research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(di­fluorometh­­oxy)phen­yl]-2,7,7-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, iso­propyl 4-[4-(di­fluoro­meth­­oxy)phen­yl]-2,6,6-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate and tert-butyl 4-[4-(di­fluoro­meth­­oxy)phen­yl]-2,6,6-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

crossmark logo

aDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, bDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Türkiye, eDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Türkiye, fDepartment of Chemistry, Howard University, Washington DC 20059, USA, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 10 January 2024; accepted 6 February 2024; online 8 February 2024)

The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C24H29F2NO4), (III) crystallize in the ortho­rhom­bic space group Pbca with Z = 8. In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network, while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002). The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-di­fluoro­meth­oxy­phenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.

1. Chemical context

Inflammation is a defense tool developed by the immune system to eliminate abnormal conditions resulting from harmful stimuli caused by pathogens, damaged cells, toxic compounds and traumatic cells. Inflammatory processes are important in terms of providing hemostasis of the body. Inflammatory mediators such as cytokines, chemokines and leukocytes secreted by the immune system during inflammation regulate the vital functions of the cell such as survival, growth and proliferation. In some cases, persistent and uncontrolled acute inflammatory responses cause chronic inflammation (Chen et al., 2018[Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. (2018). Oncotarget, 9, 7204-7218.]; Aqdas & Sung, 2023[Aqdas, M. & Sung, M. H. (2023). Trends Immunol. 44, 32-43.]).

Cancer is a dangerous disease with a high incidence all over the world. Although chemotherapy, radiotherapy and surgical inter­ventions are among the current treatment methods, there are cases where these methods are insufficient. In addition, cancer is a disease that progresses rapidly and can recur even after treatment. Therefore, there is an urgent need for new treatments and new therapeutic agents (Shaheen et al., 2020[Shaheen, M. A., El-Emam, A. A. & El-Gohary, N. S. (2020). Bioorg. Chem. 105, 104274.]). Tumor tissues are formed by the abnormal and damaged proliferation of cancer cells. Inflammation mediators multiply uncontrollably by immune cells in the microenvironment of tumor tissue (Aqdas & Sung, 2023[Aqdas, M. & Sung, M. H. (2023). Trends Immunol. 44, 32-43.]). This uncontrolled development of inflammation is the root cause of many chronic diseases and cancers. Therefore, it is very important to develop new anti-inflammatory treatments (Wu et al., 2022[Wu, B., Sodji, Q. H. & Oyelere, A. K. (2022). Cancers, 14, 552.]).

1,4-DHPs and their condensed derivatives are heterocyclic compounds with many pharmacological and biological activities. These compounds were described in the literature for the first time with their calcium channel modulator activities, and then various activities such as anti­cancer and anti-ischemic were discovered (Bryzgalov et al., 2023[Bryzgalov, A., Tolstikova, T., Koshcheev, B. & Maksimov, A. (2023). Results Chem. 5, 100705.]). Lerkadipine, which is a calcium channel blocker in the pharmaceutical market, has also been shown by in vivo studies to be effective in melanoma and non-small-cell lung cancer. Based on this information, new compounds with anti-inflammatory effects have been obtained with modifications made on 1,4-DHPs and their activities have been proven (Pan et al., 2022[Pan, C., Luo, M., Lu, Y., Pan, X., Chen, X., Ding, L., Che, J., He, Q. & Dong, X. (2022). Bioorg. Chem. 125, 105820.]) (Fig. 1[link]). Hexa­hydro­quinolines are heterocyclic rings obtained by the condensation of 1,4-DHPs with the cyclo­hexane ring. In recent years, it has been seen that hexa­hydro­quinoline derivatives have many biological activities such as analgesic, anti­cancer, anti­bacterial, anti­tuberculosis, anti­malarial, anti­oxidant, anti-inflammatory, anti-Alzheimer's. Therefore, the hexa­hydro­quinoline ring system is a very well-established motif for medicinal chemistry and has been the subject of many studies in recent years (Ranjbar et al., 2019[Ranjbar, S., Edraki, N., Firuzi, O., Khoshneviszadeh, M. & Miri, R. (2019). Mol. Divers. 23, 471-508.]).

[Scheme 1]
[Figure 1]
Figure 1
Structure of lercanidipine

2. Structural commentary

The 1,4-di­hydro­pyridine ring (N1/C1/C6–C9) of compound (I) (Fig. 2[link]) adopts a distorted boat conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.196 (3) Å, θ = 72.2 (9)° and φ = 185.8 (8)°], while the cyclo­hexene ring (C1–C6) has a distorted half-chair conformation [puckering parameters are QT = 0.466 (3) Å, θ = 123.1 (4)° and φ = 295.3 (4)°]. The atoms of the 4-di­fluoro­meth­oxy­phenyl group in (I) are disordered over two sets of sites with refined occupancy factors of 0.647 (3) and 0.353 (3). The major (C15–C20) and minor (C15A–C20A) disorder components of the 4-[4-(di­fluoro­meth­oxy]phenyl ring make dihedral angles of 80.84 (15) and 85.81 (27)°, respectively, with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.382 (2) Å for C3].

[Figure 2]
Figure 2
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Only the major component of disorder is shown for clarity.

In (II) (Fig. 3[link]), the 1,4-di­hydro­pyridine ring (N1/C1/C6–C9) and the cyclo­hexene ring (C1–C6) both have distorted boat conformations [puckering parameters are QT = 0.3187 (9) Å, θ = 105.86 (16)° and φ = 359.72 (17)° for the 1,4-di­hydro­pyridine ring, and QT = 0.4332 (11) Å, θ = 131.14 (13)° and φ = 301.37 (17)° for the cyclo­hexene ring]. The 4-[4-(di­fluoro­meth­oxy]phenyl ring (C17–C22) makes a dihedral angle of 86.39 (4)° with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.421 (1) Å for C3].

[Figure 3]
Figure 3
The mol­ecular structure of (II) with displacement ellipsoids drawn at the 50% probability level.

In (III) (Fig. 4[link]), the 1,4-di­hydro­pyridine ring (N1/C1–C4/C9) and the cyclo­hexene ring (C4–C9) both have distorted boat conformations [puckering parameters are QT = 0.3403 (14) Å, θ = 73.4 (2)° and φ = 180.4 (3)° for the 1,4-di­hydro­pyridine ring, and QT = 0.420 (5) Å, θ = 131.7 (6)° and φ = 356.2 (10)° for the cyclo­hexene ring]. The two carbon atoms (C7/C7A and C8/C8A) in the cyclo­hexane ring of the quinoline ring system are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio. The 4-[4-(di­fluoro­meth­oxy]phenyl ring (C18–C23) makes dihedral angles of 84.47 (4) and 88.71 (5)°, respectively, with the mean planes of the major and minor disorder components of the quinoline ring system [N1/C1–C9; maximum deviation = −0.427 (3) Å for C7 in the major component and N1/C1–C6/C7A/C8A/C9; maximum deviation = 0.392 (3) Å for C3 in the minor component].

[Figure 4]
Figure 4
The mol­ecular structure of (III) with displacement ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown for clarity.

Bond lengths and angles in all compounds are in agreement with those reported for the related compounds discussed in the Database survey section.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network (Table 1[link]; Figs. 5[link], 6[link] and 7[link]), while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002) [Table 2[link], Figs. 8[link], 9[link], 10[link] and 11[link]; C3—H3BCg3a: H3BCg3a = 3.6716 (14) Å, C3—H3BCg3a = 158°; symmetry code: (a) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; Cg3 is the centroid of the 4-di­fluoro­meth­oxy­phenyl ring (C17–C22) for (II), and Table 3[link], Figs. 12[link], 13[link], 14[link] and 15[link]; C7—H7BCg4b: H7BCg4b = 3.687 (2) Å, C7—H7BCg4b = 158°; symmetry code: (b) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; Cg4 is the centroid of the 4-di­fluoro­meth­oxy-phenyl ring (C18–C23) for (III)]. The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 (3) 1.93 (4) 2.834 (3) 174 (3)
C12—H12A⋯O2 0.98 2.32 2.831 (4) 111
C12—H12C⋯F2ii 0.98 2.63 3.449 (5) 141
C12—H12C⋯F1Aii 0.98 2.41 3.291 (7) 150
C14—H14C⋯O4Aiii 0.98 2.66 3.551 (6) 152
C17—H17A⋯F1 0.95 2.43 2.975 (4) 117
C17—H17A⋯F1iv 0.95 2.56 3.488 (4) 165
C21—H21A⋯O2v 1.00 2.44 3.155 (5) 128
C21A—H21B⋯O2v 1.00 2.50 3.062 (7) 115
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.863 (16) 1.967 (16) 2.8258 (12) 173.0 (14)
C2—H2A⋯F2ii 0.99 2.40 3.1626 (13) 133
C12—H12A⋯O3 0.98 2.18 2.7991 (14) 120
C19—H19A⋯F2 0.95 2.37 2.9106 (14) 116
C23—H23A⋯F1iii 1.00 2.63 3.3972 (14) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, -y, -z].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 1.97 (2) 2.8418 (16) 171.2 (19)
C8A—H8A⋯F2ii 0.99 2.53 3.168 (19) 130
C8A—H8AB⋯F2ii 0.99 2.48 3.168 (19) 126
C10—H10A⋯O4 0.98 2.27 2.7834 (18) 112
C15—H15A⋯O3 0.98 2.47 3.038 (3) 116
C16—H16C⋯F1iii 0.98 2.62 3.573 (2) 164
C17—H17B⋯O3 0.98 2.41 2.969 (2) 116
C22—H22A⋯F2 0.95 2.37 2.9091 (19) 116
C24—H24A⋯O4iv 1.00 2.65 3.4638 (18) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 5]
Figure 5
The N—H⋯O and C—H⋯O contacts (solid lines) of (I), shown along the a-axis. Only the major component of disorder is shown for clarity.
[Figure 6]
Figure 6
The N—H⋯O and C—H⋯O contacts (solid lines) of (I), shown along the b-axis.
[Figure 7]
Figure 7
The N—H⋯O and C—H⋯O contacts (solid lines) of (I), shown along the c-axis.
[Figure 8]
Figure 8
The N—H⋯O and C—H⋯F contacts (solid lines) of (II), shown along the a-axis.
[Figure 9]
Figure 9
The N—H⋯O and C—H⋯F contacts (solid lines) of (II), shown along the b-axis.
[Figure 10]
Figure 10
The N—H⋯O and C—H⋯F contacts (solid lines) of (II), shown along the c-axis.
[Figure 11]
Figure 11
The C—H⋯π contacts (solid lines) of (II), shown along the a-axis.
[Figure 12]
Figure 12
The N—H⋯O and C—H⋯F contacts (solid lines) of (III), shown along the a-axis. Only the major component of disorder is shown for clarity.
[Figure 13]
Figure 13
The N—H⋯O and C—H⋯F contacts (solid lines) of (III), shown along the b-axis.
[Figure 14]
Figure 14
The N—H⋯O and C—H⋯F contacts (solid lines) of (III), shown along the c-axis.
[Figure 15]
Figure 15
The C—H⋯π contacts (solid lines) of (III), shown along the a-axis.

