research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of N-phenyl-2-(phenyl­sulfan­yl)acetamide

crossmark logo

aChemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, United Kingdom, and cDepartment of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
*Correspondence e-mail: ra.mohamed-ezzat@nrc.sci.eg

Edited by C. Schulzke, Universität Greifswald, Germany (Received 4 January 2024; accepted 18 March 2024; online 26 March 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

N-Phenyl-2-(phenyl­sulfan­yl)acetamide, C14H13NOS, was synthesized and structurally characterized. In the crystal, N—H⋯O hydrogen bonding leads to the formation of chains of mol­ecules along the [100] direction. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional network. The crystal studied was twinned by a twofold rotation around [100].

1. Chemical context

The acetamide moiety possesses therapeutic potential for targeting various diseases. Acetamide-containing drugs are used for inflammation control, cyclo­oxygenase (COX) enzyme inhibition, and as anti­viral drugs (Agrawal et al., 2010[Agrawal, R., Rewatkar, P. V., Kokil, G. R., Verma, A. & Kalra, A. (2010). Med. Chem. 6, 247-251.]; Orzalesi et al., 1977[Orzalesi, G., Selleri, R., Caldini, O., Volpato, I., Innocenti, F., Colome, J., Sacristan, A. & Varez, G. (1977). Arzneimittelforsch. 27, 1006-1012.]). Recently, starting from acetamides, we have synthesized various heterocyclic compounds that exhibit diverse activities, including anti-SARS CoV-2 (Mohamed-Ezzat & Elgemeie, 2023[Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66, 167-185.]), anti­microbial (Elgemeie et al., 2017a[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 139-150.],b[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.]), anti­tumor properties (Elgemeie & Mohamed-Ezzat, 2022[Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, pp. 1-619. Amsterdam: Elsevier. ISBN: 978-0-12-821783-2.]; Mohamed-Ezzat et al., 2023a[Mohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023a). BMC Chem. 17, 88, 1-13.],b[Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225-239.]), as well as potential for other applications (Elgemeie et al., 2015[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322-1324.], 2017a[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 139-150.],b[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.], 2019[Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 1-11.]; Mohamed-Ezzat et al., 2021[Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547-550.], 2023a[Mohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023a). BMC Chem. 17, 88, 1-13.],b[Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225-239.]).

Additionally, the evolution of the pharmaceutical industry has been greatly aided by the discovery of sulfur-based therapies. Sulfur-derived functional groups can be found in a broad range of natural products and pharmaceuticals. Sulfur remains the dominant heteroatom integrated into a variety of FDA-approved sulfur-containing medications (Feng et al., 2016[Feng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200-1216.]).

Sulfides have been presented inter alia as precursors for sulfonyl chloride synthesis (Langler et al., 1979[Langler, R. F., Marini, Z. A. & Spalding, E. S. (1979). Can. J. Chem. 57, 3193-3199.]). Advanced methods previously reported for the transformation of sulfides include, for example, using sulfate-modified multi-walled carbon nanotubes (S-MWCNT) and mesoporous carbon (S-MC) as heterogenous catalysts to facilitate the synthesis of acetamide derivatives (Minchitha et al., 2018[Minchitha, K. U., Hareesh, H. N., Nagaraju, N. & Kathyayini, N. (2018). J Nanosci. Nanotechnol. 18, 426-433.]).

[Scheme 1]

Herein, we report the first synthesis of a sulfide from a sulfonyl derivative via an alternative new, direct and efficient approach. Upon reaction of the sulfonyl­guanidine derivative with 2-chloro-N-phenyl­acetamide, the title compound N-phenyl-2-(phenyl­sulfan­yl)acetamide (3) is formed. Its chemical structure was confirmed by spectroscopic techniques and elemental analysis. The 1H NMR spectrum has a singlet signal of the methyl­ene group at δ 3.84 ppm, the multiplet aromatic protons at δ 7.30 ppm, as well as the amine proton at δ 9.15 ppm, which is roughly in accordance with previously reported data (Motherwell et al., 2002[Motherwell, W. B., Greaney, M. F., Edmunds, J. J. & Steed, J. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2816-2826.]). Confirmation of the mol­ecular structure is provided by means of single crystal X-ray diffraction structural analysis which provides the first crystal structure and geometric parameters for the title compound.

2. Structural commentary

The asymmetric unit of the crystal structure is composed of two independent mol­ecules of the title compound (Fig. 1[link]). The mol­ecules of 3 consist of three planar segments, namely sulfanyl­benzene [sb1 (C1–C6/S1) and sb2 (C15–C21/S2)], acetamide [ac1 (C7/C8/N1/O1) and ac2 (C22/C23/N2/O2)], and phenyl [ph1 (C9–C14) and ph2 (C24–C29)] groups. The conformations of the two independent mol­ecules in the structure are similar but not identical. The twist angles sb/ac are 85.12 (11) and 77.58 (11)° for mol­ecules 1 and 2, respectively, and twist angles sb/ph are 28.30 (10) and 30.60 (10)° for mol­ecules 1 and 2, respectively. Thus, the phenyl and acetamide groups are almost coplanar whereas the sulfanyl­benzene groups are almost perpendicular to this plane. The Cphen­yl—S-C—Ccarbon­yl torsion angles are 72.1 (3)° for C1—S1—C7—C8 and −65.13 (3)° for C15—S2—C22—C23. A similar mol­ecular conformation is observed in the crystal structures of the related compounds N-(2-hy­droxy-5-chloro­phen­yl)thio­phenyl­acetamide (Tarimci et al., 1998[Tarimci, Ç., Ercan, F., Koçog¯lu, M. & Ören, İ. (1998). Acta Cryst. C54, 488-489.]) and 2-[(2-amino­phen­yl)sulfan­yl]-N-(2-nitro­phen­yl)acetamide (Murtaza et al., 2019[Murtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358-366.]) in which the Cphen­yl—S—C—Ccarbon­yl torsion angles are ca 80°.

[Figure 1]
Figure 1
The asymmetric unit and mol­ecular structures of the two independent mol­ecules of N-phenyl-2-(phenyl­sulfan­yl)acetamide (3) showing displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The packing in the crystal structure of 3 is shown in Fig. 2[link]a. In the crystal, the acetamide groups of each set of independent mol­ecules inter­act through weak N—H⋯O contacts (Table 1[link]), forming chains parallel to [100] (Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (3) 2.70 (3) 3.477 (3) 152 (3)
N2—H2A⋯O2ii 0.83 (3) 2.71 (4) 3.456 (3) 150 (3)
Symmetry codes: (i) [x+1, y, z]; (ii) [x-1, y, z].
[Figure 2]
Figure 2
(a) Crystal packing in the crystal structure of N-phenyl-2-(phenyl­sulfan­yl)acetamide (3). (b) A segment of the crystal structure of compound 3 showing the N—H⋯O and C—H⋯π inter­molecular contacts as green dotted lines.

Adjacent chains are linked by weak C—H⋯π contacts between methyl­ene and phenyl groups. The rings involved in the contacts are ph1 (C9–C14, Cg1) and ph2# (C24–C29, Cg2#) where # is x + 1, y, z. The associated H⋯π distances H7Aph2#, and H22Bph1 are 2.80 Å and 2.94 Å, respectively. The H⋯centroid distances H7ACg2# and H22BCg1 are 3.00 and 3.10 Å, respectively. The C—H⋯centroid angles for C7—H7ACg2# and C22—H22BCg1 are 129 and 128°, respectively.

4. Database survey

A search of the CSD (version 5.44, April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for crystal structures containing the N-phenyl-2-(phenyl­sulfan­yl)acetamide fragment returned N-(2-hy­droxy-5-chloro­phen­yl)thio­phenyl­acetamide (NILWEK; Tarimci et al., 1998[Tarimci, Ç., Ercan, F., Koçog¯lu, M. & Ören, İ. (1998). Acta Cryst. C54, 488-489.]) and 2-[(2-amino­phen­yl)sulfan­yl]-N-(2-nitro­phen­yl)acetamide (NULZOM; Murtaza et al., 2019[Murtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358-366.]), which both have similar conformational geometries to compound 3. In contrast, 2-[(2-amino­phen­yl)sulfan­yl]-N-(4-meth­oxy­phen­yl)acetamide (PAXTEP; Murtaza et al., 2012[Murtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968.]) has a Cphen­yl—S—C—Ccarbon­yl torsion angle of 159° compared to the values of ca 80° in NILWEK and NULZOM and even more acute ones are observed in the crystal of the title compound.

5. Synthesis and crystallization

A mixture of benzene­sulfonyl­guanidine (1) (0.01 mol) with 2-chloro-N-phenyl­acetamide 2 (0.01 mol) in dry 1,4-dioxane (20 mL) containing potassium hydroxide (0.015 mol) was refluxed for 1 h. The reaction mixture was poured onto ice–water and then neutralized using hydro­chloric acid (Fig. 3[link]).

[Figure 3]
Figure 3
The synthesis of compound 3 from sulfonyl­guanidine.

The solid precipitate that formed was then filtered, washed thoroughly with water and left in the open to dry at room temperature. The solid obtained was recrystallized from water to afford colorless crystals of compound 3 in 83% yield; mp > 573 K; 1H NMR (400 MHz, DMSO-d6): δ 3.84 (s, 2H, CH2), 7.30 (m, 10H, Ar-H), 9.15 (s, 1H, NH); analysis calculated for C14H13NOS (243.32): C, 69.11; H, 5.39; N, 5.76; S, 13.18. Found: C, 69.07; H, 5.35; N, 5.75; S, 13.16.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was twinned by a twofold rotation around [100]. This problem was addressed using a HKLF5 file for refinement. The N-bound hydrogen atoms were refined with regard to location while the displacement parameters were constrained to those of their parent atoms [Uiso(H) = 1.2Ueq(N)]. All other hydrogen atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C14H13NOS
Mr 243.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.6768 (3), 12.0747 (6), 18.1912 (9)
α, β, γ (°) 87.071 (4), 82.110 (4), 81.110 (4)
V3) 1219.72 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.54 × 0.17 × 0.09
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.662, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7742, 7742, 5708
Rint 0.040
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.03
No. of reflections 7742
No. of parameters 314
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

N-Phenyl-2-(phenylsulfanyl)acetamide top
Crystal data top
C14H13NOSZ = 4
Mr = 243.31F(000) = 512
Triclinic, P1Dx = 1.325 Mg m3
a = 5.6768 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0747 (6) ÅCell parameters from 3492 reflections
c = 18.1912 (9) Åθ = 3.7–28.1°
α = 87.071 (4)°µ = 0.25 mm1
β = 82.110 (4)°T = 293 K
γ = 81.110 (4)°Needle, yellow
V = 1219.72 (11) Å30.54 × 0.17 × 0.09 mm
Data collection top
Agilent SuperNova, Dual, Cu at home/near, Atlas
diffractometer
5708 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
θmax = 29.7°, θmin = 3.4°
Tmin = 0.662, Tmax = 1.000h = 76
7742 measured reflectionsk = 1515
7742 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.551P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7742 reflectionsΔρmax = 0.23 e Å3
314 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Experimental. Single-crystal XRD data were collected at room temperature on an Agilent SuperNova Dual Atlas diffractometer using mirror-monochromated Mo Kα radiation.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1641 (5)0.1130 (2)0.11013 (13)0.0415 (6)
C21.3815 (5)0.1806 (3)0.08899 (15)0.0532 (7)
H21.5066250.1500220.0608350.064*
C31.4122 (6)0.2916 (3)0.10934 (17)0.0600 (8)
H31.5589730.3359650.0951120.072*
C41.2294 (6)0.3390 (3)0.15062 (17)0.0591 (8)
H41.2516130.4149000.1641040.071*
C51.0147 (6)0.2730 (3)0.17151 (17)0.0560 (8)
H50.8906290.3044150.1995710.067*
C60.9792 (5)0.1608 (2)0.15170 (15)0.0512 (7)
H60.8318500.1169890.1660720.061*
C70.8387 (6)0.0859 (3)0.10985 (15)0.0551 (8)
H7A0.8075610.1589690.0853900.066*
H7B0.7410870.0378780.0905280.066*
C80.7505 (6)0.0994 (2)0.19250 (15)0.0480 (7)
C90.8784 (5)0.1283 (2)0.31338 (14)0.0434 (6)
C101.0655 (5)0.0928 (3)0.35418 (16)0.0534 (7)
H101.2125460.0585030.3306700.064*
C111.0350 (7)0.1082 (3)0.42985 (17)0.0648 (9)
H111.1616190.0842930.4570990.078*
C120.8180 (7)0.1586 (3)0.46490 (18)0.0689 (10)
H120.7965320.1676850.5159570.083*
C130.6343 (6)0.1953 (3)0.42445 (18)0.0658 (9)
H130.4882930.2302480.4482320.079*
C140.6618 (6)0.1812 (2)0.34868 (17)0.0557 (7)
H140.5357260.2071880.3216110.067*
C150.6954 (5)0.6251 (2)0.38739 (14)0.0483 (7)
C160.8379 (6)0.6999 (3)0.40561 (17)0.0594 (8)
H160.9584190.6764800.4352580.071*
C170.8000 (7)0.8093 (3)0.37954 (19)0.0677 (9)
H170.8975500.8592090.3913440.081*
C180.6223 (6)0.8462 (3)0.33670 (19)0.0655 (9)
H180.5980210.9207540.3201090.079*
C190.4793 (6)0.7723 (3)0.31825 (19)0.0667 (9)
H190.3579220.7967490.2890680.080*
C210.5166 (6)0.6616 (3)0.34325 (17)0.0579 (8)
H210.4212850.6114220.3303440.069*
C221.0326 (6)0.4309 (3)0.38916 (15)0.0568 (8)
H22A1.1333640.4784300.4074770.068*
H22B1.0702500.3568020.4116050.068*
C231.1052 (6)0.4220 (2)0.30651 (15)0.0467 (7)
C240.9628 (5)0.3906 (2)0.18839 (14)0.0405 (6)
C250.7707 (5)0.4253 (3)0.14992 (16)0.0529 (7)
H250.6260800.4600220.1747870.063*
C260.7913 (6)0.4091 (3)0.07505 (18)0.0619 (8)
H260.6611780.4340120.0494200.074*
C271.0032 (6)0.3561 (3)0.03737 (16)0.0604 (8)
H271.0172650.3448800.0133420.072*
C281.1923 (6)0.3204 (3)0.07640 (17)0.0596 (8)
H281.3356390.2842540.0516600.071*
C291.1747 (5)0.3368 (2)0.15161 (16)0.0508 (7)
H291.3047840.3117260.1772320.061*
N10.9169 (5)0.1113 (2)0.23607 (13)0.0484 (6)
H11.062 (6)0.103 (3)0.2146 (16)0.058*
N20.9320 (5)0.4085 (2)0.26590 (13)0.0483 (6)
H2A0.790 (6)0.419 (3)0.2863 (17)0.058*
O10.5380 (4)0.1003 (2)0.21474 (12)0.0656 (6)
O21.3142 (4)0.4238 (2)0.28135 (11)0.0618 (6)
S11.14801 (15)0.03015 (6)0.08281 (4)0.0539 (2)
S20.72463 (16)0.48404 (7)0.42268 (4)0.0584 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (15)0.0485 (15)0.0349 (12)0.0088 (13)0.0048 (11)0.0066 (11)
C20.0443 (17)0.0652 (19)0.0493 (15)0.0133 (15)0.0039 (13)0.0050 (14)
C30.0466 (18)0.061 (2)0.0661 (18)0.0059 (16)0.0017 (15)0.0047 (15)
C40.057 (2)0.0507 (17)0.0667 (19)0.0023 (16)0.0053 (16)0.0001 (14)
C50.0492 (18)0.0543 (18)0.0622 (18)0.0114 (15)0.0047 (15)0.0020 (14)
C60.0398 (16)0.0535 (17)0.0564 (16)0.0038 (14)0.0059 (13)0.0061 (13)
C70.0588 (19)0.0538 (17)0.0507 (16)0.0015 (15)0.0099 (14)0.0036 (13)
C80.0507 (18)0.0408 (15)0.0500 (15)0.0009 (14)0.0054 (14)0.0007 (12)
C90.0444 (16)0.0380 (14)0.0481 (14)0.0100 (12)0.0025 (12)0.0018 (11)
C100.0424 (16)0.0593 (18)0.0573 (16)0.0067 (14)0.0027 (14)0.0027 (13)
C110.063 (2)0.080 (2)0.0559 (17)0.0175 (19)0.0163 (17)0.0002 (16)
C120.069 (2)0.090 (3)0.0513 (17)0.031 (2)0.0012 (17)0.0101 (17)
C130.056 (2)0.077 (2)0.065 (2)0.0172 (18)0.0091 (17)0.0246 (17)
C140.0471 (17)0.0543 (18)0.0642 (18)0.0019 (15)0.0043 (15)0.0125 (14)
C150.0422 (16)0.0599 (17)0.0417 (13)0.0109 (14)0.0069 (12)0.0134 (12)
C160.058 (2)0.070 (2)0.0545 (17)0.0202 (17)0.0063 (15)0.0116 (15)
C170.073 (2)0.065 (2)0.070 (2)0.0277 (19)0.0017 (18)0.0116 (17)
C180.060 (2)0.0559 (19)0.074 (2)0.0052 (17)0.0098 (18)0.0068 (16)
C190.0473 (19)0.076 (2)0.073 (2)0.0004 (18)0.0070 (17)0.0035 (18)
C210.0455 (17)0.067 (2)0.0643 (18)0.0162 (16)0.0031 (15)0.0167 (16)
C220.0571 (19)0.0625 (19)0.0470 (16)0.0046 (16)0.0001 (14)0.0019 (14)
C230.0483 (17)0.0410 (15)0.0475 (15)0.0046 (13)0.0011 (14)0.0025 (12)
C240.0411 (15)0.0329 (13)0.0468 (14)0.0094 (12)0.0013 (12)0.0017 (10)
C250.0381 (16)0.0572 (18)0.0602 (18)0.0038 (14)0.0000 (14)0.0000 (14)
C260.0539 (19)0.073 (2)0.0614 (19)0.0130 (17)0.0140 (16)0.0021 (16)
C270.063 (2)0.074 (2)0.0471 (15)0.0232 (18)0.0012 (15)0.0110 (14)
C280.0445 (18)0.066 (2)0.0653 (19)0.0062 (16)0.0060 (15)0.0216 (15)
C290.0419 (16)0.0496 (16)0.0593 (17)0.0012 (14)0.0058 (14)0.0126 (13)
N10.0421 (14)0.0522 (14)0.0491 (13)0.0056 (12)0.0002 (11)0.0045 (11)
N20.0395 (13)0.0554 (14)0.0475 (13)0.0088 (12)0.0058 (11)0.0037 (10)
O10.0461 (13)0.0878 (16)0.0626 (13)0.0066 (12)0.0069 (11)0.0105 (11)
O20.0508 (13)0.0819 (15)0.0526 (11)0.0155 (12)0.0021 (10)0.0084 (10)
S10.0569 (5)0.0547 (4)0.0488 (4)0.0124 (4)0.0008 (4)0.0004 (3)
S20.0579 (5)0.0655 (5)0.0487 (4)0.0162 (4)0.0119 (4)0.0027 (3)
Geometric parameters (Å, º) top
C1—C21.388 (4)C15—C211.385 (4)
C1—C61.389 (4)C15—S21.781 (3)
C1—S11.767 (3)C16—C171.375 (5)
C2—C31.363 (4)C16—H160.9300
C2—H20.9300C17—C181.366 (5)
C3—C41.376 (5)C17—H170.9300
C3—H30.9300C18—C191.378 (5)
C4—C51.368 (4)C18—H180.9300
C4—H40.9300C19—C211.385 (5)
C5—C61.375 (4)C19—H190.9300
C5—H50.9300C21—H210.9300
C6—H60.9300C22—C231.508 (4)
C7—C81.527 (4)C22—S21.800 (3)
C7—S11.791 (3)C22—H22A0.9700
C7—H7A0.9700C22—H22B0.9700
C7—H7B0.9700C23—O21.215 (4)
C8—O11.217 (4)C23—N21.342 (4)
C8—N11.342 (4)C24—C251.376 (4)
C9—C101.380 (4)C24—C291.378 (4)
C9—C141.384 (4)C24—N21.420 (3)
C9—N11.414 (3)C25—C261.373 (4)
C10—C111.382 (4)C25—H250.9300
C10—H100.9300C26—C271.381 (5)
C11—C121.373 (5)C26—H260.9300
C11—H110.9300C27—C281.370 (5)
C12—C131.364 (5)C27—H270.9300
C12—H120.9300C28—C291.380 (4)
C13—C141.382 (4)C28—H280.9300
C13—H130.9300C29—H290.9300
C14—H140.9300N1—H10.86 (3)
C15—C161.382 (4)N2—H2A0.83 (3)
C2—C1—C6118.9 (3)C17—C16—H16120.3
C2—C1—S1116.2 (2)C15—C16—H16120.3
C6—C1—S1124.9 (2)C18—C17—C16121.5 (3)
C3—C2—C1120.2 (3)C18—C17—H17119.3
C3—C2—H2119.9C16—C17—H17119.3
C1—C2—H2119.9C17—C18—C19119.5 (3)
C2—C3—C4121.0 (3)C17—C18—H18120.2
C2—C3—H3119.5C19—C18—H18120.2
C4—C3—H3119.5C18—C19—C21119.8 (3)
C5—C4—C3119.0 (3)C18—C19—H19120.1
C5—C4—H4120.5C21—C19—H19120.1
C3—C4—H4120.5C19—C21—C15120.2 (3)
C4—C5—C6121.1 (3)C19—C21—H21119.9
C4—C5—H5119.5C15—C21—H21119.9
C6—C5—H5119.5C23—C22—S2118.5 (2)
C5—C6—C1119.8 (3)C23—C22—H22A107.7
C5—C6—H6120.1S2—C22—H22A107.7
C1—C6—H6120.1C23—C22—H22B107.7
C8—C7—S1118.2 (2)S2—C22—H22B107.7
C8—C7—H7A107.8H22A—C22—H22B107.1
S1—C7—H7A107.8O2—C23—N2124.4 (3)
C8—C7—H7B107.8O2—C23—C22118.9 (3)
S1—C7—H7B107.8N2—C23—C22116.6 (3)
H7A—C7—H7B107.1C25—C24—C29119.6 (3)
O1—C8—N1124.2 (3)C25—C24—N2118.3 (2)
O1—C8—C7119.3 (3)C29—C24—N2122.2 (3)
N1—C8—C7116.5 (3)C26—C25—C24120.4 (3)
C10—C9—C14119.4 (3)C26—C25—H25119.8
C10—C9—N1118.5 (3)C24—C25—H25119.8
C14—C9—N1122.0 (3)C25—C26—C27120.7 (3)
C9—C10—C11120.2 (3)C25—C26—H26119.7
C9—C10—H10119.9C27—C26—H26119.7
C11—C10—H10119.9C28—C27—C26118.5 (3)
C12—C11—C10120.1 (3)C28—C27—H27120.8
C12—C11—H11119.9C26—C27—H27120.8
C10—C11—H11119.9C27—C28—C29121.5 (3)
C13—C12—C11119.7 (3)C27—C28—H28119.3
C13—C12—H12120.2C29—C28—H28119.3
C11—C12—H12120.2C24—C29—C28119.4 (3)
C12—C13—C14121.0 (3)C24—C29—H29120.3
C12—C13—H13119.5C28—C29—H29120.3
C14—C13—H13119.5C8—N1—C9127.0 (3)
C13—C14—C9119.5 (3)C8—N1—H1115 (2)
C13—C14—H14120.2C9—N1—H1118 (2)
C9—C14—H14120.2C23—N2—C24126.2 (2)
C16—C15—C21119.5 (3)C23—N2—H2A118 (2)
C16—C15—S2121.9 (2)C24—N2—H2A115 (2)
C21—C15—S2118.5 (2)C1—S1—C7103.55 (14)
C17—C16—C15119.4 (3)C15—S2—C22102.38 (14)
C6—C1—C2—C30.5 (4)S2—C15—C21—C19176.3 (2)
S1—C1—C2—C3178.3 (2)S2—C22—C23—O2155.3 (3)
C1—C2—C3—C40.4 (5)S2—C22—C23—N227.0 (4)
C2—C3—C4—C50.3 (5)C29—C24—C25—C261.6 (4)
C3—C4—C5—C60.3 (5)N2—C24—C25—C26179.5 (3)
C4—C5—C6—C10.4 (5)C24—C25—C26—C271.1 (5)
C2—C1—C6—C50.5 (4)C25—C26—C27—C280.1 (5)
S1—C1—C6—C5178.2 (2)C26—C27—C28—C290.3 (5)
S1—C7—C8—O1155.7 (3)C25—C24—C29—C281.2 (4)
S1—C7—C8—N125.3 (4)N2—C24—C29—C28179.0 (3)
C14—C9—C10—C111.3 (4)C27—C28—C29—C240.2 (5)
N1—C9—C10—C11179.9 (3)O1—C8—N1—C90.9 (5)
C9—C10—C11—C120.1 (5)C7—C8—N1—C9178.0 (2)
C10—C11—C12—C131.2 (5)C10—C9—N1—C8153.0 (3)
C11—C12—C13—C140.8 (5)C14—C9—N1—C828.4 (4)
C12—C13—C14—C90.6 (5)O2—C23—N2—C242.1 (5)
C10—C9—C14—C131.6 (4)C22—C23—N2—C24175.4 (2)
N1—C9—C14—C13179.8 (3)C25—C24—N2—C23152.4 (3)
C21—C15—C16—C170.1 (4)C29—C24—N2—C2329.7 (4)
S2—C15—C16—C17177.0 (2)C2—C1—S1—C7173.7 (2)
C15—C16—C17—C180.8 (5)C6—C1—S1—C77.6 (3)
C16—C17—C18—C190.8 (5)C8—C7—S1—C172.1 (3)
C17—C18—C19—C210.0 (5)C16—C15—S2—C2259.3 (3)
C18—C19—C21—C150.7 (5)C21—C15—S2—C22123.7 (2)
C16—C15—C21—C190.7 (4)C23—C22—S2—C1565.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (3)2.70 (3)3.477 (3)152 (3)
N2—H2A···O2ii0.83 (3)2.71 (4)3.456 (3)150 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

We are grateful for support by the National Research Center, Cairo, Egypt, Cardiff University, Wales, and Helwan University, Cairo, Egypt.

References

First citationAgrawal, R., Rewatkar, P. V., Kokil, G. R., Verma, A. & Kalra, A. (2010). Med. Chem. 6, 247–251.  CrossRef CAS PubMed Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 1–11.  PubMed Google Scholar
First citationElgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, pp. 1–619. Amsterdam: Elsevier. ISBN: 978-0-12-821783-2.  Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 139–150.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 213–223.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200–1216.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLangler, R. F., Marini, Z. A. & Spalding, E. S. (1979). Can. J. Chem. 57, 3193–3199.  CrossRef CAS Google Scholar
First citationMinchitha, K. U., Hareesh, H. N., Nagaraju, N. & Kathyayini, N. (2018). J Nanosci. Nanotechnol. 18, 426–433.  CrossRef CAS PubMed Google Scholar
First citationMohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66, 167–185.  Google Scholar
First citationMohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023a). BMC Chem. 17, 88, 1–13.  Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225–239.  Google Scholar
First citationMotherwell, W. B., Greaney, M. F., Edmunds, J. J. & Steed, J. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2816–2826.  CSD CrossRef Google Scholar
First citationMurtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358–366.  CSD CrossRef CAS Google Scholar
First citationMurtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968.  CSD CrossRef IUCr Journals Google Scholar
First citationOrzalesi, G., Selleri, R., Caldini, O., Volpato, I., Innocenti, F., Colome, J., Sacristan, A. & Varez, G. (1977). Arzneimittelforsch. 27, 1006–1012.  CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarimci, Ç., Ercan, F., Koçog¯lu, M. & Ören, İ. (1998). Acta Cryst. C54, 488–489.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds