CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 4 March 2024
Accepted 21 March 2024

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay

Keywords: crystal structure; copper(II); 1,3,4thiadiazole; hydrogen bonding; Hirshfeld surface analysis.

CCDC reference: 2341909

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS
Published under a CC BY 4.0 licence

Synthesis, crystal structure and Hirshfeld surface analysis of bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine- $\left.\kappa N^{3}\right]$ copper(II) bromide

Aziz Atashov, ${ }^{\text {a }}$ Mukhlisakhon Azamova, ${ }^{\text {a }}$ Daminbek Ziyatov, ${ }^{\text {a }}$ Zamira Uzakbergenova, ${ }^{\text {b }}$ Batirbay Torambetov, ${ }^{\text {a* }}$ Tamas Holczbauer, ${ }^{\text {c }}$ Jamshid Ashurov ${ }^{\text {d }}$ and Shakhnoza Kadirova ${ }^{\text {a }}$

Abstract

${ }^{\mathbf{a}}$ National University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, ${ }^{\mathbf{b}}$ Karakalpak State University, 1 Ch. Abdirov St. Nukus, 230112, Uzbekistan, ${ }^{\text {cIInstitute of Organic Chemistry, Research Centre }}$ for Natural Sciences, 2 Magyar Tudosok Korutja, H-1117 Budapest, Hungary, and ${ }^{\text {d }}$ Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan. *Correspondence e-mail: torambetov_b@mail.ru

A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine- $\left.\kappa N^{3}\right]$ copper(II) bromide, $[\mathrm{CuBr}]\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{4} \mathrm{Br}$, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal space group $P 4 / n$. The $\mathrm{Cu}^{\mathrm{II}}$ atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a twodimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from $\mathrm{H} \cdots \mathrm{H}$ contacts, 21.2% are from $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ contacts, 13.4% are from $\mathrm{S} \cdots \mathrm{S}$ contacts and 11.0% are from $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$, while other contributions are from $\mathrm{Br} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts.

1. Chemical context

Nitrogen-containing heterocycles are a promising class of ligands for the synthesis of transition-metal complexes that are strongly responsive to the changes in external conditions (Lavrenova et al., 2023). Derivatives of 1,3,4-thiadiazole represent a relatively new class of compounds that demonstrate a broad array of biological activities, making them of significant interest to various fields in medicinal chemistry and pharmacology worldwide (Gowramma et al., 2018; Kaviarasan et al., 2020; Upadhyay \& Mishra, 2017; Yusuf et al., 2008). 1,3,4-Thiadiazole derivatives exhibit many biological properties, such as antimicrobial (Li et al., 2014; Chen et al., 2019), antituberculosis (Foroumadi et al., 2004; Kolavi et al., 2006), antioxidant (Jakovljević et al., 2017; Swapna et al., 2013), anticancer (Altıntop et al., 2018; Aliabadi, 2016), herbicidal (Wang et al., 2011) and antifungal (Chen et al., 2007; Karaburun et al., 2018) activities. In addition, a limited number of studies mention the utilization of diverse thiadiazoles as ligands in the synthesis of biologically active metal complexes (Huxel et al., 2015; Chandra et al., 2015; Hangan et al., 2015).

The strong complexing capability of thiadiazole derivatives is associated with the existence of numerous sulfur and nitrogen atoms and the distinctiveness of its structure, specifically, the presence of unshared electron pairs and donor
characteristics. They generate complexes with elements whose ions possess partially vacant d-orbitals or occupied d-orbitals and a low positive charge, exhibiting various polyhedral structures. In this context, investigating the complex-forming properties of thiadiazole derivatives is pertinent in delineating the characteristics of the molecular and electronic structure of the original ligands and the stereochemistry of the coordination polyhedron (Hassan et al., 2018). This study focuses on the synthesis, examination of the structure, and characteristics of the $[\mathrm{Cu}(L) 4 \mathrm{Br}] \mathrm{Br}$ complex, where L is 2-amino-5-allylthio-1,3,4-thiadiazole (AAT), employing single-crystal X-ray diffraction (SC-XRD).

2. Structural commentary

The crystals of $\left[\mathrm{Cu}(\mathrm{AAT})_{4} \mathrm{Br}\right] \mathrm{Br}$ possess an ionic-molecular structure. The complex crystallizes in the fourfold tetragonal system, space group $P 4 / n$, and the asymmetric unit comprises one molecule of 2-amino-5-allylthio-1,3,4-thiadiazole (AAT), one Cu^{2+} ion with a multiplicity of 0.25 , and Br^{-}ions in two positions with multiplicities of 0.25 each. The Br^{-}ions occupy special positions on fourfold axes, and this symmetry transformation generates the formula unit. In $\left[\mathrm{Cu}(\mathrm{AAT}){ }_{4} \mathrm{Br}\right] \mathrm{Br}$, the copper atom exhibits a square-pyramidal geometry and its coordination sphere includes four nitrogen atoms (N2) from the heterocyclic ligands and a bromine anion at the top of the pyramid. These nitrogen atoms lie in one plane. The planar AAT molecules are nearly perpendicular to this plane, exhibiting a slight twist of the Br 1 CuN 2 planes. All the amino groups are in a syn arrangement. One of the Br^{-}ions is integrated into the inner coordination sphere, while the second Br - ion resides in the outer sphere (Fig. 1). As a result, the inner coordination sphere of the complex takes the shape of a tetragonal pyramid, where the basal positions are filled by nitrogen atoms from the 2-amino-5-allylthio-1,3,4-thiadiazole ligands, and the apical position is occupied by the Br^{-}ion.

The $\mathrm{Cu}-\mathrm{Br}$ bond length in the compound measures 2.7474 (7) \AA, closely resembling the $\mathrm{Cu}-\mathrm{Br}$ distance in the $\left[\mathrm{CuL} 4_{4} \mathrm{Br}_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ molecule, which is $2.9383 \AA$ (Berezin et al., 2018). Apparently, the binding of the Br^{-}ion into the inner coordination sphere induces a distortion of the CuN_{4} plane. The effect of this distortion is to the reduce $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ coordination angles [88.446 (18) and $161.04(11)^{\circ}$], in contrast to the angles of 90 and 180° expected in an ideal square-planar

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A $\cdots \mathrm{Br} 1$	0.86	2.52	$3.3265(1)$	157
N3-H3B $\cdot \mathrm{Br} 2$	0.86	2.54	$3.3685(1)$	162
C5A-H5A $^{\mathrm{H}} \cdots \mathrm{Br}^{\mathrm{i}}$	0.93	3.03	$3.95(2)$	175

Symmetry code: (i) $x, y, z-1$.
structure. The sum of bond angles at the Cu atom is 353.8°. The Cu atom deviates from the $(\mathrm{N} 2)_{4}$ plane toward Br^{-}by $0.333 \AA$. The length of the $\mathrm{Cu}-\mathrm{N}$ coordination bonds is 2.0206 (17) A \AA, similar to those bonds in analogous complexes. For instance, in nitrato-tetrakis(2-amino-5-ethyl-1,3,4-thiadiazole)copper(II) nitrate, the average $\mathrm{Cu}-\mathrm{N}$ bond length is $2.003 \AA$ (Kadirova et al., 2008), aligning with the sum of the covalent radii of Cu and N .

Additionally, the Br 1 atom participates in the formation of an intramolecular hydrogen bond with hydrogen atoms of four amino groups NH_{2} simultaneously (Table 1). By comparing the structures of some complexes based on 2-amino-1,3,4thiadiazole derivatives, we see that copper(II) bromide, in contrast to chlorides and acetates of cobalt(II) and zinc(II) (Camí et al., 2005; Song et al., 2012; Wang et al., 2009; Kadirova et al., 2008; Ishankhodzhaeva et al., 2000, 2001), exhibits a distinct behavior when reacted with 2-amino-5-allylthio-1,3,4thiadiazole under identical conditions. Instead of forming a tetrahedral molecular complex as might be anticipated from

Figure 1
Molecular structure of the complex $\left[\mathrm{Cu}(\mathrm{AAT})_{4} \mathrm{Br}\right] \mathrm{Br}$. Displacement ellipsoids are shown with 20% probability level for clarity. Symmetry codes: (a) $-x, y, z$; (b) $-\frac{3}{2}-y, x, z$; (c) $-\frac{3}{2}-x, \frac{3}{2}-y, z ;$ (d) $-y, \frac{3}{2}-x, z$.
analytical data, copper(II) bromide forms the tetragonalpyramidal cationic complex $\left[\mathrm{Cu}(\mathrm{AAT})_{4} \mathrm{Br}\right] \mathrm{Br}$.

3. Supramolecular features

In the crystal structure of $\left[\mathrm{Cu}(\mathrm{AAT})_{4} \mathrm{Br}\right] \mathrm{Br}$, in addition to the aforementioned intramolecular hydrogen bonds, there exist intermolecular hydrogen bonds. The second bromide ion, positioned in the outer sphere, forms a hydrogen bond with the second (not participating in the intramolecular hydrogen bond) hydrogen atom of the amino group N3H2 (Table 1). The outer-sphere Br 2 ion also resides on the fourfold axis, resulting in the generation of a layer in the crystal perpendicular to the fourfold axis due to this symmetry transformation. As a result, in the crystal packing, the cationic coordination complexes form columns along the [001] crystallographic axis (Fig. 2). The bromine anions of the outer sphere of the complex are located between the columns due to the formation of the $\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{Br} 2$ intermolecular hydrogen bonds with the amino groups of the ligand (Table 1).

The interaction energies of the secondary interactions system within the structure were calculated using the HF method (HF/3-21G) in CrystalExplorer17 (Spackman et al., 2021). Although these calculations may not yield precise values for an ionic interaction, they effectively highlight the direction of strong interactions. The result shows the total energy ($E_{\text {tot }}$), which is the sum of the Coulombic ($E_{\text {ele }}$), polar $\left(E_{\mathrm{pol}}\right)$, dispersion $\left(E_{\mathrm{dis}}\right)$ and repulsive (E_{rep}) contributions. The four energy components were scaled in the total energy $\left(E_{\text {tot }}=1.019 E_{\text {ele }}+0651 E_{\text {pol }}+0901 E_{\text {dis }}+0.811 E_{\text {rep }}\right)$. The interaction energies were investigated for a $3.8 \AA$ cluster around the reference molecule. The calculation reveals two stronger interactions within the neighbouring molecules. The strongest interaction total energy (E_{tot}) is $-112.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ($\sim-27 \mathrm{kcal} \mathrm{mol}^{-1}$), with the polar $\left(-30.1 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, disper-

Figure 3
Interaction energy calculations within the structure were performed using the HF method (HF/3-21 G) (CrystalExplorer17; Spackman et al., 2021. The thickness of the tube represents the value of the energy. The distribution of the interactions according to type shows strong interactions along the crystallographic a-axis direction (the largest values are represented here). The total energy framework (in blue) and its two main components, dispersion (in green) and Coulombic energy (in red), are shown for a cluster around a reference molecule also exhibit stronger interactions along the crystallographic a-axis direction.
sion $\left(-123.3 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, Coulombic $\left(-58.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and repulsive ($96.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$) energies (with green colour) (Fig. 3).

4. Hirshfeld surface analysis

To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021). Fig. 4 shows the three-dimensional (3D) Hirshfeld surfaces of the complex with $d_{\text {norm }}$ (normalized contact

Figure 2
Packing of $\left[\mathrm{Cu}(\mathrm{AAT})_{4} \mathrm{Br}\right] \mathrm{Br}$ complex molecules in the crystal structure in projections along the (a) b and $(b) c$ crystallographic axis. Hydrogen bonds are indicated by blue dashed lines.

Figure 4
Views of the three-dimensional Hirshfeld surface of the complex $\left[\mathrm{Cu}(\mathrm{AAT})_{4} \mathrm{Br}\right]^{+}$cation plotted over $d_{\text {norm in }}$ views along the (a) [110] and (b) [001] directions.
distance) plotted. The hydrogen-bond interactions given in Table 1 play a key role in the molecular packing of the complex. The overall 2D fingerprint plot and those delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}, \mathrm{S} \cdots \mathrm{S}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{Br} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ interactions are shown in Fig. 5. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: $\mathrm{H} \cdots \mathrm{H} \mathrm{33.7} \mathrm{\%}$, S $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S} 21.2 \%$, $\mathrm{S} \cdots \mathrm{S} 13.4, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C} 11 \%, \mathrm{Br} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{Br} 9.2 \%$ and $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N} 7.8 \%$. Other minor contributions to the Hirshfeld surface are: S..C/C‥S 1.9% and Br. . S/S . . Br 1.6\%.

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43 , update of March 2022; Groom et al., 2016) revealed that nearly a hundred crystal structures had been reported for complexes of 2-amino-1,3,4-thiadiazole derivatives and a number of metal ions, including $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Mo}$, $\mathrm{Ag}, \mathrm{Pd}, \mathrm{Cd}, \mathrm{Sn}, \mathrm{Re}, \mathrm{Pt}, \mathrm{Au}$ and Hg , twelve of which are for Cu complexes. Six structures exhibit tetragonal-pyramidal polyhedra (HONDOG, Torambetov et al., 2019; RUFQIT, Kadirova et al., 2008; SUZVOY, SUZVUE, Lynch \& Ewington, 2001; XIGWIU, Camí et al., 2005; ZEKWOE, Gurbanov, et al., 2018). In seven structures, AAT is attached to metal ions, making p-complexes (ODAPOC, Slyvka et al.,

Figure 5
Contributions of the various contacts to the two-dimensional fingerprint plots built using the Hirshfeld surfaces of the title complex.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
$\left[\mathrm{CuBr}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{4}\right] \mathrm{Br}$
916.38
Tetragonal, $P 4 / n$
293
$12.69368(9), 11.35879(13)$
$1830.24(3)$
2
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
7.95
$0.12 \times 0.08 \times 0.03$

XtaLAB Synergy, Single source at home/near, HyPix3000
Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
0.626, 1.000

18450, 1746, 1597
0.036
0.609

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
$0.025,0.065,1.05$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

1746
118
H -atom parameters constrained $0.26,-0.28$

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

2022; CEDSEM, Slyvka, 2017a; ESIBUG, Slyvka et al., 2021; HAJLUC, Ardan et al., 2017; HAJMAJ, HAJMIR, Ardan et al., 2017; YEBNAX, Slyvka, 2017b). However, no complexes of CuBr_{2} based on 2-amino-1,3,4-thiadiazole derivatives have been documented in the CSD.

6. Synthesis and crystallization

The ligand 2-amino-5-allylthio-1,3,4-thiadiazole (AAT) was synthesized by the method of Toshmurodov et al. (2016), yield: 93%, m.p. $=388-390 \mathrm{~K} . \mathrm{CuBr}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.296 \mathrm{~g}, 1 \mathrm{mmol})$ was added under continuous stirring to a solution of AAT (0.692 g , 4 mmol) dissolved in 10 ml of methanol. The resulting darkgreen solution was stirred for 3 h and was then left to stand at room temperature. After one week, green crystals suitable for X-ray diffraction were obtained (yield 86%) by the slow evaporation of the solvent, m.p. $=458-460 \mathrm{~K}$.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.83-0.97 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Funding information

This work was supported by Uzbekistan Ministry of Higher Education, Science and Innovation.

References

Aliabadi, A. (2016). Anticancer Agents Med. Chem. 16, 1301-1314.
Altıntop, M. D., Sever, B., Özdemir, A., Ilgın, S., Atlı, Ö., TuranZitouni, G. \& Kaplancıklı, Z. A. (2018). Anticancer Agents Med. Chem. 18, 1606-1616.
Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk'yanov, M., Lis, T. \& Mys’kiv, M. (2017). Acta Cryst. C73, 36-46.

Berezin, A. S., Ivanova, A. D., Komarov, V. Y., Nadolinny, V. A. \& Lavrenova, L. G. (2018). New J. Chem. 42, 4902-4908.
Camí, G. E., Liu González, M., Sanz Ruiz, F. \& Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936-945.

Chandra, S., Gautam, S., Rajor, H. K. \& Bhatia, R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 749-760.
Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. \& Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981-3989.
Chen, J., Yi, C., Wang, S., Wu, S., Li, S., Hu, D. \& Song, B. (2019). Bioorg. Med. Chem. Lett. 29, 1203-1210.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. \& Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502-506.

Gowramma, B., Praveen, T. K., Gomathy, S., Kalirajan, R., Babu, B. \& Krishnavenic, N. (2018). Curr. Bioact. Compd. 14, 309-316.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. \& Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.
Hangan, A. C., Turza, A., Stan, R. L., Stefan, R. \& Oprean, L. S. (2015). Russ. J. Coord. Chem. 41, 395-404.

Hassan, A. E., Shaaban, I. A., Abuelela, A. M., Zoghaib, W. M. \& Mohamed, T. A. (2018). J. Coord. Chem. 71, 2814-2830.
Huxel, T., Demeshko, S. \& Klingele, J. (2015). Z. Anorg. Allge Chem. 641, 1711-1717.
Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. \& Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066-1069.

Ishankhodzhaeva, M. M., Umarov, B. B., Kadyrova, Sh. A., Parpiev, N. A., Makhkamov, K. K. \& Talipov, S. A. (2000). Russ. J. Gen. Chem. 70, 1113-1119.
Jakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., Mihailović, N., Nićiforović, M. \& Joksović, L. (2017). Bioorg. Med. Chem. Lett. 27, 3709-3715.

Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. \& Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398-2402.
Karaburun, A., Acar Çevik, U., Osmaniye, D., Sağlık, B., Kaya Çavuşoğlu, B., Levent, S. \& Kaplancıklı, Z. (2018). Molecules, 23, 3129. https://doi.org/10.3390/molecules23123129

Kaviarasan, L., Gowramma, B., Kalirajan, R., Mevithra, M. \& Chandralekha, S. (2020). J. Iran. Chem. Soc. 17, 2083-2094.
Kolavi, G., Hegde, V., Khazi, I. \& Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069-3080.
Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. \& Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024.

Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. \& Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677-1680.
Lynch, D. E. \& Ewington, J. (2001). Acta Cryst. C57, 1032-1035.
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.
Slyvka, Y., Kinzhybalo, V., Shyyka, O. \& Mys’kiv, M. (2021). Acta Cryst. C77, 249-256.
Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356-357.
Slyvka, Y. I., Goreshnik, E. A., Pokhodylo, N. T. \& Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205-213.

Song, Y., Ji, Y.-F., Kang, M.-Y. \& Liu, Z.-L. (2012). Acta Cryst. E68, m772.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Swapna, M., Premakumari, C., Nagi Reddy, S., Padmaja, A. \& Padmavathi, V. (2013). Chem. Pharm. Bull. 61, 611-617.
Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. \& Ziyaev, A. (2019). Acta Cryst. E75, 1239-1242.
Toshmurodov, T. T., Ziyaev, A. A., Elmuradov, B. Zh., Ismailova, D. S. \& Kurbanova, E. R. (2016). J. Chem. Chem. Sci. 6, 199-204.
Upadhyay, P. K. \& Mishra, P. (2017). Rasayan J. Chem. 10, 254-262.
Wang, P., Wan, R., Wang, B., Han, F. \& Wang, Y. (2009). Acta Cryst. E65, m1086.
Wang, T., Miao, W., Wu, S., Bing, G., Zhang, X., Qin, Z., Yu, H., Qin, X. \& Fang, J. (2011). Chin. J. Chem. 29, 959-967.

Yusuf, M., Khan, R. A. \& Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029-8034.

supporting information

Acta Cryst. (2024). E80, 408-412 [https://doi.org/10.1107/S2056989024002652]

Synthesis, crystal structure and Hirshfeld surface analysis of bromidotetrakis-[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine- κN^{3}]copper(II) bromide

Aziz Atashov, Mukhlisakhon Azamova, Daminbek Ziyatov, Zamira Uzakbergenova, Batirbay Torambetov, Tamas Holczbauer, Jamshid Ashurov and Shakhnoza Kadirova

Computing details

Bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine- κN^{3}] copper(II) bromide

Crystal data

$\left[\mathrm{CuBr}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{4}\right] \mathrm{Br}$
$M_{r}=916.38$
Tetragonal, $P 4 / n$
$a=12.69368$ (9) \AA
$c=11.35879(13) \AA$
$V=1830.24(3) \AA^{3}$
$Z=2$
$F(000)=918$

Data collection

XtaLAB Synergy, Single source at home/near, HyPix 3000 diffractometer
Detector resolution: 10.0000 pixels mm^{-1} ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
$T_{\text {min }}=0.626, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.065$
$S=1.05$
1746 reflections
118 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
$D_{\mathrm{x}}=1.663 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 9121 reflections
$\theta=3.5-70.8^{\circ}$
$\mu=7.95 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.12 \times 0.08 \times 0.03 \mathrm{~mm}$

18450 measured reflections
1746 independent reflections
1597 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=69.9^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-15 \rightarrow 15$
$k=-11 \rightarrow 15$
$l=-13 \rightarrow 13$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0273 P)^{2}+0.9257 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}
Extinction correction: SHELXL-2016/6
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00018 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Br1	0.750000	0.750000	1.01564 (4)	0.04943 (15)	
Br 2	0.250000	0.750000	1.000000	0.05616 (16)	
Cu 1	0.750000	0.750000	0.77377 (5)	0.03890 (16)	
S1	0.39660 (5)	0.70986 (6)	0.72047 (6)	0.06176 (19)	
S2	0.42895 (6)	0.65094 (8)	0.46657 (7)	0.0831 (3)	
N2	0.59625 (14)	0.71817 (14)	0.74447 (16)	0.0470 (4)	
N1	0.57992 (14)	0.68882 (16)	0.62785 (18)	0.0544 (5)	
N3	0.50405 (16)	0.7637 (2)	0.9157 (2)	0.0739 (7)	
H3A	0.560992	0.775718	0.954484	0.089*	
H3B	0.443808	0.771729	0.949189	0.089*	
C1	0.50915 (16)	0.73279 (18)	0.8039 (2)	0.0500 (5)	
C2	0.48136 (19)	0.6828 (2)	0.6037 (2)	0.0574 (6)	
C3	0.5494 (3)	0.6360 (3)	0.3816 (3)	0.0984 (11)	
H3BC	0.580640	0.704195	0.365145	0.118*	0.5
H3BD	0.600153	0.593336	0.423967	0.118*	0.5
H3AA	0.600532	0.688177	0.406669	0.118*	0.5
H3AB	0.579095	0.566715	0.395347	0.118*	0.5
C5A	0.5337 (16)	0.5753 (12)	0.1730 (17)	0.143 (7)	0.5
H5AA	0.587593	0.612982	0.136912	0.171*	0.5
H5AB	0.492013	0.529830	0.128742	0.171*	0.5
C4	0.5259 (9)	0.6502 (7)	0.2475 (9)	0.104 (3)	0.5
H4	0.516751	0.720330	0.226229	0.125*	0.5
C4A	0.5181 (8)	0.5852 (11)	0.2749 (8)	0.112 (3)	0.5
H4A	0.461720	0.541488	0.293578	0.134*	0.5
C5	0.5187 (14)	0.6021 (18)	0.1813 (12)	0.154 (8)	0.5
H5A	0.526312	0.529967	0.192763	0.185*	0.5
H5B	0.504113	0.628295	0.106619	0.185*	0.5

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.05153(19)$	$0.05153(19)$	$0.0452(3)$	0.000	0.000	0.000
Br 2	$0.04993(19)$	$0.04993(19)$	$0.0686(3)$	0.000	0.000	0.000
Cu 1	$0.0362(2)$	$0.0362(2)$	$0.0443(3)$	0.000	0.000	0.000
S 1	$0.0387(3)$	$0.0791(4)$	$0.0675(4)$	$0.0015(3)$	$-0.0065(3)$	$0.0060(3)$
S 2	$0.0637(4)$	$0.1138(7)$	$0.0718(5)$	$-0.0029(4)$	$-0.0179(4)$	$-0.0189(4)$
N 2	$0.0405(9)$	$0.0489(10)$	$0.0517(10)$	$-0.0013(8)$	$-0.0029(8)$	$0.0008(8)$
N 1	$0.0450(10)$	$0.0610(12)$	$0.0573(11)$	$-0.0041(9)$	$-0.0020(8)$	$-0.0070(9)$
N3	$0.0430(11)$	$0.121(2)$	$0.0573(13)$	$0.0096(12)$	$0.0002(9)$	$-0.0060(13)$

C1	$0.0388(11)$	$0.0538(12)$	$0.0574(13)$	$0.0016(9)$	$-0.0018(9)$	$0.0079(10)$
C2	$0.0489(13)$	$0.0608(14)$	$0.0626(15)$	$-0.0020(11)$	$-0.0058(11)$	$-0.0008(11)$
C3	$0.084(2)$	$0.131(3)$	$0.080(2)$	$-0.004(2)$	$-0.0020(18)$	$-0.023(2)$
C5A	$0.168(13)$	$0.095(7)$	$0.165(16)$	$-0.031(7)$	$0.075(10)$	$-0.020(7)$
C4	$0.173(9)$	$0.068(5)$	$0.070(6)$	$-0.034(5)$	$0.017(5)$	$0.007(4)$
C4A	$0.117(7)$	$0.141(10)$	$0.077(6)$	$0.013(7)$	$0.024(5)$	$-0.019(6)$
C5	$0.121(9)$	$0.30(2)$	$0.038(4)$	$0.016(12)$	$-0.010(5)$	$-0.005(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{Cu} 1$	2.7474 (7)	C3-H3BC	0.9700
$\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	2.0206 (17)	C3-H3BD	0.9700
$\mathrm{Cu} 1-\mathrm{N} 2$	2.0206 (17)	C3-H3AA	0.9700
$\mathrm{Cu} 1-\mathrm{N} 2^{2 i}$	2.0206 (17)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{AB}$	0.9700
$\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {iii }}$	2.0206 (17)	C3-C4	1.562 (11)
S1-C1	1.739 (2)	C3-C4A	1.429 (10)
S1-C2	1.742 (3)	C5A-H5AA	0.9300
S2-C2	1.741 (3)	C5A-H5AB	0.9300
S2-C3	1.818 (4)	C5A-C4A	1.181 (19)
N2-N1	1.392 (3)	C4-H4	0.9300
N2-C1	1.308 (3)	C4-C5	0.973 (18)
N1-C2	1.283 (3)	C4A-H4A	0.9300
N3-H3A	0.8600	C5-H5A	0.9300
N3-H3B	0.8600	C5-H5B	0.9300
N3-C1	1.331 (3)		
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Br} 1$	99.48 (5)	S2-C3-H3BC	110.7
N2 $2^{\text {iii }}-\mathrm{Cu} 1-\mathrm{Br} 1$	99.48 (5)	S2-C3-H3BD	110.7
$\mathrm{N} 2^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Br} 1$	99.48 (5)	$\mathrm{S} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{AA}$	109.6
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Br} 1$	99.48 (5)	$\mathrm{S} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{AB}$	109.6
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {iii }}$	88.446 (18)	H3BC-C3-H3BD	108.8
$\mathrm{N} 2 \mathrm{ii}-\mathrm{Cu} 1-\mathrm{N} 2$	88.446 (18)	H3AA-C3-H3AB	108.1
$\mathrm{N} 2{ }^{\text {iii- }}$ - $\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	88.446 (18)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{S} 2$	110.2 (5)
N2i-Cu1-N2	88.445 (18)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{AA}$	109.6
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	161.04 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{AB}$	109.6
$\mathrm{N} 2^{\text {iii- }} \mathrm{Cu} 1-\mathrm{N} 2$	161.04 (11)	C4A-C3-S2	105.3 (5)
C1-S1-C2	86.58 (11)	C4A-C3-H3BC	110.7
C2-S2-C3	100.25 (14)	C4A-C3-H3BD	110.7
N1-N2-Cu1	110.74 (13)	H5AA-C5A-H5AB	120.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{Cu} 1$	134.66 (16)	C4A-C5A-H5AA	120.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	113.76 (18)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{AB}$	120.0
C2-N1-N2	111.4 (2)	C3-C4-H4	112.8
H3A-N3-H3B	120.0	C5-C4-C3	134.4 (15)
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	120.0	C5-C4-H4	112.8
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	120.0	C3-C4A-H4A	106.8
N2-C1-S1	112.94 (18)	C5A-C4A-C3	146.4 (13)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	125.1 (2)	$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	106.8
N3-C1-S1	121.96 (17)	C4-C5-H5A	120.0

supporting information

$\mathrm{S} 2-\mathrm{C} 2-\mathrm{S} 1$	$119.40(14)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	120.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{S} 1$	$115.33(19)$	$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	120.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{S} 2$	$125.3(2)$		$-178.55(17)$
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$-170.89(17)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{S} 2$	$1.2(2)$
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$168.95(12)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 1$	$0.2(3)$
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	$-9.9(4)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$-1.01(18)$
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-103(2)$	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$177.9(2)$
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$148(2)$	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 3$	$-158.1(4)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$	$-1.0(3)$	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	$166.4(6)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 2$	$178.68(17)$	$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 2-\mathrm{S} 1$	$178.11(19)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 2-\mathrm{N} 1$	$-1.6(3)$	
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$			

Symmetry codes: (i) $y,-x+3 / 2, z$; (ii) $-y+3 / 2, x, z$; (iii) $-x+3 / 2,-y+3 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots \mathrm{Br} 1$	0.86	2.52	$3.3265(1)$	157
$\mathrm{~N} 3 — \mathrm{H} 3 B \cdots \mathrm{Br} 2$	0.86	2.54	$3.3685(1)$	162
$\mathrm{C} 5 A-\mathrm{H} 5 A A \cdots \mathrm{Br} 1^{\text {iv }}$	0.93	3.03	$3.95(2)$	175

Symmetry code: (iv) $x, y, z-1$.