To qu­antify the inter­molecular inter­actions between the mol­ecules of (I), (II) and (III) in their respective crystal structures, the Hirshfeld surfaces and their corresponding two-dimensional fingerprint plots were calculated using the software package Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The two-dimensional fingerprint plots are shown in Fig. 16[link]. The dominant inter­actions of all compounds are H⋯H [(I): 49.1%, (II): 55.5% and (III): 58.9%], O⋯H/H⋯O [(I): 17.5%, (II): 14.9% and (III): 12.7%], F⋯H/H⋯F [(I): 16.2%, (II): 14.1% and (III): 12.9%] and C⋯H/H⋯C [(I) 11.7%, (II): 14.5% and (III): 12.0% ]. The percentage contributions of inter­atomic contacts calculated for each compound are given in Table 4[link]. These inter­actions play a crucial role in the overall consolidation of the crystal packing. The presence of different functional groups in the compounds leads to some differences in the remaining weak inter­actions.

Table 4
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the compounds

Contact Percentage contribution
  (I) (II) (III)
H⋯H 49.1 55.5 58.9
O⋯H/H⋯O 17.5 14.9 12.7
F⋯H/H⋯F 16.2 14.1 12.9
C⋯H/H⋯C 11.7 14.5 12.0
F⋯F 1.8 0.2
O⋯C/C⋯O 1.2 1.0
F⋯O/O⋯F 0.8 0.2
N⋯H/H⋯N 0.5 0.2 0.2
F⋯C/C⋯F 0.5 1.5 1.4
O⋯N/N⋯O 0.3 0.5 0.4
O⋯O 0.1
C⋯C 0.1 0.4 0.1
[Figure 16]
Figure 16
Two-dimensional fingerprint graphs showing the H⋯H, O⋯H/H⋯O, F⋯H/H⋯F and C⋯H/H⋯C inter­actions of (I), (II) and (III).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the 1,4,5,6,7,8-hexa­hydro­quinoline group showed that the nine results most closely related to the title compound are LIMYUF (Pehlivanlar et al., 2023[Pehlivanlar, E., Yıldırım, S. Ö., Şimşek, R., Akkurt, M., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 664-668.]), WEZJUK (Yıldırım et al., 2023[Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 187-191.]), ECUCUE (Yıldırım et al., 2022[Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798-803.]), LOQCAX (Steiger et al., 2014[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790-795.]), NEQMON (Öztürk Yildirim, et al., 2013[Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40-o41.]), PECPUK (Gündüz et al., 2012[Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404-o3405.]), IMEJOA (Linden et al., 2011[Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80-o84.]), PUGCIE (Mookiah et al., 2009[Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.]), UCOLOO (Linden et al., 2006[Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227-o230.]) and DAYJET (Linden et al., 2005[Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731-o734.]). In all these compounds, mol­ecules are linked by N—H⋯O hydrogen bonds. Furthermore, C—H⋯F hydrogen bonds in LIMYUF, C—H⋯O hydrogen bonds in WEZJUK, ECUCUE, NEQMON, IMEJOA and PUGCIE and C—H⋯π inter­actions in LIMYUF, WEZJUK and ECUCUE were also observed.

5. Synthesis and crystallization

The target compounds were synthesized by 5,5-di­methyl­cyclo­hexane-1,3-dione/4,4-di­methyl­cyclo­hexane-1,3-dione (1 mmol), 4-di­fluoro­meth­oxy­benzaldehyde (1 mmol), methyl aceto­acetate/isopropyl aceto­acetate/tert-butyl aceto­acetate (1 mmol), and ammonium acetate (5 mmol), which were refluxed for 8 h in absolute methanol (10 ml). The progress of the reactions were monitored by TLC and after the reactions were seen to be complete, they were cooled to room temperature. The obtained precipitates were filtered and recrystallized from methanol for further purification. The synthetic route is shown in Fig. 17[link]. The structures of the compounds were elucidated by IR, 1H-NMR, 13C-NMR and HRMS analysis.

[Figure 17]
Figure 17
Synthetic scheme

Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (I): Yield: 59%; Yellow solid; mp: 478–479 K; IR (ν, cm−1) 3208 (N—H stretching); 3076 (C—H stretching, aromatic); 2956 (C—H stretching, aliphatic); 1700 (C=O stretching, ester); 1649 (C=O stretching, ketone). 1H NMR (500 MHz, DMSO-d6, ppm): δ 0.84 (3H; s; 7-CH3), 1.00 (3H; s; 7-CH3), 1.98 (1H; d; J = 16,05; kinolin H8a), 2.17 (1H; d; J = 16.05 Hz; quinoline H8b), 2.29 (3H; s; 2-CH3), 2.29 (1H; d; J = 16.05 Hz quinoline H6a), 2.30 (2H; d; J = 16.05 Hz; quinoline H6b), 3.53 (3H; s; COOCH3), 4.86 (H; s; quinoline H4), 6.99 (2H; d; J = 8.6 Hz; Ar-H3, Ar-H5), 7.13 (1H; t; J = 74.4 Hz; OCHF2), 7.17 (2H; d; J = 8.6 Hz; Ar-H2, Ar-H6), 9.14 (1H; s; NH). 13C NMR (125 MHz, DMSO-d6, ppm): δ 18.8 (2-CH3), 26.9 (7-CH3), 29.5 (C-7), 32.6 (C-8), 35.6 (C-4), 50.6 (C-6), 51.1 (COOCH3), 103.4 (C-3), 110.2 (C-4a), 114.8 (C3′), 116.9, 118.6, 118.9 (OCHF2), 129.2 (C2′), 145.0 (C1′), 145.9 (C-2), 149.4 (C-8a), 150.06 (C4′), 167.6 (COOCH3), 194.7 (C-5). HRMS (ESI/Q-TOF): m/z calculated for C21H23F2NO4 [M + H]+, 392,1673; found 392.1825.

Isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (II): Yield: 37%; White solid; mp: 486–487 K; IR (ν, cm−1) 3194 (N—H stretching); 2970 (C—H stretching, aromatic); 2939 (C—H stretching, aliphatic); 1674 (C=O stretching, ester). 1H NMR (400 MHz, DMSO-d6, ppm): δ 0.86 (3H; s; 6-CH3), 0.96 (3H; s; 6-CH3), 1.0 [3H; d; J = 6.4 Hz; COOCH(CH3)2a], 1.15 [3H; d; J=6.4 Hz; COOCH(CH3)2b], 1.67–1.70 (2H; m; quinoline H7), 2.44 (3H; m; quinoline H8), 2.24 (3H; s; 2-CH3), 4.77–4.82 [1H; m; COOCH(CH3)2], 4.81 (1H; s; quinoline H4), 6.95 (2H; d; J = 8 Hz; Ar-H3) 7.09 (1H; t; J = 74.4 Hz; OCHF2), 7.14 (2H; d; J = 8 Hz; Ar-H2), Ar-H6, 9.01 (1H; s; NH). 13C NMR (100 MHz, DMSO-d6, ppm): δ 18.2 (2-CH3), 21.5 [COOCH(CH3)2a], 21.8 [COOCH(CH3)2b], 22.8 (C-8), 24.0 (6-CH3), 25.0 (C-7), 34.0 (C-4), 35.5 (C-6), 66.0 [COOCH(CH3)2] 103.3 (C-3), 108.9 (C-4a), 113.8 (C3′), 116.6, 118.0, 118.9 (OCHF2), 128.8 (C2′), 144.7 (C1′), 144.9 (C-2), 149.3 (C-8a), 149.7 (C4′), 166.2 [COOCH(CH3)2], 199.3 (C-5). HRMS (ESI/Q-TOF): m/z calculated for C23H27F2NO4 [M + H]+, 420.1986; found 420.2150.

tert-Butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (III): Yield: 20%; White solid; mp: 456–457 K; IR (ν, cm−1) 3194 (N—H stretching); 2962 (C—H stretching, aromatic); 2931 (C—H stretching, aliphatic); 1674 (C=O stretching, ester). 1H NMR (400 MHz, DMSO-d6, ppm): δ 0.86 (3H; s; 6-CH3), 0.95 (3H; s; 6-CH3), 1.30 [9H; s; COOC(CH3)3], 1.65–1.69 (2H; m; quinoline H7), 2.20 (3H; s; 2-CH3), 2.44–2.47 (2H; m; quinoline H8), 4.76 (1H; s; quinoline H4), 6.96 (2H; d; J = 8.4 Hz; Ar-H3, Ar-H5), 7.10 (1H; t; J = 74.4 Hz; OCHF2), 7.13 (2H; d; J = 8 Hz; Ar-H2, Ar-H6), 8.95 (1H; s; NH). 13C NMR (100 MHz, DMSO-d6, ppm): δ 18.1 (2-CH3), 22.8 (C-8), 24.0 (6-CH3), 25.0 (C-7), 27.8 [COOC(CH3)3], 34.0 (C-4), 35.7 (C-6), 78.7 [COOC(CH3)3], 104.4 (C-3), 108.7 (C-4a), 113.8 (C3′), 116.3, 118.0, 118.9 (OCHF2), 128.7 (C2′), 143.9 (C1'), 144.9 (C-2), 148.7 (C-8a), 149.7 (C4′), 166.3 (COOC(CH3)3), 199.2 (C-5). HRMS (ESI/Q-TOF): m/z calculated for C24H29F2NO4 [M + H]+, 434.2143; found 434.2321.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In (I), (II) and (III), the N-bound H atom was located in a difference Fourier map and refined freely [N1—H1N = 0.90 (3) Å for (I), N1—H1N = 0.863 (16) Å for (II) and N1—H1N = 0.88 (2) Å for (III)]. The C-bound H atoms of all compounds were positioned geometrically [C—H = 0.95–1.00 Å] and refined using a riding model withUiso(H) = 1.2 or 1.5Ueq(C). In (I), the atoms of the 4-di­fluoro­meth­oxy-phenyl group are disordered over two sets of sites with refined occupancy factors of 0.647 (3):0.353 (3). In (III), the carbon atoms (C10, C13–C24) of the methyl and tert-butyl formate group attached to the 1,4-di­hydro­pyridine ring were refined isotropically for a stable structure. The atoms (C11/C11A and C12/C12A) of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms (C7/C7A and C8/C8A) in the anti­clockwise direction after the carbon atom to which the dimethyl group of the cyclo­hexane ring is attached, were refined as disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C21H23F2NO4 C23H27F2NO4 C24H29F2NO4
Mr 391.40 419.45 433.48
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 100 100 100
a, b, c (Å) 19.705 (3), 15.389 (2), 14.1279 (19) 12.255 (3), 15.694 (3), 21.903 (4) 12.4094 (8), 15.9871 (12), 21.9629 (15)
α, β, γ (°) 90, 113.801 (4), 90 90, 90, 90 90, 90, 90
V3) 3919.7 (9) 4212.3 (14) 4357.2 (5)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.10 0.10
Crystal size (mm) 0.30 × 0.25 × 0.17 0.31 × 0.23 × 0.08 0.31 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker D8 Quest with Photon 2 detector Bruker D8 Quest with Photon 2 detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.603, 0.746 0.684, 0.747 0.374, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 47858, 4871, 3288 102650, 8537, 6743 56620, 6654, 4732
Rint 0.082 0.073 0.142
(sin θ/λ)max−1) 0.667 0.788 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.186, 1.05 0.050, 0.128, 1.03 0.059, 0.163, 1.05
No. of reflections 4871 8537 6654
No. of parameters 332 280 329
No. of restraints 361 0 68
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.58 0.58, −0.42 0.37, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (I) top
Crystal data top
C21H23F2NO4F(000) = 1648
Mr = 391.40Dx = 1.326 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.705 (3) ÅCell parameters from 9994 reflections
b = 15.389 (2) Åθ = 2.6–29.2°
c = 14.1279 (19) ŵ = 0.10 mm1
β = 113.801 (4)°T = 100 K
V = 3919.7 (9) Å3Prism, colorless
Z = 80.30 × 0.25 × 0.17 mm
Data collection top
Bruker D8 Quest with Photon 2 detector
diffractometer
3288 reflections with I > 2σ(I)
φ and ω scansRint = 0.082
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.7°
Tmin = 0.603, Tmax = 0.746h = 2624
47858 measured reflectionsk = 2020
4871 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: mixed
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.043P)2 + 11.081P]
where P = (Fo2 + 2Fc2)/3
4871 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 0.58 e Å3
361 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.09716 (12)0.54160 (14)0.69583 (14)0.0510 (5)
O20.15731 (12)0.17128 (13)0.53819 (18)0.0594 (6)
O30.15902 (12)0.23777 (13)0.68037 (16)0.0553 (6)
N10.12023 (13)0.42587 (15)0.40402 (16)0.0392 (5)
C10.10494 (13)0.49275 (16)0.45557 (17)0.0320 (5)
C20.07419 (16)0.57420 (17)0.39524 (18)0.0432 (7)
H2A0.0197850.5681900.3577850.052*
H2B0.0955060.5819550.3432120.052*
C30.09123 (15)0.65493 (18)0.4646 (2)0.0432 (7)
C40.06672 (14)0.63670 (17)0.5521 (2)0.0392 (6)
H4A0.0843330.6846140.6030660.047*
H4B0.0118400.6366790.5234870.047*
C50.09443 (13)0.55203 (17)0.60759 (18)0.0336 (5)
C60.11516 (12)0.48321 (15)0.55589 (16)0.0292 (5)
C70.14879 (14)0.40124 (16)0.61533 (18)0.0332 (5)
C80.14482 (13)0.32712 (16)0.54191 (19)0.0342 (5)
C90.13559 (14)0.34270 (17)0.4431 (2)0.0377 (6)
C100.0482 (2)0.7326 (2)0.4006 (3)0.0720 (12)
H10A0.0050150.7197410.3715580.108*
H10B0.0640700.7436560.3442580.108*
H10C0.0580840.7840750.4449770.108*
C110.17443 (16)0.67588 (19)0.5086 (2)0.0457 (7)
H11A0.1846240.7259910.5551280.068*
H11B0.1891140.6894770.4517480.068*
H11C0.2026690.6255590.5470390.068*
C120.13988 (19)0.2777 (2)0.3665 (2)0.0547 (8)
H12A0.1778480.2341710.4025770.082*
H12B0.1528790.3074810.3147720.082*
H12C0.0917000.2489660.3320420.082*
C130.15455 (14)0.23808 (18)0.5819 (2)0.0429 (6)
C140.1635 (2)0.1524 (2)0.7254 (3)0.0746 (11)
H14A0.1676040.1581650.7965480.112*
H14B0.2072760.1219310.7255480.112*
H14C0.1188080.1191800.6845230.112*
C150.22622 (13)0.4139 (4)0.6988 (2)0.0329 (10)0.647 (3)
C160.28551 (17)0.4229 (3)0.67009 (18)0.0388 (11)0.647 (3)
H16A0.2769950.4237720.5989440.047*0.647 (3)
C170.35727 (14)0.4308 (2)0.7454 (3)0.0430 (10)0.647 (3)
H17A0.3977910.4369360.7258020.052*0.647 (3)
C180.36973 (14)0.4295 (2)0.8495 (2)0.0426 (11)0.647 (3)
C190.31044 (19)0.4205 (3)0.87829 (18)0.0449 (11)0.647 (3)
H19A0.3189640.4196490.9494380.054*0.647 (3)
C200.23869 (16)0.4127 (3)0.8029 (3)0.0414 (11)0.647 (3)
H20A0.1981670.4064840.8225810.050*0.647 (3)
O40.44015 (17)0.4369 (2)0.9302 (2)0.0575 (10)0.647 (3)
C210.5006 (3)0.4146 (5)0.9161 (5)0.081 (2)0.647 (3)
H21A0.5428520.4121280.9857480.097*0.647 (3)
F10.51546 (16)0.4803 (3)0.8608 (3)0.0920 (13)0.647 (3)
F20.4900 (2)0.3321 (2)0.8754 (4)0.0751 (13)0.647 (3)
C15A0.2335 (2)0.4232 (7)0.6827 (5)0.0348 (18)0.353 (3)
C16A0.2824 (3)0.4423 (5)0.6369 (4)0.0375 (18)0.353 (3)
H16B0.2647370.4457700.5637510.045*0.353 (3)
C17A0.3570 (3)0.4564 (4)0.6983 (4)0.0342 (15)0.353 (3)
H17B0.3903780.4694870.6670150.041*0.353 (3)
C18A0.3828 (2)0.4514 (4)0.8053 (4)0.0373 (15)0.353 (3)
