—H21C	109.5
C1—P1—S1	110.75 (6)	H21B—C21—H21C	109.5
C2—P1—S1	101.09 (6)	C2—C22—H22A	109.5
C12—C1—C13	108.22 (15)	C2—C22—H22B	109.5
C12—C1—C11	108.90 (15)	H22A—C22—H22B	109.5
C13—C1—C11	109.41 (15)	C2—C22—H22C	109.5
C12—C1—P1	111.28 (13)	H22A—C22—H22C	109.5
C13—C1—P1	107.56 (12)	H22B—C22—H22C	109.5
C11—C1—P1	111.40 (12)	C2—C23—H23A	109.5
C23—C2—C21	107.64 (15)	C2—C23—H23B	109.5
C23—C2—C22	109.35 (15)	H23A—C23—H23B	109.5
C21—C2—C22	108.61 (15)	C2—C23—H23C	109.5
C23—C2—P1	110.76 (13)	H23A—C23—H23C	109.5
C21—C2—P1	110.35 (12)	H23B—C23—H23C	109.5
C22—C2—P1	110.07 (12)	C3—C31—H31A	109.5
C31—C3—C32	110.45 (16)	C3—C31—H31B	109.5
C31—C3—P1	112.59 (13)	H31A—C31—H31B	109.5
C32—C3—P1	117.44 (13)	C3—C31—H31C	109.5
С31—С3—Н3	105.0	H31A—C31—H31C	109.5

	1050		100 -
С32—С3—Н3	105.0	H31B—C31—H31C	109.5
Р1—С3—Н3	105.0	C3—C32—H32A	109.5
C1—C11—H11A	109.5	C3—C32—H32B	109.5
C1—C11—H11B	109.5	H32A—C32—H32B	109.5
H11A—C11—H11B	109.5	C3—C32—H32C	109.5
C1—C11—H11C	109.5	H32A—C32—H32C	109.5
H11A—C11—H11C	109.5	H32B—C32—H32C	109.5
H11B—C11—H11C	109.5	Cl5—C99—Cl4	110.93 (11)
C1—C12—H12A	109.5	Cl5—C99—Cl6	110.46 (11)
C1—C12—H12B	109.5	Cl4—C99—Cl6	110.43 (11)
H12A—C12—H12B	109.5	C15—C99—D99	108.3
C1—C12—H12C	109.5	Cl4—C99—D99	108.3
H12A—C12—H12C	109.5	Cl6—C99—D99	108.3
H12B—C12—H12C	109.5		
Cl3—Au1—S1—P1	69.79 (3)	C1—P1—C2—C23	40.95 (16)
Cl2—Au1—S1—P1	-112.73 (3)	S1—P1—C2—C23	-78.08 (13)
Cl2—Au1—S1—P1 Au1—S1—P1—C3	-112.73 (3) -66.93 (7)	S1—P1—C2—C23 C3—P1—C2—C21	-78.08 (13) -74.85 (15)
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1	-112.73 (3) -66.93 (7) 52.74 (7)	S1—P1—C2—C23 C3—P1—C2—C21 C1—P1—C2—C21	-78.08 (13) -74.85 (15) 160.04 (13)
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6)	S1—P1—C2—C23 C3—P1—C2—C21 C1—P1—C2—C21 S1—P1—C2—C21	-78.08 (13) -74.85 (15) 160.04 (13) 41.01 (14)
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2 C3—P1—C1—C12	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12)	S1—P1—C2—C23 C3—P1—C2—C21 C1—P1—C2—C21 S1—P1—C2—C21 C3—P1—C2—C22	-78.08 (13) -74.85 (15) 160.04 (13) 41.01 (14) 45.01 (15)
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2 C3—P1—C1—C12 C2—P1—C1—C12	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12) -71.89 (14)	S1—P1—C2—C23 C3—P1—C2—C21 C1—P1—C2—C21 S1—P1—C2—C21 C3—P1—C2—C22 C1—P1—C2—C22	-78.08 (13) -74.85 (15) 160.04 (13) 41.01 (14) 45.01 (15) -80.10 (15)
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2 C3—P1—C1—C12 C2—P1—C1—C12 S1—P1—C1—C12	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12) -71.89 (14) 41.54 (13)	S1-P1-C2-C23 C3-P1-C2-C21 C1-P1-C2-C21 S1-P1-C2-C21 C3-P1-C2-C22 C1-P1-C2-C22 S1-P1-C2-C22 S1-P1-C2-C22	-78.08 (13) -74.85 (15) 160.04 (13) 41.01 (14) 45.01 (15) -80.10 (15) 160.87 (12)
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2 C3—P1—C1—C12 C2—P1—C1—C12 S1—P1—C1—C12 C3—P1—C1—C12 C3—P1—C1—C13	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12) -71.89 (14) 41.54 (13) 42.71 (14)	S1-P1-C2-C23 C3-P1-C2-C21 C1-P1-C2-C21 S1-P1-C2-C21 C3-P1-C2-C22 C1-P1-C2-C22 S1-P1-C2-C22 S1-P1-C2-C22 C1-P1-C3-C31	$\begin{array}{r} -78.08 \ (13) \\ -74.85 \ (15) \\ 160.04 \ (13) \\ 41.01 \ (14) \\ 45.01 \ (15) \\ -80.10 \ (15) \\ 160.87 \ (12) \\ -178.11 \ (13) \end{array}$
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2 C3—P1—C1—C12 C2—P1—C1—C12 S1—P1—C1—C12 C3—P1—C1—C13 C2—P1—C1—C13	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12) -71.89 (14) 41.54 (13) 42.71 (14) 169.73 (12)	$\begin{array}{c} S1 &P1 &C2 &C23 \\ C3 &P1 &C2 &C21 \\ C1 &P1 &C2 &C21 \\ S1 &P1 &C2 &C22 \\ C3 &P1 &C2 &C22 \\ S1 &P1 &C2 &C22 \\ S1 &P1 &C3 &C31 \\ C2 &P1 &C3 &C31 \end{array}$	$\begin{array}{r} -78.08 \ (13) \\ -74.85 \ (15) \\ 160.04 \ (13) \\ 41.01 \ (14) \\ 45.01 \ (15) \\ -80.10 \ (15) \\ 160.87 \ (12) \\ -178.11 \ (13) \\ 53.87 \ (15) \end{array}$
Cl2—Au1—S1—P1 Au1—S1—P1—C3 Au1—S1—P1—C1 Au1—S1—P1—C2 C3—P1—C1—C12 C2—P1—C1—C12 S1—P1—C1—C12 C3—P1—C1—C13 C2—P1—C1—C13 S1—P1—C1—C13	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12) -71.89 (14) 41.54 (13) 42.71 (14) 169.73 (12) -76.84 (13)	$\begin{array}{c} S1 &P1 &C2 &C23 \\ C3 &P1 &C2 &C21 \\ C1 &P1 &C2 &C21 \\ C3 &P1 &C2 &C22 \\ C1 &P1 &C2 &C22 \\ S1 &P1 &C3 &C31 \\ C2 &P1 &C3 &C31 \\ S1 &P1 &C3 &C31 \\ \end{array}$	-78.08 (13) -74.85 (15) 160.04 (13) 41.01 (14) 45.01 (15) -80.10 (15) 160.87 (12) -178.11 (13) 53.87 (15) -57.31 (14)
$\begin{array}{c} Cl2-Au1-S1-P1\\ Au1-S1-P1-C3\\ Au1-S1-P1-C1\\ Au1-S1-P1-C2\\ C3-P1-C1-C12\\ C2-P1-C1-C12\\ S1-P1-C1-C12\\ C3-P1-C1-C13\\ C2-P1-C1-C13\\ S1-P1-C1-C13\\ C3-P1-C1-C11\\ \end{array}$	-112.73 (3) -66.93 (7) 52.74 (7) 174.37 (6) 161.09 (12) -71.89 (14) 41.54 (13) 42.71 (14) 169.73 (12) -76.84 (13) -77.18 (14)	$\begin{array}{c} S1 &P1 &C2 &C23 \\ C3 &P1 &C2 &C21 \\ C1 &P1 &C2 &C21 \\ S1 &P1 &C2 &C22 \\ C1 &P1 &C2 &C22 \\ S1 &P1 &C2 &C22 \\ C1 &P1 &C3 &C31 \\ C2 &P1 &C3 &C31 \\ S1 &P1 &C3 &C31 \\ C1 &P1 &C3 &C32 \end{array}$	$\begin{array}{r} -78.08 \ (13) \\ -74.85 \ (15) \\ 160.04 \ (13) \\ 41.01 \ (14) \\ 45.01 \ (15) \\ -80.10 \ (15) \\ 160.87 \ (12) \\ -178.11 \ (13) \\ 53.87 \ (15) \\ -57.31 \ (14) \\ 51.93 \ (16) \end{array}$
$\begin{array}{c} Cl2-Au1-S1-P1\\ Au1-S1-P1-C3\\ Au1-S1-P1-C1\\ Au1-S1-P1-C2\\ C3-P1-C1-C12\\ C2-P1-C1-C12\\ S1-P1-C1-C12\\ C3-P1-C1-C13\\ C2-P1-C1-C13\\ S1-P1-C1-C13\\ S1-P1-C1-C13\\ C3-P1-C1-C11\\ C2-P1-C1-C11\\ \end{array}$	$\begin{array}{c} -112.73 (3) \\ -66.93 (7) \\ 52.74 (7) \\ 174.37 (6) \\ 161.09 (12) \\ -71.89 (14) \\ 41.54 (13) \\ 42.71 (14) \\ 169.73 (12) \\ -76.84 (13) \\ -77.18 (14) \\ 49.84 (16) \end{array}$	$\begin{array}{c} S1 &P1 &C2 &C23 \\ C3 &P1 &C2 &C21 \\ C1 &P1 &C2 &C21 \\ S1 &P1 &C2 &C22 \\ C1 &P1 &C2 &C22 \\ S1 &P1 &C2 &C22 \\ C1 &P1 &C3 &C31 \\ C2 &P1 &C3 &C31 \\ S1 &P1 &C3 &C32 \\ C2 &P1 &C3 &C32 \\ C2 &P1 &C3 &C32 \\ \end{array}$	$\begin{array}{r} -78.08 \ (13) \\ -74.85 \ (15) \\ 160.04 \ (13) \\ 41.01 \ (14) \\ 45.01 \ (15) \\ -80.10 \ (15) \\ 160.87 \ (12) \\ -178.11 \ (13) \\ 53.87 \ (15) \\ -57.31 \ (14) \\ 51.93 \ (16) \\ -76.10 \ (16) \end{array}$
$\begin{array}{c} Cl2-Au1-S1-P1\\ Au1-S1-P1-C3\\ Au1-S1-P1-C1\\ Au1-S1-P1-C2\\ C3-P1-C1-C12\\ C2-P1-C1-C12\\ S1-P1-C1-C12\\ C3-P1-C1-C13\\ C2-P1-C1-C13\\ S1-P1-C1-C13\\ C3-P1-C1-C11\\ C2-P1-C1-C11\\ S1-P1-C1-C11\\ S1-P1-C1-C11\\ \end{array}$	$\begin{array}{c} -112.73 (3) \\ -66.93 (7) \\ 52.74 (7) \\ 174.37 (6) \\ 161.09 (12) \\ -71.89 (14) \\ 41.54 (13) \\ 42.71 (14) \\ 169.73 (12) \\ -76.84 (13) \\ -77.18 (14) \\ 49.84 (16) \\ 163.27 (11) \end{array}$	$\begin{array}{c} S1 & -P1 & -C2 & -C23 \\ C3 & -P1 & -C2 & -C21 \\ C1 & -P1 & -C2 & -C21 \\ S1 & -P1 & -C2 & -C22 \\ C3 & -P1 & -C2 & -C22 \\ C1 & -P1 & -C2 & -C22 \\ C1 & -P1 & -C2 & -C22 \\ C1 & -P1 & -C3 & -C31 \\ C2 & -P1 & -C3 & -C31 \\ S1 & -P1 & -C3 & -C32 \\ C2 & -P1 & -C3 & -C32 \\ S1 & -P1 & -C3 & -C32 \\ S1 & -P1 & -C3 & -C32 \\ \end{array}$	$\begin{array}{r} -78.08 \ (13) \\ -74.85 \ (15) \\ 160.04 \ (13) \\ 41.01 \ (14) \\ 45.01 \ (15) \\ -80.10 \ (15) \\ 160.87 \ (12) \\ -178.11 \ (13) \\ 53.87 \ (15) \\ -57.31 \ (14) \\ 51.93 \ (16) \\ -76.10 \ (16) \\ 172.72 \ (12) \end{array}$
$\begin{array}{c} Cl2-Au1-S1-P1\\ Au1-S1-P1-C3\\ Au1-S1-P1-C1\\ Au1-S1-P1-C2\\ C3-P1-C1-C12\\ C2-P1-C1-C12\\ S1-P1-C1-C12\\ C3-P1-C1-C13\\ C2-P1-C1-C13\\ S1-P1-C1-C13\\ C3-P1-C1-C11\\ C3-P1-C1-C11\\ C3-P1-C2-C23\\ \end{array}$	$\begin{array}{c} -112.73 (3) \\ -66.93 (7) \\ 52.74 (7) \\ 174.37 (6) \\ 161.09 (12) \\ -71.89 (14) \\ 41.54 (13) \\ 42.71 (14) \\ 169.73 (12) \\ -76.84 (13) \\ -77.18 (14) \\ 49.84 (16) \\ 163.27 (11) \\ 166.06 (13) \end{array}$	$\begin{array}{c} S1 &P1 &C2 &C23 \\ C3 &P1 &C2 &C21 \\ C1 &P1 &C2 &C21 \\ S1 &P1 &C2 &C22 \\ C1 &P1 &C2 &C22 \\ S1 &P1 &C2 &C22 \\ C1 &P1 &C3 &C31 \\ C2 &P1 &C3 &C31 \\ S1 &P1 &C3 &C32 \\ C2 &P1 &C3 &C32 \\ S1 &P1 &C3 &C32 \\ S1 &P1 &C3 &C32 \\ S1 &P1 &C3 &C32 \\ \end{array}$	$\begin{array}{r} -78.08 \ (13) \\ -74.85 \ (15) \\ 160.04 \ (13) \\ 41.01 \ (14) \\ 45.01 \ (15) \\ -80.10 \ (15) \\ 160.87 \ (12) \\ -178.11 \ (13) \\ 53.87 \ (15) \\ -57.31 \ (14) \\ 51.93 \ (16) \\ -76.10 \ (16) \\ 172.72 \ (12) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C13—H13 <i>B</i> ···Au1	0.98	2.68	3.6027 (19)	156
C21—H21A····S1	0.98	2.63	3.1082 (19)	110
C12—H12C···S1	0.98	2.86	3.411 (2)	116
C3—H3…Cl3	1.00	2.65	3.4471 (18)	137
C12—H12C···Cl2	0.98	2.78	3.755 (2)	171
C99—D99…Cl1	1.00	2.74	3.537 (2)	137
C99—D99…Cl2	1.00	2.69	3.489 (2)	137
$C12$ — $H12A$ ··· $C11^{i}$	0.98	2.91	3.596 (2)	128

Symmetry code: (i) -x+1, -y+1, -z+1.

Trichlorido(tri-*tert*-butylphosphane sulfide-κ*S*)gold(III) dichloromethane monosolvate (12a)

Z = 2F(000) = 604

 $D_{\rm x} = 1.924 {\rm Mg} {\rm m}^{-3}$

 $0.15 \times 0.1 \times 0.1 \text{ mm}$

 $\theta = 2.8 - 30.6^{\circ}$ $\mu = 7.63 \text{ mm}^{-1}$

T = 100 K

Block, red

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 47731 reflections

Crystal data

[AuCl₃(C₁₂H₂₇PS)]·CH₂Cl₂ $M_r = 622.61$ Triclinic, $P\overline{1}$ a = 8.4202 (3) Å b = 11.2194 (4) Å c = 11.8355 (4) Å a = 98.398 (3)° $\beta = 101.174$ (3)° $\gamma = 95.991$ (3)° V = 1074.95 (7) Å³

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer	157605 measured reflections 6558 independent reflections
Radiation source: Enhance (Mo) X-ray Source	6124 reflections with $I > 2\sigma(I)$
Detector resolution: 16.1419 pixels mm ⁻¹	$R_{\rm int} = 0.054$
ω–scan	$\theta_{\rm max} = 31.1^\circ, \theta_{\rm min} = 2.3^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2020)	$k = -16 \rightarrow 16$
$T_{\min} = 0.783, \ T_{\max} = 1.000$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from

$wR(F^2) = 0.037$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
6558 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0147P)^2 + 0.9642P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.76 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.53561 (2)	0.65489 (2)	0.29756 (2)	0.01423 (3)	
P1	0.63223 (6)	0.33330 (4)	0.26499 (4)	0.01110 (9)	
S1	0.55574 (6)	0.47197 (4)	0.36749 (4)	0.01588 (10)	
Cl1	0.51329 (8)	0.84355 (5)	0.24639 (6)	0.03068 (13)	
Cl2	0.78232 (7)	0.73160 (5)	0.41951 (5)	0.02751 (12)	
C13	0.28358 (6)	0.58666 (4)	0.18025 (5)	0.01819 (10)	
C1	0.6853 (2)	0.23096 (17)	0.37810 (18)	0.0147 (4)	
C2	0.8182 (2)	0.38937 (18)	0.21024 (18)	0.0156 (4)	
C3	0.4579 (2)	0.25575 (17)	0.14205 (18)	0.0152 (4)	
C11	0.7890 (3)	0.13553 (18)	0.3356 (2)	0.0189 (4)	
H11A	0.896288	0.176237	0.332015	0.028*	
H11B	0.733736	0.091959	0.257732	0.028*	
H11C	0.803183	0.077662	0.390133	0.028*	

C12	0 5282 (2)	0 16507 (10)	0.4010(2)	0.0187(4)
	0.5262 (5)	0.10307 (19)	0.4010(2)	0.0187(4)
П12А Ц12Р	0.330040	0.121030	0.400723	0.028*
	0.472303	0.100809	0.331072	0.028*
П12C	0.430001	0.224097	0.419971	0.028°
U13	0.7792 (3)	0.3055 (2)	0.49633 (19)	0.0204 (4)
HI3A	0.806888	0.250522	0.552104	0.031*
HI3B	0.710742	0.362704	0.526409	0.031*
HI3C	0.8/9/01	0.350796	0.485668	0.031*
C21	0.8590 (3)	0.2910 (2)	0.1190 (2)	0.0210 (4)
H21A	0.959839	0.320758	0.096282	0.031*
H21B	0.769214	0.272475	0.049961	0.031*
H21C	0.873861	0.217124	0.152734	0.031*
C22	0.9645 (3)	0.4278 (2)	0.3140 (2)	0.0217 (4)
H22A	1.055508	0.469794	0.288068	0.033*
H22B	0.998283	0.355582	0.344279	0.033*
H22C	0.933090	0.482692	0.375708	0.033*
C23	0.7922 (3)	0.50296 (19)	0.1537 (2)	0.0198 (4)
H23A	0.785061	0.571139	0.213648	0.030*
H23B	0.690694	0.486182	0.093839	0.030*
H23C	0.884367	0.523857	0.117485	0.030*
C31	0.4816 (3)	0.12534 (18)	0.0939 (2)	0.0209 (4)
H31A	0.392796	0.091382	0.026551	0.031*
H31B	0.480460	0.074977	0.154879	0.031*
H31C	0.586512	0.126580	0.069678	0.031*
C32	0.2951 (2)	0.25318 (19)	0.1836 (2)	0.0186 (4)
H32A	0.277011	0.336554	0.210355	0.028*
H32B	0.299746	0.207114	0.248201	0.028*
H32C	0.205260	0.214234	0.118818	0.028*
C33	0.4420 (3)	0.32898 (19)	0.04080 (19)	0.0191 (4)
H33A	0.538213	0.325449	0.005922	0.029*
H33B	0.434062	0.413848	0.070728	0.029*
H33C	0.343501	0.294182	-0.018603	0.029*
C99	1.0588 (4)	0.8679 (2)	0.2453 (2)	0.0322 (6)
H99A	0.963855	0.820052	0.262990	0.039*
H99B	1.141490	0.813027	0.234783	0.039*
Cl4	1.14230 (7)	0.98659 (5)	0.36326 (5)	0.02400 (11)
Cl5	0.99590 (10)	0.92468 (7)	0.11422 (6)	0.04378(17)
0.10		0.2100(7)		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01635 (4)	0.01008 (3)	0.01700 (5)	0.00177 (2)	0.00743 (3)	-0.00052 (2)
P1	0.0114 (2)	0.0111 (2)	0.0110 (2)	0.00285 (16)	0.00292 (18)	0.00101 (17)
S 1	0.0220 (2)	0.0139 (2)	0.0133 (2)	0.00565 (17)	0.00704 (19)	0.00088 (17)
Cl1	0.0464 (3)	0.0118 (2)	0.0372 (3)	0.0048 (2)	0.0158 (3)	0.0055 (2)
Cl2	0.0202 (2)	0.0244 (3)	0.0320 (3)	-0.00319 (19)	0.0049 (2)	-0.0094 (2)
C13	0.0174 (2)	0.0178 (2)	0.0199 (3)	0.00508 (17)	0.00395 (19)	0.00340 (18)
C1	0.0158 (9)	0.0145 (8)	0.0148 (10)	0.0040 (7)	0.0026 (8)	0.0052 (7)

C2	0.0149 (9)	0.0168 (9)	0.0174 (11)	0.0031 (7)	0.0079 (8)	0.0041 (7)
C3	0.0148 (9)	0.0131 (8)	0.0157 (10)	0.0031 (7)	0.0012 (8)	-0.0016 (7)
C11	0.0204 (10)	0.0179 (9)	0.0206 (11)	0.0084 (8)	0.0043 (8)	0.0063 (8)
C12	0.0190 (9)	0.0193 (9)	0.0197 (11)	0.0018 (7)	0.0063 (8)	0.0071 (8)
C13	0.0225 (10)	0.0235 (10)	0.0150 (11)	0.0048 (8)	0.0008 (9)	0.0054 (8)
C21	0.0214 (10)	0.0226 (10)	0.0229 (12)	0.0087 (8)	0.0117 (9)	0.0034 (8)
C22	0.0152 (9)	0.0253 (10)	0.0239 (12)	-0.0011 (8)	0.0044 (9)	0.0047 (9)
C23	0.0231 (10)	0.0186 (9)	0.0212 (12)	0.0036 (8)	0.0109 (9)	0.0058 (8)
C31	0.0230 (10)	0.0152 (9)	0.0208 (12)	0.0048 (8)	-0.0004 (9)	-0.0037 (8)
C32	0.0114 (8)	0.0190 (9)	0.0237 (12)	0.0019 (7)	0.0012 (8)	0.0013 (8)
C33	0.0217 (10)	0.0204 (10)	0.0144 (11)	0.0069 (8)	0.0011 (8)	0.0010 (8)
C99	0.0485 (15)	0.0211 (11)	0.0241 (13)	0.0000 (10)	0.0032 (12)	0.0043 (9)
Cl4	0.0240 (2)	0.0242 (2)	0.0232 (3)	0.00542 (19)	0.0015 (2)	0.0053 (2)
C15	0.0588 (5)	0.0443 (4)	0.0230 (3)	0.0033 (3)	-0.0035 (3)	0.0075 (3)

Geometric parameters (Å, °)

Au1—Cl3	2.2860 (5)	C13—H13B	0.9800	
Au1—Cl2	2.2894 (6)	C13—H13C	0.9800	
Au1—Cl1	2.3013 (5)	C21—H21A	0.9800	
Au1—S1	2.3323 (5)	C21—H21B	0.9800	
P1—C3	1.888 (2)	C21—H21C	0.9800	
P1—C2	1.8906 (19)	C22—H22A	0.9800	
P1—C1	1.906 (2)	C22—H22B	0.9800	
P1—S1	2.0658 (6)	C22—H22C	0.9800	
C1—C12	1.537 (3)	C23—H23A	0.9800	
C1C11	1.540 (3)	C23—H23B	0.9800	
C1—C13	1.541 (3)	C23—H23C	0.9800	
C2—C22	1.536 (3)	C31—H31A	0.9800	
C2—C23	1.540 (3)	C31—H31B	0.9800	
C2—C21	1.542 (3)	C31—H31C	0.9800	
C3—C31	1.538 (3)	C32—H32A	0.9800	
C3—C33	1.542 (3)	С32—Н32В	0.9800	
C3—C32	1.542 (3)	С32—Н32С	0.9800	
C11—H11A	0.9800	С33—Н33А	0.9800	
C11—H11B	0.9800	С33—Н33В	0.9800	
C11—H11C	0.9800	С33—Н33С	0.9800	
C12—H12A	0.9800	C99—C14	1.760 (3)	
C12—H12B	0.9800	C99—C15	1.770 (3)	
C12—H12C	0.9800	С99—Н99А	0.9900	
C13—H13A	0.9800	С99—Н99В	0.9900	
Cl3—Au1—Cl2	176.996 (18)	C1—C13—H13C	109.5	
Cl3—Au1—Cl1	88.53 (2)	H13A—C13—H13C	109.5	
Cl2—Au1—Cl1	89.55 (2)	H13B—C13—H13C	109.5	
Cl3—Au1—S1	93.402 (18)	C2—C21—H21A	109.5	
Cl2—Au1—S1	88.30 (2)	C2—C21—H21B	109.5	
Cl1—Au1—S1	174.441 (19)	H21A—C21—H21B	109.5	

C3—P1—C2	112.33 (9)	C2—C21—H21C	109.5
C3—P1—C1	111.29 (9)	H21A—C21—H21C	109.5
C2—P1—C1	111.38 (9)	H21B—C21—H21C	109.5
C3—P1—S1	110.17 (6)	C2—C22—H22A	109.5
C2—P1—S1	111.66 (6)	C2—C22—H22B	109.5
C1—P1—S1	99.33 (6)	H22A—C22—H22B	109.5
P1—S1—Au1	117.50 (3)	C_2 — C_2 — H_2 C_2	109.5
$C_{12} - C_{1} - C_{11}$	108.93 (16)	H22A—C22—H22C	109.5
C_{12} $C_{1-}C_{13}$	106.51 (17)	H22B-C22-H22C	109.5
$C_{11} - C_{12} - C_{13}$	109.07 (17)	C2-C23-H23A	109.5
$C_1^2 - C_1^2 - P_1$	110 11 (14)	$C_2 = C_{23} = H_{23}B$	109.5
C_{11} C_{1} P_{1}	110.82 (14)	H23A-C23-H23B	109.5
C13 - C1 - P1	111 28 (13)	C_{2} C_{23} H_{23} H_{23} C_{23} H_{23} H_{23} C_{23} H_{23} H_{23} C_{23} H_{23} $H_$	109.5
C^{22} C^{2} C^{23}	106 45 (17)	$H_{23}A = C_{23} = H_{23}C$	109.5
$C_{22} = C_{2} = C_{21}$	11001(17)	$H_{23B} = C_{23} = H_{23C}$	109.5
$C_{23} = C_{2} = C_{21}$	108 11 (17)	C_{3} C_{3} H_{31} H_{31} H_{31}	109.5
$C_{22} = C_{2} = P_{1}$	109.39(14)	$C_3 = C_{31} = H_{31}B$	109.5
$C_{22} = C_{2} = P_{1}$	111 29 (13)	$H_{31}A = C_{31} = H_{31}B$	109.5
$C_{21} = C_{2} = P_{1}$	111.29 (13)	$C_3 = C_{31} = H_{31}C_{31}$	109.5
$C_{21} = C_{2} = C_{33}$	108 18 (17)	$H_{31}A = C_{31} = H_{31}C$	109.5
$C_{31} - C_{3} - C_{32}$	100.10(17) 109.39(16)	H_{31B} C_{31} H_{31C}	109.5
C_{33} C_{3} C_{32} C_{32}	106 69 (17)	$C_3 = C_{32} = H_{32}A$	109.5
$C_{31} - C_{3} - P_{1}$	11255(14)	C_{3} C_{3} H_{3} H_{3} C_{3} H_{3} H_{3	109.5
C_{33} C_{3} P_{1}	109 73 (13)	H32A_C32_H32B	109.5
$C_{32} = C_{3} = P_{1}$	110 12 (14)	C_{3} C_{3} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2}	109.5
C1 - C11 - H11A	109 5	$H_{32}A = C_{32} = H_{32}C_{32}$	109.5
C1 - C11 - H11B	109.5	$H_{32B} = C_{32} = H_{32C}$	109.5
$H_{11}A = C_{11} = H_{11}B$	109.5	C_{3} C_{3} H_{33} H_{33}	109.5
	109.5	C3-C33-H33B	109.5
$H_{11}A = C_{11} = H_{11}C$	109.5	H33A_C33_H33B	109.5
H11B_C11_H11C	109.5	C_{3} C_{3} H_{3} C_{3}	109.5
C1 - C12 - H12A	109.5	H33A_C33_H33C	109.5
C1 - C12 - H12R	109.5	H33B_C33_H33C	109.5
H12A C12 H12B	109.5	$C_{14} C_{99} C_{15}$	107.5 111 A2 (13)
C1 - C12 - H12C	109.5	C14 - C99 - H99A	109.3
H_{12} C_{12} H_{12} H_{12} H_{12}	109.5	$C_{14} = C_{15} = H_{15} R_{15}$	109.3
H12R C12 H12C	109.5	C14 C00 H00B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{14} = C_{77} = H_{77} = H$	109.3
C1 C13 H13R	109.5	$H_{00A} = C_{00} = H_{00B}$	109.5
H12A C12 H12P	109.5	Пууд—Суу—ПууВ	100.0
1113A—C13—1113B	109.5		
C3 - P1 - S1 - Au1	-78 75 (7)	S1—P1—C2—C22	66 86 (15)
C_2 —P1—S1—Au1	46.80 (8)	$C_3 = P_1 = C_2 = C_{23}$	73.86 (16)
C1— $P1$ — $S1$ — $Au1$	164.36 (6)	C1 - P1 - C2 - C23	-160.53(14)
C[3] $Au1$ $S1$ $P1$	82, 19 (3)	S1 - P1 - C2 - C23	-50.49(16)
C 2—Au1—S1—P1	-10028(3)	$C_3 = P_1 = C_2 = C_{21}^2$	-46.91(17)
C_{3} P1 C_{1} C_{12}	-41 56 (16)	C1 - P1 - C2 - C21	78 70 (17)
$C_2 = P_1 = C_1 = C_{12}$	-167 75 (13)	$S1_P1_C2_C21$	-171 26 (13)
02 - 11 - 01 - 012	107.75 (15)	51 - 11 - 02 - 021	1/1.20(13)

S1—P1—C1—C12	74.48 (14)	C2—P1—C3—C31	77.86 (17)	
C3—P1—C1—C11	79.02 (16)	C1—P1—C3—C31	-47.81 (17)	
C2—P1—C1—C11	-47.17 (16)	S1—P1—C3—C31	-156.98 (13)	
S1—P1—C1—C11	-164.93 (13)	C2—P1—C3—C33	-42.66 (16)	
C3—P1—C1—C13	-159.43 (13)	C1—P1—C3—C33	-168.32 (13)	
C2—P1—C1—C13	74.39 (16)	S1—P1—C3—C33	82.51 (13)	
S1—P1—C1—C13	-43.38 (14)	C2—P1—C3—C32	-159.80 (13)	
C3—P1—C2—C22	-168.80 (13)	C1—P1—C3—C32	74.54 (15)	
C1—P1—C2—C22	-43.18 (16)	S1—P1—C3—C32	-34.64 (15)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	D—H…A
C23—H23A····Au1	0.98	2.69	3.438 (2)	134
C13—H13 <i>B</i> ···S1	0.98	2.61	3.131 (2)	114
C32—H32A···S1	0.98	2.83	3.323 (2)	112
C23—H23A····Cl2	0.98	2.82	3.778 (2)	168
C32—H32A···Cl3	0.98	2.88	3.759 (2)	150
C33—H33 <i>B</i> ···Cl3	0.98	2.73	3.623 (2)	152
C99—H99A···Cl2	0.99	2.84	3.749 (3)	153
C99—H99 <i>B</i> ···Cl3 ⁱ	0.99	2.96	3.903 (3)	160
C22—H22A····Cl3 ⁱ	0.98	2.82	3.791 (2)	171

Symmetry code: (i) x+1, y, z.

(tert-Butyldipropan-2-ylphosphane selenide-kS)trichloridogold(III) (14a)

Crystal data

$[AuCl_3(C_{10}H_{23}PSe)]$
$M_r = 556.53$
Monoclinic, $P2_1/n$
<i>a</i> = 7.92516 (18) Å
<i>b</i> = 14.5559 (4) Å
c = 14.3635 (4) Å
$\beta = 91.264 \ (2)^{\circ}$
V = 1656.54 (7) Å ³
Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1419 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{\min} = 0.483, T_{\max} = 1.000$ F(000) = 1048 $D_x = 2.231 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 44121 reflections $\theta = 2.8-29.0^{\circ}$ $\mu = 11.64 \text{ mm}^{-1}$ T = 100 KBlock, red $0.15 \times 0.15 \times 0.1 \text{ mm}$

196706 measured reflections 4112 independent reflections 3878 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 2.8^\circ$ $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -19 \rightarrow 19$ Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.32	H-atom parameters constrained
4112 reflections	$w = 1/[\sigma^2(F_o^2) + 30.9095P]$
152 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 3.81 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -2.41 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.45922 (4)	0.06629 (2)	0.31589 (2)	0.01738 (8)	
Cl1	0.4313 (3)	0.01307 (15)	0.16364 (15)	0.0276 (4)	
Cl2	0.1741 (2)	0.08748 (16)	0.31991 (16)	0.0292 (5)	
Cl3	0.7414 (2)	0.03567 (14)	0.31613 (14)	0.0239 (4)	
Se1	0.47042 (10)	0.12099 (5)	0.47644 (6)	0.01951 (17)	
P1	0.6495 (2)	0.23732 (13)	0.48512 (13)	0.0145 (4)	
C1	0.6072 (12)	0.3269 (5)	0.3948 (6)	0.0240 (17)	
C2	0.6083 (10)	0.2813 (6)	0.6029 (6)	0.0207 (16)	
H2	0.693302	0.330393	0.617188	0.025*	
C3	0.8687 (10)	0.1988 (6)	0.4766 (6)	0.0240 (17)	
H3	0.883705	0.180911	0.410097	0.029*	
C11	0.6701 (12)	0.4210 (6)	0.4307 (6)	0.0270 (18)	
H11A	0.651327	0.467517	0.382269	0.041*	
H11B	0.790957	0.417208	0.446273	0.041*	
H11C	0.608111	0.438057	0.486405	0.041*	
C12	0.4190 (13)	0.3337 (7)	0.3704 (8)	0.039 (2)	
H12A	0.356324	0.347367	0.426822	0.058*	
H12B	0.379581	0.275247	0.343994	0.058*	
H12C	0.400336	0.382903	0.324754	0.058*	
C13	0.7024 (16)	0.3017 (7)	0.3058 (7)	0.040 (3)	
H13A	0.660326	0.242939	0.281512	0.061*	
H13B	0.823381	0.296514	0.320588	0.061*	
H13C	0.684125	0.349746	0.258870	0.061*	
C21	0.4334 (11)	0.3234 (6)	0.6129 (6)	0.0265 (18)	
H21A	0.347661	0.275184	0.606145	0.040*	
H21B	0.414959	0.370033	0.564578	0.040*	
H21C	0.425261	0.351900	0.674447	0.040*	
C22	0.6290 (15)	0.2065 (7)	0.6771 (6)	0.040 (3)	
H22A	0.600785	0.231711	0.738109	0.060*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H22B	0.746135	0.184855	0.678801	0.060*	
H22C	0.553465	0.155102	0.662001	0.060*	
C31	0.9989 (13)	0.2759 (8)	0.4970 (10)	0.054 (3)	
H31A	0.987031	0.297574	0.561092	0.081*	
H31B	0.978980	0.327034	0.453743	0.081*	
H31C	1.113213	0.251872	0.488980	0.081*	
C32	0.9129 (13)	0.1140 (8)	0.5341 (7)	0.039 (3)	
H32A	1.014400	0.085151	0.509559	0.059*	
H32B	0.818852	0.070321	0.530678	0.059*	
H32C	0.933871	0.131909	0.599105	0.059*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01636 (13)	0.01447 (14)	0.02152 (15)	-0.00068 (11)	0.00488 (10)	-0.00236 (11)
Cl1	0.0283 (10)	0.0306 (11)	0.0237 (10)	0.0010 (8)	-0.0005 (8)	-0.0059 (8)
Cl2	0.0167 (9)	0.0371 (12)	0.0340 (11)	0.0028 (8)	0.0031 (8)	-0.0006 (9)
C13	0.0179 (8)	0.0261 (10)	0.0281 (10)	0.0015 (7)	0.0052 (7)	-0.0103 (8)
Se1	0.0227 (4)	0.0153 (4)	0.0209 (4)	-0.0047 (3)	0.0098 (3)	-0.0021 (3)
P1	0.0151 (8)	0.0122 (8)	0.0162 (9)	0.0010(7)	0.0047 (7)	-0.0006 (7)
C1	0.039 (5)	0.012 (3)	0.022 (4)	0.002 (3)	0.011 (3)	0.002 (3)
C2	0.022 (4)	0.019 (4)	0.021 (4)	0.002 (3)	0.006 (3)	-0.004 (3)
C3	0.017 (4)	0.024 (4)	0.031 (4)	0.005 (3)	0.003 (3)	-0.007 (4)
C11	0.034 (5)	0.016 (4)	0.031 (5)	0.001 (3)	0.011 (4)	0.004 (3)
C12	0.048 (6)	0.022 (5)	0.045 (6)	0.007 (4)	-0.017 (5)	0.003 (4)
C13	0.075 (8)	0.021 (5)	0.027 (5)	0.005 (5)	0.022 (5)	0.001 (4)
C21	0.029 (4)	0.027 (4)	0.024 (4)	0.005 (3)	0.013 (3)	-0.001 (3)
C22	0.064 (7)	0.041 (6)	0.016 (4)	0.021 (5)	0.001 (4)	-0.005 (4)
C31	0.025 (5)	0.047 (7)	0.091 (10)	0.004 (5)	0.002 (5)	-0.034 (7)
C32	0.036 (5)	0.050 (6)	0.031 (5)	0.031 (5)	0.003 (4)	0.003 (5)

Geometric parameters (Å, °)

Au1—Cl3	2.2803 (19)	C1—C12	1.528 (13)
Au1—Cl2	2.283 (2)	C1—C13	1.543 (12)
Au1—Cl1	2.326 (2)	C1—C11	1.543 (12)
Au1—Se1	2.4393 (8)	C2—C21	1.524 (11)
Se1—P1	2.211 (2)	C2—C22	1.530 (13)
P1—C3	1.832 (8)	C3—C32	1.522 (13)
P1—C2	1.845 (8)	C3—C31	1.548 (13)
P1—C1	1.864 (8)		
Cl3—Au1—Cl2	176.18 (8)	C12—C1—C13	108.6 (9)
Cl3—Au1—Cl1	90.53 (7)	C12—C1—C11	109.0 (7)
Cl2—Au1—Cl1	89.72 (8)	C13—C1—C11	109.1 (7)
Cl3—Au1—Se1	92.70 (5)	C12—C1—P1	111.4 (6)
Cl2—Au1—Se1	86.98 (6)	C13—C1—P1	109.1 (6)
Cl1—Au1—Se1	176.59 (6)	C11—C1—P1	109.7 (6)

P1—Se1—Au1 C3—P1—C2 C3—P1—C1 C2—P1—C1 C3—P1—Se1 C2—P1—Se1	108.25 (6) 110.8 (4) 108.9 (4) 111.3 (4) 111.7 (3) 101.0 (3) 113.0 (2)	C21—C2—C22 C21—C2—P1 C22—C2—P1 C32—C3—C31 C32—C3—P1 C31—C3—P1	107.7 (7) 113.9 (6) 111.9 (6) 109.9 (9) 114.8 (6) 113.3 (6)
CI-PI-Sei	115.0 (5)		
Cl3—Au1—Se1—P1 Cl2—Au1—Se1—P1 Au1—Se1—P1—C3 Au1—Se1—P1—C2 Au1—Se1—P1—C1 C3—P1—C1—C12 C2—P1—C1—C12	58.66 (8) -125.16 (8) -72.6 (3) 169.6 (3) 50.7 (3) 156.7 (6) -81.0 (7)	$Se1-P1-C1-C11 \\ C3-P1-C2-C21 \\ C1-P1-C2-C21 \\ Se1-P1-C2-C21 \\ C3-P1-C2-C22 \\ C1-P1-C2-C22 \\ Se1-P1-C2-C22 \\ $	152.6 (5) 174.3 (6) 53.0 (7) -67.1 (6) -63.2 (8) 175.5 (7)
C_2 P_1 C_1 C_1	-81.0(7)	Sel = Pl = C2 = C22	55.5 (7)
$Se_{1} = P_{1} = C_{1} = C_{12}$ $C_{3} = P_{1} = C_{1} = C_{13}$ $Se_{1} = P_{1} = C_{1} = C_{13}$ $C_{3} = P_{1} = C_{1} = C_{11}$ $C_{2} = P_{1} = C_{1} = C_{11}$	31.9 (7) 36.8 (8) 159.2 (7) -88.0 (7) -82.6 (6) 39.8 (7)	C2—P1—C3—C32 C1—P1—C3—C32 Se1—P1—C3—C32 C2—P1—C3—C31 C1—P1—C3—C31 Se1—P1—C3—C31	-169.6(7) -44.0(7) -59.6(9) 63.0(9) -171.4(7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C3—H3…Cl3	1.00	2.74	3.445 (9)	128
C3—H3···Cl2 ⁱ	1.00	2.99	3.714 (8)	130
C21—H21C···Cl2 ⁱⁱ	0.98	2.98	3.730 (10)	135
C22—H22A····Cl2 ⁱⁱ	0.98	2.94	3.646 (11)	130
C13—H13 <i>C</i> ····Cl3 ⁱⁱⁱ	0.98	2.98	3.860 (10)	151

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1/2, -*y*+1/2, *z*+1/2; (iii) -*x*+3/2, *y*+1/2, -*z*+1/2.

Trichlorido[di-tert-butyl(propan-2-yl)phosphane selenide-κS]gold(III) (15a)

Crystal data	
$[AuCl_3(C_{11}H_{25}PSe)]$	Z = 2
$M_r = 570.55$	F(000) = 540
Triclinic, P1	$D_{\rm x} = 2.164 {\rm Mg} {\rm m}^{-3}$
a = 8.5878 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.8435 (4) Å	Cell parameters from 26441 reflections
c = 11.5022 (5) Å	$\theta = 2.2 - 30.8^{\circ}$
$\alpha = 78.391 \ (3)^{\circ}$	$\mu = 11.01 \text{ mm}^{-1}$
$\beta = 71.168 \ (4)^{\circ}$	T = 100 K
$\gamma = 73.463 \ (4)^{\circ}$	Block, dark red
$V = 875.78 (7) \text{ Å}^3$	$0.18 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{min} = 0.700, T_{max} = 1.000$	54532 measured reflections 5231 independent reflections 4984 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 30.9^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$
Kejinemeni	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.030$ S = 1.10 5231 reflections 163 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0102P)^2 + 0.6517P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.84 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.73 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2019/3 (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001]$
Secondary atom site location: difference Fourier	$F_{\rm c}^2 \lambda^3 / \sin(2\theta)$] ^{-1/4}
map	Extinction coefficient: 0.00113 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Aul	0.47065 (2)	0.34817 (2)	0.24083 (2)	0.01225 (3)
Cl1	0.53440 (7)	0.12047 (5)	0.34417 (5)	0.02266 (10)
Cl2	0.73944 (6)	0.36884 (5)	0.21249 (4)	0.01954 (9)
C13	0.20708 (6)	0.32192 (5)	0.25905 (5)	0.02097 (9)
Se1	0.41932 (2)	0.58622 (2)	0.12550 (2)	0.01264 (4)
P1	0.21270 (5)	0.73111 (5)	0.24893 (4)	0.00884 (8)
C1	0.2579 (2)	0.71444 (18)	0.40126 (15)	0.0110 (3)
C2	0.2204 (2)	0.90901 (18)	0.15358 (16)	0.0119 (3)
C3	0.0106 (2)	0.68238 (19)	0.27683 (17)	0.0139 (3)
Н3	0.029641	0.580448	0.314717	0.017*
C11	0.1588 (2)	0.8456 (2)	0.47037 (16)	0.0154 (3)
H11A	0.178588	0.829709	0.551846	0.023*
H11B	0.037554	0.860209	0.480689	0.023*
H11C	0.197124	0.930249	0.422547	0.023*
C12	0.4474 (2)	0.6965 (2)	0.38347 (17)	0.0160 (4)
H12A	0.467866	0.684501	0.464383	0.024*
H12B	0.482936	0.781360	0.333425	0.024*
H12C	0.512449	0.612140	0.341234	0.024*
C13	0.2056 (2)	0.58019 (19)	0.48112 (16)	0.0151 (3)
H13A	0.261624	0.497634	0.434914	0.023*
H13B	0.082529	0.594352	0.501794	0.023*
H13C	0.239410	0.563197	0.557428	0.023*
C21	0.2454 (3)	0.8959 (2)	0.01674 (16)	0.0171 (4)
H21A	0.235623	0.990931	-0.030806	0.026*

H21B	0.158520	0.852840	0.011331	0.026*
H21C	0.357828	0.835579	-0.017068	0.026*
C22	0.0541 (2)	1.01974 (19)	0.19973 (17)	0.0164 (4)
H22A	0.031062	1.022339	0.288534	0.025*
H22B	-0.039081	0.993275	0.185004	0.025*
H22C	0.064293	1.114141	0.155043	0.025*
C23	0.3698 (2)	0.9605 (2)	0.15942 (17)	0.0164 (4)
H23A	0.377807	1.049299	0.103710	0.025*
H23B	0.474790	0.887482	0.134006	0.025*
H23C	0.352286	0.977511	0.244277	0.025*
C31	-0.0328 (3)	0.6819 (2)	0.15753 (19)	0.0222 (4)
H31A	-0.121644	0.630111	0.176110	0.033*
H31B	0.068516	0.634926	0.097399	0.033*
H31C	-0.072920	0.780409	0.122908	0.033*
C32	-0.1437 (2)	0.7623 (2)	0.37100 (19)	0.0191 (4)
H32A	-0.169270	0.864012	0.339953	0.029*
H32B	-0.118272	0.750211	0.450156	0.029*
H32C	-0.241604	0.723426	0.382853	0.029*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01513 (4)	0.00940 (3)	0.01254 (4)	0.00065 (2)	-0.00576 (2)	-0.00410 (2)
Cl1	0.0321 (3)	0.0122 (2)	0.0273 (2)	-0.00214 (18)	-0.0176 (2)	0.00029 (17)
Cl2	0.0152 (2)	0.0192 (2)	0.0244 (2)	0.00072 (16)	-0.00806 (17)	-0.00586 (17)
C13	0.0193 (2)	0.0132 (2)	0.0327 (3)	-0.00315 (16)	-0.00950 (19)	-0.00519 (18)
Se1	0.01521 (8)	0.01085 (8)	0.00931 (7)	0.00077 (6)	-0.00215 (6)	-0.00334 (6)
P1	0.00901 (19)	0.00871 (19)	0.00890 (18)	-0.00114 (15)	-0.00311 (15)	-0.00166 (14)
C1	0.0116 (8)	0.0127 (8)	0.0084 (7)	-0.0003 (6)	-0.0034 (6)	-0.0031 (6)
C2	0.0139 (8)	0.0100 (7)	0.0116 (8)	-0.0028 (6)	-0.0038 (6)	-0.0006 (6)
C3	0.0121 (8)	0.0128 (8)	0.0183 (8)	-0.0040 (6)	-0.0071 (7)	0.0009 (6)
C11	0.0169 (8)	0.0144 (8)	0.0133 (8)	0.0007 (7)	-0.0031 (7)	-0.0062 (6)
C12	0.0123 (8)	0.0210 (9)	0.0159 (8)	0.0001 (7)	-0.0066 (7)	-0.0065 (7)
C13	0.0173 (8)	0.0148 (8)	0.0110 (8)	-0.0013 (7)	-0.0037 (7)	-0.0007 (6)
C21	0.0238 (10)	0.0153 (8)	0.0117 (8)	-0.0047 (7)	-0.0061 (7)	0.0015 (6)
C22	0.0171 (9)	0.0109 (8)	0.0195 (9)	0.0004 (7)	-0.0066 (7)	-0.0007 (7)
C23	0.0169 (9)	0.0154 (8)	0.0171 (9)	-0.0062 (7)	-0.0027 (7)	-0.0026 (7)
C31	0.0235 (10)	0.0226 (10)	0.0275 (10)	-0.0089 (8)	-0.0157 (8)	0.0004 (8)
C32	0.0098 (8)	0.0177 (9)	0.0263 (10)	-0.0019 (7)	-0.0038 (7)	0.0011 (7)

Geometric parameters (Å, °)

Au1—Cl2	2.2871 (5)	C12—H12B	0.9800	
Au1—Cl3	2.2889 (5)	C12—H12C	0.9800	
Au1—Cl1	2.3207 (5)	C13—H13A	0.9800	
Au1—Se1	2.4460 (2)	C13—H13B	0.9800	
Se1—P1	2.2240 (5)	C13—H13C	0.9800	
P1—C3	1.8435 (18)	C21—H21A	0.9800	

P1 (2)	1.07(2.(10)	COL HOLD	0 0000
PI—C2	1.8/62 (18)	C21—H2IB	0.9800
P1—C1	1.8802 (17)	C21—H21C	0.9800
C1—C12	1.535 (2)	C22—H22A	0.9800
C1—C11	1.541 (2)	C22—H22B	0.9800
C1—C13	1.541 (2)	C22—H22C	0.9800
C2—C23	1.532 (3)	C23—H23A	0.9800
C2—C22	1.539 (2)	С23—Н23В	0.9800
C2—C21	1.545 (2)	С23—Н23С	0.9800
C3—C31	1.535 (3)	C31—H31A	0.9800
C3—C32	1.539 (3)	C31—H31B	0.9800
С3—Н3	1.0000	C31—H31C	0.9800
С11—Н11А	0.9800	C32—H32A	0.9800
С11—Н11В	0.9800	C32—H32B	0 9800
C11—H11C	0.9800	C_{32} H32D	0.9800
C_{12} H_{12A}	0.9800	032 11320	0.9000
C12—1112A	0.9800		
C_{12} Au1 C_{12}	176 704 (17)	C1 C12 H12C	100.5
Cl2 - Au1 - Cl3	1/0./94(1/)		109.5
Cl2—Aut—Cl1	89.900 (18)	H12A-C12-H12C	109.5
CI3—AuI—CII	89.946 (18)	H12B - C12 - H12C	109.5
Cl2—Au1—Sel	87.383 (14)	CI-CI3-HI3A	109.5
Cl3—Au1—Sel	92.617 (13)	С1—С13—Н13В	109.5
Cl1—Au1—Se1	176.951 (14)	H13A—C13—H13B	109.5
P1—Se1—Au1	108.487 (14)	C1—C13—H13C	109.5
C3—P1—C2	112.81 (8)	H13A—C13—H13C	109.5
C3—P1—C1	108.96 (8)	H13B—C13—H13C	109.5
C2—P1—C1	114.08 (8)	C2—C21—H21A	109.5
C3—P1—Se1	109.45 (6)	C2—C21—H21B	109.5
C2—P1—Se1	101.19 (6)	H21A—C21—H21B	109.5
C1—P1—Se1	110.07 (5)	C2—C21—H21C	109.5
C12—C1—C11	108.31 (15)	H21A—C21—H21C	109.5
C12—C1—C13	108.25 (14)	H21B—C21—H21C	109.5
C11—C1—C13	109.14 (14)	C2—C22—H22A	109.5
C12—C1—P1	111.25 (11)	C2—C22—H22B	109.5
C11—C1—P1	111.89 (12)	H22A—C22—H22B	109.5
C13 - C1 - P1	107.91(12)	$C^2 - C^2 - H^2 C$	109.5
C^{23} C^{2} C^{2}	109.72(15)	$H_{22}A - C_{22} - H_{22}C$	109.5
$C_{23} = C_{2} = C_{21}$	107.72(13) 107.75(14)	$H_{22}R_{-}C_{22}H_{22}C$	109.5
$C_{23} = C_{2} = C_{21}$	107.75(14) 108.65(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{22} = C_2 = C_{21}$	100.05(13) 110.50(12)	$C_2 = C_{23} = H_{23}R$	109.5
$C_{23} = C_{2} = P_{1}$	110.30(12) 110.26(12)	122 - 123 - 11	109.5
C_{22} C_{2} P_{1}	110.30(12)	$H_{23}A - C_{23} - H_{23}B$	109.5
$C_2 I = C_2 = PI$	109.82(12)		109.5
$C_{31} = C_{3} = C_{32}$	110.85 (15)	$H_{22} = H_{23} = H$	109.5
$C_3 = C_3 = P_1$	113.41 (13)	H23B—C23—H23C	109.5
C32—C3—P1	116.45 (13)	C3-C31-H31A	109.5
С31—С3—Н3	105.0	С3—С31—Н31В	109.5
С32—С3—Н3	105.0	H31A—C31—H31B	109.5
P1—C3—H3	105.0	С3—С31—Н31С	109.5
C1—C11—H11A	109.5	H31A—C31—H31C	109.5

C1	109.5	H31B—C31—H31C	109.5
H11A—C11—H11B	109.5	C3—C32—H32A	109.5
C1—C11—H11C	109.5	C3—C32—H32B	109.5
H11A—C11—H11C	109.5	H32A—C32—H32B	109.5
H11B—C11—H11C	109.5	С3—С32—Н32С	109.5
C1—C12—H12A	109.5	H32A—C32—H32C	109.5
C1—C12—H12B	109.5	H32B—C32—H32C	109.5
H12A—C12—H12B	109.5		
Cl2—Au1—Se1—P1	-118.493 (18)	C1—P1—C2—C23	41.28 (14)
Cl3—Au1—Se1—P1	64.717 (19)	Se1—P1—C2—C23	-76.86 (12)
Au1—Se1—P1—C3	-69.97 (6)	C3—P1—C2—C22	44.79 (15)
Au1—Se1—P1—C2	170.76 (6)	C1—P1—C2—C22	-80.24 (14)
Au1—Se1—P1—C1	49.76 (6)	Se1—P1—C2—C22	161.62 (11)
C3—P1—C1—C12	158.15 (12)	C3—P1—C2—C21	-74.96 (14)
C2—P1—C1—C12	-74.80 (14)	C1—P1—C2—C21	160.01 (12)
Se1—P1—C1—C12	38.13 (14)	Se1—P1—C2—C21	41.87 (13)
C3—P1—C1—C11	-80.54 (14)	C2—P1—C3—C31	56.35 (16)
C2—P1—C1—C11	46.50 (15)	C1—P1—C3—C31	-175.89 (13)
Se1—P1—C1—C11	159.43 (11)	Se1—P1—C3—C31	-55.48 (14)
C3—P1—C1—C13	39.54 (14)	C2—P1—C3—C32	-74.05 (15)
C2—P1—C1—C13	166.59 (11)	C1—P1—C3—C32	53.71 (15)
Se1—P1—C1—C13	-80.49 (11)	Se1—P1—C3—C32	174.13 (12)
C3—P1—C2—C23	166.31 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C13—H13A····Au1	0.98	2.76	3.6818 (18)	158
C21—H21C…Se1	0.98	2.68	3.1887 (19)	113
C12—H12C…Se1	0.98	2.92	3.4566 (18)	116
C3—H3···Cl3	1.00	2.65	3.4842 (19)	141
C12—H12C····Cl2	0.98	2.94	3.9145 (19)	174
C13—H13 C ···Cl2 ⁱ	0.98	2.93	3.8489 (19)	157

Symmetry code: (i) -x+1, -y+1, -z+1.

Trichlorido[di-tert-butyl(propan-2-yl)phosphane selenide-κS]gold(III) chloroform-d monosolvate (15aa)

Crystal data

$[AuCl_3(C_{11}H_{25}PSe)] \cdot CDCl_3$	Z = 2
$M_r = 690.93$	F(000) = 656
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.152 {\rm Mg} {\rm m}^{-3}$
a = 8.5343 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.7185 (3) Å	Cell parameters from 34566 reflections
c = 14.0759 (4) Å	$\theta = 2.2 - 30.8^{\circ}$
$\alpha = 74.398 \ (2)^{\circ}$	$\mu = 9.42 \text{ mm}^{-1}$
$\beta = 78.121 \ (2)^{\circ}$	T = 100 K
$\gamma = 73.257 \ (2)^{\circ}$	Tablet, red
V = 1066.31 (5) Å ³	$0.4 \times 0.25 \times 0.08 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur, Eos	76069 measured reflections
diffractometer	6287 independent reflections
Radiation source: Enhance (Mo) X-ray Source	6060 reflections with $I > 2\sigma(I)$
Detector resolution: 16.1419 pixels mm ⁻¹	$R_{int} = 0.040$
ω scans	$\theta_{max} = 30.8^{\circ}, \theta_{min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(CrysAlisPro; Rigaku OD, 2020)	$k = -13 \rightarrow 13$
$T_{min} = 0.151, T_{max} = 1.000$	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.048$	neighbouring sites
S = 1.10	H-atom parameters constrained
6287 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0179P)^2 + 2.4716P]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
39 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.88 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -1.30 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Au1	0.19009 (2)	0.76455 (2)	0.29588 (2)	0.01280 (3)	
Se1	0.31024 (3)	0.58178 (3)	0.19374 (2)	0.01509 (5)	
C11	0.06715 (8)	0.94493 (7)	0.38594 (5)	0.02097 (13)	
Cl2	-0.06581 (8)	0.75760 (7)	0.27413 (5)	0.01900 (12)	
C13	0.44411 (8)	0.78057 (7)	0.31290 (5)	0.02113 (13)	
P1	0.43631 (7)	0.37535 (7)	0.29102 (4)	0.00998 (11)	
C1	0.2963 (3)	0.3257 (3)	0.40964 (18)	0.0121 (4)	
C2	0.4876 (3)	0.2413 (3)	0.20853 (19)	0.0145 (4)	
C3	0.6212 (3)	0.4055 (3)	0.32273 (19)	0.0147 (5)	
Н3	0.579371	0.492572	0.354051	0.018*	
C11	0.3539 (3)	0.1623 (3)	0.46191 (19)	0.0164 (5)	
H11A	0.280779	0.141114	0.524606	0.025*	
H11B	0.467264	0.142210	0.475766	0.025*	
H11C	0.350289	0.099770	0.418588	0.025*	
C12	0.1176 (3)	0.3544 (3)	0.3902 (2)	0.0174 (5)	
H12A	0.047017	0.330491	0.453586	0.026*	
H12B	0.114078	0.292454	0.346449	0.026*	
H12C	0.077929	0.458417	0.358281	0.026*	
C13	0.2968 (3)	0.4237 (3)	0.47907 (18)	0.0155 (5)	
H13A	0.258643	0.527574	0.446277	0.023*	
H13B	0.409134	0.405259	0.494072	0.023*	
H13C	0.222798	0.400609	0.541098	0.023*	
C21	0.5491 (4)	0.3147 (3)	0.1006 (2)	0.0231 (6)	
H21A	0.587049	0.240826	0.059935	0.035*	
H21B	0.640676	0.356461	0.100995	0.035*	

H21C	0.458495	0.393467	0.072699	0.035*	
C22	0.6250 (3)	0.1067 (3)	0.2467 (2)	0.0196 (5)	
H22A	0.590896	0.063570	0.316669	0.029*	
H22B	0.726761	0.137778	0.240897	0.029*	
H22C	0.644756	0.033218	0.206881	0.029*	
C23	0.3345 (4)	0.1911 (3)	0.2054 (2)	0.0201 (5)	
H23A	0.361551	0.127902	0.157554	0.030*	
H23B	0.245281	0.277625	0.184829	0.030*	
H23C	0.298648	0.135850	0.271644	0.030*	
C31	0.7423 (4)	0.4521 (3)	0.2310 (2)	0.0238 (6)	
H31A	0.816732	0.497748	0.249454	0.036*	
H31B	0.680530	0.523186	0.179360	0.036*	
H31C	0.807063	0.365276	0.205380	0.036*	
C32	0.7134 (3)	0.2816 (3)	0.4007 (2)	0.0192 (5)	
H32A	0.756384	0.191589	0.374977	0.029*	
H32B	0.637176	0.262735	0.462303	0.029*	
H32C	0.805331	0.311493	0.414288	0.029*	
C99	-0.1097 (9)	0.8164 (8)	0.0177 (5)	0.0278 (16)	0.525 (4)
D99	-0.055137	0.830295	0.069726	0.033*	0.525 (4)
Cl4	-0.3237 (7)	0.8542 (6)	0.0573 (4)	0.0381 (9)	0.525 (4)
C15	-0.0625 (3)	0.9393 (2)	-0.09447 (12)	0.0435 (7)	0.525 (4)
C16	-0.0308 (2)	0.6342 (3)	0.00484 (14)	0.0420 (6)	0.525 (4)
C99′	-0.1635 (10)	0.8634 (8)	0.0319 (6)	0.0296 (19)	0.475 (4)
D99′	-0.126484	0.882844	0.088950	0.036*	0.475 (4)
Cl4′	-0.3518 (8)	0.8272 (8)	0.0703 (6)	0.0483 (14)	0.475 (4)
Cl5′	-0.1902 (5)	1.0248 (3)	-0.06191 (19)	0.0700 (13)	0.475 (4)
Cl6′	-0.0189 (3)	0.7176 (4)	-0.0073 (3)	0.0579 (8)	0.475 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01412 (5)	0.00834 (5)	0.01369 (5)	-0.00048 (3)	-0.00226 (3)	-0.00097 (3)
Se1	0.01999 (12)	0.01043 (11)	0.01201 (11)	0.00044 (9)	-0.00387 (9)	-0.00108 (8)
C11	0.0216 (3)	0.0152 (3)	0.0250 (3)	-0.0012 (2)	0.0004 (2)	-0.0090 (2)
Cl2	0.0154 (3)	0.0172 (3)	0.0222 (3)	-0.0003 (2)	-0.0059 (2)	-0.0025 (2)
C13	0.0174 (3)	0.0139 (3)	0.0333 (3)	-0.0034 (2)	-0.0038 (2)	-0.0075 (2)
P1	0.0093 (3)	0.0086 (3)	0.0116 (3)	-0.0015 (2)	-0.0014 (2)	-0.0022 (2)
C1	0.0100 (10)	0.0103 (10)	0.0133 (10)	-0.0010 (8)	-0.0008 (8)	-0.0002 (8)
C2	0.0171 (11)	0.0118 (11)	0.0153 (11)	-0.0031 (9)	-0.0015 (9)	-0.0055 (9)
C3	0.0114 (10)	0.0151 (11)	0.0201 (12)	-0.0048 (9)	-0.0016 (9)	-0.0070 (9)
C11	0.0159 (11)	0.0117 (11)	0.0180 (11)	-0.0022 (9)	-0.0026 (9)	0.0015 (9)
C12	0.0096 (10)	0.0185 (12)	0.0219 (12)	-0.0037 (9)	-0.0021 (9)	-0.0009 (10)
C13	0.0158 (11)	0.0153 (11)	0.0133 (11)	-0.0011 (9)	-0.0005 (9)	-0.0039 (9)
C21	0.0325 (15)	0.0219 (13)	0.0133 (11)	-0.0051 (12)	0.0026 (10)	-0.0073 (10)
C22	0.0189 (12)	0.0150 (12)	0.0246 (13)	0.0015 (10)	-0.0036 (10)	-0.0096 (10)
C23	0.0238 (13)	0.0179 (12)	0.0227 (13)	-0.0058 (10)	-0.0082 (10)	-0.0070 (10)
C31	0.0191 (13)	0.0278 (15)	0.0274 (14)	-0.0140 (11)	0.0043 (11)	-0.0077 (12)
C32	0.0111 (11)	0.0204 (13)	0.0272 (13)	0.0009 (9)	-0.0078 (10)	-0.0084 (11)

C99	0.033 (4)	0.037 (5)	0.017 (3)	-0.018 (4)	-0.003 (3)	-0.002 (3)
Cl4	0.044 (2)	0.0402 (17)	0.0314 (16)	-0.0052 (13)	-0.0013 (12)	-0.0194 (15)
Cl5	0.0657 (14)	0.0527 (13)	0.0210 (7)	-0.0413 (11)	-0.0127 (8)	0.0107 (7)
Cl6	0.0357 (9)	0.0418 (13)	0.0336 (8)	-0.0004 (9)	0.0073 (7)	-0.0026 (8)
C99'	0.044 (5)	0.024 (4)	0.016 (3)	-0.002 (3)	-0.002 (3)	-0.005 (3)
Cl4'	0.040 (2)	0.058 (3)	0.041 (2)	-0.0050 (17)	-0.0056 (15)	-0.0084 (18)
Cl5'	0.141 (3)	0.0371 (13)	0.0460 (14)	-0.0363 (17)	-0.0559 (18)	0.0142 (10)
C15' C16'	0.040 (2) 0.141 (3) 0.0431 (13)	0.0371 (13) 0.0568 (19)	0.041 (2) 0.0460 (14) 0.0751 (18)	-0.0363(17) 0.0098(13)	-0.0559(18) -0.0053(11)	0.0142 (10) -0.0429 (16)

Geometric parameters (Å, °)

Au1—Cl3	2.2825 (7)	C13—H13C	0.9800
Au1—Cl2	2.2889 (6)	C21—H21A	0.9800
Au1—Cl1	2.3172 (6)	C21—H21B	0.9800
Au1—Se1	2.4476 (3)	C21—H21C	0.9800
Se1—P1	2.2232 (6)	C22—H22A	0.9800
P1—C3	1.844 (3)	C22—H22B	0.9800
P1—C2	1.874 (2)	С22—Н22С	0.9800
P1—C1	1.878 (2)	С23—Н23А	0.9800
C1—C12	1.537 (3)	С23—Н23В	0.9800
C1—C13	1.538 (3)	С23—Н23С	0.9800
C1—C11	1.541 (3)	C31—H31A	0.9800
C2—C23	1.533 (4)	C31—H31B	0.9800
C2—C22	1.540 (4)	С31—Н31С	0.9800
C2—C21	1.548 (4)	С32—Н32А	0.9800
C3—C31	1.532 (4)	С32—Н32В	0.9800
C3—C32	1.540 (4)	С32—Н32С	0.9800
С3—Н3	1.0000	C99—C16	1.748 (7)
C11—H11A	0.9800	C99—Cl4	1.756 (8)
C11—H11B	0.9800	C99—C15	1.756 (7)
C11—H11C	0.9800	C99—D99	1.0000
C12—H12A	0.9800	C99'—Cl4'	1.692 (9)
C12—H12B	0.9800	C99'—C16'	1.723 (7)
C12—H12C	0.9800	C99'—C15'	1.749 (8)
C13—H13A	0.9800	C99'—D99'	1.0000
С13—Н13В	0.9800		
C_{13}^{13} Au1 C_{12}^{12}	177.64(2)	C1 C13 H13C	100 5
C13 - Au1 - C12	89.67 (2)	$H_{13} - C_{13} - H_{13} C$	109.5
C12—Au1— $C11$	89.66 (2)	H_{13B} $-C_{13}$ $-H_{13C}$	109.5
C13 = Au1 = Se1	92.332(18)	$C_2 C_2 L_H^2 L_A$	109.5
C12—Au1—Se1	88 238 (18)	$C_2 = C_2 = H_2 I R$	109.5
Cl1—Au1—Se1	176 855 (18)	$H_{21}A = C_{21} = H_{21}B$	109.5
P1—Se1—Au1	107 617 (18)	$C_2 - C_2 - H_2 C_1$	109.5
C3-P1-C2	112.97 (12)	$H_{21}A = C_{21} = H_{21}C$	109 5
C3-P1-C1	108 44 (11)	$H_{21B} C_{21} H_{21C}$	109 5
$C^2 - P^1 - C^1$	114 23 (11)	C2-C22-H22A	109.5
C3-P1-Se1	108.64 (9)	C2-C22-H22B	109.5

C2—P1—Se1	101.78 (8)	H22A—C22—H22B	109.5
C1—P1—Se1	110.54 (8)	C2—C22—H22C	109.5
C12—C1—C13	108.0 (2)	H22A—C22—H22C	109.5
C12—C1—C11	108.3 (2)	H22B—C22—H22C	109.5
C13—C1—C11	109.4 (2)	С2—С23—Н23А	109.5
C12—C1—P1	111.35 (17)	С2—С23—Н23В	109.5
C13—C1—P1	108.18 (17)	H23A—C23—H23B	109.5
C11—C1—P1	111.60 (16)	С2—С23—Н23С	109.5
C23—C2—C22	109.8 (2)	H23A—C23—H23C	109.5
C23—C2—C21	107.5 (2)	H23B—C23—H23C	109.5
C22—C2—C21	108.7 (2)	C3—C31—H31A	109.5
C23—C2—P1	110.79 (18)	C3—C31—H31B	109.5
C22—C2—P1	109.77 (17)	H31A—C31—H31B	109.5
C21—C2—P1	110.23 (18)	C3—C31—H31C	109.5
C31—C3—C32	110.6 (2)	H31A—C31—H31C	109.5
C31—C3—P1	113.10 (19)	H31B—C31—H31C	109.5
C32—C3—P1	116.51 (18)	C3—C32—H32A	109.5
C31—C3—H3	105.2	C3—C32—H32B	109.5
C32—C3—H3	105.2	H32A—C32—H32B	109.5
P1—C3—H3	105.2	C3—C32—H32C	109.5
C1-C11-H11A	109.5	H32A—C32—H32C	109.5
C1-C11-H11B	109.5	H32B—C32—H32C	109.5
H11A—C11—H11B	109.5	C16—C99—C14	111.3 (4)
C1-C11-H11C	109.5	C16—C99—C15	110.4 (4)
H11A—C11—H11C	109.5	C14—C99—C15	110.9 (4)
H11B—C11—H11C	109.5	C16—C99—D99	108.0
C1-C12-H12A	109.5	C14—C99—D99	108.0
C1-C12-H12B	109.5	C15—C99—D99	108.0
H12A—C12—H12B	109.5	C14′—C99′—C16′	111.9 (5)
C1—C12—H12C	109.5	Cl4′—C99′—Cl5′	106.4 (5)
H12A—C12—H12C	109.5	Cl6'—C99'—Cl5'	112.7 (5)
H12B—C12—H12C	109.5	C14′—C99′—D99′	108.6
C1-C13-H13A	109.5	Cl6'—C99'—D99'	108.6
C1—C13—H13B	109.5	C15'—C99'—D99'	108.6
H13A—C13—H13B	109.5		10010
Cl3—Au1—Se1—P1	68.16 (3)	C1—P1—C2—C23	41.5 (2)
Cl2— $Au1$ — $Se1$ — $P1$	-114.14(3)	Se1—P1—C2—C23	-77.67 (18)
Au1—Se1—P1—C3	-69.90 (9)	C3—P1—C2—C22	44.6 (2)
Au1—Se1—P1—C2	170.69 (8)	C1—P1—C2—C22	-80.0(2)
Au1—Se1—P1—C1	48.97 (9)	Se1—P1—C2—C22	160.85 (17)
$C_3 - P_1 - C_1 - C_{12}$	159.02 (17)	$C_3 - P_1 - C_2 - C_{21}$	-75.1(2)
C_{2} P1 - C1 - C12	-74.0(2)	C1 - P1 - C2 - C21	160.34 (18)
Se1 $-P1-C1-C12$	40.02 (19)	Se1—P1—C2—C21	41.2 (2)
$C_3 - P_1 - C_1 - C_{13}$	40.54 (19)	$C_2 - P_1 - C_3 - C_{31}$	54.3 (2)
C2 - P1 - C1 - C13	167.49 (16)	C1 - P1 - C3 - C31	-178.01(19)
Se1—P1—C1—C13	-78.46 (16)	Se1—P1—C3—C31	-57.8 (2)
$C_3 - P_1 - C_1 - C_{11}$	-79.9 (2)	$C_2 = P_1 = C_3 = C_3^2$	-75.4(2)
	(-)	02 11 00 002	, 2 (2)

C2—P1—C1—C11	47.1 (2)	C1—P1—C3—C32	52.2 (2)
Se1—P1—C1—C11	161.13 (15)	Se1—P1—C3—C32	172.41 (16)
C3—P1—C2—C23	166.03 (18)		

Hydrogen-bond	geometry	(Å,	9
---------------	----------	-----	---

D—H···A	D—H	H···A	D···A	D—H···A	
C99—D99…Cl2	1.00	2.76	3.580 (7)	139	
C13—H13A…Au1	0.98	2.69	3.618 (3)	158	
C21—H21C···Se1	0.98	2.70	3.208 (3)	112	
C3—H3…Cl3	1.00	2.65	3.497 (3)	142	
C13—H13 C ···Cl2 ⁱ	0.98	2.92	3.866 (3)	163	

Symmetry code: (i) -x, -y+1, -z+1.

Tribromrido(tripropan-2-ylphosphane sulfide-κS)gold(III) (9b)

Crystal data

[AuBr₃(C₁₀H₂₃PS)] $M_r = 628.98$ Monoclinic, $P2_1/c$ a = 9.1341 (2) Å b = 7.9039 (2) Å c = 22.6420 (4) Å $\beta = 94.519$ (2)° V = 1629.56 (6) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{min} = 0.486, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.038$ S = 1.234964 reflections 143 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1160 $D_x = 2.564 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 22624 reflections $\theta = 2.2-30.8^{\circ}$ $\mu = 16.58 \text{ mm}^{-1}$ T = 100 KPlate, red $0.15 \times 0.1 \times 0.1 \text{ mm}$

64266 measured reflections 4964 independent reflections 4633 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 30.9^\circ, \theta_{min} = 2.2^\circ$ $h = -13 \rightarrow 13$ $k = -11 \rightarrow 11$ $l = -32 \rightarrow 31$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.007P)^2 + 3.9739P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 1.58 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.95 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2019/3 (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001 F_c^2\lambda^3/\sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00043 (2)

	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Aul	0.14463 (2)	0.72099 (2)	0.36757 (2)	0.01115 (3)	
Br1	-0.10011 (3)	0.84484 (4)	0.36034 (2)	0.02107 (7)	
Br3	0.11734 (3)	0.65623 (4)	0.26267 (2)	0.01764 (6)	
Br2	0.17679 (4)	0.81030 (4)	0.47063 (2)	0.02013 (7)	
P1	0.36854 (8)	0.35281 (10)	0.37465 (3)	0.01090 (13)	
S1	0.38356 (8)	0.61179 (9)	0.37761 (3)	0.01358 (13)	
C1	0.5535 (3)	0.2875 (4)	0.40279 (14)	0.0171 (6)	
H1	0.562788	0.316948	0.445876	0.021*	
C2	0.3126 (3)	0.2763 (4)	0.30005 (12)	0.0131 (5)	
H2	0.221692	0.340584	0.286679	0.016*	
C3	0.2412 (3)	0.2647 (4)	0.42503 (13)	0.0153 (6)	
Н3	0.252010	0.138946	0.423206	0.018*	
C11	0.5728 (4)	0.0942 (5)	0.39940 (16)	0.0269 (8)	
H11A	0.577770	0.060273	0.357972	0.040*	
H11B	0.489227	0.038208	0.415724	0.040*	
H11C	0.663821	0.061200	0.422335	0.040*	
C12	0.6787 (3)	0.3807 (5)	0.37507 (15)	0.0256 (7)	
H12A	0.772171	0.354456	0.397475	0.038*	
H12B	0.661110	0.502875	0.376156	0.038*	
H12C	0.682852	0.344092	0.333872	0.038*	
C21	0.4268 (3)	0.3213 (4)	0.25618 (13)	0.0173 (6)	
H21A	0.514162	0.250385	0.264097	0.026*	
H21B	0.454273	0.440703	0.260875	0.026*	
H21C	0.384802	0.301537	0.215597	0.026*	
C22	0.2702 (3)	0.0890 (4)	0.29712 (14)	0.0173 (6)	
H22A	0.240437	0.057944	0.256012	0.026*	
H22B	0.188340	0.068959	0.321750	0.026*	
H22C	0.354579	0.020019	0.311729	0.026*	
C31	0.2794 (4)	0.3151 (5)	0.48959 (14)	0.0241 (7)	
H31A	0.276855	0.438616	0.493159	0.036*	
H31B	0.378065	0.274003	0.502450	0.036*	
H31C	0.207962	0.265013	0.514538	0.036*	
C32	0.0805 (3)	0.3034 (4)	0.40569 (14)	0.0184 (6)	
H32A	0.016833	0.226482	0.425981	0.028*	
H32B	0.063393	0.287823	0.362757	0.028*	
H32C	0.058238	0.420545	0.415930	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Au1	0.01252 (5)	0.01097 (5)	0.00987 (5)	0.00095 (4)	0.00031 (3)	0.00136 (4)
Br1	0.01612 (14)	0.02620 (16)	0.02102 (15)	0.00786 (12)	0.00227 (11)	0.00523 (13)
Br3	0.02175 (14)	0.01905 (15)	0.01134 (13)	0.00400 (11)	-0.00357 (10)	-0.00144 (11)
Br2	0.02871 (16)	0.02110 (16)	0.01053 (13)	0.00543 (12)	0.00127 (11)	-0.00117 (11)
P1	0.0092 (3)	0.0123 (3)	0.0112 (3)	0.0014 (3)	0.0009 (2)	0.0005 (3)

S 1	0.0114 (3)	0.0131 (3)	0.0160 (3)	-0.0012 (2)	-0.0003 (2)	-0.0010 (3)
C1	0.0136 (13)	0.0215 (15)	0.0158 (14)	0.0045 (12)	-0.0021 (10)	-0.0017 (12)
C2	0.0128 (12)	0.0145 (13)	0.0119 (12)	-0.0007 (11)	0.0008 (10)	-0.0012 (11)
C3	0.0168 (13)	0.0150 (14)	0.0148 (13)	0.0004 (11)	0.0051 (11)	0.0042 (11)
C11	0.0230 (16)	0.0259 (18)	0.0300 (18)	0.0146 (14)	-0.0100 (14)	-0.0072 (15)
C12	0.0097 (14)	0.042 (2)	0.0248 (17)	0.0024 (13)	-0.0009 (12)	-0.0009 (15)
C21	0.0197 (14)	0.0202 (15)	0.0124 (13)	-0.0022 (12)	0.0036 (11)	-0.0003 (11)
C22	0.0161 (14)	0.0159 (14)	0.0197 (15)	-0.0013 (11)	0.0007 (11)	-0.0024 (12)
C31	0.0288 (17)	0.0304 (19)	0.0135 (14)	-0.0009 (14)	0.0045 (12)	0.0039 (13)
C32	0.0150 (13)	0.0180 (16)	0.0230 (15)	-0.0009 (11)	0.0071 (11)	0.0016 (12)

Geometric parameters (Å, °)

Au1—S1	2.3413 (7)	C11—H11B	0.9800
Au1—Br3	2.4233 (3)	C11—H11C	0.9800
Au1—Br2	2.4333 (3)	C12—H12A	0.9800
Au1—Br1	2.4341 (3)	C12—H12B	0.9800
P1—C2	1.828 (3)	C12—H12C	0.9800
P1—C3	1.830 (3)	C21—H21A	0.9800
P1—C1	1.832 (3)	C21—H21B	0.9800
P1—S1	2.0523 (10)	C21—H21C	0.9800
C1—C12	1.536 (4)	C22—H22A	0.9800
C1—C11	1.540 (5)	C22—H22B	0.9800
C1—H1	1.0000	C22—H22C	0.9800
C2—C22	1.531 (4)	C31—H31A	0.9800
C2—C21	1.538 (4)	C31—H31B	0.9800
С2—Н2	1.0000	C31—H31C	0.9800
C3—C31	1.529 (4)	C32—H32A	0.9800
C3—C32	1.529 (4)	С32—Н32В	0.9800
С3—Н3	1.0000	C32—H32C	0.9800
C11—H11A	0.9800		
S1—Au1—Br3	92.317 (19)	C1—C11—H11C	109.5
S1—Au1—Br2	88.43 (2)	H11A—C11—H11C	109.5
Br3—Au1—Br2	175.188 (12)	H11B—C11—H11C	109.5
S1—Au1—Br1	177.35 (2)	C1—C12—H12A	109.5
Br3—Au1—Br1	89.771 (11)	C1—C12—H12B	109.5
Br2—Au1—Br1	89.350 (11)	H12A—C12—H12B	109.5
C2—P1—C3	107.76 (14)	C1—C12—H12C	109.5
C2—P1—C1	114.26 (14)	H12A-C12-H12C	109.5
C3—P1—C1	106.86 (14)	H12B-C12-H12C	109.5
C2—P1—S1	111.90 (10)	C2—C21—H21A	109.5
C3—P1—S1	113.79 (11)	C2—C21—H21B	109.5
C1—P1—S1	102.26 (11)	H21A-C21-H21B	109.5
P1—S1—Au1	107.77 (4)	C2—C21—H21C	109.5
C12—C1—C11	111.3 (3)	H21A—C21—H21C	109.5
C12—C1—P1	114.8 (2)	H21B—C21—H21C	109.5
C11—C1—P1	111.6 (2)	C2—C22—H22A	109.5

C12—C1—H1	106.2	C2—C22—H22B	109.5
C11—C1—H1	106.2	H22A—C22—H22B	109.5
P1—C1—H1	106.2	C2—C22—H22C	109.5
C22—C2—C21	112.2 (2)	H22A—C22—H22C	109.5
C22—C2—P1	114.3 (2)	H22B—C22—H22C	109.5
C21—C2—P1	111.5 (2)	C3—C31—H31A	109.5
С22—С2—Н2	106.1	C3—C31—H31B	109.5
C21—C2—H2	106.1	H31A—C31—H31B	109.5
Р1—С2—Н2	106.1	C3—C31—H31C	109.5
C31—C3—C32	111.3 (3)	H31A—C31—H31C	109.5
C31—C3—P1	112.8 (2)	H31B—C31—H31C	109.5
C32—C3—P1	112.9 (2)	С3—С32—Н32А	109.5
С31—С3—Н3	106.4	С3—С32—Н32В	109.5
С32—С3—Н3	106.4	H32A—C32—H32B	109.5
Р1—С3—Н3	106.4	С3—С32—Н32С	109.5
C1-C11-H11A	109.5	H32A—C32—H32C	109.5
C1-C11-H11B	109.5	H32B—C32—H32C	109.5
H11A—C11—H11B	109.5		
$C2$ _P1_S1_Au1	72 07 (10)	$C1_P1_C2_C22$	75 9 (2)
$C_2 = 1 = 51 = Au1$	-50.38(12)	C1 - 1 - C2 - C22 S1 P1 C2 C22	-16853(17)
$C_1 = P_1 = S_1 = A_{11}$	-165.21(10)	$C_{3} P_{1} C_{2} C_{21}$	-1713(2)
Br3 = Au1 = S1 = P1	-74.36(4)	$C_1 = P_1 = C_2 = C_2 I$	-527(3)
Br2 = Au1 = S1 = P1	11040(4)	$S1_P1_C2_C21$	52.7(3)
$C_2 = P_1 = C_1 = C_1^2$	740(3)	$C_2 P_1 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3$	178.2(2)
C_{2} P_{1} C_{1} C_{12}	-166.9(2)	$C_1 = P_1 = C_3 = C_{31}$	54.9(3)
$S_1 = P_1 = C_1 = C_{12}$	-471(2)	$S1_P1_C3_C31$	-57.2(2)
$C_2 = P_1 = C_1 = C_{11}$	$-53 \ 8 \ (3)$	$C_{2}P_{1}C_{3}C_{3}^{2}$	-546(3)
C_{3} P1 $-C_{1}$ $-C_{11}$	65 3 (3)	C1 - P1 - C3 - C32	$-177 \ 8 \ (2)$
$S1_P1_C1_C1_1$	-1749(2)	$S1_P1_C3_C32$	70.1(2)
$C_3 = P_1 = C_2 = C_{22}^2$	-42 7 (2)	51 11 05 052	, 0.1 (2)
0.5 11 0.2 0.22			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
C32—H32 <i>C</i> ···Au1	0.98	2.76	3.473 (3)	131
C12—H12B…S1	0.98	2.68	3.261 (3)	118
C2—H2…Br3	1.00	2.71	3.560 (3)	143
C22—H22B···Au1 ⁱ	0.98	2.98	3.551 (3)	119
C21—H21C···Br1 ⁱⁱ	0.98	3.02	3.829 (3)	141
C3—H3···Br2 ⁱ	1.00	2.91	3.796 (3)	148
C32—H32A···Br2 ⁱⁱⁱ	0.98	3.06	3.900 (3)	145
C11—H11 C ···Br2 ^{iv}	0.98	2.91	3.661 (3)	134

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, *y*-1/2, -*z*+1/2; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1.

Tribromido[di-tert-butyl(propan-2-yl)phosphane sulfide-κS]gold(III) (11b)

Crystal data

[AuBr₃(C₁₁H₂₅PS)] $M_r = 657.04$ Triclinic, $P\overline{1}$ a = 8.6067 (8) Å b = 10.1161 (12) Å c = 11.5123 (12) Å a = 77.873 (10)° $\beta = 70.257$ (10)° $\gamma = 71.867$ (10)° V = 890.37 (18) Å³

Data collection

Oxford Diffaction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm⁻¹ ω scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{\min} = 0.447, T_{\max} = 1.000$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.017$ H-atom parameters constrained $wR(F^2) = 0.036$ $w = 1/[\sigma^2(F_o^2) + (0.0122P)^2 + 1.1802P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.145297 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 1.08 \text{ e} \text{ Å}^{-3}$ 163 parameters 0 restraints $\Delta \rho_{\rm min} = -1.43 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL-2019/3 Primary atom site location: structure-invariant (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001]$ direct methods $F_{\rm c}^2\lambda^3/\sin(2\theta)$]^{-1/4} Secondary atom site location: difference Fourier Extinction coefficient: 0.00557 (11) map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.46412 (2)	0.35795 (2)	0.23440 (2)	0.00889 (3)	
Br1	0.53350 (3)	0.12322 (2)	0.34392 (2)	0.01652 (5)	
Br2	0.74993 (3)	0.37590 (2)	0.20749 (2)	0.01400 (5)	
Br3	0.19529 (3)	0.32221 (2)	0.23936 (2)	0.01676 (5)	
P1	0.21504 (7)	0.72300 (6)	0.24517 (5)	0.00701 (10)	
S1	0.40792 (7)	0.58600 (6)	0.13111 (5)	0.00991 (10)	
C1	0.2527 (3)	0.7059 (2)	0.3996 (2)	0.0098 (4)	
C2	0.2271 (3)	0.8961 (2)	0.1503 (2)	0.0104 (4)	
C3	0.0095 (3)	0.6834 (2)	0.2715 (2)	0.0105 (4)	
Н3	0.027169	0.582577	0.306905	0.013*	
C11	0.1481 (3)	0.8353 (2)	0.4690 (2)	0.0141 (5)	

Z = 2 F(000) = 612 $D_x = 2.451 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 29495 reflections $\theta = 2.6-30.8^{\circ}$ $\mu = 15.18 \text{ mm}^{-1}$ T = 100 KBlock, red-brown $0.2 \times 0.2 \times 0.2 \text{ mm}$

65025 measured reflections 5297 independent reflections 5057 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 30.9^\circ, \ \theta_{min} = 2.6^\circ$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 15$

H11A	0.188266	0.917296	0.422652	0.021*
H11B	0.162709	0.818416	0.552175	0.021*
H11C	0.026852	0.852351	0.476344	0.021*
C12	0.4426 (3)	0.6869 (3)	0.3846 (2)	0.0146 (5)
H12A	0.512084	0.606051	0.339530	0.022*
H12B	0.459923	0.671395	0.466740	0.022*
H12C	0.476683	0.771305	0.337815	0.022*
C13	0.2010 (3)	0.5748 (2)	0.4781 (2)	0.0132 (4)
H13A	0.227809	0.559330	0.556900	0.020*
H13B	0.264247	0.493282	0.432585	0.020*
H13C	0.077974	0.588312	0.494739	0.020*
C21	0.2602 (3)	0.8846 (2)	0.0122 (2)	0.0147 (5)
H21A	0.373120	0.821183	-0.019419	0.022*
H21B	0.256084	0.977510	-0.035458	0.022*
H21C	0.172280	0.847983	0.003539	0.022*
C22	0.0581 (3)	1.0081 (2)	0.1944 (2)	0.0144 (5)
H22A	0.070696	1.100103	0.150803	0.022*
H22B	0.029741	1.009738	0.284121	0.022*
H22C	-0.033703	0.985600	0.176468	0.022*
C23	0.3757 (3)	0.9422 (2)	0.1601 (2)	0.0150 (5)
H23A	0.386915	1.028408	0.104086	0.023*
H23B	0.481998	0.868304	0.136720	0.023*
H23C	0.353000	0.959173	0.245746	0.023*
C31	-0.0315 (3)	0.6906 (3)	0.1500 (2)	0.0172 (5)
H31A	-0.071273	0.788820	0.117928	0.026*
H31B	-0.121040	0.642829	0.166014	0.026*
H31C	0.071737	0.644795	0.088671	0.026*
C32	-0.1474 (3)	0.7621 (3)	0.3675 (2)	0.0158 (5)
H32A	-0.246278	0.727637	0.377566	0.024*
H32B	-0.172299	0.862586	0.338601	0.024*
H32C	-0.123437	0.746175	0.447427	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01042 (5)	0.00647 (4)	0.00921 (4)	-0.00031 (3)	-0.00286 (3)	-0.00260 (3)
Br1	0.02234 (13)	0.00864 (10)	0.01814 (11)	-0.00152 (9)	-0.00895 (9)	0.00053 (8)
Br2	0.01064 (11)	0.01396 (10)	0.01718 (11)	-0.00019 (8)	-0.00497 (8)	-0.00448 (8)
Br3	0.01402 (11)	0.01009 (10)	0.02811 (13)	-0.00327 (8)	-0.00674 (10)	-0.00517 (9)
P1	0.0074 (2)	0.0062 (2)	0.0072 (2)	-0.00126 (19)	-0.00218 (19)	-0.00103 (18)
S 1	0.0113 (3)	0.0084 (2)	0.0075 (2)	-0.00064 (19)	-0.00086 (19)	-0.00185 (18)
C1	0.0117 (10)	0.0100 (9)	0.0074 (9)	-0.0006 (8)	-0.0040 (8)	-0.0019 (7)
C2	0.0134 (11)	0.0073 (9)	0.0095 (10)	-0.0029 (8)	-0.0026 (8)	0.0001 (7)
C3	0.0100 (10)	0.0084 (9)	0.0142 (10)	-0.0033 (8)	-0.0053 (8)	0.0009 (8)
C11	0.0151 (11)	0.0132 (10)	0.0134 (11)	-0.0012 (9)	-0.0032 (9)	-0.0058 (8)
C12	0.0110 (11)	0.0185 (11)	0.0146 (11)	-0.0003 (9)	-0.0062 (9)	-0.0043 (9)
C13	0.0181 (12)	0.0103 (10)	0.0091 (10)	-0.0017 (9)	-0.0040 (8)	-0.0001 (8)
C21	0.0217 (12)	0.0119 (10)	0.0107 (10)	-0.0053 (9)	-0.0054 (9)	0.0009 (8)

C22	0.0159 (11)	0.0077 (10)	0.0180 (11)	-0.0010 (8)	-0.0053 (9)	-0.0008 (8)
C23	0.0167 (12)	0.0127 (10)	0.0170 (11)	-0.0077 (9)	-0.0040 (9)	-0.0003 (9)
C31	0.0186 (12)	0.0180 (11)	0.0210 (12)	-0.0081 (10)	-0.0125 (10)	0.0011 (9)
C32	0.0084 (11)	0.0144 (11)	0.0217 (12)	-0.0023 (9)	-0.0024 (9)	-0.0006 (9)

Geometric parameters (Å, °)

Au1—S1	2.3477 (6)	C12—H12B	0.9800
Au1—Br3	2.4310 (3)	C12—H12C	0.9800
Au1—Br2	2.4330 (3)	C13—H13A	0.9800
Au1—Br1	2.4399 (4)	C13—H13B	0.9800
P1—C3	1.847 (2)	C13—H13C	0.9800
P1—C2	1.872 (2)	C21—H21A	0.9800
P1—C1	1.877 (2)	C21—H21B	0.9800
P1—S1	2.0640 (8)	C21—H21C	0.9800
C1—C12	1.537 (3)	C22—H22A	0.9800
C1—C13	1.538 (3)	C22—H22B	0.9800
C1—C11	1.543 (3)	С22—Н22С	0.9800
C2—C23	1.535 (3)	С23—Н23А	0.9800
C2—C21	1.541 (3)	С23—Н23В	0.9800
C2—C22	1.541 (3)	С23—Н23С	0.9800
C3—C31	1.536 (3)	C31—H31A	0.9800
C3—C32	1.540 (3)	C31—H31B	0.9800
С3—Н3	1.0000	C31—H31C	0.9800
C11—H11A	0.9800	С32—Н32А	0.9800
C11—H11B	0.9800	С32—Н32В	0.9800
C11—H11C	0.9800	С32—Н32С	0.9800
C12—H12A	0.9800		
S1—Au1—Br3	93.532 (19)	C1—C12—H12C	109.5
S1—Au1—Br2	87.959 (19)	H12A—C12—H12C	109.5
Br3—Au1—Br2	172.720 (9)	H12B—C12—H12C	109.5
S1—Au1—Br1	177.293 (16)	C1—C13—H13A	109.5
Br3—Au1—Br1	89.099 (14)	C1—C13—H13B	109.5
Br2—Au1—Br1	89.510 (14)	H13A—C13—H13B	109.5
C3—P1—C2	112.57 (10)	C1—C13—H13C	109.5
C3—P1—C1	108.53 (11)	H13A—C13—H13C	109.5
C2—P1—C1	113.56 (10)	H13B—C13—H13C	109.5
C3—P1—S1	109.09 (8)	C2—C21—H21A	109.5
C2—P1—S1	101.70 (7)	C2—C21—H21B	109.5
C1—P1—S1	111.23 (7)	H21A—C21—H21B	109.5
P1—S1—Au1	111.56 (3)	C2—C21—H21C	109.5
C12—C1—C13	108.27 (19)	H21A—C21—H21C	109.5
C12—C1—C11	107.87 (19)	H21B—C21—H21C	109.5
C13—C1—C11	109.49 (19)	C2—C22—H22A	109.5
C12—C1—P1	111.22 (15)	C2—C22—H22B	109.5
C13—C1—P1	107.83 (15)	H22A—C22—H22B	109.5
C11—C1—P1	112.09 (15)	C2—C22—H22C	109.5

$C^{23} - C^{2} - C^{21}$	107.46(10)		100 5
025 02 021	107.40(19)	H22A—C22—H22C	109.5
C23—C2—C22	109.62 (19)	H22B—C22—H22C	109.5
C21—C2—C22	108.69 (19)	C2—C23—H23A	109.5
C23—C2—P1	110.46 (16)	C2—C23—H23B	109.5
C21—C2—P1	110.21 (15)	H23A—C23—H23B	109.5
C22—C2—P1	110.34 (16)	C2—C23—H23C	109.5
C31—C3—C32	110.81 (19)	H23A—C23—H23C	109.5
C31—C3—P1	112.74 (17)	H23B—C23—H23C	109.5
C32—C3—P1	117.05 (16)	C3—C31—H31A	109.5
С31—С3—Н3	105.0	C3—C31—H31B	109.5
С32—С3—Н3	105.0	H31A—C31—H31B	109.5
Р1—С3—Н3	105.0	C3—C31—H31C	109.5
C1—C11—H11A	109.5	H31A—C31—H31C	109.5
C1—C11—H11B	109.5	H31B—C31—H31C	109.5
H11A—C11—H11B	109.5	C3—C32—H32A	109.5
C1—C11—H11C	109.5	C3—C32—H32B	109.5
H11A—C11—H11C	109.5	H32A—C32—H32B	109.5
H11B—C11—H11C	109.5	C3—C32—H32C	109.5
C1—C12—H12A	109.5	H32A—C32—H32C	109.5
C1—C12—H12B	109.5	H32B—C32—H32C	109.5
H12A—C12—H12B	109.5		
C3—P1—S1—Au1	-70.82 (8)	C1—P1—C2—C23	41.03 (19)
C2—P1—S1—Au1	170.07 (8)	S1—P1—C2—C23	-78.55(15)
C1— $P1$ — $S1$ — $Au1$	48.86 (9)	C_{3} P_{1} C_{2} C_{21}	-76.56(18)
Br3—Au1—S1—P1	70.22 (3)	C1—P1—C2—C21	159.61 (16)
Br2—Au1—S1—P1	-116.91 (3)	S1—P1—C2—C21	40.03 (17)
C3—P1—C1—C12	160.43 (16)	C3—P1—C2—C22	43.48 (19)
C2—P1—C1—C12	-73.58 (18)	C1—P1—C2—C22	-80.34(18)
S1—P1—C1—C12	40.42 (17)	S1—P1—C2—C22	160.08 (15)
C3—P1—C1—C13	41.86 (17)	C2—P1—C3—C31	54.96 (19)
C2—P1—C1—C13	167.86 (15)	C1—P1—C3—C31	-178.47 (16)
S1—P1—C1—C13	-78.15 (15)	S1—P1—C3—C31	-57.14 (17)
C3—P1—C1—C11	-78.73 (18)	C2—P1—C3—C32	-75.32 (19)
C2—P1—C1—C11	47.3 (2)	C1—P1—C3—C32	51.24 (19)
S1—P1—C1—C11	161.26 (14)	S1—P1—C3—C32	172.58 (15)
C3—P1—C2—C23	164.85 (15)		× /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A	
C13—H13 <i>B</i> ···Au1	0.98	2.69	3.607 (2)	156	
C21—H21A···S1	0.98	2.63	3.109 (2)	110	
C12—H12A…S1	0.98	2.89	3.417 (2)	114	
C3—H3…Br3	1.00	2.71	3.546 (2)	141	

			supporting information		
C12—H12 A ···Br2	0.98	2.89	3.863 (2)	174	
C13—H13 A ···Br2 ⁱ	0.98	3.00	3.931 (2)	159	

Z = 2F(000) = 616

 $D_{\rm x} = 2.760 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.2 - 30.9^{\circ}$

T = 100 K

 $\mu = 18.72 \text{ mm}^{-1}$

 $0.2 \times 0.1 \times 0.01 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Plate, dichroic pale brown / black

Cell parameters from 15280 reflections

Symmetry code: (i) -x+1, -y+1, -z+1.

Tribromido(tripropan-2-ylphosphane selenide-κS)gold(III) (13b)

Crystal data

[AuBr₃(C₉H₂₁PSe)] $M_r = 675.88$ Triclinic, $P\overline{1}$ a = 8.3928 (2) Å b = 10.1417 (4) Å c = 10.7567 (4) Å a = 94.419 (3)° $\beta = 105.612$ (3)° $\gamma = 110.113$ (3)° V = 813.33 (5) Å³

Data collection

Oxford Diffraction Xcalibur, Eos	44535 measured reflections
diffractometer	4825 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4278 reflections with $I > 2\sigma(I)$
Detector resolution: 16.1419 pixels mm ⁻¹	$R_{\rm int} = 0.059$
ω scan	$\theta_{\rm max} = 31.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2020)	$k = -14 \rightarrow 14$
$T_{\min} = 0.200, \ T_{\max} = 1.000$	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.028$ Hydrogen site location: inferred from $wR(F^2) = 0.074$ neighbouring sites S = 1.05H-atom parameters constrained 4825 reflections $w = 1/[\sigma^2(F_o^2) + (0.0378P)^2 + 1.6418P]$ 142 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.43 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -1.49 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.69422 (2)	0.57788 (2)	0.18566 (2)	0.01164 (6)	
Br1	0.83155 (6)	0.83965 (5)	0.25275 (5)	0.02209 (10)	
Br3	0.40852 (5)	0.58195 (4)	0.19223 (4)	0.01647 (9)	
Br2	0.97546 (5)	0.57176 (5)	0.17238 (5)	0.02254 (10)	
P1	0.48156 (13)	0.21791 (11)	0.26640 (10)	0.01046 (19)	
Se1	0.56222 (5)	0.31839 (4)	0.10650 (4)	0.01349 (9)	
C1	0.4341 (5)	0.0298 (4)	0.2060 (4)	0.0144 (8)	
H1	0.544743	0.026681	0.189699	0.017*	
C2	0.2956 (5)	0.2543 (4)	0.2980 (4)	0.0131 (7)	

H2	0.338155	0.360716	0.321681	0.016*
C3	0.6650 (5)	0.2762 (4)	0.4225 (4)	0.0122 (7)
H3	0.619362	0.219320	0.486244	0.015*
C11	0.3991 (7)	-0.0633 (5)	0.3087 (5)	0.0241 (10)
H11A	0.289038	-0.065939	0.325605	0.036*
H11B	0.499672	-0.022943	0.390446	0.036*
H11C	0.386077	-0.160493	0.275910	0.036*
C12	0.2817 (7)	-0.0355 (5)	0.0745 (5)	0.0288 (11)
H12A	0.278900	-0.128698	0.039686	0.043*
H12B	0.301865	0.028362	0.011491	0.043*
H12C	0.167277	-0.047530	0.088602	0.043*
C21	0.1296 (5)	0.2087 (5)	0.1770 (4)	0.0176 (8)
H21A	0.064233	0.105155	0.162763	0.026*
H21B	0.165974	0.233390	0.099863	0.026*
H21C	0.052253	0.258177	0.190817	0.026*
C22	0.2491 (5)	0.1964 (5)	0.4180 (4)	0.0170 (8)
H22A	0.159561	0.229361	0.436607	0.025*
H22B	0.357276	0.231354	0.494636	0.025*
H22C	0.200989	0.091614	0.398734	0.025*
C31	0.8257 (6)	0.2440 (5)	0.4101 (5)	0.0224 (9)
H31A	0.871399	0.294863	0.345388	0.034*
H31B	0.789032	0.140919	0.381437	0.034*
H31C	0.919803	0.275568	0.495506	0.034*
C32	0.7203 (6)	0.4337 (5)	0.4804 (4)	0.0178 (8)
H32A	0.803324	0.455971	0.569887	0.027*
H32B	0.613970	0.452440	0.482590	0.027*
H32C	0.778982	0.493540	0.425864	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Aul	0.01092 (8)	0.01220 (8)	0.01097 (8)	0.00286 (6)	0.00402 (6)	0.00270 (6)
Br1	0.0235 (2)	0.0131 (2)	0.0234 (2)	-0.00006 (16)	0.00726 (17)	0.00196 (16)
Br3	0.01689 (19)	0.0151 (2)	0.0233 (2)	0.00837 (15)	0.01141 (16)	0.00740 (16)
Br2	0.01151 (18)	0.0285 (2)	0.0274 (2)	0.00615 (17)	0.00769 (17)	0.00587 (19)
P1	0.0096 (4)	0.0100 (4)	0.0109 (4)	0.0028 (3)	0.0035 (3)	0.0006 (4)
Se1	0.01722 (19)	0.01294 (19)	0.01227 (19)	0.00549 (15)	0.00815 (15)	0.00196 (14)
C1	0.0175 (18)	0.0105 (18)	0.0163 (19)	0.0066 (15)	0.0058 (15)	0.0012 (15)
C2	0.0118 (17)	0.0117 (18)	0.0154 (19)	0.0044 (14)	0.0046 (14)	0.0003 (14)
C3	0.0094 (16)	0.0180 (19)	0.0080 (17)	0.0043 (14)	0.0023 (13)	0.0025 (14)
C11	0.035 (3)	0.012 (2)	0.025 (2)	0.0063 (18)	0.011 (2)	0.0037 (17)
C12	0.034 (3)	0.022 (2)	0.019 (2)	0.006 (2)	-0.0006 (19)	-0.0088 (18)
C21	0.0115 (18)	0.022 (2)	0.017 (2)	0.0045 (16)	0.0031 (15)	0.0033 (16)
C22	0.0128 (18)	0.022 (2)	0.018 (2)	0.0056 (16)	0.0086 (15)	0.0055 (16)
C31	0.0123 (19)	0.025 (2)	0.026 (2)	0.0068 (17)	0.0032 (17)	-0.0025 (19)
C32	0.0167 (19)	0.016 (2)	0.0151 (19)	0.0032 (16)	0.0022 (15)	-0.0011 (16)

Geometric parameters (Å, °)

Au1—Br2	2.4241 (4)	C11—H11B	0.9800
Au1—Br3	2.4321 (4)	C11—H11C	0.9800
Au1—Se1	2.4535 (4)	C12—H12A	0.9800
Au1—Br1	2.4597 (5)	C12—H12B	0.9800
P1—C2	1.831 (4)	C12—H12C	0.9800
P1—C1	1.835 (4)	C21—H21A	0.9800
P1—C3	1.835 (4)	C21—H21B	0.9800
P1—Se1	2.2085 (11)	C21—H21C	0.9800
C1—C11	1.531 (6)	C22—H22A	0.9800
C1—C12	1.541 (6)	C22—H22B	0.9800
C1—H1	1.0000	C22—H22C	0.9800
C2—C21	1.529 (5)	C31—H31A	0.9800
C2—C22	1.547 (6)	C31—H31B	0.9800
C2—H2	1.0000	C31—H31C	0.9800
C3—C32	1.528 (6)	C32—H32A	0.9800
C3—C31	1.529 (6)	C32—H32B	0.9800
С3—Н3	1.0000	C32—H32C	0.9800
C11—H11A	0.9800		
Br2—Au1—Br3	178.373 (15)	C1—C11—H11C	109.5
Br2—Au1—Se1	87.616 (16)	H11A—C11—H11C	109.5
Br3—Au1—Se1	91.709 (14)	H11B—C11—H11C	109.5
Br2—Au1—Br1	90.566 (17)	C1—C12—H12A	109.5
Br3—Au1—Br1	90.031 (16)	C1—C12—H12B	109.5
Se1—Au1—Br1	176.522 (15)	H12A—C12—H12B	109.5
C2—P1—C1	115.50 (19)	C1—C12—H12C	109.5
C2—P1—C3	107.15 (18)	H12A—C12—H12C	109.5
C1—P1—C3	107.53 (19)	H12B—C12—H12C	109.5
C2—P1—Se1	112.81 (14)	C2—C21—H21A	109.5
C1—P1—Se1	101.08 (14)	C2—C21—H21B	109.5
C3—P1—Se1	112.75 (13)	H21A—C21—H21B	109.5
P1—Se1—Au1	107.24 (3)	C2—C21—H21C	109.5
C11—C1—C12	110.4 (4)	H21A—C21—H21C	109.5
C11—C1—P1	112.1 (3)	H21B—C21—H21C	109.5
C12—C1—P1	113.9 (3)	C2—C22—H22A	109.5
C11—C1—H1	106.6	C2—C22—H22B	109.5
С12—С1—Н1	106.6	H22A—C22—H22B	109.5
P1-C1-H1	106.6	C2—C22—H22C	109.5
C21—C2—C22	111.7 (3)	H22A—C22—H22C	109.5
C21—C2—P1	113.5 (3)	H22B—C22—H22C	109.5
C22—C2—P1	113.3 (3)	C3—C31—H31A	109.5
С21—С2—Н2	105.8	C3—C31—H31B	109.5
С22—С2—Н2	105.8	H31A—C31—H31B	109.5
P1—C2—H2	105.8	C3—C31—H31C	109.5
C32—C3—C31	111.2 (3)	H31A—C31—H31C	109.5
C32—C3—P1	112.2 (3)	H31B—C31—H31C	109.5

112.0 (3)	C3—C32—H32A	109.5
107.0	С3—С32—Н32В	109.5
107.0	H32A—C32—H32B	109.5
107.0	С3—С32—Н32С	109.5
109.5	H32A—C32—H32C	109.5
109.5	H32B—C32—H32C	109.5
109.5		
67.97 (14)	C3—P1—C2—C21	-178.9 (3)
-168.10 (13)	Se1—P1—C2—C21	56.5 (3)
-53.58 (15)	C1—P1—C2—C22	69.7 (3)
114.96 (3)	C3—P1—C2—C22	-50.1 (3)
-66.53 (3)	Se1—P1—C2—C22	-174.7 (2)
-65.9 (4)	C2—P1—C3—C32	-57.0 (3)
53.7 (4)	C1—P1—C3—C32	178.3 (3)
172.0 (3)	Se1—P1—C3—C32	67.7 (3)
60.4 (4)	C2—P1—C3—C31	177.1 (3)
179.9 (3)	C1—P1—C3—C31	52.3 (4)
-61.7 (3)	Se1—P1—C3—C31	-58.2 (3)
-59.1 (4)		
	112.0 (3) 107.0 107.0 109.5 109.5 109.5 67.97 (14) -168.10 (13) -53.58 (15) 114.96 (3) -66.53 (3) -65.9 (4) 53.7 (4) 172.0 (3) 60.4 (4) 179.9 (3) -61.7 (3) -59.1 (4)	112.0 (3) $C3-C32-H32A$ 107.0 $C3-C32-H32B$ 107.0 $H32A-C32-H32B$ 107.0 $C3-C32-H32C$ 109.5 $H32A-C32-H32C$ 109.5 $H32B-C32-H32C$ 109.5 $C3-P1-C2-C21$ $-168.10 (13)$ $Se1-P1-C2-C22$ $-53.58 (15)$ $C1-P1-C2-C22$ $-66.53 (3)$ $Se1-P1-C2-C22$ $-65.9 (4)$ $C2-P1-C3-C32$ $53.7 (4)$ $C1-P1-C3-C32$ $172.0 (3)$ $Se1-P1-C3-C31$ $179.9 (3)$ $C1-P1-C3-C31$ $-61.7 (3)$ $Se1-P1-C3-C31$ $-59.1 (4)$ $C3-P1-C3-C31$

Hydrogen-bond geometry (Å, °)

D—H	Н…А	D···A	D—H···A
0.98	2.77	3.578 (5)	140
0.98	2.90	3.479 (5)	119
1.00	2.71	3.497 (4)	136
0.98	2.78	3.752 (5)	171
0.98	2.99	3.933 (4)	163
	<i>D</i> —H 0.98 0.98 1.00 0.98 0.98	D—H H···A 0.98 2.77 0.98 2.90 1.00 2.71 0.98 2.78 0.98 2.99	D—HH···AD···A0.982.773.578 (5)0.982.903.479 (5)1.002.713.497 (4)0.982.783.752 (5)0.982.993.933 (4)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+2, –*y*+1, –*z*+1.

Tribromido[di-tert-butyl(propan-2-yl)phosphane selenide-кS]gold(III) (15b)

Crystal data	
$[AuBr_3(C_{11}H_{25}PSe)]$	Z = 2
$M_r = 703.93$	F(000) = 648
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.586 {\rm Mg} {\rm m}^{-3}$
a = 8.6000 (5) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 10.2045 (7) Å	Cell parameters from 9711 reflections
c = 11.5987 (7) Å	$\theta = 2.6 - 30.7^{\circ}$
$\alpha = 77.475 \ (6)^{\circ}$	$\mu = 16.85 \text{ mm}^{-1}$
$\beta = 69.764 \ (6)^{\circ}$	T = 100 K
$\gamma = 72.601 \ (6)^{\circ}$	Lath, dichroic black / orange
$V = 904.02 (11) Å^3$	$0.2 \times 0.06 \times 0.04 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur, Eos	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: Enhance (Mo) X-ray Source	(CrysAlisPro; Rigaku OD, 2020)
Detector resolution: 16.1419 pixels mm ⁻¹	$T_{\rm min} = 0.376, \ T_{\rm max} = 1.000$

25566 measured reflections 5282 independent reflections 4719 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.036$ S = 1.055282 reflections 163 parameters 0 restraints Primary atom site location: structure-invariant direct methods $\theta_{\text{max}} = 30.8^\circ, \ \theta_{\text{min}} = 2.6^\circ$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.011P)^2 + 0.1908P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.04$ e Å⁻³ $\Delta\rho_{min} = -0.80$ e Å⁻³ Extinction correction: SHELXL-2019/3 (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001$ $F_c^2\lambda^3/\sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00115 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Au1	0.47180 (2)	0.35576 (2)	0.23406 (2)	0.01020 (3)
Br1	0.53346 (3)	0.12201 (3)	0.34571 (2)	0.01753 (6)
Br2	0.75742 (3)	0.37440 (3)	0.20826 (2)	0.01554 (6)
Br3	0.19859 (3)	0.32636 (3)	0.24007 (3)	0.01777 (6)
P1	0.21219 (8)	0.73040 (7)	0.24676 (6)	0.00837 (12)
Se1	0.42295 (3)	0.59094 (3)	0.12166 (2)	0.01100 (5)
C1	0.2529 (3)	0.7103 (3)	0.3998 (2)	0.0105 (5)
C2	0.2206 (3)	0.9043 (3)	0.1533 (2)	0.0121 (5)
C3	0.0086 (3)	0.6854 (3)	0.2742 (2)	0.0120 (5)
Н3	0.028316	0.585158	0.308624	0.014*
C11	0.1482 (3)	0.8360 (3)	0.4709 (2)	0.0144 (5)
H11A	0.185931	0.919044	0.424127	0.022*
H11B	0.165555	0.818824	0.552543	0.022*
H11C	0.026587	0.849945	0.481054	0.022*
C12	0.4427 (3)	0.6939 (3)	0.3826 (2)	0.0145 (5)
H12A	0.511328	0.612298	0.340854	0.022*
H12B	0.459941	0.682562	0.463805	0.022*
H12C	0.478089	0.776527	0.332290	0.022*
C13	0.2029 (3)	0.5779 (3)	0.4767 (2)	0.0138 (5)
H13A	0.234962	0.558998	0.553047	0.021*
H13B	0.262708	0.499890	0.428497	0.021*
H13C	0.079221	0.590537	0.497531	0.021*
C21	0.2509 (3)	0.8956 (3)	0.0155 (2)	0.0152 (5)
H21A	0.365047	0.836963	-0.018616	0.023*
H21B	0.242429	0.988685	-0.030855	0.023*
H21C	0.164595	0.855704	0.008515	0.023*
C22	0.0512 (3)	1.0113 (3)	0.2003 (2)	0.0159 (5)
H22A	0.060599	1.102954	0.154970	0.024*

H22B	0.026812	1.013658	0.288936	0.024*	
H22C	-0.041513	0.985354	0.186872	0.024*	
C23	0.3687 (3)	0.9527 (3)	0.1604 (2)	0.0152 (5)	
H23A	0.376770	1.040134	0.106096	0.023*	
H23B	0.475735	0.882506	0.133773	0.023*	
H23C	0.348598	0.966518	0.245897	0.023*	
C31	-0.0347 (3)	0.6930 (3)	0.1546 (2)	0.0181 (6)	
H31A	-0.073019	0.790210	0.122437	0.027*	
H31B	-0.125850	0.645820	0.172381	0.027*	
H31C	0.067180	0.647990	0.092845	0.027*	
C32	-0.1478 (3)	0.7586 (3)	0.3717 (2)	0.0179 (6)	
H32A	-0.246013	0.722341	0.382432	0.027*	
H32B	-0.174112	0.858328	0.344102	0.027*	
H32C	-0.122923	0.741852	0.450686	0.027*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01150 (5)	0.00826 (5)	0.01035 (5)	-0.00006 (4)	-0.00365 (3)	-0.00294 (3)
Br1	0.02268 (13)	0.01024 (13)	0.01990 (14)	-0.00161 (11)	-0.01002 (11)	0.00022 (10)
Br2	0.01258 (12)	0.01528 (13)	0.01902 (13)	-0.00035 (10)	-0.00666 (10)	-0.00385 (11)
Br3	0.01498 (12)	0.01201 (13)	0.02826 (15)	-0.00277 (10)	-0.00777 (11)	-0.00519 (11)
P1	0.0086 (3)	0.0075 (3)	0.0088 (3)	-0.0009 (2)	-0.0030 (2)	-0.0015 (2)
Se1	0.01263 (12)	0.00941 (12)	0.00860 (11)	0.00004 (10)	-0.00190 (9)	-0.00236 (9)
C1	0.0109 (11)	0.0105 (12)	0.0103 (12)	-0.0004 (10)	-0.0038 (9)	-0.0039 (10)
C2	0.0133 (12)	0.0104 (12)	0.0129 (12)	-0.0028 (10)	-0.0046 (10)	-0.0015 (10)
C3	0.0133 (12)	0.0088 (12)	0.0159 (13)	-0.0028 (10)	-0.0070 (10)	-0.0009 (10)
C11	0.0179 (13)	0.0122 (13)	0.0122 (12)	-0.0002 (10)	-0.0044 (10)	-0.0047 (10)
C12	0.0117 (12)	0.0202 (14)	0.0136 (13)	0.0006 (11)	-0.0080 (10)	-0.0056 (11)
C13	0.0176 (13)	0.0111 (13)	0.0109 (12)	0.0008 (10)	-0.0062 (10)	-0.0009 (10)
C21	0.0196 (13)	0.0131 (13)	0.0112 (12)	-0.0032 (11)	-0.0043 (10)	0.0004 (10)
C22	0.0158 (12)	0.0114 (13)	0.0184 (13)	-0.0003 (10)	-0.0049 (10)	-0.0023 (11)
C23	0.0180 (13)	0.0126 (13)	0.0157 (13)	-0.0064 (11)	-0.0041 (10)	-0.0010 (10)
C31	0.0173 (13)	0.0194 (15)	0.0218 (14)	-0.0052 (11)	-0.0116 (11)	-0.0005 (12)
C32	0.0098 (12)	0.0177 (14)	0.0227 (14)	-0.0027 (11)	-0.0029 (10)	0.0002 (12)

Geometric parameters (Å, °)

Au1—Br2	2.4302 (3)	C12—H12B	0.9800	
Au1—Br3	2.4320 (3)	C12—H12C	0.9800	
Au1—Br1	2.4549 (3)	C13—H13A	0.9800	
Au1—Se1	2.4606 (3)	C13—H13B	0.9800	
P1—C3	1.847 (2)	C13—H13C	0.9800	
P1—C2	1.875 (3)	C21—H21A	0.9800	
P1—C1	1.883 (3)	C21—H21B	0.9800	
P1—Se1	2.2247 (7)	C21—H21C	0.9800	
C1-C12	1.536 (3)	C22—H22A	0.9800	
C1—C13	1.538 (3)	C22—H22B	0.9800	

C1C11	1.546 (3)	C22—H22C	0.9800
C2—C23	1.530 (3)	C23—H23A	0.9800
C2—C22	1.539 (3)	C23—H23B	0.9800
C2—C21	1.546 (3)	С23—Н23С	0.9800
C3—C32	1.536 (3)	C31—H31A	0.9800
C3—C31	1.536 (3)	C31—H31B	0.9800
С3—Н3	1.0000	C31—H31C	0.9800
C11—H11A	0.9800	C32—H32A	0.9800
C11—H11B	0.9800	C32—H32B	0.9800
C11—H11C	0.9800	C32—H32C	0.9800
C12—H12A	0.9800	032 11320	0.9000
	0.9000		
Br2—Au1—Br3	174.078 (10)	C1—C12—H12C	109.5
Br2—Au1—Br1	90.066 (11)	H12A—C12—H12C	109.5
Br3—Au1—Br1	89.729 (12)	H12B—C12—H12C	109.5
Br2—Au1—Se1	87.317 (11)	C1—C13—H13A	109.5
Br3—Au1—Se1	92.892 (11)	C1—C13—H13B	109.5
Br1—Au1—Se1	177.377 (9)	H13A—C13—H13B	109.5
C3—P1—C2	112.60 (11)	C1—C13—H13C	109.5
C3—P1—C1	108.84 (11)	H13A—C13—H13C	109.5
C2—P1—C1	114.02 (11)	H13B—C13—H13C	109.5
C3—P1—Se1	109.35 (9)	C2-C21-H21A	109.5
C2— $P1$ — $Se1$	101.46 (8)	C2-C21-H21B	109.5
C1— $P1$ — $Se1$	110.34 (8)	H21A—C21—H21B	109.5
P1—Se1—Au1	108.81(2)	C2-C21-H21C	109.5
C_{12} C_{1} C_{13}	108.1(2)	$H_{21}A - C_{21} - H_{21}C$	109.5
$C_{12} - C_{1} - C_{11}$	108.1(2)	H_{21B} C_{21} H_{21C}	109.5
C_{13} $-C_{1}$ $-C_{11}$	109.8(2)	C2-C22-H22A	109.5
C12—C1—P1	111.46 (16)	C2-C22-H22B	109.5
C_{13} $-C_{1}$ $-P_{1}$	107.66 (17)	H22A—C22—H22B	109.5
C_{11} $-C_{1}$ $-P_{1}$	111 76 (17)	C^2 — C^2 — H^2 C^2	109.5
$C^{23} - C^2 - C^{22}$	1097(2)	$H_{22}A - C_{22} - H_{22}C$	109.5
$C_{23} - C_{2} - C_{21}$	107.4(2)	H22B—C22—H22C	109.5
$C_{22} - C_{2} - C_{21}$	108.6 (2)	C2-C23-H23A	109.5
C23—C2—P1	110.52 (17)	C2—C23—H23B	109.5
C22—C2—P1	110.37 (17)	H23A—C23—H23B	109.5
C21—C2—P1	110.18 (18)	C2—C23—H23C	109.5
C32—C3—C31	110.6 (2)	H23A—C23—H23C	109.5
C32—C3—P1	116.61 (18)	H23B—C23—H23C	109.5
C31—C3—P1	113.40 (17)	C3-C31-H31A	109.5
С32—С3—Н3	105.0	C3-C31-H31B	109.5
C31—C3—H3	105.0	H31A—C31—H31B	109.5
Р1—С3—Н3	105.0	C3-C31-H31C	109.5
C1-C11-H11A	109.5	H31A-C31-H31C	109.5
C1-C11-H11B	109.5	H_{31B} C_{31} H_{31C}	109.5
H11A—C11—H11B	109.5	C3—C32—H32A	109.5
C1-C11-H11C	109.5	C3—C32—H32B	109.5
H11A—C11—H11C	109.5	H32A—C32—H32B	109.5
			10/10

H11B—C11—H11C C1—C12—H12A C1—C12—H12B H12A—C12—H12B	109.5 109.5 109.5 109.5	C3—C32—H32C H32A—C32—H32C H32B—C32—H32C	109.5 109.5 109.5
C3—P1—Se1—Au1 C2—P1—Se1—Au1 C1—P1—Se1—Au1 Br2—Au1—Se1—P1 Br3—Au1—Se1—P1 C3—P1—C1—C12 C2—P1—C1—C12 C3—P1—C1—C13 C2—P1—C1—C13 Se1—P1—C1—C13 C3—P1—C1—C11 C2—P1—C1—C11 Se1—P1—C1—C11 Se1—P1—C1—C11 C3—P1—C2—C23	$\begin{array}{c} -69.41 \ (9) \\ 171.47 \ (8) \\ 50.27 \ (9) \\ -117.58 \ (2) \\ 68.34 \ (2) \\ 159.36 \ (17) \\ -74.0 \ (2) \\ 39.38 \ (19) \\ 41.02 \ (19) \\ 167.64 \ (15) \\ -78.96 \ (16) \\ -79.61 \ (19) \\ 47.0 \ (2) \\ 160.40 \ (15) \\ 165.79 \ (17) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.2 (2) -77.43 (17) 44.3 (2) -80.3 (2) 161.06 (16) -75.64 (19) 159.73 (16) 41.14 (17) -75.6 (2) 51.9 (2) 172.46 (16) 54.6 (2) -177.92 (18) -57.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C13—H13 <i>B</i> ···Au1	0.98	2.74	3.679 (3)	160
C21—H21A…Se1	0.98	2.69	3.197 (3)	113
C12—H12A…Se1	0.98	2.96	3.484 (3)	115
C3—H3…Br3	1.00	2.75	3.585 (3)	142
C12—H12A····Br2	0.98	3.01	3.980 (3)	173
C13—H13 A ···Br2 ⁱ	0.98	3.02	3.929 (3)	156

Symmetry code: (i) -x+1, -y+1, -z+1.