C19A0.3339 (3)0.4323 (5)0.8511 (4)0.0391 (16)0.353 (3)
H19B0.3515700.4288850.9242610.047*0.353 (3)
C20A0.2593 (3)0.4182 (6)0.7897 (5)0.0387 (17)0.353 (3)
H20B0.2259280.4051670.8209990.046*0.353 (3)
O4A0.4570 (2)0.4712 (3)0.8666 (4)0.0458 (14)0.353 (3)
C21A0.5040 (4)0.4078 (6)0.9164 (6)0.068 (3)0.353 (3)
H21B0.5545000.4339820.9512410.081*0.353 (3)
F1A0.5034 (3)0.3581 (5)0.8348 (4)0.0512 (16)0.353 (3)
F2A0.4849 (3)0.3731 (4)0.9915 (4)0.0766 (19)0.353 (3)
H1N0.1163 (19)0.437 (2)0.339 (3)0.062 (10)*
H70.1208 (15)0.3857 (17)0.655 (2)0.032 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0691 (14)0.0580 (13)0.0330 (10)0.0189 (10)0.0279 (10)0.0037 (9)
O20.0485 (12)0.0372 (11)0.0726 (15)0.0057 (9)0.0037 (11)0.0120 (10)
O30.0576 (13)0.0419 (11)0.0525 (12)0.0102 (9)0.0079 (10)0.0168 (9)
N10.0505 (13)0.0445 (12)0.0249 (10)0.0165 (10)0.0177 (9)0.0080 (9)
C10.0326 (12)0.0362 (12)0.0232 (11)0.0098 (10)0.0071 (9)0.0013 (9)
C20.0513 (16)0.0430 (14)0.0220 (11)0.0171 (12)0.0008 (11)0.0029 (10)
C30.0431 (15)0.0394 (14)0.0312 (13)0.0079 (11)0.0017 (11)0.0056 (10)
C40.0329 (13)0.0366 (13)0.0387 (13)0.0039 (10)0.0047 (10)0.0011 (11)
C50.0293 (12)0.0429 (14)0.0268 (11)0.0042 (10)0.0094 (9)0.0015 (10)
C60.0266 (11)0.0351 (12)0.0223 (10)0.0006 (9)0.0061 (9)0.0006 (9)
C70.0314 (12)0.0382 (13)0.0266 (11)0.0062 (10)0.0083 (10)0.0019 (10)
C80.0256 (11)0.0342 (12)0.0382 (13)0.0008 (9)0.0081 (10)0.0040 (10)
C90.0348 (13)0.0401 (14)0.0387 (13)0.0116 (11)0.0154 (11)0.0121 (11)
C100.072 (2)0.0413 (17)0.062 (2)0.0130 (15)0.0159 (17)0.0200 (15)
C110.0473 (16)0.0479 (16)0.0353 (13)0.0163 (13)0.0101 (12)0.0057 (12)
C120.0607 (19)0.0528 (18)0.0557 (18)0.0183 (15)0.0288 (15)0.0275 (15)
C130.0257 (12)0.0411 (15)0.0479 (15)0.0017 (10)0.0002 (11)0.0012 (12)
C140.070 (2)0.051 (2)0.080 (2)0.0077 (17)0.0066 (19)0.0312 (18)
C150.0309 (19)0.034 (2)0.028 (2)0.0096 (16)0.0063 (15)0.0006 (17)
C160.0326 (19)0.050 (3)0.0262 (19)0.0093 (18)0.0040 (16)0.0102 (19)
C170.0315 (19)0.053 (2)0.034 (2)0.0103 (17)0.0024 (17)0.0150 (19)
C180.040 (2)0.037 (2)0.0295 (19)0.0117 (18)0.0084 (18)0.0116 (16)
C190.059 (3)0.043 (2)0.0213 (18)0.013 (2)0.0046 (17)0.0017 (16)
C200.047 (2)0.045 (2)0.0258 (18)0.013 (2)0.0087 (17)0.0010 (16)
O40.0514 (17)0.0443 (17)0.0397 (16)0.0138 (14)0.0202 (13)0.0107 (13)
C210.047 (3)0.075 (3)0.076 (3)0.025 (3)0.021 (3)0.036 (3)
F10.0350 (16)0.141 (3)0.077 (2)0.0084 (18)0.0005 (15)0.059 (2)
F20.0411 (19)0.065 (2)0.093 (3)0.0140 (15)0.0006 (19)0.028 (2)
C15A0.039 (3)0.034 (3)0.022 (3)0.007 (3)0.002 (3)0.005 (3)
C16A0.031 (3)0.037 (4)0.034 (3)0.004 (3)0.002 (3)0.002 (3)
C17A0.032 (3)0.032 (3)0.032 (3)0.001 (2)0.006 (3)0.005 (3)
C18A0.033 (3)0.036 (3)0.031 (3)0.004 (2)0.001 (2)0.004 (3)
C19A0.035 (3)0.043 (3)0.027 (3)0.003 (3)0.001 (3)0.000 (3)
C20A0.035 (3)0.044 (3)0.031 (3)0.001 (3)0.007 (3)0.002 (3)
O4A0.034 (2)0.041 (3)0.043 (3)0.002 (2)0.004 (2)0.004 (2)
C21A0.045 (4)0.060 (4)0.065 (5)0.013 (4)0.012 (4)0.011 (4)
F1A0.033 (3)0.080 (4)0.038 (3)0.013 (3)0.011 (2)0.020 (3)
F2A0.055 (3)0.110 (5)0.062 (3)0.005 (3)0.021 (3)0.046 (3)
Geometric parameters (Å, º) top
O1—C51.236 (3)C12—H12C0.9800
O2—C131.212 (3)C14—H14A0.9800
O3—C131.358 (4)C14—H14B0.9800
O3—C141.447 (4)C14—H14C0.9800
N1—C11.363 (3)C15—C161.3900
N1—C91.378 (3)C15—C201.3900
N1—H1N0.90 (3)C16—C171.3900
C1—C61.357 (3)C16—H16A0.9500
C1—C21.499 (3)C17—C181.3900
C2—C31.533 (4)C17—H17A0.9500
C2—H2A0.9900C18—C191.3900
C2—H2B0.9900C18—O41.400 (3)
C3—C41.524 (4)C19—C201.3900
C3—C101.532 (4)C19—H19A0.9500
C3—C111.535 (4)C20—H20A0.9500
C4—C51.505 (3)O4—C211.330 (6)
C4—H4A0.9900C21—F21.375 (7)
C4—H4B0.9900C21—F11.379 (8)
C5—C61.436 (3)C21—H21A1.0000
C6—C71.512 (3)C15A—C16A1.3900
C7—C151.518 (3)C15A—C20A1.3900
C7—C81.522 (3)C16A—C17A1.3900
C7—C15A1.589 (4)C16A—H16B0.9500
C7—H70.97 (3)C17A—C18A1.3900
C8—C91.354 (4)C17A—H17B0.9500
C8—C131.465 (4)C18A—C19A1.3900
C9—C121.501 (4)C18A—O4A1.399 (4)
C10—H10A0.9800C19A—C20A1.3900
C10—H10B0.9800C19A—H19B0.9500
C10—H10C0.9800C20A—H20B0.9500
C11—H11A0.9800O4A—C21A1.334 (7)
C11—H11B0.9800C21A—F2A1.370 (7)
C11—H11C0.9800C21A—F1A1.379 (9)
C12—H12A0.9800C21A—H21B1.0000
C12—H12B0.9800
C13—O3—C14114.9 (3)H12A—C12—H12C109.5
C1—N1—C9123.2 (2)H12B—C12—H12C109.5
C1—N1—H1N117 (2)O2—C13—O3121.4 (3)
C9—N1—H1N119 (2)O2—C13—C8128.5 (3)
C6—C1—N1120.3 (2)O3—C13—C8110.0 (2)
C6—C1—C2122.7 (2)O3—C14—H14A109.5
N1—C1—C2116.9 (2)O3—C14—H14B109.5
C1—C2—C3112.34 (19)H14A—C14—H14B109.5
C1—C2—H2A109.1O3—C14—H14C109.5
C3—C2—H2A109.1H14A—C14—H14C109.5
C1—C2—H2B109.1H14B—C14—H14C109.5
C3—C2—H2B109.1C16—C15—C20120.0
H2A—C2—H2B107.9C16—C15—C7119.0 (2)
C4—C3—C10110.0 (3)C20—C15—C7120.9 (2)
C4—C3—C2108.1 (2)C15—C16—C17120.0
C10—C3—C2109.2 (2)C15—C16—H16A120.0
C4—C3—C11110.3 (2)C17—C16—H16A120.0
C10—C3—C11108.7 (2)C16—C17—C18120.0
C2—C3—C11110.6 (3)C16—C17—H17A120.0
C5—C4—C3114.5 (2)C18—C17—H17A120.0
C5—C4—H4A108.6C19—C18—C17120.0
C3—C4—H4A108.6C19—C18—O4116.4 (3)
C5—C4—H4B108.6C17—C18—O4123.6 (3)
C3—C4—H4B108.6C18—C19—C20120.0
H4A—C4—H4B107.6C18—C19—H19A120.0
O1—C5—C6120.8 (2)C20—C19—H19A120.0
O1—C5—C4119.8 (2)C19—C20—C15120.0
C6—C5—C4119.5 (2)C19—C20—H20A120.0
C1—C6—C5119.9 (2)C15—C20—H20A120.0
C1—C6—C7121.2 (2)C21—O4—C18120.7 (3)
C5—C6—C7118.9 (2)O4—C21—F2107.8 (6)
C6—C7—C15113.7 (3)O4—C21—F1107.6 (5)
C6—C7—C8110.86 (19)F2—C21—F1118.1 (5)
C15—C7—C8112.6 (3)O4—C21—H21A107.6
C6—C7—C15A105.9 (4)F2—C21—H21A107.6
C8—C7—C15A108.7 (4)F1—C21—H21A107.6
C6—C7—H7107.8 (15)C16A—C15A—C20A120.0
C15—C7—H7102.1 (15)C16A—C15A—C7121.6 (4)
C8—C7—H7109.2 (15)C20A—C15A—C7118.3 (4)
C15A—C7—H7114.3 (16)C17A—C16A—C15A120.0
C9—C8—C13120.4 (2)C17A—C16A—H16B120.0
C9—C8—C7121.2 (2)C15A—C16A—H16B120.0
C13—C8—C7118.4 (2)C16A—C17A—C18A120.0
C8—C9—N1119.6 (2)C16A—C17A—H17B120.0
C8—C9—C12127.0 (3)C18A—C17A—H17B120.0
N1—C9—C12113.4 (2)C19A—C18A—C17A120.0
C3—C10—H10A109.5C19A—C18A—O4A120.3 (4)
C3—C10—H10B109.5C17A—C18A—O4A119.5 (4)
H10A—C10—H10B109.5C18A—C19A—C20A120.0
C3—C10—H10C109.5C18A—C19A—H19B120.0
H10A—C10—H10C109.5C20A—C19A—H19B120.0
H10B—C10—H10C109.5C19A—C20A—C15A120.0
C3—C11—H11A109.5C19A—C20A—H20B120.0
C3—C11—H11B109.5C15A—C20A—H20B120.0
H11A—C11—H11B109.5C21A—O4A—C18A119.8 (5)
C3—C11—H11C109.5O4A—C21A—F2A110.1 (7)
H11A—C11—H11C109.5O4A—C21A—F1A101.2 (6)
H11B—C11—H11C109.5F2A—C21A—F1A121.3 (7)
C9—C12—H12A109.5O4A—C21A—H21B107.8
C9—C12—H12B109.5F2A—C21A—H21B107.8
H12A—C12—H12B109.5F1A—C21A—H21B107.8
C9—C12—H12C109.5
C9—N1—C1—C610.0 (4)C9—C8—C13—O21.7 (4)
C9—N1—C1—C2167.7 (2)C7—C8—C13—O2175.6 (3)
C6—C1—C2—C328.0 (4)C9—C8—C13—O3177.0 (2)
N1—C1—C2—C3154.2 (2)C7—C8—C13—O35.7 (3)
C1—C2—C3—C451.7 (3)C6—C7—C15—C1674.8 (3)
C1—C2—C3—C10171.3 (3)C8—C7—C15—C1652.4 (4)
C1—C2—C3—C1169.1 (3)C6—C7—C15—C20108.0 (3)
C10—C3—C4—C5169.0 (2)C8—C7—C15—C20124.8 (3)
C2—C3—C4—C549.9 (3)C20—C15—C16—C170.0
C11—C3—C4—C571.1 (3)C7—C15—C16—C17177.2 (4)
C3—C4—C5—O1158.9 (2)C15—C16—C17—C180.0
C3—C4—C5—C623.1 (3)C16—C17—C18—C190.0
N1—C1—C6—C5176.0 (2)C16—C17—C18—O4179.9 (4)
C2—C1—C6—C51.6 (4)C17—C18—C19—C200.0
N1—C1—C6—C74.5 (4)O4—C18—C19—C20179.9 (3)
C2—C1—C6—C7177.9 (2)C18—C19—C20—C150.0
O1—C5—C6—C1173.5 (2)C16—C15—C20—C190.0
C4—C5—C6—C14.5 (3)C7—C15—C20—C19177.1 (4)
O1—C5—C6—C77.0 (4)C19—C18—O4—C21155.4 (5)
C4—C5—C6—C7175.0 (2)C17—C18—O4—C2124.5 (6)
C1—C6—C7—C15110.1 (3)C18—O4—C21—F251.8 (7)
C5—C6—C7—C1569.4 (3)C18—O4—C21—F176.6 (6)
C1—C6—C7—C818.1 (3)C6—C7—C15A—C16A64.9 (6)
C5—C6—C7—C8162.4 (2)C8—C7—C15A—C16A54.3 (6)
C1—C6—C7—C15A99.6 (4)C6—C7—C15A—C20A118.7 (4)
C5—C6—C7—C15A79.9 (4)C8—C7—C15A—C20A122.1 (4)
C6—C7—C8—C920.0 (3)C20A—C15A—C16A—C17A0.0
C15—C7—C8—C9108.7 (3)C7—C15A—C16A—C17A176.4 (8)
C15A—C7—C8—C996.0 (4)C15A—C16A—C17A—C18A0.0
C6—C7—C8—C13162.7 (2)C16A—C17A—C18A—C19A0.0
C15—C7—C8—C1368.6 (3)C16A—C17A—C18A—O4A175.9 (6)
C15A—C7—C8—C1381.3 (4)C17A—C18A—C19A—C20A0.0
C13—C8—C9—N1174.5 (2)O4A—C18A—C19A—C20A175.9 (6)
C7—C8—C9—N18.2 (4)C18A—C19A—C20A—C15A0.0
C13—C8—C9—C125.2 (4)C16A—C15A—C20A—C19A0.0
C7—C8—C9—C12172.0 (2)C7—C15A—C20A—C19A176.5 (8)
C1—N1—C9—C88.1 (4)C19A—C18A—O4A—C21A75.5 (8)
C1—N1—C9—C12171.7 (2)C17A—C18A—O4A—C21A108.6 (7)
C14—O3—C13—O22.9 (4)C18A—O4A—C21A—F2A66.7 (9)
C14—O3—C13—C8175.9 (2)C18A—O4A—C21A—F1A62.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.93 (4)2.834 (3)174 (3)
C12—H12A···O20.982.322.831 (4)111
C12—H12C···F2ii0.982.633.449 (5)141
C12—H12C···F1Aii0.982.413.291 (7)150
C14—H14C···O4Aiii0.982.663.551 (6)152
C17—H17A···F10.952.432.975 (4)117
C17—H17A···F1iv0.952.563.488 (4)165
C21—H21A···O2v1.002.443.155 (5)128
C21A—H21B···O2v1.002.503.062 (7)115
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y, z+3/2; (v) x+1/2, y+1/2, z+1/2.
Isopropyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II) top
Crystal data top
C23H27F2NO4Dx = 1.323 Mg m3
Mr = 419.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9744 reflections
a = 12.255 (3) Åθ = 2.3–34.0°
b = 15.694 (3) ŵ = 0.10 mm1
c = 21.903 (4) ÅT = 100 K
V = 4212.3 (14) Å3Plate, colorless
Z = 80.31 × 0.23 × 0.08 mm
F(000) = 1776
Data collection top
Bruker D8 Quest with Photon 2 detector
diffractometer
6743 reflections with I > 2σ(I)
φ and ω scansRint = 0.073
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 34.1°, θmin = 2.3°
Tmin = 0.684, Tmax = 0.747h = 1519
102650 measured reflectionsk = 2424
8537 independent reflectionsl = 3234
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.7687P]
where P = (Fo2 + 2Fc2)/3
8537 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.58006 (8)0.07640 (5)0.03801 (3)0.0364 (2)
F20.64472 (7)0.00608 (5)0.11460 (4)0.0349 (2)
O10.34068 (6)0.45116 (5)0.16296 (3)0.01817 (15)
O20.29601 (6)0.27319 (5)0.34751 (4)0.02216 (16)
O30.41830 (6)0.29307 (5)0.42284 (3)0.01679 (14)
O40.46707 (7)0.03988 (5)0.11352 (4)0.02388 (17)
N10.63612 (7)0.39398 (5)0.29383 (4)0.01310 (14)
C10.59145 (7)0.43524 (5)0.24486 (4)0.01197 (15)
C20.66452 (8)0.49617 (6)0.21159 (5)0.01519 (17)
H2A0.7086240.4646750.1811740.018*
H2B0.7150960.5234760.2409040.018*
C30.59723 (8)0.56435 (6)0.17941 (5)0.01630 (17)
H3A0.6458900.5985210.1529120.020*
H3B0.5655940.6030500.2104060.020*
C40.50494 (8)0.52715 (6)0.14056 (4)0.01366 (16)
C50.43666 (8)0.46417 (6)0.17775 (4)0.01252 (16)
C60.48713 (7)0.41800 (5)0.22754 (4)0.01160 (15)
C70.42689 (7)0.34420 (5)0.25648 (4)0.01133 (15)
H7A0.3476270.3590960.2584780.014*
C80.46808 (7)0.33050 (6)0.32152 (4)0.01173 (15)
C90.57283 (7)0.35044 (6)0.33615 (4)0.01219 (15)
C100.43280 (9)0.59982 (7)0.11768 (6)0.0233 (2)
H10A0.4023260.6307020.1526350.035*
H10B0.3732590.5764880.0929260.035*
H10C0.4765240.6389080.0927970.035*
C110.55042 (10)0.47676 (8)0.08592 (5)0.0232 (2)
H11A0.5996420.5132760.0622800.035*
H11B0.4899980.4579850.0598830.035*
H11C0.5906010.4269200.1008080.035*
C120.63489 (8)0.33279 (7)0.39391 (4)0.01612 (17)
H12A0.5955640.2902470.4181730.024*
H12B0.6419870.3855560.4175090.024*
H12C0.7076240.3110510.3837430.024*
C130.38614 (8)0.29573 (6)0.36382 (4)0.01362 (16)
C140.34202 (9)0.25787 (7)0.46746 (5)0.0208 (2)
H14A0.2992290.2102940.4487710.025*
C150.26612 (14)0.32793 (11)0.48827 (7)0.0461 (4)
H15A0.2263270.3506370.4530380.069*
H15B0.3087010.3736540.5072820.069*
H15C0.2141050.3049650.5180060.069*
C160.41149 (11)0.22458 (8)0.51914 (5)0.0268 (2)
H16A0.4625840.1818530.5034080.040*
H16B0.3645320.1984990.5501690.040*
H16C0.4524510.2717660.5374070.040*
C170.43931 (7)0.26381 (6)0.21739 (4)0.01218 (15)
C180.54172 (8)0.23882 (6)0.19612 (5)0.01650 (17)
H18A0.6034530.2729690.2055850.020*
C190.55622 (8)0.16531 (7)0.16141 (5)0.01900 (19)
H19A0.6267830.1489780.1477830.023*
C200.46524 (8)0.11639 (6)0.14715 (4)0.01634 (17)
C210.36233 (8)0.14000 (6)0.16660 (4)0.01612 (17)
H21A0.3006040.1065070.1559870.019*
C220.34957 (8)0.21340 (6)0.20194 (4)0.01432 (16)
H22A0.2788850.2292410.2156650.017*
C230.55424 (9)0.01649 (7)0.08023 (5)0.01990 (19)
H23A0.5374930.0382950.0588780.024*
H1N0.7011 (13)0.4077 (9)0.3055 (7)0.020 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0592 (6)0.0287 (4)0.0212 (3)0.0035 (4)0.0095 (3)0.0009 (3)
F20.0279 (4)0.0283 (4)0.0485 (5)0.0093 (3)0.0177 (3)0.0111 (3)
O10.0114 (3)0.0238 (3)0.0193 (3)0.0028 (3)0.0020 (3)0.0071 (3)
O20.0142 (3)0.0315 (4)0.0207 (3)0.0073 (3)0.0003 (3)0.0069 (3)
O30.0158 (3)0.0214 (3)0.0132 (3)0.0012 (3)0.0028 (2)0.0032 (2)
O40.0220 (4)0.0201 (3)0.0295 (4)0.0038 (3)0.0025 (3)0.0103 (3)
N10.0088 (3)0.0158 (3)0.0146 (3)0.0017 (3)0.0007 (3)0.0018 (3)
C10.0103 (3)0.0120 (3)0.0136 (4)0.0007 (3)0.0009 (3)0.0002 (3)
C20.0106 (4)0.0165 (4)0.0185 (4)0.0031 (3)0.0004 (3)0.0036 (3)
C30.0162 (4)0.0141 (4)0.0187 (4)0.0040 (3)0.0003 (3)0.0028 (3)
C40.0126 (4)0.0143 (4)0.0140 (4)0.0014 (3)0.0010 (3)0.0032 (3)
C50.0116 (4)0.0129 (3)0.0130 (4)0.0002 (3)0.0013 (3)0.0009 (3)
C60.0098 (3)0.0118 (3)0.0132 (4)0.0011 (3)0.0008 (3)0.0015 (3)
C70.0089 (3)0.0122 (3)0.0129 (4)0.0013 (3)0.0004 (3)0.0014 (3)
C80.0106 (3)0.0124 (3)0.0122 (4)0.0004 (3)0.0008 (3)0.0016 (3)
C90.0116 (4)0.0122 (3)0.0128 (4)0.0005 (3)0.0003 (3)0.0006 (3)
C100.0192 (5)0.0204 (4)0.0303 (5)0.0010 (4)0.0028 (4)0.0115 (4)
C110.0246 (5)0.0276 (5)0.0173 (4)0.0048 (4)0.0053 (4)0.0025 (4)
C120.0138 (4)0.0200 (4)0.0146 (4)0.0000 (3)0.0025 (3)0.0018 (3)
C130.0130 (4)0.0132 (3)0.0146 (4)0.0004 (3)0.0017 (3)0.0026 (3)
C140.0191 (5)0.0250 (5)0.0182 (4)0.0016 (4)0.0068 (4)0.0083 (4)
C150.0432 (8)0.0545 (9)0.0405 (7)0.0299 (7)0.0263 (7)0.0257 (7)
C160.0316 (6)0.0323 (6)0.0167 (4)0.0083 (5)0.0048 (4)0.0073 (4)
C170.0115 (4)0.0127 (3)0.0123 (4)0.0015 (3)0.0006 (3)0.0018 (3)
C180.0117 (4)0.0167 (4)0.0211 (4)0.0031 (3)0.0006 (3)0.0029 (3)
C190.0144 (4)0.0187 (4)0.0239 (5)0.0022 (3)0.0024 (4)0.0052 (4)
C200.0176 (4)0.0152 (4)0.0162 (4)0.0016 (3)0.0004 (3)0.0025 (3)
C210.0142 (4)0.0173 (4)0.0169 (4)0.0038 (3)0.0020 (3)0.0009 (3)
C220.0113 (4)0.0159 (4)0.0158 (4)0.0017 (3)0.0013 (3)0.0008 (3)
C230.0222 (5)0.0189 (4)0.0186 (4)0.0022 (4)0.0028 (4)0.0025 (3)
Geometric parameters (Å, º) top
F1—C231.3561 (13)C10—H10A0.9800
F2—C231.3501 (13)C10—H10B0.9800
O1—C51.2369 (12)C10—H10C0.9800
O2—C131.2136 (12)C11—H11A0.9800
O3—C131.3521 (12)C11—H11B0.9800
O3—C141.4608 (12)C11—H11C0.9800
O4—C231.3445 (14)C12—H12A0.9800
O4—C201.4089 (12)C12—H12B0.9800
N1—C11.3673 (12)C12—H12C0.9800
N1—C91.3884 (12)C14—C161.5098 (16)
N1—H1N0.863 (16)C14—C151.5106 (18)
C1—C61.3606 (13)C14—H14A1.0000
C1—C21.4991 (13)C15—H15A0.9800
C2—C31.5236 (14)C15—H15B0.9800
C2—H2A0.9900C15—H15C0.9800
C2—H2B0.9900C16—H16A0.9800
C3—C41.5311 (14)C16—H16B0.9800
C3—H3A0.9900C16—H16C0.9800
C3—H3B0.9900C17—C181.3950 (13)
C4—C101.5276 (14)C17—C221.3963 (13)
C4—C51.5297 (13)C18—C191.3930 (14)
C4—C111.5390 (15)C18—H18A0.9500
C5—C61.4481 (13)C19—C201.3892 (14)
C6—C71.5127 (12)C19—H19A0.9500
C7—C81.5265 (13)C20—C211.3817 (14)
C7—C171.5323 (13)C21—C221.3966 (14)
C7—H7A1.0000C21—H21A0.9500
C8—C91.3595 (13)C22—H22A0.9500
C8—C131.4712 (13)C23—H23A1.0000
C9—C121.5019 (13)
C13—O3—C14117.69 (8)H11A—C11—H11C109.5
C23—O4—C20121.93 (9)H11B—C11—H11C109.5
C1—N1—C9122.21 (8)C9—C12—H12A109.5
C1—N1—H1N118.8 (10)C9—C12—H12B109.5
C9—N1—H1N116.2 (10)H12A—C12—H12B109.5
C6—C1—N1120.05 (8)C9—C12—H12C109.5
C6—C1—C2123.54 (8)H12A—C12—H12C109.5
N1—C1—C2116.37 (8)H12B—C12—H12C109.5
C1—C2—C3110.46 (8)O2—C13—O3122.53 (9)
C1—C2—H2A109.6O2—C13—C8122.95 (9)
C3—C2—H2A109.6O3—C13—C8114.49 (8)
C1—C2—H2B109.6O3—C14—C16105.76 (9)
C3—C2—H2B109.6O3—C14—C15108.70 (9)
H2A—C2—H2B108.1C16—C14—C15111.89 (11)
C2—C3—C4112.90 (8)O3—C14—H14A110.1
C2—C3—H3A109.0C16—C14—H14A110.1
C4—C3—H3A109.0C15—C14—H14A110.1
C2—C3—H3B109.0C14—C15—H15A109.5
C4—C3—H3B109.0C14—C15—H15B109.5
H3A—C3—H3B107.8H15A—C15—H15B109.5
C10—C4—C5109.91 (8)C14—C15—H15C109.5
C10—C4—C3108.98 (8)H15A—C15—H15C109.5
C5—C4—C3110.77 (8)H15B—C15—H15C109.5
C10—C4—C11109.76 (9)C14—C16—H16A109.5
C5—C4—C11106.27 (8)C14—C16—H16B109.5
C3—C4—C11111.13 (8)H16A—C16—H16B109.5
O1—C5—C6121.38 (8)C14—C16—H16C109.5
O1—C5—C4119.16 (8)H16A—C16—H16C109.5
C6—C5—C4119.38 (8)H16B—C16—H16C109.5
C1—C6—C5120.78 (8)C18—C17—C22117.93 (9)
C1—C6—C7119.60 (8)C18—C17—C7120.50 (8)
C5—C6—C7119.36 (8)C22—C17—C7121.58 (8)
C6—C7—C8109.72 (7)C19—C18—C17121.99 (9)
C6—C7—C17110.35 (7)C19—C18—H18A119.0
C8—C7—C17111.88 (7)C17—C18—H18A119.0
C6—C7—H7A108.3C20—C19—C18118.55 (9)
C8—C7—H7A108.3C20—C19—H19A120.7
C17—C7—H7A108.3C18—C19—H19A120.7
C9—C8—C13125.54 (8)C21—C20—C19121.00 (9)
C9—C8—C7119.98 (8)C21—C20—O4113.85 (9)
C13—C8—C7114.47 (8)C19—C20—O4125.15 (9)
C8—C9—N1118.91 (8)C20—C21—C22119.62 (9)
C8—C9—C12129.36 (8)C20—C21—H21A120.2
N1—C9—C12111.73 (8)C22—C21—H21A120.2
C4—C10—H10A109.5C17—C22—C21120.89 (9)
C4—C10—H10B109.5C17—C22—H22A119.6
H10A—C10—H10B109.5C21—C22—H22A119.6
C4—C10—H10C109.5O4—C23—F2112.53 (9)
H10A—C10—H10C109.5O4—C23—F1111.46 (9)
H10B—C10—H10C109.5F2—C23—F1105.81 (10)
C4—C11—H11A109.5O4—C23—H23A109.0
C4—C11—H11B109.5F2—C23—H23A109.0
H11A—C11—H11B109.5F1—C23—H23A109.0
C4—C11—H11C109.5
C9—N1—C1—C616.13 (13)C7—C8—C9—N18.88 (13)
C9—N1—C1—C2165.96 (8)C13—C8—C9—C128.63 (16)
C6—C1—C2—C327.78 (13)C7—C8—C9—C12171.62 (9)
N1—C1—C2—C3154.38 (8)C1—N1—C9—C816.09 (13)
C1—C2—C3—C450.39 (11)C1—N1—C9—C12163.49 (8)
C2—C3—C4—C10172.05 (8)C14—O3—C13—O22.82 (14)
C2—C3—C4—C551.01 (11)C14—O3—C13—C8178.91 (8)
C2—C3—C4—C1166.87 (11)C9—C8—C13—O2174.48 (10)
C10—C4—C5—O134.21 (12)C7—C8—C13—O25.75 (13)
C3—C4—C5—O1154.69 (9)C9—C8—C13—O37.26 (13)
C11—C4—C5—O184.49 (11)C7—C8—C13—O3172.51 (8)
C10—C4—C5—C6148.80 (9)C13—O3—C14—C16153.97 (9)
C3—C4—C5—C628.32 (12)C13—O3—C14—C1585.73 (13)
C11—C4—C5—C692.50 (10)C6—C7—C17—C1848.03 (11)
N1—C1—C6—C5176.85 (8)C8—C7—C17—C1874.44 (11)
C2—C1—C6—C55.39 (14)C6—C7—C17—C22132.01 (9)
N1—C1—C6—C79.05 (13)C8—C7—C17—C22105.53 (10)
C2—C1—C6—C7168.71 (8)C22—C17—C18—C191.13 (15)
O1—C5—C6—C1177.45 (9)C7—C17—C18—C19178.83 (9)
C4—C5—C6—C15.63 (13)C17—C18—C19—C200.81 (16)
O1—C5—C6—C78.44 (13)C18—C19—C20—C210.29 (16)
C4—C5—C6—C7168.48 (8)C18—C19—C20—O4178.78 (10)
C1—C6—C7—C829.90 (11)C23—O4—C20—C21165.58 (10)
C5—C6—C7—C8155.92 (8)C23—O4—C20—C1915.29 (16)
C1—C6—C7—C1793.83 (10)C19—C20—C21—C221.02 (15)
C5—C6—C7—C1780.35 (10)O4—C20—C21—C22178.15 (9)
C6—C7—C8—C929.89 (11)C18—C17—C22—C210.38 (14)
C17—C7—C8—C992.94 (10)C7—C17—C22—C21179.59 (8)
C6—C7—C8—C13149.89 (8)C20—C21—C22—C170.68 (15)
C17—C7—C8—C1387.29 (9)C20—O4—C23—F261.18 (13)
C13—C8—C9—N1170.87 (8)C20—O4—C23—F157.50 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.863 (16)1.967 (16)2.8258 (12)173.0 (14)
C2—H2A···F2ii0.992.403.1626 (13)133
C12—H12A···O30.982.182.7991 (14)120
C19—H19A···F20.952.372.9106 (14)116
C23—H23A···F1iii1.002.633.3972 (14)133
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+1, y, z.
tert-Butyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III) top
Crystal data top
C24H29F2NO4Dx = 1.322 Mg m3
Mr = 433.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8996 reflections
a = 12.4094 (8) Åθ = 2.3–30.3°
b = 15.9871 (12) ŵ = 0.10 mm1
c = 21.9629 (15) ÅT = 100 K
V = 4357.2 (5) Å3Plate, colorless
Z = 80.31 × 0.27 × 0.09 mm
F(000) = 1840
Data collection top
Bruker APEXII CCD
diffractometer
4732 reflections with I > 2σ(I)
φ and ω scansRint = 0.142
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.6°, θmin = 1.9°
Tmin = 0.374, Tmax = 0.746h = 1717
56620 measured reflectionsk = 2222
6654 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.6147P]
where P = (Fo2 + 2Fc2)/3
6654 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.37 e Å3
68 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.57517 (9)0.94793 (6)0.95792 (5)0.0321 (2)
F20.64034 (9)1.01340 (7)0.88027 (6)0.0401 (3)
O10.32590 (9)0.56945 (7)0.83355 (5)0.0243 (2)
O20.46372 (9)0.98316 (7)0.88197 (5)0.0257 (3)
O30.28837 (10)0.73942 (9)0.65077 (6)0.0347 (3)
O40.41461 (9)0.72089 (6)0.57815 (5)0.0202 (2)
N10.62614 (10)0.63107 (7)0.71106 (6)0.0164 (2)
C10.56462 (11)0.67209 (8)0.66740 (6)0.0153 (3)
C20.46038 (11)0.69097 (8)0.68021 (6)0.0161 (3)
C30.41866 (11)0.67977 (8)0.74513 (6)0.0161 (3)
H3A0.3400910.6661650.7430480.019*
C40.47622 (11)0.60720 (8)0.77510 (6)0.0168 (3)
C50.42280 (11)0.55954 (8)0.82239 (7)0.0174 (3)
C60.48853 (12)0.49691 (8)0.85970 (7)0.0185 (3)
C70.58499 (18)0.46128 (13)0.82234 (11)0.0190 (5)0.646 (3)
H7A0.6327080.4290900.8498340.023*0.646 (3)
H7B0.5571910.4224240.7909530.023*0.646 (3)
C80.6512 (9)0.5311 (7)0.7910 (4)0.0193 (9)0.646 (3)
H8A0.6945930.5609700.8219740.023*0.646 (3)
H8B0.7013960.5056770.7612620.023*0.646 (3)
C110.5333 (2)0.54966 (15)0.91386 (11)0.0229 (5)0.646 (3)
H11A0.5717540.5985680.8979850.034*0.646 (3)
H11B0.5829270.5153420.9379780.034*0.646 (3)
H11C0.4734330.5681790.9396250.034*0.646 (3)
C120.4219 (2)0.42518 (15)0.88388 (12)0.0263 (6)0.646 (3)
H12A0.3618720.4472140.9079960.039*0.646 (3)
H12B0.4670890.3893750.9095860.039*0.646 (3)
H12C0.3936370.3923870.8497350.039*0.646 (3)
C7A0.6013 (3)0.5198 (3)0.86174 (19)0.0187 (8)0.354 (3)
H7AA0.6416880.4761100.8840620.022*0.354 (3)
H7AB0.6090140.5729160.8845270.022*0.354 (3)
C8A0.6504 (16)0.5304 (12)0.7986 (7)0.0181 (13)0.354 (3)
H8AA0.6549090.4752850.7781470.022*0.354 (3)
H8AB0.7244000.5530460.8022970.022*0.354 (3)
C11A0.4353 (4)0.4888 (3)0.9231 (2)0.0263 (10)0.354 (3)
H11D0.4498320.5393990.9469010.039*0.354 (3)
H11E0.4649450.4400540.9442460.039*0.354 (3)
H11F0.3572780.4819320.9181810.039*0.354 (3)
C12A0.4654 (4)0.4132 (3)0.8248 (2)0.0243 (9)0.354 (3)
H12D0.3876820.4021160.8248220.036*0.354 (3)
H12E0.5030450.3670060.8450070.036*0.354 (3)
H12F0.4908950.4180520.7827040.036*0.354 (3)
C90.58058 (11)0.59079 (8)0.75968 (6)0.0167 (3)
C100.62756 (12)0.68867 (9)0.61031 (7)0.0207 (3)
H10A0.5954180.7359450.5884700.031*
H10B0.6260170.6388710.5843010.031*
H10C0.7023310.7020110.6208760.031*
C130.37937 (12)0.72026 (9)0.63625 (7)0.0186 (3)
C140.34411 (13)0.74324 (9)0.52654 (7)0.0214 (3)
C150.2548 (2)0.67935 (14)0.52089 (12)0.0622 (8)
H15A0.2070890.6833890.5563080.093*
H15B0.2860950.6231150.5190030.093*
H15C0.2134840.6901320.4836980.093*
C160.4207 (2)0.73950 (15)0.47310 (8)0.0477 (6)
H16A0.4803260.7785800.4797850.072*
H16B0.3821660.7548980.4357840.072*
H16C0.4490970.6825800.4690710.072*
C170.30051 (15)0.83103 (10)0.53339 (7)0.0292 (4)
H17A0.3600980.8696780.5415160.044*
H17B0.2493010.8327250.5673380.044*
H17C0.2638530.8476130.4957540.044*
C180.43219 (11)0.75974 (9)0.78268 (6)0.0168 (3)
C190.34560 (12)0.81251 (9)0.79479 (7)0.0192 (3)
H19A0.2760940.7983780.7798610.023*
C200.35903 (12)0.88595 (9)0.82852 (7)0.0213 (3)
H20A0.2990160.9209840.8369230.026*
C210.46028 (12)0.90708 (9)0.84950 (7)0.0192 (3)
C220.54853 (13)0.85619 (10)0.83835 (7)0.0247 (3)
H22A0.6180170.8710020.8529560.030*
C230.53307 (12)0.78277 (10)0.80522 (7)0.0229 (3)
H23A0.5930710.7473160.7977530.028*
C240.55049 (13)1.00616 (9)0.91461 (7)0.0233 (3)
H24A0.5354741.0609140.9349210.028*
H1N0.6911 (17)0.6159 (12)0.6999 (9)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0440 (6)0.0243 (5)0.0281 (5)0.0072 (4)0.0078 (5)0.0008 (4)
F20.0317 (6)0.0286 (5)0.0601 (7)0.0069 (4)0.0200 (5)0.0048 (5)
O10.0156 (5)0.0303 (6)0.0270 (6)0.0012 (4)0.0020 (5)0.0096 (4)
O20.0261 (6)0.0196 (5)0.0313 (6)0.0068 (4)0.0035 (5)0.0056 (4)
O30.0185 (6)0.0584 (8)0.0272 (6)0.0125 (5)0.0026 (5)0.0157 (6)
O40.0201 (5)0.0228 (5)0.0176 (5)0.0039 (4)0.0023 (4)0.0010 (4)
N10.0112 (5)0.0181 (5)0.0199 (6)0.0011 (4)0.0002 (5)0.0010 (4)
C10.0147 (6)0.0137 (6)0.0175 (6)0.0006 (5)0.0017 (5)0.0001 (5)
C20.0155 (6)0.0143 (6)0.0186 (6)0.0001 (5)0.0007 (5)0.0019 (5)
C30.0121 (6)0.0179 (6)0.0184 (6)0.0020 (5)0.0003 (5)0.0022 (5)
C40.0136 (6)0.0175 (6)0.0194 (6)0.0003 (5)0.0028 (6)0.0035 (5)
C50.0154 (6)0.0176 (6)0.0193 (6)0.0006 (5)0.0023 (6)0.0019 (5)
C60.0193 (7)0.0162 (6)0.0201 (7)0.0014 (5)0.0006 (6)0.0034 (5)
C70.0182 (10)0.0158 (9)0.0231 (10)0.0033 (7)0.0011 (9)0.0010 (7)
C80.0145 (14)0.0217 (14)0.022 (2)0.0021 (12)0.0006 (15)0.0053 (15)
C110.0241 (12)0.0249 (11)0.0195 (10)0.0039 (9)0.0038 (10)0.0001 (8)
C120.0198 (11)0.0246 (11)0.0345 (13)0.0014 (9)0.0000 (10)0.0132 (10)
C7A0.0147 (15)0.0200 (15)0.0213 (16)0.0008 (13)0.0055 (14)0.0033 (13)
C8A0.013 (2)0.018 (2)0.023 (3)0.007 (2)0.003 (2)0.008 (2)
C11A0.024 (2)0.032 (2)0.023 (2)0.0093 (17)0.0002 (18)0.0048 (17)
C12A0.024 (2)0.0181 (18)0.031 (2)0.0044 (15)0.0053 (18)0.0015 (16)
C90.0146 (6)0.0153 (6)0.0203 (7)0.0006 (5)0.0022 (6)0.0015 (5)
C100.0172 (7)0.0236 (7)0.0212 (7)0.0008 (5)0.0019 (6)0.0012 (5)
C130.0162 (6)0.0203 (6)0.0192 (7)0.0002 (5)0.0008 (6)0.0039 (5)
C140.0269 (8)0.0177 (6)0.0196 (7)0.0011 (6)0.0087 (6)0.0010 (5)
C150.0774 (17)0.0428 (11)0.0665 (15)0.0359 (12)0.0534 (14)0.0279 (11)
C160.0590 (14)0.0649 (13)0.0190 (8)0.0378 (11)0.0010 (9)0.0003 (8)
C170.0353 (9)0.0287 (8)0.0236 (7)0.0132 (7)0.0059 (7)0.0002 (6)
C180.0151 (7)0.0198 (6)0.0156 (6)0.0018 (5)0.0014 (5)0.0022 (5)
C190.0141 (6)0.0197 (6)0.0239 (7)0.0018 (5)0.0007 (6)0.0038 (5)
C200.0183 (7)0.0193 (6)0.0262 (7)0.0055 (5)0.0034 (6)0.0026 (5)
C210.0218 (7)0.0177 (6)0.0181 (6)0.0029 (5)0.0011 (6)0.0005 (5)
C220.0172 (7)0.0293 (8)0.0274 (8)0.0046 (6)0.0044 (6)0.0068 (6)
C230.0164 (7)0.0269 (7)0.0255 (7)0.0063 (6)0.0009 (6)0.0073 (6)
C240.0223 (7)0.0178 (6)0.0299 (8)0.0001 (5)0.0027 (7)0.0004 (6)
Geometric parameters (Å, º) top
F1—C241.3658 (18)C7A—C8A1.525 (16)
F2—C241.3510 (19)C7A—H7AA0.9900
O1—C51.2374 (18)C7A—H7AB0.9900
O2—C241.3449 (19)C8A—C91.553 (18)
O2—C211.4107 (17)C8A—H8AA0.9900
O3—C131.2127 (19)C8A—H8AB0.9900
O4—C131.3490 (18)C11A—H11D0.9800
O4—C141.4757 (17)C11A—H11E0.9800
N1—C91.3692 (18)C11A—H11F0.9800
N1—C11.3902 (18)C12A—H12D0.9800
N1—H1N0.88 (2)C12A—H12E0.9800
C1—C21.3578 (19)C12A—H12F0.9800
C1—C101.501 (2)C10—H10A0.9800
C2—C131.470 (2)C10—H10B0.9800
C2—C31.5273 (19)C10—H10C0.9800
C3—C41.5132 (18)C14—C161.511 (3)
C3—C181.531 (2)C14—C171.512 (2)
C3—H3A1.0000C14—C151.512 (2)
C4—C91.364 (2)C15—H15A0.9800
C4—C51.449 (2)C15—H15B0.9800
C5—C61.5295 (19)C15—H15C0.9800
C6—C7A1.447 (4)C16—H16A0.9800
C6—C121.510 (3)C16—H16B0.9800
C6—C11A1.546 (5)C16—H16C0.9800
C6—C71.559 (3)C17—H17A0.9800
C6—C111.560 (3)C17—H17B0.9800
C6—C12A1.570 (4)C17—H17C0.9800
C7—C81.547 (10)C18—C191.3918 (19)
C7—H7A0.9900C18—C231.396 (2)
C7—H7B0.9900C19—C201.398 (2)
C8—C91.468 (11)C19—H19A0.9500
C8—H8A0.9900C20—C211.380 (2)
C8—H8B0.9900C20—H20A0.9500
C11—H11A0.9800C21—C221.386 (2)
C11—H11B0.9800C22—C231.394 (2)
C11—H11C0.9800C22—H22A0.9500
C12—H12A0.9800C23—H23A0.9500
C12—H12B0.9800C24—H24A1.0000
C12—H12C0.9800
C24—O2—C21121.96 (12)H11D—C11A—H11E109.5
C13—O4—C14122.42 (12)C6—C11A—H11F109.5
C9—N1—C1122.21 (12)H11D—C11A—H11F109.5
C9—N1—H1N117.9 (13)H11E—C11A—H11F109.5
C1—N1—H1N116.2 (13)C6—C12A—H12D109.5
C2—C1—N1119.02 (13)C6—C12A—H12E109.5
C2—C1—C10129.03 (13)H12D—C12A—H12E109.5
N1—C1—C10111.95 (12)C6—C12A—H12F109.5
C1—C2—C13125.87 (13)H12D—C12A—H12F109.5
C1—C2—C3119.37 (12)H12E—C12A—H12F109.5
C13—C2—C3114.74 (12)C4—C9—N1119.68 (13)
C4—C3—C2109.63 (11)C4—C9—C8125.1 (4)
C4—C3—C18110.75 (11)N1—C9—C8115.2 (4)
C2—C3—C18111.59 (11)C4—C9—C8A120.9 (7)
C4—C3—H3A108.3N1—C9—C8A119.4 (7)
C2—C3—H3A108.3C1—C10—H10A109.5
C18—C3—H3A108.3C1—C10—H10B109.5
C9—C4—C5120.75 (13)H10A—C10—H10B109.5
C9—C4—C3119.19 (12)C1—C10—H10C109.5
C5—C4—C3119.94 (12)H10A—C10—H10C109.5
O1—C5—C4121.30 (13)H10B—C10—H10C109.5
O1—C5—C6119.73 (13)O3—C13—O4123.28 (14)
C4—C5—C6118.97 (12)O3—C13—C2122.98 (14)
C7A—C6—C5111.51 (19)O4—C13—C2113.70 (12)
C12—C6—C5113.18 (14)O4—C14—C16102.37 (13)
C7A—C6—C11A114.0 (3)O4—C14—C17111.14 (12)
C5—C6—C11A107.99 (19)C16—C14—C17109.82 (14)
C12—C6—C7109.13 (15)O4—C14—C15109.50 (13)
C5—C6—C7111.51 (13)C16—C14—C15111.71 (19)
C12—C6—C11109.71 (17)C17—C14—C15111.91 (17)
C5—C6—C11104.16 (13)C14—C15—H15A109.5
C7—C6—C11108.97 (16)C14—C15—H15B109.5
C7A—C6—C12A114.1 (3)H15A—C15—H15B109.5
C5—C6—C12A101.5 (2)C14—C15—H15C109.5
C11A—C6—C12A106.9 (3)H15A—C15—H15C109.5
C8—C7—C6112.2 (4)H15B—C15—H15C109.5
C8—C7—H7A109.2C14—C16—H16A109.5
C6—C7—H7A109.2C14—C16—H16B109.5
C8—C7—H7B109.2H16A—C16—H16B109.5
C6—C7—H7B109.2C14—C16—H16C109.5
H7A—C7—H7B107.9H16A—C16—H16C109.5
C9—C8—C7111.1 (7)H16B—C16—H16C109.5
C9—C8—H8A109.4C14—C17—H17A109.5
C7—C8—H8A109.4C14—C17—H17B109.5
C9—C8—H8B109.4H17A—C17—H17B109.5
C7—C8—H8B109.4C14—C17—H17C109.5
H8A—C8—H8B108.0H17A—C17—H17C109.5
C6—C11—H11A109.5H17B—C17—H17C109.5
C6—C11—H11B109.5C19—C18—C23117.70 (13)
H11A—C11—H11B109.5C19—C18—C3121.64 (13)
C6—C11—H11C109.5C23—C18—C3120.65 (12)
H11A—C11—H11C109.5C18—C19—C20121.21 (14)
H11B—C11—H11C109.5C18—C19—H19A119.4
C6—C12—H12A109.5C20—C19—H19A119.4
C6—C12—H12B109.5C21—C20—C19119.40 (13)
H12A—C12—H12B109.5C21—C20—H20A120.3
C6—C12—H12C109.5C19—C20—H20A120.3
H12A—C12—H12C109.5C20—C21—C22121.11 (14)
H12B—C12—H12C109.5C20—C21—O2114.03 (13)
C6—C7A—C8A112.7 (8)C22—C21—O2124.86 (14)
C6—C7A—H7AA109.0C21—C22—C23118.53 (14)
C8A—C7A—H7AA109.0C21—C22—H22A120.7
C6—C7A—H7AB109.0C23—C22—H22A120.7
C8A—C7A—H7AB109.0C22—C23—C18122.05 (14)
H7AA—C7A—H7AB107.8C22—C23—H23A119.0
C7A—C8A—C9110.2 (11)C18—C23—H23A119.0
C7A—C8A—H8AA109.6O2—C24—F2112.74 (14)
C9—C8A—H8AA109.6O2—C24—F1111.38 (12)
C7A—C8A—H8AB109.6F2—C24—F1105.20 (13)
C9—C8A—H8AB109.6O2—C24—H24A109.1
H8AA—C8A—H8AB108.1F2—C24—H24A109.1
C6—C11A—H11D109.5F1—C24—H24A109.1
C6—C11A—H11E109.5
C9—N1—C1—C216.6 (2)C3—C4—C9—N110.2 (2)
C9—N1—C1—C10162.96 (12)C5—C4—C9—C85.5 (5)
N1—C1—C2—C13168.52 (13)C3—C4—C9—C8170.5 (5)
C10—C1—C2—C1310.9 (2)C5—C4—C9—C8A9.4 (8)
N1—C1—C2—C39.82 (19)C3—C4—C9—C8A166.6 (8)
C10—C1—C2—C3170.73 (13)C1—N1—C9—C416.5 (2)
C1—C2—C3—C432.19 (17)C1—N1—C9—C8162.9 (4)
C13—C2—C3—C4146.33 (12)C1—N1—C9—C8A166.7 (8)
C1—C2—C3—C1890.88 (15)C7—C8—C9—C426.3 (8)
C13—C2—C3—C1890.60 (14)C7—C8—C9—N1153.0 (4)
C2—C3—C4—C932.34 (18)C7A—C8A—C9—C419.0 (15)
C18—C3—C4—C991.22 (16)C7A—C8A—C9—N1157.8 (7)
C2—C3—C4—C5151.65 (13)C14—O4—C13—O31.5 (2)
C18—C3—C4—C584.79 (16)C14—O4—C13—C2176.23 (12)
C9—C4—C5—O1174.39 (14)C1—C2—C13—O3176.94 (15)
C3—C4—C5—O19.7 (2)C3—C2—C13—O34.6 (2)
C9—C4—C5—C66.6 (2)C1—C2—C13—O45.3 (2)
C3—C4—C5—C6169.33 (12)C3—C2—C13—O4173.09 (12)
O1—C5—C6—C7A152.9 (2)C13—O4—C14—C16176.95 (15)
C4—C5—C6—C7A26.1 (2)C13—O4—C14—C1759.76 (18)
O1—C5—C6—C1228.8 (2)C13—O4—C14—C1564.4 (2)
C4—C5—C6—C12152.19 (17)C4—C3—C18—C19134.72 (14)
O1—C5—C6—C11A26.9 (3)C2—C3—C18—C19102.85 (15)
C4—C5—C6—C11A152.1 (2)C4—C3—C18—C2346.27 (18)
O1—C5—C6—C7152.31 (15)C2—C3—C18—C2376.16 (16)
C4—C5—C6—C728.68 (19)C23—C18—C19—C200.2 (2)
O1—C5—C6—C1190.31 (18)C3—C18—C19—C20179.23 (13)
C4—C5—C6—C1188.70 (17)C18—C19—C20—C210.9 (2)
O1—C5—C6—C12A85.2 (2)C19—C20—C21—C220.8 (2)
C4—C5—C6—C12A95.7 (2)C19—C20—C21—O2178.96 (13)
C12—C6—C7—C8174.7 (4)C24—O2—C21—C20168.08 (14)
C5—C6—C7—C848.9 (4)C24—O2—C21—C2212.1 (2)
C11—C6—C7—C865.5 (4)C20—C21—C22—C230.1 (2)
C6—C7—C8—C947.3 (6)O2—C21—C22—C23179.67 (14)
C5—C6—C7A—C8A55.3 (8)C21—C22—C23—C180.6 (2)
C11A—C6—C7A—C8A177.9 (8)C19—C18—C23—C220.6 (2)
C12A—C6—C7A—C8A58.9 (9)C3—C18—C23—C22178.48 (14)
C6—C7A—C8A—C952.0 (13)C21—O2—C24—F260.27 (18)
C5—C4—C9—N1173.81 (13)C21—O2—C24—F157.73 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)1.97 (2)2.8418 (16)171.2 (19)
C8A—H8A···F2ii0.992.533.168 (19)130
C8AA—H8AB···F2ii0.992.483.168 (19)126
C10—H10A···O40.982.272.7834 (18)112
C15—H15A···O30.982.473.038 (3)116
C16—H16C···F1iii0.982.623.573 (2)164
C17—H17B···O30.982.412.969 (2)116
C22—H22A···F20.952.372.9091 (19)116
C24—H24A···O4iv1.002.653.4638 (18)139
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y1/2, z; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the compounds top
ContactPercentage contribution
(I)(II)(III)
H···H49.155.558.9
O···H/H···O17.514.912.7
F···H/H···F16.214.112.9
C···H/H···C11.714.512.0
F···F1.80.2
O···C/C···O1.21.0
F···O/O···F0.80.2
N···H/H···N0.50.20.2
F···C/C···F0.51.51.4
O···N/N···O0.30.50.4
O···O0.1
C···C0.10.40.1
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, RS and SÖY; methodology, RS and GÇ; investigation, RS and SÖY; writing (original draft), GÇ and MA; writing (review and editing of the manuscript), RS and SÖY; crystal data production and validation, RJB and SÖY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.

References

First citationAqdas, M. & Sung, M. H. (2023). Trends Immunol. 44, 32–43.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryzgalov, A., Tolstikova, T., Koshcheev, B. & Maksimov, A. (2023). Results Chem. 5, 100705.  Web of Science CrossRef Google Scholar
First citationChen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. (2018). Oncotarget, 9, 7204–7218.  CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLinden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41.  CSD CrossRef IUCr Journals Google Scholar
First citationPan, C., Luo, M., Lu, Y., Pan, X., Chen, X., Ding, L., Che, J., He, Q. & Dong, X. (2022). Bioorg. Chem. 125, 105820.  Web of Science CrossRef PubMed Google Scholar
First citationPehlivanlar, E., Yıldırım, S. Ö., Şimşek, R., Akkurt, M., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 664–668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRanjbar, S., Edraki, N., Firuzi, O., Khoshneviszadeh, M. & Miri, R. (2019). Mol. Divers. 23, 471–508.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShaheen, M. A., El-Emam, A. A. & El-Gohary, N. S. (2020). Bioorg. Chem. 105, 104274.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Sodji, Q. H. & Oyelere, A. K. (2022). Cancers, 14, 552.  Web of Science CrossRef PubMed Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798–803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 187–191.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds