research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of bis­­[1-oxopyridin-2-olato(1−)]bis­­(penta­fluoro­phen­yl)silicon(IV)–tetra­hydro­furan–pentane (2/1/1), bis­­[1-oxopyridin-2-olato(1−)]bis­­(p-tol­yl)silicon(IV), and dimesitylbis[1-oxopyridin-2-olato(1−)]silicon(IV)

crossmark logo

aDepartment of Chemistry, St. John Fisher University, Rochester, NY 14618, USA, and bDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: bkraft@sjf.edu

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 15 January 2024; accepted 15 February 2024; online 20 February 2024)

The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hy­droxy­pyridin-2-one in tetra­hydro­furan (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tol­yl2Si(OPO)2 (2) and mesit­yl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tol­yl2SiCl2 and mesit­yl2SiCl2, respectively, in aceto­nitrile. The oxygen-bonded carbon and nitro­gen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution.

1. Chemical context

The intriguing capacity of 1-hy­droxy­pyridin-2-one (HOPO) to dissolve silica to form [Si(OPO)3]+ in aqueous solution was reported by Weiss & Harvey in 1964[Weiss, A. & Harvey, D. R. (1964). Angew. Chem. Int. Ed. Engl. 3, 698-699.]. More recently, related ligand derivatives have been utilized as sequestering agents of lead and rare-earth metals, among others (Lewis & Cohen, 2004[Lewis, J. A. & Cohen, S. M. (2004). Inorg. Chem. 43, 6534-6536.]; Szigethy & Raymond, 2011[Szigethy, G. & Raymond, K. N. (2011). J. Am. Chem. Soc. 133, 7942-7956.]; Wang, et al., 2019[Wang, X., Dai, X., Shi, C., Wan, J., Silver, M. A., Zhang, L., Chen, L., Yi, X., Chen, B., Zhang, D., Yang, K., Diwu, J., Wang, J., Xu, Y., Zhou, R., Chai, Z. & Wang, S. (2019). Nat. Commun. 10, article No. 2570. https://www.nature.com/articles/s41467-019-10276-z]). In order to further study the powerful chelate effect of the OPO ligand, we have examined the solution- and solid-state structures of silicon complexes with varying organo ancillary ligands.

Previously reported hexa­coordinate neutral di­alkyl­silicon 1-oxopyridin-2-one (OPO) complexes, R2Si(OPO)2 [R = Me, Et, iPr; R2 = (CH2)3], and one diaryl complex, Ph2Si(OPO)2, each exhibit co-crystallization of up to three possible isomers due, in part, to the isosteric character of the OPO ligand with the coplanar flip of itself (Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]). In solution at room temperature, the dialkyl complexes exhibit only five OPO ligand resonances by NMR spectroscopy, indicating rapid inter­conversion of isomers that occurs with concomitant Si←OC bond dissociation. For Me2Si(OPO)2, three isomers were observed at 193 K by 1H NMR spectros­copy. In Ph2Si(OPO)2, the more electron-withdrawing phenyl groups strengthened the OPO ligand chelate inter­action as given by generally shorter Si—O distances, and this resulted also in a slower inter­conversion between isomers relative to the alkyl derivatives (Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]).

In all known R2Si(OPO)2 complexes, the pair of Si—O bond distances trans to alkyl or aryl groups are longer than those cis. This characteristic, together with the observed C/N site disorder, highlights the underlying ambidentate character of the OPO ligand with inter­changeability of canonical structures having either 2-pyridinone or N-oxide electronic forms. In contrast with the four known alkyl R2Si(OPO)2 complexes in the crystalline state which favored primarily the ON-trans-ON isomer, the aryl derivative, Ph2Si(OPO)2, favored primarily the OC-trans-OC isomer and suggested that electron-withdrawing ancillary ligands might favor structures with primarily N-oxide forms. We report here the crystal structures and solution characterization of three additional aryl-substituted R2Si(OPO)2 [R = C6F5 (1), p-tolyl (2), mesityl (3)] complexes.

[Scheme 1]

2. Structural commentary

There is one silicon complex in a general position per asymmetric unit for all three structures. In 1, there are also solvents of crystallization (see Refinement). Each of the three complexes is hexa­coordinate in a distorted octa­hedral geometry with cis-aryl groups and two chelating OPO ligands (Figs. 1[link]–3[link][link]). Selected bond lengths and angles are summarized in Tables 1[link], 2[link] and 3[link]. In all three complexes, the oxygen-bonded C and N atoms of each pyridine ring are modeled as disordered (see Refinement), which indicates the presence of up to three possible diastereomers in each. In 1, the C1/N1 and C6/N2 disorder ratios indicate approximately equal C/N atom occupancy in both OPO ligand sites. In 2, to an uncertain degree, a larger proportion of the ON-trans-ON arrangement is indicated from the disorder ratios, and in 3, a larger proportion of the OC-trans-OC arrangement is indicated. In our previous work (Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]), similarly disordered dialkyl R2Si(OPO)2 [R = Me, Et, iPr; R2 = (CH2)3] complexes were found to favor a larger proportion of the ON-trans-ON arrangement, whereas the more electron-withdrawing Ph2Si(OPO)2 favored a larger proportion of the OC-trans-OC arrangement. The structures of 1, 2, and 3 indicate no trend in major isomer preference with ar­yl/electron withdrawing ancillary ligands. As in all other R2Si(OPO)2 complexes, the Si—O bonds trans to alkyl or aryl groups in 13 are consistently longer than those cis.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Si1—O1 1.7910 (9) Si1—O2 1.8503 (9)
Si1—O4 1.8042 (9) Si1—C11 1.9559 (12)
Si1—O3 1.8480 (9) Si1—C17 1.9683 (12)
       
O1—Si1—O4 166.74 (4) O3—Si1—C11 90.16 (4)
O1—Si1—O3 86.65 (4) O2—Si1—C11 175.99 (5)
O4—Si1—O3 84.60 (4) O1—Si1—C17 99.44 (5)
O1—Si1—O2 85.17 (4) O4—Si1—C17 88.68 (4)
O4—Si1—O2 84.53 (4) O3—Si1—C17 172.66 (4)
O3—Si1—O2 87.56 (4) O2—Si1—C17 88.88 (5)
O1—Si1—C11 91.41 (4) C11—Si1—C17 93.75 (5)
O4—Si1—C11 98.54 (4)    

Table 2
Selected geometric parameters (Å, °) for 2[link]

Si1—O3 1.8093 (14) Si1—C11 1.9202 (19)
Si1—O1 1.8097 (14) Si1—O2 1.9290 (15)
Si1—O4 1.9179 (15) Si1—C18 1.9301 (19)
       
O3—Si1—O1 165.96 (7) O4—Si1—O2 83.28 (6)
O3—Si1—O4 83.76 (6) C11—Si1—O2 171.36 (8)
O1—Si1—O4 86.24 (7) O3—Si1—C18 91.04 (7)
O3—Si1—C11 98.02 (8) O1—Si1—C18 97.64 (8)
O1—Si1—C11 91.68 (7) O4—Si1—C18 171.40 (7)
O4—Si1—C11 89.37 (7) C11—Si1—C18 98.16 (8)
O3—Si1—O2 85.72 (6) O2—Si1—C18 89.53 (7)
O1—Si1—O2 83.35 (6)    

Table 3
Selected geometric parameters (Å, °) for 3[link]

Si1—O1 1.9291 (16) Si1—O4 1.8096 (15)
Si1—O2 1.7896 (15) Si1—C11 1.975 (2)
Si1—O3 1.9581 (16) Si1—C20 1.955 (2)
       
O1—Si1—O3 80.99 (7) O3—Si1—C11 88.61 (8)
O1—Si1—C11 169.59 (8) O4—Si1—O1 84.30 (7)
O1—Si1—C20 90.09 (8) O4—Si1—O3 81.82 (7)
O2—Si1—O1 83.25 (7) O4—Si1—C11 94.57 (8)
O2—Si1—O3 84.09 (7) O4—Si1—C20 95.73 (8)
O2—Si1—O4 162.48 (8) C20—Si1—O3 170.93 (8)
O2—Si1—C11 95.44 (8) C20—Si1—C11 100.32 (9)
O2—Si1—C20 96.57 (8)    
[Figure 1]
Figure 1
Anisotropic displacement ellipsoid plot of 1 drawn at the 50% probability level with H atoms and solvent omitted. Only the major components of disorder are shown.
[Figure 2]
Figure 2
Anisotropic displacement ellipsoid plot of 2 drawn at the 50% probability level with H atoms omitted. Only the major components of disorder are shown.
[Figure 3]
Figure 3
Anisotropic displacement ellipsoid plot of 3 drawn at the 50% probability level with H atoms omitted. Only the major components of disorder are shown.

The 29Si NMR spectrum of 1 in DMSO-d6 displays a single broadened resonance at −152.5 ppm, consistent with hexa­coordinated silicon. Two sets of sharp OPO ligand resonances in 1:1 ratio are observed in the 13C NMR spectrum, and two sets of C6F5 ligand resonances in 1:1 ratio are observed in the 19F NMR spectrum, pointing to magnetic inequivalence of all four ligands. At 298 K, the ortho and meta 19F NMR resonances are significantly broadened, and each of the ten sharp OPO ligand 13C NMR resonances appears as a pair of closely-spaced peaks (a total of 20 peaks) separated by ≤ 0.2 ppm. Variable temperature NMR studies at 353 K show coalesced and sharpened meta 19F resonances, broadened ortho 19F resonances that approach coalescence, and 1H and 13C resonances of the OPO ligands that remain sharp. These observations are consistent with the absence of evidence of inter­conversion between diastereomers and the presence of two rotamers in 1:1 ratio of the totally asymmetric ON-trans-OC isomer with hindered rotation about the Si–C6F5 bonds. The absence of dynamic stereoisomerism at the observed temperatures is striking in light of that observed with all other known R2Si(OPO)2 complexes. This may be explained by the markedly stronger chelate inter­action in 1, manifested by its shorter average Si—O bond lengths (Table 1[link]) and larger O—Si—O ‘bite’ angles [84.60 (4) and 85.17 (4)°], which are ∼1–3° larger than those of all known R2Si(OPO)2 complexes (Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]). As a result, Si←OC bond dissociation would be expected to be inhibited as observed, which has been shown as part of the mechanism of isomerization of R2Si(OPO)2 complexes. Similarly, inter­conversion of fac and mer isomers in the even more strongly chelated [Si(OPO)3]+ cation is not observed for likely the same reason (Kraft et al., 2015[Kraft, B. M., Brennessel, W. W., Ryan, A. E. & Benjamin, C. K. (2015). Acta Cryst. E71, 1531-1535.]). Bite angles in homoleptic [Si(OPO)3]+ silyl cations range from 87.0–87.4° in [Si(OPO)3]Cl·2CDCl3, [Si(OPO)3]Cl·xCH3CN, and [Si(OPO)3]·[CF3SO3]·0.5HOPO [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), version 5.45, update Nov. 2023; refcodes RUTQUU, RUTRAB (Kraft et al., 2015[Kraft, B. M., Brennessel, W. W., Ryan, A. E. & Benjamin, C. K. (2015). Acta Cryst. E71, 1531-1535.]) and QOXSIF (Tacke, Willeke, & Penka, 2001[Tacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236-1240.])], respectively, indicating even stronger chelate inter­actions in comparison with 1. The presence of only one isomer of 1 in solution is consistent with the crystallographic data having a common disorder ratio of 0.52 (2):0.48 (2) for both C1/N1 and C6/N2. The ON-trans-OC isomer and mol­ecular superimposition of the flip of itself (i.e., a C2 rotation about the axis bis­ecting the C—Si—C angle) uniquely reverses the positions of C and N atoms in all four oxygen-bonded sites, necessarily resulting in an equal disorder ratio.

The strength of the chelate inter­action increases in the complexes in the order 321 as given by decreasing average Si—O bond distances and increasing O2Si bite angles (Tables 1[link], 2[link] and 3[link]). This can be explained by the electron-withdrawing effect of the fluoroaryl groups which strengthens the inter­action in 1 and the increase in steric hindrance from ortho-methyl substitution, which weakens the inter­action in 3. Steric influences in 3 are further evident by the greater deviation of the trans-O—Si—O angle [162.48 (8)°] from ideal (i.e., 180°) versus those in 1 and 2 [166.74 (4) and 165.96 (7)°, respectively] and by the larger C—Si—C angle in 3 versus 2 and 1. The electron-donating p-tolyl groups of 2 appear to increase slightly the chelate strength of the OPO ligand in comparison with that in Ph2Si(OPO)2 given by the comparable Si—O bond lengths and ∼1° larger O2Si bite angles [for Ph2Si(OPO)2: Si—O = 1.9175 (4), 1.8157 (13) Å; O—Si—O = 82.47 (6)°].

For 2 in CDCl3 solution, a single set of OPO and p-tolyl ligand resonances was observed by 1H and 13C NMR spectroscopy with varying extents of broadened OPO ligand and p-tolyl peaks that sharpen further at higher temperature. These observations are consistent with stereodynamic isomerization occurring similar to that observed with Ph2Si(OPO)2 (Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]). Complex 3 could not be characterized in solution due to its poor solubility.

Each O2Si chelate ring and planar OPO ligand in 1 forms a relatively large dihedral angle [9.60 (2) and 16.36 (4)°] in comparison with those of other alkyl R2Si(OPO)2 complexes [R = Me, Et, iPr, tBu; R2 = (CH2)3, range = 1.78–12.47°), 2 [2.41 (8) and 0.97 (9)°], and 3 [6.68 (11) and 8.41 (9)°]. Larger dihedral angles [both 21.51 (9)°] are also observed in Ph2Si(OPO)2. Unspecific crystal packing effects are likely responsible for these variations as no correlation could be found relating the magnitude of these fold angles with chelate strength or other ancillary ligand characteristics.

3. Supra­molecular features

In 1 there is an offset parallel ππ inter­action between ring C11–C16 from pairs of inverted mol­ecules (Fig. 4[link]), with a centroid–centroid distance of 3.8613 (8) Å and an inter­planar distance of 3.7876 (13) Å. Further ππ inter­actions may have been inhibited during crystal growth by the presence of solvent. There are a few short inter­molecular C—H⋯F—C(aromatic) contacts, the strongest of which are listed in Table 4[link]. However, it should be noted that only two [C2—H2⋯F1([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z)] and C10—H10⋯F8(−1 + x, y, z)] have H⋯F distances of significance compared with the sum of the individual van der Waals radii (2.56 Å; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and that these attractions tend to be very weak – of the order of the energies of van der Waals complexes (Howard et al., 1996[Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613-12622.]).

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.95 2.34 3.2809 (15) 170
C4—H4⋯F6ii 0.95 2.68 3.5757 (16) 158
C5—H5⋯F4iii 0.95 2.59 3.2997 (15) 132
C7—H7⋯F5iv 0.95 2.57 3.2307 (14) 127
C8—H8⋯F6iv 0.95 2.56 3.2230 (15) 127
C10—H10⋯F8v 0.95 2.37 3.0797 (16) 131
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y+2, -z+1]; (v) [x-1, y, z].
[Figure 4]
Figure 4
Offset parallel ππ inter­action between inverted pairs of mol­ecules of 1. The second mol­ecule is generated by the symmetry operation 1 − x, 1 − y, 1 − z. Centroid–centroid distance, 3.86 Å.

The packing of 2 features sheets of mol­ecules parallel to the ac plane (Figs. 5[link] and 6[link]). Inverted pairs of ring N1/C1–C5 alternate with inverted pairs of ring C11–C16 to form staggered, but parallel arene ring alignments along [001] (Fig. 5[link]). The centroid–centroid distances are 3.7548 (14), 4.1725 (12), and 5.0523 (13) Å with inter­planar spacings of 3.588 (2), 3.556 (3), and 3.532 (4) Å, respectively. The alignment of rings at the largest centroid-centroid distance of 5.05 Å is likely a mere consequence of a favorable packing arrangement rather than significant ππ overlap. These sheets are linked in the third dimension by pairs of offset parallel ππ inter­actions involving ring N2/C6–C10 (Fig. 7[link]) with a centroid-centroid distance of 3.5067 (14) Å and an inter­planar spacing of 3.350 (2) Å.

[Figure 5]
Figure 5
Packing plot of 2 with H atoms omitted. Rows of inter­locking mol­ecules along the [001] direction create two-dimensional sheets. Centroid–centroid distances are 3.76, 4.17, and 5.05 Å, for which the smaller two may allow for offset parallel ππ inter­actions.
[Figure 6]
Figure 6
Packing plot of 2 with H atoms omitted that shows the divisions between the sheets shown in Fig. 5[link].
[Figure 7]
Figure 7
The sheets depicted in Figs. 5[link] and 6[link] are connected via additional ππ inter­actions between inverted pairs of mol­ecules. Second mol­ecule generated by 1 − x, −y, 1 − z. Centroid–centroid distance, 3.51 Å.

Mol­ecules of 3 appear linked along [100] via ππ inter­actions between rings N1/C1–C5 and N2/C6–C10 of symmetry-equivalent mol­ecules (Fig. 8[link]). Although the centroid-centroid distance is short at 3.7416 (14) Å, the angle between ring planes is 23.03 (11)°, perhaps limiting the attractive force. The inter­planar spacings range from 3.191 (3) to 4.268 (3) Å, with an average of 3.722 (7) Å. One C—H⋯π inter­action accompanies each ππ inter­action just described (Fig. 8[link]). The distance between H and the midpoint of the C11—C16 bond is 2.50 Å, with a C—H⋯CC(midpoint) angle of 174°. The angle between the plane containing the C—H donor and that of the π-acceptor is 68.27 (7)°.

[Figure 8]
Figure 8
Possible ππ inter­action in 3 shown by thick dashes. Centroid–centroid distances, 3.74 Å. Angles between ring planes, 23°. Edge-to-face C—H⋯π inter­actions shown by thin dashes between H atoms and the π systems at the edge of each acceptor ring. Symmetry-equivalent mol­ecules generated by [{1\over 2}] + x, [{3\over 2}] − y, 1 − z and [{1\over 2}] + x, [{3\over 2}] − y, 1 − z.

4. Database survey

There are currently no reported structures of hexa­coordinate bis­(penta­fluoro­phen­yl)silicon(IV) complexes, nor other hexa­coordinate dimesit­ylsilicon(IV) complexes. The related hexa­coordinate pyri­thione (OPTO) complex, (p-tol­yl)2Si(OPTO)2, crystallizes with cis aryl groups and primarily with two bidentate OPTO ligands in an S-trans-S arrangement with additional disordered monodentate modes (CSD refcode DEWGAR; Tiede et al., 2022[Tiede, E. R., Heckman, M. T., Brennessel, W. W. & Kraft, B. M. (2022). Organometallics, 41, 3522-3537.]). Mesit­yl2Si(OPTO)2 is tetra­coordinate with two monodentate κO OPTO ligands (CSD refcode DEWSUX; Tiede et al., 2022[Tiede, E. R., Heckman, M. T., Brennessel, W. W. & Kraft, B. M. (2022). Organometallics, 41, 3522-3537.]).

There are five entries of hexa­coordinate R2Si(OPO)2 [R = Me, Et, iPr, Ph; R2 = (CH2)3] complexes containing two bidentate OPO ligands (CSD refcodes NITSAM, NITSEQ, NITSOA, NISMIN, NITSUG, respectively; Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]). Also reported with two bidentate OPO ligands are monoorgano neutral hexa­coordinate complexes, RSi(OPO)2X (X = Cl, F; CSD refcodes ODEFIP, ODEFOV, ODEFUB, ODEHAJ, and ODEHEN), and cationic penta­coordinate complexes, [RSi(OPO)2]+X (X = Cl, tri­fluoro­methane­sulfonate; CSD refcodes ODEGAI, ODEGIQ, ODEGOW, and ODEGUC; Koch et al., 2017[Koch, J. G., Brennessel, W. W. & Kraft, B. M. (2017). Organometallics, 36, 594-604.]). Other related entries include [Si(OPO)2(μ-CH2CH2SCH2C(=O)O)]2·2CH3CN and [O(CH2)3]Si(OPO)2 (CSD refcodes UBUWET and UBUWIX, respectively; Tacke, Burschka et al., 2001[Tacke, R., Burschka, C., Willeke, M. & Willeke, R. (2001). Eur. J. Inorg. Chem. pp. 1671-1674.]). Monodentate OPO ligand complexes of any metal are limited to three organosilicon complexes: Me3Si(OPO), tBu2Si(κ1-OPO)(κ2-OPO), and Ph3Si(OPO)·Ph3Si(OH)·0.5C5H12 (CSD refcodes NITROZ, NITSOA, and NITRIT, respectively; Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]). Upon review of a total of 70 complexes of any metal in the CSD containing the OPO ligand (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), complexes with OPO ligand/O2M dihedral angles deviating more than 15° from coplanarity are relatively rare comprising of seven complexes of Si, V, Cu, Zn, Eu, Gd, and Th (CSD refcodes NISMIN: Kraft & Brennessel, 2014[Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158-171.]; OJEHOB: Jakusch et al., 2010[Jakusch, T., Dean, A., Oncsik, T., Bényei, A. C., Di Marco, V. & Kiss, T. (2010). Dalton Trans. 39, 212-220.]; HUSHEJ: Peyroux et al., 2009[Peyroux, E., Ghattas, W., Hardré, R., Giorgi, M., Faure, B., Simaan, A. J., Belle, C. & Réglier, M. (2009). Inorg. Chem. 48, 10874-10876.]; TADXAY: Puerta & Cohen, 2003[Puerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423-3430.]; JAFZEW and JAFZIA: Tedeschi et al., 2003[Tedeschi, C., Azéma, J., Gornitzka, H., Tisnès, P. & Picard, C. (2003). Dalton Trans. pp. 1738-1745.]; BURPEJ: Casellato et al., 1983[Casellato, U., Vigato, P. A., Tamburini, S., Vidali, M. & Graziani, R. (1983). Inorg. Chim. Acta, 69, 77-82.]).

5. Synthesis and crystallization

(C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1): To a solution of HOPO (0.1508 g, 1.357 mmol) in ∼2 ml of THF was added a solution of (C6F5)2Si(OCH3)2 (0.2883 g, 1.025 mmol) in ∼2 ml THF. The resulting solution was stirred for two days and the solvent removed under vacuum. A portion (0.100 g) was recrystallized by vapor diffusion of n-pentane into a THF solution to yield white crystals of (C6F5)2Si(OPO)2·0.5THF·0.5C5H12. Subsequent washing of the crystals with THF and drying for 3 h under vacuum resulted in partial removal of solvents of crystallization, which analyzed as (C6F5)2Si(OPO)2·0.36C4H8O·0.11C5H12 (0.046 g, 46%) by a qu­anti­tative 1H NMR experiment and by elemental analysis. 1H NMR (DMSO-d6, 353 K): δ 0.87 (t, penta­ne), 1.28 (penta­ne), 1.77 (THF), 3.62 (THF), 7.10 (m, 3H), 7.35 (ddd, 3J = 8.6, 3J = 4.5, 4J = 1.0 Hz, 1H), 7.88 (m, 2H), 8.41 (ddd, 3J = 10.6, 3J = 6.6, 4J = 1.2 Hz, 1H), 8.64 (m, 1H). 13C NMR (DMSO-d6, 298 K): δ 13.9 (penta­ne), 21.7 (penta­ne), 25.1 (THF), 33.5 (penta­ne), 67.0 (THF), 112.0, 112.2, 112.2, 114.2, 114.2, 115.5, 115.5, 124.4 (br, Si—C), 132.6, 132.6, 132.7, 132.8, 136.0 (br d, 1JC—F = 250 Hz), 138.8 (br d, 1JC—F = 250 Hz), 138.9, 138.9, 139.8, 139.9, 147.7 (br d, 1JC—F = 230 Hz), 154.5, 154.6, 155.4 (CO), 155.4 (CO). 19F NMR (DMSO-d6, 298 K, referenced to α,α,α-tri­fluoro­toluene at δ −63.73): δ −167.1 (br, m-C6F5), −166.6 (br, m-C6F5), −160.8 (m, p-C6F5), −160.5 (t, J = 21.1 Hz, p-C6F5), −136.2 (br, o-C6F5), −130.0 (br, o-C6F5), −128.8 (br, o-C6F5). 29Si NMR (DMSO-d6, 298 K): δ −152.5 (br). Analysis calculated for (C6F5)2Si(OPO)2 0.36·C4H8O 0.11·C5H12: C, 46.72%; H, 1.98%; N, 4.55%. Found: C, 47.09%; H, 1.95%; N, 4.68%.

p-Tol­yl2Si(OPO)2 (2): To a solution of Me3Si(OPO) (0.1243 g, 0.678 mmol) in 7 ml of CH3CN was added dropwise a solution of p-tol­yl2SiCl2 (87.0 µL, d = 1.10 g ml−1, 0.340 mmol) in 2 ml of CH3CN at room temperature. The mixture was allowed to stand undisturbed for nine days. Decantation, washing with ∼1 ml of CH3CN, and drying under vacuum afforded 0.1132 g (75.5%) of a combination of a white powder and crystals used for structure determination. 1H NMR (CDCl3, 333 K): δ 2.24 (s, 6H), 6.61 (m, 2H), 6.82 (br d, 3J = 7.9 Hz, 2H), 6.96 (d, 3J = 7.8 Hz, 4H, p-tol­yl), 7.38 (ddd, 3J = 7.3, 3J = 8.7, 4J = 1.7 Hz, 2H), 7.53 (d, 3J = 7.8 Hz, 4H, p-tol­yl), 8.00 (br d, 3J = 6.1 Hz, 2H). 13C NMR (CDCl3, 333 K): δ 21.4 (CH3), 111.5 (br), 113.2, 127.5, 132.4, 134.8, 135.1, 136.5 (br), 148.4 (br), 156.8 (CO). 29Si NMR (CDCl3, 333 K): δ −128.3. Analysis calculated for C24H22N2O4Si: C, 66.95; H, 5.15; N, 6.51. Found: C, 66.30; H, 5.09; N, 6.71.

Mesit­yl2Si(OPO)2 (3): To a filtered solution of Me3Si(OPO) (0.0904 g, 0.493 mmol) in 4 ml of CH3CN was added a filtered solution of mesit­yl2SiCl2 (0.0832 g, 0.247 mmol) in 4 ml of CH3CN. Colorless crystals deposited after one day at room temperature. Decantation and drying under vacuum afforded 0.0633 g (52.8%) of product that was insoluble in hot chloro­form and hot aceto­nitrile. An attempt to dissolve 3 in DMSO-d6 with heating resulted in dissolution with complete decomposition into unidentified products. NMR analysis of a CDCl3 solution prior to precipitation showed severely broadened indecipherable peaks. Analysis calculated for C28H30N2O4Si: C, 69.11; H, 6.21; N, 5.76. Found: C, 68.85; H, 6.16; N, 5.69.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In all three structures, both bidentate ligands are disordered with the coplanar flips of themselves. For the rings containing C1/N1 and C6/N2, respectively, the disorder ratios are 0.52 (2):0.48 (2) and 0.52 (2):0.48 (2), 0.66 (2):0.34 (2) and 0.61 (2):0.39 (2), and 0.68 (3):0.32 (3) and 0.61 (3):0.39 (3), for structures 1, 2, and 3, respectively. Due to resolution limitations, the disorder model did not include the entire ring, but was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally to sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters, respectively, at each site of disorder were constrained to be equivalent. It is understood that this type of disorder model will likely exhibit a weighted average of Si—O bond lengths, trending with the disorder ratios.

Table 5
Experimental details

  1 2 3
Crystal data
Chemical formula C22H8F10N2O4Si·0.5C5H12·0.5C4H8O C24H22N2O4Si C28H30N2O4Si
Mr 654.52 430.52 486.63
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Orthorhombic, P212121
Temperature (K) 100 100 100
a, b, c (Å) 12.6809 (9), 12.1217 (9), 17.7335 (13) 8.5662 (8), 8.8343 (8), 14.7801 (14) 12.5710 (2), 12.68898 (19), 15.3580 (2)
α, β, γ (°) 90, 105.7674 (15), 90 93.057 (2), 105.3716 (19), 106.7565 (18) 90, 90, 90
V3) 2623.3 (3) 1022.45 (17) 2449.80 (7)
Z 4 2 4
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 0.20 0.15 1.15
Crystal size (mm) 0.40 × 0.36 × 0.14 0.24 × 0.24 × 0.20 0.09 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker SMART APEXII CCD platform Bruker SMART APEXII CCD platform XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.694, 0.748 0.695, 0.746 0.674, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 97594, 14595, 9977 25883, 6239, 4231 22120, 5138, 4847
Rint 0.043 0.065 0.048
(sin θ/λ)max−1) 0.881 0.715 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.163, 1.03 0.054, 0.149, 1.05 0.032, 0.079, 1.05
No. of reflections 14595 6239 5138
No. of parameters 446 284 324
No. of restraints 55 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.58 1.01, −0.44 0.27, −0.25
Absolute structure Flack x determined using 1985 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.034 (17)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 and SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

In 1, the solvent volume contains one each of THF and n-pentane disordered over a crystallographic inversion center (0.50:0.50). Analogous bond lengths and angles in both directions along each solvent mol­ecule were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

All H atoms were placed geometrically and treated as riding atoms. Aromatic/sp2, C–H = 0.95 Å and methyl­ene, C–H = 0.99 Å, with Uiso(H) = 1.2Ueq(C). Methyl, C–H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).

For 1 the maximum residual peak of 0.61 e Å−3 and the deepest hole of −0.58 e Å−3 are found 0.69 and 0.35 Å from atoms C21 and C25, respectively.

For 2 the maximum residual peak of 1.01 e Å−3 and the deepest hole of −0.43 e Å−3 are found 0.92 and 0.61 Å from atom Si1.

For 3 the maximum residual peak of 0.27 e Å−3 and the deepest hole of −0.25 e Å−3 are found 0.92 and 0.58 Å from atoms C20 and Si1, respectively.

Supporting information


Computing details top

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1) top
Crystal data top
C22H8F10N2O4Si·0.5C5H12·0.5C4H8OF(000) = 1324
Mr = 654.52Dx = 1.657 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.6809 (9) ÅCell parameters from 3989 reflections
b = 12.1217 (9) Åθ = 2.3–37.4°
c = 17.7335 (13) ŵ = 0.20 mm1
β = 105.7674 (15)°T = 100 K
V = 2623.3 (3) Å3Plate, colorless
Z = 40.40 × 0.36 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
9977 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
ω scansθmax = 38.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2222
Tmin = 0.694, Tmax = 0.748k = 2121
97594 measured reflectionsl = 3030
14595 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.9141P]
where P = (Fo2 + 2Fc2)/3
14595 reflections(Δ/σ)max = 0.001
446 parametersΔρmax = 0.61 e Å3
55 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Both bidentate ligands are disordered with the coplanar flips of themselves (0.524 (16):0.476 (16) and 0.516 (15):0.484 (16) for the rings containing C1/N1 and C6/N2, respectively). Due to resolution limitations, the disorder was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters,respectively, at each site of disorder were constrained to be equivalent.

The solvent volume contains once each of n-pentane and tetrahydrofuran disordered over a crystallographic inversion center (0.50:0.50). Analogous bond lengths and angles in both directions along each solvent molecule were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.66487 (2)0.71292 (2)0.62708 (2)0.01575 (6)
O10.67613 (7)0.58885 (7)0.68356 (5)0.01829 (14)
O20.69747 (7)0.78437 (7)0.72284 (5)0.01843 (14)
O30.51949 (7)0.71616 (6)0.62790 (5)0.01877 (15)
O40.63848 (6)0.84997 (7)0.58666 (5)0.01750 (14)
N10.68205 (8)0.60779 (8)0.75861 (6)0.01816 (19)0.524 (16)
C10.69390 (9)0.71546 (8)0.78005 (6)0.01806 (18)0.524 (16)
N20.48096 (8)0.81844 (9)0.61909 (7)0.01913 (19)0.516 (15)
C60.54737 (8)0.89276 (8)0.59860 (6)0.01757 (18)0.516 (15)
N1'0.69390 (9)0.71546 (8)0.78005 (6)0.01806 (18)0.476 (16)
C1'0.68205 (8)0.60779 (8)0.75861 (6)0.01816 (19)0.476 (16)
N2'0.54737 (8)0.89276 (8)0.59860 (6)0.01757 (18)0.484 (15)
C6'0.48096 (8)0.81844 (9)0.61909 (7)0.01913 (19)0.484 (15)
C20.70444 (11)0.74796 (10)0.85565 (7)0.0224 (2)
H20.7133500.8236690.8697890.027*
C30.70189 (12)0.66902 (12)0.91066 (8)0.0259 (2)
H30.7084830.6898800.9633830.031*
C40.68956 (11)0.55763 (11)0.88890 (8)0.0250 (2)
H40.6876620.5030360.9269460.030*
C50.68013 (10)0.52686 (10)0.81226 (7)0.0215 (2)
H50.6725000.4514650.7971360.026*
C70.52081 (10)1.00284 (9)0.59067 (7)0.02030 (19)
H70.5698841.0549230.5787170.024*
C80.42148 (11)1.03599 (10)0.60042 (8)0.0255 (2)
H80.4008701.1115150.5945370.031*
C90.35103 (11)0.95821 (12)0.61899 (10)0.0304 (3)
H90.2818380.9807810.6246460.036*
C100.38159 (10)0.84898 (11)0.62913 (9)0.0258 (2)
H100.3347790.7959430.6427920.031*
C110.62534 (9)0.62938 (9)0.52904 (7)0.01742 (18)
C120.68528 (9)0.53833 (9)0.51616 (7)0.01920 (19)
F10.77010 (7)0.50006 (6)0.57439 (5)0.02438 (15)
C130.66631 (10)0.48285 (10)0.44545 (8)0.0219 (2)
F20.72793 (8)0.39565 (7)0.43788 (6)0.03029 (18)
C140.58391 (11)0.51903 (10)0.38166 (7)0.0229 (2)
F30.56808 (8)0.47189 (7)0.31140 (5)0.03075 (18)
C150.52011 (10)0.60735 (10)0.39152 (7)0.0219 (2)
F40.43903 (8)0.64323 (7)0.33081 (5)0.03056 (18)
C160.54109 (9)0.65902 (9)0.46376 (7)0.01871 (18)
F50.47407 (6)0.74494 (6)0.46711 (5)0.02394 (15)
C170.81897 (9)0.73023 (9)0.62649 (7)0.01881 (18)
C180.85009 (10)0.78010 (10)0.56525 (8)0.0225 (2)
F60.77384 (7)0.80890 (7)0.49856 (5)0.02657 (16)
C190.95760 (12)0.80612 (13)0.56729 (9)0.0300 (3)
F70.98118 (9)0.85775 (10)0.50685 (7)0.0423 (2)
C201.04070 (11)0.77953 (15)0.63276 (11)0.0349 (3)
F81.14520 (8)0.80396 (12)0.63564 (8)0.0545 (3)
C211.01591 (11)0.72697 (13)0.69452 (10)0.0305 (3)
F91.09644 (7)0.70038 (10)0.75876 (7)0.0443 (3)
C220.90737 (10)0.70317 (10)0.69006 (8)0.0221 (2)
F100.89124 (6)0.65161 (7)0.75357 (5)0.02621 (16)
C230.4695 (4)0.9762 (6)0.9416 (4)0.086 (2)0.5
H23A0.4174110.9744580.9735220.128*0.5
H23B0.5114201.0450960.9514520.128*0.5
H23C0.5197470.9133860.9554400.128*0.5
C240.4109 (6)0.9697 (6)0.8603 (5)0.0749 (18)0.5
H24A0.4643270.9751850.8287920.090*0.5
H24B0.3614691.0342720.8470650.090*0.5
C250.3418 (6)0.8635 (5)0.8355 (4)0.0589 (13)0.5
H25A0.2968490.8495350.8722730.071*0.5
H25B0.2917330.8731600.7823640.071*0.5
C260.4188 (6)0.7637 (8)0.8360 (5)0.0513 (16)0.5
H26A0.4578460.7757600.7953650.062*0.5
H26B0.4744090.7611220.8873880.062*0.5
C270.3620 (4)0.6549 (4)0.8216 (3)0.0601 (12)0.5
H27A0.3258900.6403560.8629070.090*0.5
H27B0.4157950.5967350.8218370.090*0.5
H27C0.3071680.6561250.7706020.090*0.5
O5'0.4671 (2)0.8125 (3)0.79186 (18)0.0468 (6)0.5
C23'0.4719 (4)0.9254 (4)0.8165 (3)0.0516 (10)0.5
H23D0.4834290.9748830.7750480.062*0.5
H23E0.5321010.9367160.8647790.062*0.5
C24'0.3630 (5)0.9471 (5)0.8314 (4)0.0565 (12)0.5
H24C0.3681061.0065230.8705690.068*0.5
H24D0.3070960.9673740.7825340.068*0.5
C25'0.3374 (6)0.8395 (5)0.8620 (4)0.0616 (14)0.5
H25C0.2572850.8301860.8524600.074*0.5
H25D0.3725600.8336150.9189750.074*0.5
C26'0.3826 (7)0.7550 (8)0.8179 (6)0.062 (2)0.5
H26C0.4142080.6921100.8522910.075*0.5
H26D0.3246700.7269690.7725890.075*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01361 (12)0.01244 (12)0.01899 (14)0.00038 (9)0.00070 (10)0.00039 (9)
O10.0211 (4)0.0138 (3)0.0178 (3)0.0001 (3)0.0015 (3)0.0003 (3)
O20.0201 (3)0.0138 (3)0.0194 (3)0.0008 (3)0.0020 (3)0.0006 (3)
O30.0157 (3)0.0129 (3)0.0264 (4)0.0001 (2)0.0035 (3)0.0010 (3)
O40.0140 (3)0.0142 (3)0.0232 (4)0.0006 (2)0.0031 (3)0.0017 (3)
N10.0170 (4)0.0152 (4)0.0199 (4)0.0008 (3)0.0010 (3)0.0011 (3)
C10.0167 (4)0.0154 (4)0.0197 (4)0.0008 (3)0.0010 (3)0.0004 (3)
N20.0152 (4)0.0161 (4)0.0247 (5)0.0002 (3)0.0030 (3)0.0001 (3)
C60.0152 (4)0.0139 (4)0.0213 (4)0.0010 (3)0.0010 (3)0.0006 (3)
N1'0.0167 (4)0.0154 (4)0.0197 (4)0.0008 (3)0.0010 (3)0.0004 (3)
C1'0.0170 (4)0.0152 (4)0.0199 (4)0.0008 (3)0.0010 (3)0.0011 (3)
N2'0.0152 (4)0.0139 (4)0.0213 (4)0.0010 (3)0.0010 (3)0.0006 (3)
C6'0.0152 (4)0.0161 (4)0.0247 (5)0.0002 (3)0.0030 (3)0.0001 (3)
C20.0239 (5)0.0188 (4)0.0224 (5)0.0009 (4)0.0026 (4)0.0029 (4)
C30.0283 (6)0.0269 (6)0.0205 (5)0.0035 (5)0.0034 (4)0.0001 (4)
C40.0272 (6)0.0237 (5)0.0225 (5)0.0021 (4)0.0041 (4)0.0045 (4)
C50.0226 (5)0.0168 (4)0.0227 (5)0.0008 (4)0.0020 (4)0.0025 (4)
C70.0212 (5)0.0145 (4)0.0227 (5)0.0008 (3)0.0017 (4)0.0009 (3)
C80.0228 (5)0.0176 (5)0.0334 (6)0.0050 (4)0.0031 (5)0.0002 (4)
C90.0215 (5)0.0236 (5)0.0466 (8)0.0046 (4)0.0103 (5)0.0014 (5)
C100.0187 (5)0.0209 (5)0.0390 (7)0.0003 (4)0.0097 (5)0.0008 (5)
C110.0169 (4)0.0134 (4)0.0203 (5)0.0006 (3)0.0023 (3)0.0006 (3)
C120.0189 (4)0.0148 (4)0.0225 (5)0.0003 (3)0.0033 (4)0.0002 (3)
F10.0220 (3)0.0197 (3)0.0281 (4)0.0055 (3)0.0010 (3)0.0004 (3)
C130.0233 (5)0.0162 (4)0.0265 (5)0.0019 (4)0.0072 (4)0.0028 (4)
F20.0306 (4)0.0221 (3)0.0392 (5)0.0028 (3)0.0114 (4)0.0084 (3)
C140.0280 (6)0.0193 (5)0.0212 (5)0.0071 (4)0.0061 (4)0.0031 (4)
F30.0402 (5)0.0288 (4)0.0235 (4)0.0098 (3)0.0091 (3)0.0074 (3)
C150.0243 (5)0.0183 (4)0.0194 (5)0.0047 (4)0.0005 (4)0.0016 (4)
F40.0353 (4)0.0258 (4)0.0218 (4)0.0030 (3)0.0073 (3)0.0025 (3)
C160.0185 (4)0.0136 (4)0.0213 (5)0.0014 (3)0.0007 (4)0.0007 (3)
F50.0221 (3)0.0171 (3)0.0266 (4)0.0040 (2)0.0036 (3)0.0004 (3)
C170.0155 (4)0.0165 (4)0.0233 (5)0.0000 (3)0.0033 (4)0.0009 (3)
C180.0184 (4)0.0215 (5)0.0267 (6)0.0011 (4)0.0049 (4)0.0008 (4)
F60.0240 (4)0.0300 (4)0.0250 (4)0.0003 (3)0.0054 (3)0.0031 (3)
C190.0229 (5)0.0334 (7)0.0362 (7)0.0040 (5)0.0124 (5)0.0005 (5)
F70.0343 (5)0.0526 (6)0.0457 (6)0.0077 (4)0.0206 (4)0.0073 (5)
C200.0165 (5)0.0425 (8)0.0457 (9)0.0052 (5)0.0086 (5)0.0013 (7)
F80.0186 (4)0.0766 (9)0.0686 (8)0.0104 (5)0.0126 (5)0.0092 (7)
C210.0151 (5)0.0373 (7)0.0359 (7)0.0003 (5)0.0012 (5)0.0014 (6)
F90.0162 (4)0.0625 (7)0.0466 (6)0.0005 (4)0.0046 (4)0.0081 (5)
C220.0148 (4)0.0221 (5)0.0274 (6)0.0001 (4)0.0022 (4)0.0001 (4)
F100.0193 (3)0.0278 (4)0.0277 (4)0.0008 (3)0.0001 (3)0.0045 (3)
C230.039 (2)0.100 (5)0.120 (6)0.009 (3)0.026 (3)0.029 (4)
C240.081 (4)0.057 (3)0.095 (5)0.023 (3)0.038 (4)0.016 (3)
C250.072 (3)0.054 (3)0.060 (3)0.009 (2)0.032 (3)0.015 (2)
C260.049 (3)0.060 (3)0.050 (4)0.013 (3)0.021 (3)0.014 (3)
C270.057 (3)0.070 (3)0.053 (3)0.004 (2)0.015 (2)0.018 (2)
O5'0.0403 (14)0.0526 (16)0.0476 (15)0.0081 (12)0.0122 (12)0.0033 (12)
C23'0.042 (2)0.064 (3)0.050 (2)0.0106 (18)0.0138 (17)0.0147 (19)
C24'0.059 (3)0.047 (2)0.075 (3)0.008 (2)0.037 (3)0.001 (2)
C25'0.071 (3)0.051 (3)0.072 (4)0.003 (2)0.036 (3)0.001 (3)
C26'0.083 (6)0.053 (3)0.056 (4)0.006 (4)0.026 (4)0.009 (3)
Geometric parameters (Å, º) top
Si1—O11.7910 (9)C14—F31.3353 (15)
Si1—O41.8042 (9)C14—C151.3814 (19)
Si1—O31.8480 (9)C15—F41.3430 (14)
Si1—O21.8503 (9)C15—C161.3853 (17)
Si1—C111.9559 (12)C16—F51.3557 (14)
Si1—C171.9683 (12)C17—C181.3904 (18)
O1—C1'1.3324 (14)C17—C221.3957 (17)
O1—N11.3324 (14)C18—F61.3543 (15)
O2—N1'1.3244 (14)C18—C191.3903 (18)
O2—C11.3244 (14)C19—F71.3431 (18)
O3—C6'1.3263 (13)C19—C201.377 (2)
O3—N21.3263 (13)C20—F81.3452 (17)
O4—N2'1.3348 (13)C20—C211.375 (2)
O4—C61.3348 (13)C21—F91.3462 (17)
N1—C11.3562 (14)C21—C221.3874 (18)
N1—C51.3714 (16)C22—F101.3513 (16)
C1—C21.3686 (17)C23—C241.434 (10)
N2—C61.3487 (15)C23—H23A0.9800
N2—C101.3706 (16)C23—H23B0.9800
C6—C71.3740 (15)C23—H23C0.9800
N1'—C1'1.3562 (14)C24—C251.553 (8)
N1'—C21.3686 (17)C24—H24A0.9900
C1'—C51.3714 (16)C24—H24B0.9900
N2'—C6'1.3487 (15)C25—C261.552 (10)
N2'—C71.3740 (15)C25—H25A0.9900
C6'—C101.3706 (16)C25—H25B0.9900
C2—C31.3732 (19)C26—C271.491 (10)
C2—H20.9500C26—H26A0.9900
C3—C41.4013 (19)C26—H26B0.9900
C3—H30.9500C27—H27A0.9800
C4—C51.3828 (19)C27—H27B0.9800
C4—H40.9500C27—H27C0.9800
C5—H50.9500O5'—C23'1.432 (5)
C7—C81.3770 (18)O5'—C26'1.456 (10)
C7—H70.9500C23'—C24'1.498 (6)
C8—C91.398 (2)C23'—H23D0.9900
C8—H80.9500C23'—H23E0.9900
C9—C101.3776 (19)C24'—C25'1.482 (8)
C9—H90.9500C24'—H24C0.9900
C10—H100.9500C24'—H24D0.9900
C11—C161.3923 (16)C25'—C26'1.494 (11)
C11—C121.3937 (16)C25'—H25C0.9900
C12—F11.3545 (14)C25'—H25D0.9900
C12—C131.3851 (17)C26'—H26C0.9900
C13—F21.3428 (14)C26'—H26D0.9900
C13—C141.3861 (19)
O1—Si1—O4166.74 (4)C12—C13—C14119.49 (11)
O1—Si1—O386.65 (4)F3—C14—C15120.33 (12)
O4—Si1—O384.60 (4)F3—C14—C13120.99 (12)
O1—Si1—O285.17 (4)C15—C14—C13118.65 (11)
O4—Si1—O284.53 (4)F4—C15—C14119.78 (11)
O3—Si1—O287.56 (4)F4—C15—C16120.51 (11)
O1—Si1—C1191.41 (4)C14—C15—C16119.71 (11)
O4—Si1—C1198.54 (4)F5—C16—C15115.00 (10)
O3—Si1—C1190.16 (4)F5—C16—C11120.69 (10)
O2—Si1—C11175.99 (5)C15—C16—C11124.29 (11)
O1—Si1—C1799.44 (5)C18—C17—C22113.39 (11)
O4—Si1—C1788.68 (4)C18—C17—Si1122.91 (9)
O3—Si1—C17172.66 (4)C22—C17—Si1123.45 (9)
O2—Si1—C1788.88 (5)F6—C18—C19115.25 (12)
C11—Si1—C1793.75 (5)F6—C18—C17120.49 (11)
C1'—O1—Si1112.84 (7)C19—C18—C17124.25 (12)
N1—O1—Si1112.84 (7)F7—C19—C20119.76 (13)
N1'—O2—Si1111.23 (7)F7—C19—C18120.96 (14)
C1—O2—Si1111.23 (7)C20—C19—C18119.28 (13)
C6'—O3—Si1110.81 (7)F8—C20—C21120.52 (15)
N2—O3—Si1110.81 (7)F8—C20—C19120.04 (15)
N2'—O4—Si1111.71 (7)C21—C20—C19119.44 (13)
C6—O4—Si1111.71 (7)F9—C21—C20119.99 (13)
O1—N1—C1114.69 (9)F9—C21—C22120.74 (14)
O1—N1—C5124.26 (10)C20—C21—C22119.27 (13)
C1—N1—C5121.02 (11)F10—C22—C21114.91 (11)
O2—C1—N1114.61 (10)F10—C22—C17120.77 (10)
O2—C1—C2123.66 (10)C21—C22—C17124.32 (13)
N1—C1—C2121.70 (10)C24—C23—H23A109.5
O3—N2—C6114.78 (9)C24—C23—H23B109.5
O3—N2—C10124.02 (10)H23A—C23—H23B109.5
C6—N2—C10121.20 (10)C24—C23—H23C109.5
O4—C6—N2114.45 (9)H23A—C23—H23C109.5
O4—C6—C7124.04 (10)H23B—C23—H23C109.5
N2—C6—C7121.50 (10)C23—C24—C25115.3 (6)
O2—N1'—C1'114.61 (10)C23—C24—H24A108.4
O2—N1'—C2123.66 (10)C25—C24—H24A108.4
C1'—N1'—C2121.70 (10)C23—C24—H24B108.4
O1—C1'—N1'114.69 (9)C25—C24—H24B108.4
O1—C1'—C5124.26 (10)H24A—C24—H24B107.5
N1'—C1'—C5121.02 (11)C26—C25—C24109.8 (6)
O4—N2'—C6'114.45 (9)C26—C25—H25A109.7
O4—N2'—C7124.04 (10)C24—C25—H25A109.7
C6'—N2'—C7121.50 (10)C26—C25—H25B109.7
O3—C6'—N2'114.78 (9)C24—C25—H25B109.7
O3—C6'—C10124.02 (10)H25A—C25—H25B108.2
N2'—C6'—C10121.20 (10)C27—C26—C25114.5 (6)
N1'—C2—C3118.72 (11)C27—C26—H26A108.6
C1—C2—C3118.72 (11)C25—C26—H26A108.6
C1—C2—H2120.6C27—C26—H26B108.6
C3—C2—H2120.6C25—C26—H26B108.6
C2—C3—C4119.88 (12)H26A—C26—H26B107.6
C2—C3—H3120.1C26—C27—H27A109.5
C4—C3—H3120.1C26—C27—H27B109.5
C5—C4—C3120.26 (12)H27A—C27—H27B109.5
C5—C4—H4119.9C26—C27—H27C109.5
C3—C4—H4119.9H27A—C27—H27C109.5
C1'—C5—C4118.42 (11)H27B—C27—H27C109.5
N1—C5—C4118.42 (11)C23'—O5'—C26'109.5 (5)
N1—C5—H5120.8O5'—C23'—C24'104.9 (4)
C4—C5—H5120.8O5'—C23'—H23D110.8
N2'—C7—C8118.54 (11)C24'—C23'—H23D110.8
C6—C7—C8118.54 (11)O5'—C23'—H23E110.8
C6—C7—H7120.7C24'—C23'—H23E110.8
C8—C7—H7120.7H23D—C23'—H23E108.8
C7—C8—C9119.84 (11)C25'—C24'—C23'102.3 (4)
C7—C8—H8120.1C25'—C24'—H24C111.3
C9—C8—H8120.1C23'—C24'—H24C111.3
C10—C9—C8120.24 (12)C25'—C24'—H24D111.3
C10—C9—H9119.9C23'—C24'—H24D111.3
C8—C9—H9119.9H24C—C24'—H24D109.2
C6'—C10—C9118.59 (12)C24'—C25'—C26'105.0 (6)
N2—C10—C9118.59 (12)C24'—C25'—H25C110.7
N2—C10—H10120.7C26'—C25'—H25C110.7
C9—C10—H10120.7C24'—C25'—H25D110.7
C16—C11—C12113.42 (10)C26'—C25'—H25D110.7
C16—C11—Si1123.97 (8)H25C—C25'—H25D108.8
C12—C11—Si1122.43 (8)O5'—C26'—C25'104.9 (7)
F1—C12—C13115.50 (10)O5'—C26'—H26C110.8
F1—C12—C11120.11 (10)C25'—C26'—H26C110.8
C13—C12—C11124.37 (11)O5'—C26'—H26D110.8
F2—C13—C12120.66 (12)C25'—C26'—H26D110.8
F2—C13—C14119.84 (11)H26C—C26'—H26D108.8
O4—Si1—O1—C1'28.5 (2)O1—C1'—C5—C4178.47 (11)
O3—Si1—O1—C1'77.23 (8)N1'—C1'—C5—C40.59 (18)
O2—Si1—O1—C1'10.60 (8)O1—N1—C5—C4178.47 (11)
C11—Si1—O1—C1'167.31 (8)C1—N1—C5—C40.59 (18)
C17—Si1—O1—C1'98.65 (8)C3—C4—C5—C1'0.66 (19)
O4—Si1—O1—N128.5 (2)C3—C4—C5—N10.66 (19)
O3—Si1—O1—N177.23 (8)O4—N2'—C7—C8176.47 (11)
O2—Si1—O1—N110.60 (8)C6'—N2'—C7—C83.09 (18)
C11—Si1—O1—N1167.31 (8)O4—C6—C7—C8176.47 (11)
C17—Si1—O1—N198.65 (8)N2—C6—C7—C83.09 (18)
O1—Si1—O2—N1'10.44 (7)N2'—C7—C8—C90.8 (2)
O4—Si1—O2—N1'161.20 (8)C6—C7—C8—C90.8 (2)
O3—Si1—O2—N1'76.40 (7)C7—C8—C9—C101.3 (2)
C17—Si1—O2—N1'110.02 (8)O3—C6'—C10—C9179.41 (13)
O1—Si1—O2—C110.44 (7)N2'—C6'—C10—C91.0 (2)
O4—Si1—O2—C1161.20 (8)O3—N2—C10—C9179.41 (13)
O3—Si1—O2—C176.40 (7)C6—N2—C10—C91.0 (2)
C17—Si1—O2—C1110.02 (8)C8—C9—C10—C6'1.3 (2)
O1—Si1—O3—C6'154.54 (8)C8—C9—C10—N21.3 (2)
O4—Si1—O3—C6'15.49 (8)C16—C11—C12—F1179.86 (10)
O2—Si1—O3—C6'69.23 (8)Si1—C11—C12—F14.45 (15)
C11—Si1—O3—C6'114.06 (8)C16—C11—C12—C131.43 (17)
O1—Si1—O3—N2154.54 (8)Si1—C11—C12—C13173.97 (9)
O4—Si1—O3—N215.49 (8)F1—C12—C13—F21.51 (17)
O2—Si1—O3—N269.23 (8)C11—C12—C13—F2180.00 (11)
C11—Si1—O3—N2114.06 (8)F1—C12—C13—C14177.48 (11)
O1—Si1—O4—N2'31.6 (2)C11—C12—C13—C141.01 (19)
O3—Si1—O4—N2'17.32 (7)F2—C13—C14—F33.34 (18)
O2—Si1—O4—N2'70.74 (8)C12—C13—C14—F3175.65 (11)
C11—Si1—O4—N2'106.66 (8)F2—C13—C14—C15178.54 (11)
C17—Si1—O4—N2'159.74 (8)C12—C13—C14—C152.46 (18)
O1—Si1—O4—C631.6 (2)F3—C14—C15—F42.55 (18)
O3—Si1—O4—C617.32 (7)C13—C14—C15—F4179.32 (11)
O2—Si1—O4—C670.74 (8)F3—C14—C15—C16176.71 (11)
C11—Si1—O4—C6106.66 (8)C13—C14—C15—C161.41 (18)
C17—Si1—O4—C6159.74 (8)F4—C15—C16—F50.51 (16)
Si1—O1—N1—C18.78 (12)C14—C15—C16—F5179.77 (11)
Si1—O1—N1—C5173.22 (9)F4—C15—C16—C11178.03 (11)
Si1—O2—C1—N18.22 (12)C14—C15—C16—C111.23 (19)
Si1—O2—C1—C2173.65 (9)C12—C11—C16—F5178.98 (10)
O1—N1—C1—O20.12 (14)Si1—C11—C16—F55.70 (16)
C5—N1—C1—O2178.19 (10)C12—C11—C16—C152.56 (17)
O1—N1—C1—C2178.04 (10)Si1—C11—C16—C15172.76 (9)
C5—N1—C1—C20.02 (17)C22—C17—C18—F6178.41 (11)
Si1—O3—N2—C610.62 (12)Si1—C17—C18—F67.13 (16)
Si1—O3—N2—C10169.72 (11)C22—C17—C18—C192.95 (19)
Si1—O4—C6—N215.96 (12)Si1—C17—C18—C19171.50 (11)
Si1—O4—C6—C7164.44 (9)F6—C18—C19—F71.0 (2)
O3—N2—C6—O43.27 (15)C17—C18—C19—F7177.71 (13)
C10—N2—C6—O4176.40 (11)F6—C18—C19—C20179.78 (14)
O3—N2—C6—C7177.13 (11)C17—C18—C19—C201.5 (2)
C10—N2—C6—C73.20 (18)F7—C19—C20—F80.9 (3)
Si1—O2—N1'—C1'8.22 (12)C18—C19—C20—F8179.89 (15)
Si1—O2—N1'—C2173.65 (9)F7—C19—C20—C21179.80 (15)
Si1—O1—C1'—N1'8.78 (12)C18—C19—C20—C210.6 (2)
Si1—O1—C1'—C5173.22 (9)F8—C20—C21—F90.5 (3)
O2—N1'—C1'—O10.12 (14)C19—C20—C21—F9179.87 (15)
C2—N1'—C1'—O1178.04 (10)F8—C20—C21—C22179.77 (15)
O2—N1'—C1'—C5178.19 (10)C19—C20—C21—C220.9 (3)
C2—N1'—C1'—C50.02 (17)F9—C21—C22—F100.7 (2)
Si1—O4—N2'—C6'15.96 (12)C20—C21—C22—F10179.93 (14)
Si1—O4—N2'—C7164.44 (9)F9—C21—C22—C17178.44 (13)
Si1—O3—C6'—N2'10.62 (12)C20—C21—C22—C170.8 (2)
Si1—O3—C6'—C10169.72 (11)C18—C17—C22—F10178.32 (11)
O4—N2'—C6'—O33.27 (15)Si1—C17—C22—F107.26 (17)
C7—N2'—C6'—O3177.13 (11)C18—C17—C22—C212.58 (19)
O4—N2'—C6'—C10176.40 (11)Si1—C17—C22—C21171.84 (11)
C7—N2'—C6'—C103.20 (18)C23—C24—C25—C2672.1 (8)
O2—N1'—C2—C3178.57 (11)C24—C25—C26—C27173.7 (6)
C1'—N1'—C2—C30.58 (18)C26'—O5'—C23'—C24'20.7 (6)
O2—C1—C2—C3178.57 (11)O5'—C23'—C24'—C25'34.3 (6)
N1—C1—C2—C30.58 (18)C23'—C24'—C25'—C26'35.2 (7)
N1'—C2—C3—C40.5 (2)C23'—O5'—C26'—C25'1.3 (7)
C1—C2—C3—C40.5 (2)C24'—C25'—C26'—O5'23.2 (8)
C2—C3—C4—C50.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.952.343.2809 (15)170
C3—H3···F7ii0.953.233.6665 (18)110
C4—H4···F6iii0.952.683.5757 (16)158
C5—H5···F4iv0.952.593.2997 (15)132
C7—H7···F5v0.952.573.2307 (14)127
C8—H8···F5v0.952.773.3319 (16)119
C8—H8···F6v0.952.563.2230 (15)127
C8—H8···F9i0.952.813.2507 (18)110
C9—H9···F6v0.953.313.6095 (17)101
C9—H9···F8vi0.952.803.2885 (18)113
C10—H10···F2iv0.952.733.3522 (16)124
C10—H10···F8vi0.952.373.0797 (16)131
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z.
Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2) top
Crystal data top
C24H22N2O4SiZ = 2
Mr = 430.52F(000) = 452
Triclinic, P1Dx = 1.398 Mg m3
a = 8.5662 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8343 (8) ÅCell parameters from 4074 reflections
c = 14.7801 (14) Åθ = 2.4–30.3°
α = 93.057 (2)°µ = 0.15 mm1
β = 105.3716 (19)°T = 100 K
γ = 106.7565 (18)°Block, colorless
V = 1022.45 (17) Å30.24 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
4231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.695, Tmax = 0.746k = 1212
25883 measured reflectionsl = 2121
6239 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4958P]
where P = (Fo2 + 2Fc2)/3
6239 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Both bidentate ligands are disordered with the coplanar flips of themselves (0.658 (19):0.342 (19) and 0.612 (19):0.388 (19) for the rings containing C1/N1 and C6/N2, respectively). Due to resolution limitations, the disorder model did not include the entire ring, but was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally to sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters, espectively, at each site of disorder were constrained to be equivalent. It is understood that this type of disorder model will likely exhibit a weighted average of Si–O bond lengths, trending with the disorder ratios.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.46085 (7)0.32324 (6)0.72662 (4)0.01840 (13)
O10.62723 (17)0.50446 (16)0.78902 (10)0.0207 (3)
O20.64598 (17)0.23371 (16)0.75110 (10)0.0219 (3)
O30.33449 (17)0.13549 (16)0.65212 (9)0.0202 (3)
O40.53005 (18)0.37788 (16)0.61623 (10)0.0225 (3)
N10.7819 (2)0.4865 (2)0.82216 (12)0.0200 (4)0.658 (19)
C10.7904 (2)0.3388 (2)0.80021 (13)0.0210 (4)0.658 (19)
N20.3498 (2)0.1276 (2)0.56448 (12)0.0198 (4)0.612 (19)
C60.4563 (2)0.2595 (2)0.54532 (13)0.0211 (4)0.612 (19)
N1'0.7904 (2)0.3388 (2)0.80021 (13)0.0210 (4)0.342 (19)
C1'0.7819 (2)0.4865 (2)0.82216 (12)0.0200 (4)0.342 (19)
N2'0.4563 (2)0.2595 (2)0.54532 (13)0.0211 (4)0.388 (19)
C6'0.3498 (2)0.1276 (2)0.56448 (12)0.0198 (4)0.388 (19)
C20.9459 (3)0.3113 (3)0.83015 (14)0.0241 (4)
H20.9543800.2087200.8147460.029*
C31.0883 (3)0.4329 (3)0.88228 (15)0.0269 (4)
H31.1954030.4146530.9027860.032*
C41.0749 (3)0.5832 (3)0.90496 (15)0.0283 (5)
H41.1726790.6673230.9413440.034*
C50.9201 (3)0.6090 (3)0.87452 (15)0.0248 (4)
H50.9093700.7106410.8897050.030*
C70.4840 (3)0.2623 (3)0.45720 (14)0.0248 (4)
H70.5583260.3545010.4430530.030*
C80.4013 (3)0.1286 (3)0.39071 (15)0.0282 (5)
H80.4189870.1284570.3299070.034*
C90.2919 (3)0.0068 (3)0.41123 (15)0.0279 (5)
H90.2358150.0988440.3648380.034*
C100.2658 (3)0.0062 (2)0.49899 (14)0.0242 (4)
H100.1907060.0970310.5139070.029*
C110.2970 (2)0.4356 (2)0.69348 (13)0.0176 (4)
C120.3356 (3)0.5987 (2)0.72212 (14)0.0232 (4)
H120.4489010.6569540.7586150.028*
C130.2159 (3)0.6806 (3)0.69979 (15)0.0252 (4)
H130.2492010.7919220.7204660.030*
C140.0474 (3)0.5988 (3)0.64712 (15)0.0256 (4)
C150.0053 (3)0.4365 (3)0.61821 (16)0.0280 (5)
H150.1083040.3785310.5820280.034*
C160.1265 (3)0.3562 (3)0.64118 (15)0.0255 (4)
H160.0924320.2446890.6208120.031*
C170.0844 (3)0.6841 (3)0.62348 (18)0.0337 (5)
H17A0.1248200.6805930.5546150.051*
H17B0.0333910.7954980.6536310.051*
H17C0.1805490.6315630.6468130.051*
C180.4015 (2)0.2402 (2)0.83540 (13)0.0176 (4)
C190.2635 (3)0.1029 (2)0.82682 (15)0.0261 (4)
H190.1950610.0500600.7653130.031*
C200.2234 (3)0.0412 (3)0.90568 (16)0.0303 (5)
H200.1284090.0520660.8967050.036*
C210.3202 (3)0.1141 (3)0.99752 (15)0.0266 (4)
C220.4531 (3)0.2532 (3)1.00683 (15)0.0275 (4)
H220.5188030.3080421.0683490.033*
C230.4923 (3)0.3146 (3)0.92768 (15)0.0255 (4)
H230.5842450.4105560.9369910.031*
C240.2834 (3)0.0407 (3)1.08269 (17)0.0371 (6)
H24A0.1639990.0266421.0654610.056*
H24B0.3045620.1256431.1340650.056*
H24C0.3578910.0244221.1037700.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0199 (3)0.0163 (3)0.0186 (3)0.00566 (19)0.0056 (2)0.00027 (19)
O10.0170 (6)0.0180 (7)0.0257 (7)0.0070 (5)0.0028 (5)0.0002 (5)
O20.0197 (7)0.0190 (7)0.0274 (7)0.0076 (5)0.0068 (6)0.0006 (5)
O30.0252 (7)0.0200 (7)0.0156 (6)0.0062 (5)0.0078 (5)0.0001 (5)
O40.0261 (7)0.0206 (7)0.0214 (7)0.0058 (6)0.0100 (6)0.0003 (5)
N10.0170 (8)0.0218 (9)0.0224 (9)0.0065 (7)0.0069 (7)0.0041 (7)
C10.0227 (9)0.0231 (9)0.0210 (9)0.0097 (7)0.0096 (7)0.0051 (7)
N20.0224 (9)0.0228 (9)0.0167 (8)0.0121 (7)0.0049 (7)0.0007 (6)
C60.0263 (10)0.0222 (9)0.0192 (9)0.0126 (8)0.0082 (7)0.0039 (7)
N1'0.0227 (9)0.0231 (9)0.0210 (9)0.0097 (7)0.0096 (7)0.0051 (7)
C1'0.0170 (8)0.0218 (9)0.0224 (9)0.0065 (7)0.0069 (7)0.0041 (7)
N2'0.0263 (10)0.0222 (9)0.0192 (9)0.0126 (8)0.0082 (7)0.0039 (7)
C6'0.0224 (9)0.0228 (9)0.0167 (8)0.0121 (7)0.0049 (7)0.0007 (6)
C20.0265 (10)0.0287 (11)0.0232 (10)0.0142 (8)0.0110 (8)0.0058 (8)
C30.0208 (10)0.0371 (12)0.0285 (11)0.0144 (9)0.0101 (8)0.0092 (9)
C40.0174 (9)0.0336 (12)0.0286 (11)0.0032 (8)0.0036 (8)0.0040 (9)
C50.0213 (10)0.0219 (10)0.0304 (11)0.0055 (8)0.0074 (8)0.0045 (8)
C70.0297 (11)0.0307 (11)0.0208 (9)0.0167 (9)0.0100 (8)0.0074 (8)
C80.0335 (12)0.0360 (12)0.0205 (10)0.0194 (10)0.0082 (9)0.0014 (8)
C90.0303 (11)0.0290 (11)0.0230 (10)0.0117 (9)0.0044 (8)0.0044 (8)
C100.0249 (10)0.0224 (10)0.0249 (10)0.0104 (8)0.0042 (8)0.0021 (8)
C110.0187 (9)0.0202 (9)0.0158 (8)0.0071 (7)0.0068 (7)0.0037 (7)
C120.0210 (9)0.0243 (10)0.0236 (10)0.0074 (8)0.0052 (8)0.0023 (8)
C130.0261 (10)0.0230 (10)0.0286 (11)0.0101 (8)0.0090 (8)0.0045 (8)
C140.0239 (10)0.0301 (11)0.0271 (10)0.0131 (9)0.0082 (8)0.0106 (8)
C150.0218 (10)0.0271 (11)0.0301 (11)0.0045 (8)0.0031 (8)0.0044 (8)
C160.0214 (10)0.0242 (10)0.0272 (10)0.0041 (8)0.0048 (8)0.0019 (8)
C170.0275 (11)0.0358 (13)0.0419 (13)0.0156 (10)0.0090 (10)0.0146 (10)
C180.0191 (9)0.0148 (8)0.0218 (9)0.0079 (7)0.0082 (7)0.0021 (7)
C190.0327 (11)0.0190 (10)0.0236 (10)0.0050 (8)0.0074 (8)0.0001 (8)
C200.0385 (12)0.0195 (10)0.0298 (11)0.0016 (9)0.0131 (10)0.0041 (8)
C210.0346 (12)0.0251 (10)0.0276 (10)0.0147 (9)0.0141 (9)0.0103 (8)
C220.0271 (11)0.0342 (12)0.0200 (10)0.0100 (9)0.0050 (8)0.0025 (8)
C230.0232 (10)0.0275 (11)0.0234 (10)0.0045 (8)0.0075 (8)0.0008 (8)
C240.0485 (15)0.0360 (13)0.0327 (12)0.0147 (11)0.0184 (11)0.0140 (10)
Geometric parameters (Å, º) top
Si1—O31.8093 (14)C7—H70.9500
Si1—O11.8097 (14)C8—C91.395 (3)
Si1—O41.9179 (15)C8—H80.9500
Si1—C111.9202 (19)C9—C101.373 (3)
Si1—O21.9290 (15)C9—H90.9500
Si1—C181.9301 (19)C10—H100.9500
O1—C1'1.344 (2)C11—C121.396 (3)
O1—N11.344 (2)C11—C161.406 (3)
O2—N1'1.307 (2)C12—C131.399 (3)
O2—C11.307 (2)C12—H120.9500
O3—C6'1.336 (2)C13—C141.398 (3)
O3—N21.336 (2)C13—H130.9500
O4—N2'1.320 (2)C14—C151.387 (3)
O4—C61.320 (2)C14—C171.508 (3)
N1—C11.356 (3)C15—C161.400 (3)
N1—C51.363 (3)C15—H150.9500
C1—C21.384 (3)C16—H160.9500
N2—C61.353 (3)C17—H17A0.9800
N2—C101.367 (3)C17—H17B0.9800
C6—C71.384 (3)C17—H17C0.9800
N1'—C1'1.356 (3)C18—C231.395 (3)
N1'—C21.384 (3)C18—C191.401 (3)
C1'—C51.363 (3)C19—C201.395 (3)
N2'—C6'1.353 (3)C19—H190.9500
N2'—C71.384 (3)C20—C211.395 (3)
C6'—C101.367 (3)C20—H200.9500
C2—C31.376 (3)C21—C221.385 (3)
C2—H20.9500C21—C241.511 (3)
C3—C41.396 (3)C22—C231.395 (3)
C3—H30.9500C22—H220.9500
C4—C51.372 (3)C23—H230.9500
C4—H40.9500C24—H24A0.9800
C5—H50.9500C24—H24B0.9800
C7—C81.374 (3)C24—H24C0.9800
O3—Si1—O1165.96 (7)C8—C7—N2'118.4 (2)
O3—Si1—O483.76 (6)C8—C7—H7120.8
O1—Si1—O486.24 (7)C6—C7—H7120.8
O3—Si1—C1198.02 (8)C7—C8—C9120.9 (2)
O1—Si1—C1191.68 (7)C7—C8—H8119.5
O4—Si1—C1189.37 (7)C9—C8—H8119.5
O3—Si1—O285.72 (6)C10—C9—C8119.52 (19)
O1—Si1—O283.35 (6)C10—C9—H9120.2
O4—Si1—O283.28 (6)C8—C9—H9120.2
C11—Si1—O2171.36 (8)C6'—C10—C9118.8 (2)
O3—Si1—C1891.04 (7)N2—C10—C9118.8 (2)
O1—Si1—C1897.64 (8)N2—C10—H10120.6
O4—Si1—C18171.40 (7)C9—C10—H10120.6
C11—Si1—C1898.16 (8)C12—C11—C16115.36 (18)
O2—Si1—C1889.53 (7)C12—C11—Si1123.04 (15)
C1'—O1—Si1114.21 (11)C16—C11—Si1121.55 (15)
N1—O1—Si1114.21 (11)C11—C12—C13123.31 (19)
N1'—O2—Si1111.83 (12)C11—C12—H12118.3
C1—O2—Si1111.83 (12)C13—C12—H12118.3
C6'—O3—Si1114.16 (12)C14—C13—C12120.1 (2)
N2—O3—Si1114.16 (12)C14—C13—H13119.9
N2'—O4—Si1111.43 (12)C12—C13—H13119.9
C6—O4—Si1111.43 (12)C15—C14—C13117.77 (19)
O1—N1—C1115.44 (16)C15—C14—C17121.2 (2)
O1—N1—C5121.98 (17)C13—C14—C17121.0 (2)
C1—N1—C5122.57 (17)C14—C15—C16121.4 (2)
O2—C1—N1115.09 (16)C14—C15—H15119.3
O2—C1—C2125.89 (18)C16—C15—H15119.3
N1—C1—C2119.02 (18)C15—C16—C11122.0 (2)
O3—N2—C6115.62 (16)C15—C16—H16119.0
O3—N2—C10122.21 (18)C11—C16—H16119.0
C6—N2—C10122.16 (17)C14—C17—H17A109.5
O4—C6—N2115.03 (16)C14—C17—H17B109.5
O4—C6—C7124.77 (18)H17A—C17—H17B109.5
N2—C6—C7120.18 (18)C14—C17—H17C109.5
O2—N1'—C1'115.09 (16)H17A—C17—H17C109.5
O2—N1'—C2125.89 (18)H17B—C17—H17C109.5
C1'—N1'—C2119.02 (18)C23—C18—C19115.71 (18)
O1—C1'—N1'115.44 (16)C23—C18—Si1121.98 (15)
O1—C1'—C5121.98 (17)C19—C18—Si1122.31 (15)
N1'—C1'—C5122.57 (17)C20—C19—C18122.1 (2)
O4—N2'—C6'115.03 (16)C20—C19—H19118.9
O4—N2'—C7124.77 (18)C18—C19—H19118.9
C6'—N2'—C7120.18 (18)C19—C20—C21121.1 (2)
O3—C6'—N2'115.62 (16)C19—C20—H20119.4
O3—C6'—C10122.21 (18)C21—C20—H20119.4
N2'—C6'—C10122.16 (17)C22—C21—C20117.22 (19)
C3—C2—C1119.8 (2)C22—C21—C24121.8 (2)
C3—C2—N1'119.8 (2)C20—C21—C24120.9 (2)
C3—C2—H2120.1C21—C22—C23121.3 (2)
C1—C2—H2120.1C21—C22—H22119.3
C2—C3—C4119.81 (19)C23—C22—H22119.3
C2—C3—H3120.1C18—C23—C22122.4 (2)
C4—C3—H3120.1C18—C23—H23118.8
C5—C4—C3119.8 (2)C22—C23—H23118.8
C5—C4—H4120.1C21—C24—H24A109.5
C3—C4—H4120.1C21—C24—H24B109.5
C1'—C5—C4119.0 (2)H24A—C24—H24B109.5
N1—C5—C4119.0 (2)C21—C24—H24C109.5
N1—C5—H5120.5H24A—C24—H24C109.5
C4—C5—H5120.5H24B—C24—H24C109.5
C8—C7—C6118.4 (2)
O3—Si1—O1—C1'41.7 (3)C7—N2'—C6'—O3178.59 (16)
O4—Si1—O1—C1'86.26 (13)O4—N2'—C6'—C10178.92 (17)
C11—Si1—O1—C1'175.52 (13)C7—N2'—C6'—C100.2 (3)
O2—Si1—O1—C1'2.61 (12)O2—C1—C2—C3179.47 (18)
C18—Si1—O1—C1'86.02 (13)N1—C1—C2—C30.7 (3)
O3—Si1—O1—N141.7 (3)O2—N1'—C2—C3179.47 (18)
O4—Si1—O1—N186.26 (13)C1'—N1'—C2—C30.7 (3)
C11—Si1—O1—N1175.52 (13)C1—C2—C3—C40.2 (3)
O2—Si1—O1—N12.61 (12)N1'—C2—C3—C40.2 (3)
C18—Si1—O1—N186.02 (13)C2—C3—C4—C50.5 (3)
O1—Si1—O3—C6'44.8 (3)O1—C1'—C5—C4179.03 (18)
O4—Si1—O3—C6'0.04 (12)N1'—C1'—C5—C41.2 (3)
C11—Si1—O3—C6'88.43 (13)O1—N1—C5—C4179.03 (18)
O2—Si1—O3—C6'83.73 (12)C1—N1—C5—C41.2 (3)
C18—Si1—O3—C6'173.18 (13)C3—C4—C5—C1'0.2 (3)
O1—Si1—O3—N244.8 (3)C3—C4—C5—N10.2 (3)
O4—Si1—O3—N20.04 (12)O4—C6—C7—C8178.41 (18)
C11—Si1—O3—N288.43 (13)N2—C6—C7—C80.1 (3)
O2—Si1—O3—N283.73 (12)O4—N2'—C7—C8178.41 (18)
C18—Si1—O3—N2173.18 (13)C6'—N2'—C7—C80.1 (3)
Si1—O1—N1—C12.8 (2)C6—C7—C8—C90.1 (3)
Si1—O1—N1—C5176.97 (15)N2'—C7—C8—C90.1 (3)
Si1—O2—C1—N11.0 (2)C7—C8—C9—C100.3 (3)
Si1—O2—C1—C2179.15 (16)O3—C6'—C10—C9178.11 (18)
O1—N1—C1—O21.1 (2)N2'—C6'—C10—C90.6 (3)
C5—N1—C1—O2178.70 (17)O3—N2—C10—C9178.11 (18)
O1—N1—C1—C2178.76 (17)C6—N2—C10—C90.6 (3)
C5—N1—C1—C21.5 (3)C8—C9—C10—C6'0.7 (3)
Si1—O3—N2—C60.1 (2)C8—C9—C10—N20.7 (3)
Si1—O3—N2—C10178.91 (14)C16—C11—C12—C131.1 (3)
Si1—O4—C6—N20.1 (2)Si1—C11—C12—C13178.69 (16)
Si1—O4—C6—C7178.56 (15)C11—C12—C13—C140.7 (3)
O3—N2—C6—O40.1 (2)C12—C13—C14—C150.3 (3)
C10—N2—C6—O4178.92 (17)C12—C13—C14—C17179.1 (2)
O3—N2—C6—C7178.59 (16)C13—C14—C15—C160.3 (3)
C10—N2—C6—C70.2 (3)C17—C14—C15—C16179.0 (2)
Si1—O2—N1'—C1'1.0 (2)C14—C15—C16—C110.8 (3)
Si1—O2—N1'—C2179.15 (16)C12—C11—C16—C151.1 (3)
Si1—O1—C1'—N1'2.8 (2)Si1—C11—C16—C15178.77 (16)
Si1—O1—C1'—C5176.97 (15)C23—C18—C19—C202.3 (3)
O2—N1'—C1'—O11.1 (2)Si1—C18—C19—C20178.54 (17)
C2—N1'—C1'—O1178.76 (16)C18—C19—C20—C210.2 (3)
O2—N1'—C1'—C5178.70 (17)C19—C20—C21—C222.5 (3)
C2—N1'—C1'—C51.5 (3)C19—C20—C21—C24175.9 (2)
Si1—O4—N2'—C6'0.1 (2)C20—C21—C22—C232.4 (3)
Si1—O4—N2'—C7178.56 (15)C24—C21—C22—C23176.0 (2)
Si1—O3—C6'—N2'0.1 (2)C19—C18—C23—C222.5 (3)
Si1—O3—C6'—C10178.91 (14)Si1—C18—C23—C22178.35 (16)
O4—N2'—C6'—O30.1 (2)C21—C22—C23—C180.2 (3)
Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3) top
Crystal data top
C28H30N2O4SiDx = 1.319 Mg m3
Mr = 486.63Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 11827 reflections
a = 12.5710 (2) Åθ = 4.5–76.9°
b = 12.68898 (19) ŵ = 1.15 mm1
c = 15.3580 (2) ÅT = 100 K
V = 2449.80 (7) Å3Block, colourless
Z = 40.09 × 0.07 × 0.06 mm
F(000) = 1032
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5138 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4847 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 4.5°
ω scansh = 1513
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1513
Tmin = 0.674, Tmax = 1.000l = 1919
22120 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.5221P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5138 reflectionsΔρmax = 0.27 e Å3
324 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack x determined using 1985 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.034 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Both bidentate ligands are disordered with the coplanar flips of themselves (0.68 (3):0.32 (3) and 0.61 (3):0.39 (3) for the rings containing C1/N1 and C6/N2, respectively). Due to resolution limitations, the disorder was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters,respectively, at each site of disorder were constrained to be equivalent. It is understood that this type of disorder model will likely exhibit a weighted average of Si–O bond lengths, trending with the disorder ratios.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.74087 (5)0.70602 (4)0.61168 (4)0.01803 (13)
O10.85697 (13)0.71920 (12)0.53026 (10)0.0221 (3)
O20.74861 (14)0.56957 (11)0.58288 (10)0.0214 (3)
O30.65878 (13)0.71836 (12)0.50381 (10)0.0234 (3)
O40.73653 (13)0.84835 (11)0.60520 (10)0.0211 (3)
N10.87289 (15)0.62870 (15)0.48904 (12)0.0189 (4)0.69 (3)
N20.65746 (17)0.81659 (16)0.47604 (13)0.0220 (5)0.62 (3)
C10.81438 (17)0.54657 (16)0.51912 (13)0.0188 (5)0.69 (3)
C20.8272 (2)0.44746 (17)0.48429 (15)0.0231 (5)
H2A0.7870400.3895580.5056750.028*0.69 (3)
H2B0.7870400.3895580.5056750.028*0.31 (3)
C30.8994 (2)0.4339 (2)0.41775 (17)0.0285 (5)
H30.9099720.3658970.3934010.034*
C40.9572 (2)0.5195 (2)0.38596 (16)0.0282 (5)
H41.0063880.5099330.3396910.034*
C50.94261 (18)0.61737 (19)0.42175 (15)0.0228 (4)
H5A0.9805820.6764790.3999520.027*0.69 (3)
H5B0.9805820.6764790.3999520.027*0.31 (3)
C60.70096 (17)0.88806 (16)0.53139 (14)0.0207 (5)0.62 (3)
C70.7032 (2)0.99372 (18)0.51074 (17)0.0276 (5)
H7A0.7357641.0431260.5488190.033*0.62 (3)
H7B0.7357641.0431260.5488190.033*0.38 (3)
C80.6575 (2)1.0263 (2)0.43398 (19)0.0350 (6)
H80.6573491.0989580.4189600.042*
C90.6110 (2)0.9523 (2)0.37793 (18)0.0368 (6)
H90.5788340.9747650.3251370.044*
C100.6121 (2)0.8479 (2)0.39921 (16)0.0297 (5)
H100.5815450.7972770.3610440.036*0.62 (3)
H10A0.5815450.7972770.3610440.036*0.38 (3)
C110.60545 (17)0.69383 (16)0.67607 (13)0.0181 (4)
C120.58361 (19)0.76268 (17)0.74716 (14)0.0205 (4)
C130.48283 (19)0.76687 (19)0.78479 (14)0.0234 (5)
H130.4710100.8147800.8313330.028*
C140.39920 (19)0.70421 (19)0.75726 (15)0.0253 (5)
C150.42009 (19)0.63418 (18)0.68986 (16)0.0240 (5)
H150.3647030.5890140.6704020.029*
C160.51939 (18)0.62777 (17)0.64974 (14)0.0211 (4)
C170.6651 (2)0.83405 (19)0.79019 (15)0.0250 (5)
H17A0.7168670.7910580.8220610.038*
H17B0.6290700.8817740.8307720.038*
H17C0.7019830.8753570.7455190.038*
C180.2900 (2)0.7130 (2)0.7976 (2)0.0367 (6)
H18A0.2969470.7335390.8589070.055*
H18B0.2537070.6448590.7938140.055*
H18C0.2485980.7664390.7664250.055*
C190.5262 (2)0.54616 (18)0.57768 (16)0.0258 (5)
H19A0.5567810.5785320.5254220.039*
H19B0.4548240.5196290.5644720.039*
H19C0.5715230.4876290.5966380.039*
C200.84221 (17)0.70007 (16)0.70814 (13)0.0187 (4)
C210.83877 (18)0.61468 (17)0.76842 (14)0.0194 (4)
C220.90158 (19)0.61500 (17)0.84337 (15)0.0218 (4)
H220.8951150.5580900.8832120.026*
C230.97317 (18)0.69527 (18)0.86195 (14)0.0229 (4)
C240.98178 (18)0.77565 (19)0.80091 (15)0.0222 (4)
H241.0322150.8301410.8106370.027*
C250.91924 (17)0.77949 (18)0.72584 (14)0.0198 (4)
C260.77207 (19)0.51561 (17)0.75647 (15)0.0226 (5)
H26A0.6992090.5353620.7407150.034*
H26B0.7711840.4753960.8109470.034*
H26C0.8028840.4722740.7100610.034*
C271.0393 (2)0.6943 (2)0.94376 (16)0.0335 (6)
H27A0.9978510.7239390.9919450.050*
H27B1.1035270.7367280.9348110.050*
H27C1.0595300.6216770.9577310.050*
C280.9418 (2)0.87384 (18)0.66723 (16)0.0252 (5)
H28A0.9345720.8527090.6061390.038*
H28B1.0142810.8991870.6777400.038*
H28C0.8909400.9302760.6801350.038*
C1'0.87289 (15)0.62870 (15)0.48904 (12)0.0189 (4)0.31 (3)
N1'0.81438 (17)0.54657 (16)0.51912 (13)0.0188 (5)0.31 (3)
C6'0.65746 (17)0.81659 (16)0.47604 (13)0.0220 (5)0.38 (3)
N2'0.70096 (17)0.88806 (16)0.53139 (14)0.0207 (5)0.38 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0229 (3)0.0143 (2)0.0169 (3)0.0010 (2)0.0020 (2)0.0006 (2)
O10.0290 (8)0.0170 (7)0.0204 (7)0.0031 (7)0.0052 (6)0.0021 (6)
O20.0268 (8)0.0173 (6)0.0203 (7)0.0016 (6)0.0064 (7)0.0020 (5)
O30.0298 (8)0.0212 (7)0.0193 (7)0.0037 (7)0.0015 (6)0.0004 (6)
O40.0277 (8)0.0169 (6)0.0188 (7)0.0001 (6)0.0014 (7)0.0020 (6)
N10.0214 (10)0.0185 (9)0.0169 (9)0.0006 (7)0.0006 (7)0.0000 (7)
N20.0218 (10)0.0240 (10)0.0202 (9)0.0007 (8)0.0016 (8)0.0022 (8)
C10.0206 (10)0.0207 (10)0.0150 (9)0.0002 (8)0.0008 (8)0.0006 (8)
C20.0282 (12)0.0185 (10)0.0226 (10)0.0010 (9)0.0038 (9)0.0003 (8)
C30.0327 (13)0.0271 (11)0.0256 (11)0.0085 (10)0.0041 (10)0.0088 (9)
C40.0259 (12)0.0384 (12)0.0204 (11)0.0056 (10)0.0030 (10)0.0043 (10)
C50.0207 (10)0.0312 (11)0.0165 (10)0.0019 (9)0.0002 (9)0.0029 (9)
C60.0198 (10)0.0216 (10)0.0208 (10)0.0005 (8)0.0014 (8)0.0033 (8)
C70.0265 (12)0.0221 (11)0.0341 (13)0.0003 (9)0.0049 (10)0.0044 (10)
C80.0319 (13)0.0321 (13)0.0412 (14)0.0058 (11)0.0074 (12)0.0170 (11)
C90.0332 (14)0.0477 (15)0.0295 (13)0.0075 (12)0.0003 (11)0.0172 (12)
C100.0256 (12)0.0430 (14)0.0204 (11)0.0024 (10)0.0001 (9)0.0031 (10)
C110.0202 (10)0.0169 (10)0.0172 (9)0.0027 (8)0.0003 (8)0.0007 (8)
C120.0257 (11)0.0185 (10)0.0171 (10)0.0051 (8)0.0025 (8)0.0025 (8)
C130.0300 (12)0.0222 (11)0.0181 (10)0.0072 (9)0.0005 (9)0.0005 (8)
C140.0241 (11)0.0255 (11)0.0261 (11)0.0051 (10)0.0037 (9)0.0066 (9)
C150.0246 (11)0.0213 (11)0.0260 (12)0.0012 (9)0.0015 (9)0.0030 (9)
C160.0251 (11)0.0177 (10)0.0204 (11)0.0004 (9)0.0004 (9)0.0027 (8)
C170.0270 (12)0.0266 (11)0.0216 (10)0.0020 (9)0.0004 (9)0.0076 (9)
C180.0287 (12)0.0378 (14)0.0436 (15)0.0028 (12)0.0109 (11)0.0019 (13)
C190.0280 (12)0.0222 (11)0.0273 (11)0.0060 (9)0.0010 (10)0.0035 (9)
C200.0216 (10)0.0158 (9)0.0186 (9)0.0015 (9)0.0034 (8)0.0011 (8)
C210.0205 (10)0.0166 (9)0.0210 (10)0.0026 (8)0.0056 (8)0.0005 (8)
C220.0249 (11)0.0182 (10)0.0223 (11)0.0044 (9)0.0037 (9)0.0023 (8)
C230.0235 (11)0.0237 (11)0.0215 (10)0.0026 (9)0.0029 (8)0.0003 (9)
C240.0225 (11)0.0202 (10)0.0237 (10)0.0018 (9)0.0035 (8)0.0030 (9)
C250.0220 (10)0.0163 (10)0.0211 (10)0.0008 (8)0.0040 (8)0.0007 (8)
C260.0276 (12)0.0168 (10)0.0232 (11)0.0015 (9)0.0029 (9)0.0027 (8)
C270.0375 (13)0.0348 (13)0.0281 (12)0.0056 (12)0.0054 (11)0.0063 (11)
C280.0287 (12)0.0208 (11)0.0260 (12)0.0055 (9)0.0026 (10)0.0025 (9)
C1'0.0214 (10)0.0185 (9)0.0169 (9)0.0006 (7)0.0006 (7)0.0000 (7)
N1'0.0206 (10)0.0207 (10)0.0150 (9)0.0002 (8)0.0008 (8)0.0006 (8)
C6'0.0218 (10)0.0240 (10)0.0202 (9)0.0007 (8)0.0016 (8)0.0022 (8)
N2'0.0198 (10)0.0216 (10)0.0208 (10)0.0005 (8)0.0014 (8)0.0033 (8)
Geometric parameters (Å, º) top
Si1—O11.9291 (16)C11—C121.425 (3)
Si1—O21.7896 (15)C11—C161.427 (3)
Si1—O31.9581 (16)C12—C131.394 (3)
Si1—O41.8096 (15)C12—C171.519 (3)
Si1—C111.975 (2)C13—H130.9500
Si1—C201.955 (2)C13—C141.384 (4)
O1—N11.326 (2)C14—C151.389 (4)
O1—C1'1.326 (2)C14—C181.510 (3)
O2—C11.314 (3)C15—H150.9500
O2—N1'1.314 (3)C15—C161.395 (3)
O3—N21.317 (3)C16—C191.518 (3)
O3—C6'1.317 (3)C17—H17A0.9800
O4—C61.319 (3)C17—H17B0.9800
O4—N2'1.319 (3)C17—H17C0.9800
N1—C11.357 (3)C18—H18A0.9800
N1—C51.363 (3)C18—H18B0.9800
N2—C61.358 (3)C18—H18C0.9800
N2—C101.369 (3)C19—H19A0.9800
C1—C21.376 (3)C19—H19B0.9800
C2—H2A0.9500C19—H19C0.9800
C2—H2B0.9500C20—C211.426 (3)
C2—C31.378 (4)C20—C251.424 (3)
C2—N1'1.376 (3)C21—C221.396 (3)
C3—H30.9500C21—C261.522 (3)
C3—C41.394 (4)C22—H220.9500
C4—H40.9500C22—C231.389 (3)
C4—C51.371 (3)C23—C241.390 (3)
C5—H5A0.9500C23—C271.507 (3)
C5—H5B0.9500C24—H240.9500
C5—C1'1.363 (3)C24—C251.396 (3)
C6—C71.378 (3)C25—C281.524 (3)
C7—H7A0.9500C26—H26A0.9800
C7—H7B0.9500C26—H26B0.9800
C7—C81.375 (4)C26—H26C0.9800
C7—N2'1.378 (3)C27—H27A0.9800
C8—H80.9500C27—H27B0.9800
C8—C91.402 (4)C27—H27C0.9800
C9—H90.9500C28—H28A0.9800
C9—C101.365 (4)C28—H28B0.9800
C10—H100.9500C28—H28C0.9800
C10—H10A0.9500C1'—N1'1.357 (3)
C10—C6'1.369 (3)C6'—N2'1.358 (3)
O1—Si1—O380.99 (7)C14—C13—C12122.8 (2)
O1—Si1—C11169.59 (8)C14—C13—H13118.6
O1—Si1—C2090.09 (8)C13—C14—C15116.8 (2)
O2—Si1—O183.25 (7)C13—C14—C18121.5 (2)
O2—Si1—O384.09 (7)C15—C14—C18121.7 (2)
O2—Si1—O4162.48 (8)C14—C15—H15118.8
O2—Si1—C1195.44 (8)C14—C15—C16122.4 (2)
O2—Si1—C2096.57 (8)C16—C15—H15118.8
O3—Si1—C1188.61 (8)C11—C16—C19124.4 (2)
O4—Si1—O184.30 (7)C15—C16—C11121.3 (2)
O4—Si1—O381.82 (7)C15—C16—C19114.4 (2)
O4—Si1—C1194.57 (8)C12—C17—H17A109.5
O4—Si1—C2095.73 (8)C12—C17—H17B109.5
C20—Si1—O3170.93 (8)C12—C17—H17C109.5
C20—Si1—C11100.32 (9)H17A—C17—H17B109.5
N1—O1—Si1110.40 (13)H17A—C17—H17C109.5
C1'—O1—Si1110.40 (13)H17B—C17—H17C109.5
C1—O2—Si1115.67 (13)C14—C18—H18A109.5
N1'—O2—Si1115.67 (13)C14—C18—H18B109.5
N2—O3—Si1110.86 (13)C14—C18—H18C109.5
C6'—O3—Si1110.86 (13)H18A—C18—H18B109.5
C6—O4—Si1116.03 (13)H18A—C18—H18C109.5
N2'—O4—Si1116.03 (13)H18B—C18—H18C109.5
O1—N1—C1114.88 (18)C16—C19—H19A109.5
O1—N1—C5123.39 (19)C16—C19—H19B109.5
C1—N1—C5121.73 (19)C16—C19—H19C109.5
O3—N2—C6115.09 (18)H19A—C19—H19B109.5
O3—N2—C10123.9 (2)H19A—C19—H19C109.5
C6—N2—C10120.9 (2)H19B—C19—H19C109.5
O2—C1—N1115.10 (18)C21—C20—Si1120.11 (16)
O2—C1—C2124.5 (2)C25—C20—Si1124.08 (16)
N1—C1—C2120.4 (2)C25—C20—C21115.75 (19)
C1—C2—H2A120.7C20—C21—C26124.5 (2)
C1—C2—C3118.6 (2)C22—C21—C20121.1 (2)
C3—C2—H2A120.7C22—C21—C26114.42 (19)
C3—C2—H2B120.7C21—C22—H22118.7
N1'—C2—H2B120.7C23—C22—C21122.6 (2)
N1'—C2—C3118.6 (2)C23—C22—H22118.7
C2—C3—H3119.8C22—C23—C24116.8 (2)
C2—C3—C4120.4 (2)C22—C23—C27121.5 (2)
C4—C3—H3119.8C24—C23—C27121.7 (2)
C3—C4—H4120.1C23—C24—H24118.7
C5—C4—C3119.7 (2)C23—C24—C25122.6 (2)
C5—C4—H4120.1C25—C24—H24118.7
N1—C5—C4119.0 (2)C20—C25—C28124.7 (2)
N1—C5—H5A120.5C24—C25—C20121.1 (2)
C4—C5—H5A120.5C24—C25—C28114.2 (2)
C4—C5—H5B120.5C21—C26—H26A109.5
C1'—C5—C4119.0 (2)C21—C26—H26B109.5
C1'—C5—H5B120.5C21—C26—H26C109.5
O4—C6—N2114.80 (18)H26A—C26—H26B109.5
O4—C6—C7124.2 (2)H26A—C26—H26C109.5
N2—C6—C7120.9 (2)H26B—C26—H26C109.5
C6—C7—H7A120.6C23—C27—H27A109.5
C8—C7—C6118.8 (2)C23—C27—H27B109.5
C8—C7—H7A120.6C23—C27—H27C109.5
C8—C7—H7B120.6H27A—C27—H27B109.5
C8—C7—N2'118.8 (2)H27A—C27—H27C109.5
N2'—C7—H7B120.6H27B—C27—H27C109.5
C7—C8—H8120.0C25—C28—H28A109.5
C7—C8—C9119.9 (2)C25—C28—H28B109.5
C9—C8—H8120.0C25—C28—H28C109.5
C8—C9—H9120.0H28A—C28—H28B109.5
C10—C9—C8120.0 (2)H28A—C28—H28C109.5
C10—C9—H9120.0H28B—C28—H28C109.5
N2—C10—H10120.3O1—C1'—C5123.39 (19)
C9—C10—N2119.4 (2)O1—C1'—N1'114.88 (18)
C9—C10—H10120.3N1'—C1'—C5121.73 (19)
C9—C10—H10A120.3O2—N1'—C2124.5 (2)
C9—C10—C6'119.4 (2)O2—N1'—C1'115.10 (18)
C6'—C10—H10A120.3C1'—N1'—C2120.4 (2)
C12—C11—Si1120.12 (16)O3—C6'—C10123.9 (2)
C12—C11—C16115.5 (2)O3—C6'—N2'115.09 (18)
C16—C11—Si1123.89 (16)N2'—C6'—C10120.9 (2)
C11—C12—C17124.7 (2)O4—N2'—C7124.2 (2)
C13—C12—C11121.1 (2)O4—N2'—C6'114.80 (18)
C13—C12—C17114.21 (19)C6'—N2'—C7120.9 (2)
C12—C13—H13118.6
Si1—O1—N1—C17.0 (2)C3—C4—C5—N11.1 (4)
Si1—O1—N1—C5173.30 (17)C3—C4—C5—C1'1.1 (4)
Si1—O1—C1'—C5173.30 (17)C4—C5—C1'—O1177.0 (2)
Si1—O1—C1'—N1'7.0 (2)C4—C5—C1'—N1'2.8 (3)
Si1—O2—C1—N14.9 (2)C5—N1—C1—O2178.44 (19)
Si1—O2—C1—C2176.23 (18)C5—N1—C1—C22.6 (3)
Si1—O2—N1'—C2176.23 (18)C5—C1'—N1'—O2178.44 (19)
Si1—O2—N1'—C1'4.9 (2)C5—C1'—N1'—C22.6 (3)
Si1—O3—N2—C67.2 (2)C6—N2—C10—C90.3 (4)
Si1—O3—N2—C10175.59 (18)C6—C7—C8—C90.9 (4)
Si1—O3—C6'—C10175.59 (18)C7—C8—C9—C100.6 (4)
Si1—O3—C6'—N2'7.2 (2)C8—C7—N2'—O4175.9 (2)
Si1—O4—C6—N29.7 (2)C8—C7—N2'—C6'2.0 (4)
Si1—O4—C6—C7172.30 (18)C8—C9—C10—N20.9 (4)
Si1—O4—N2'—C7172.30 (18)C8—C9—C10—C6'0.9 (4)
Si1—O4—N2'—C6'9.7 (2)C9—C10—C6'—O3177.3 (2)
Si1—C11—C12—C13169.91 (16)C9—C10—C6'—N2'0.3 (4)
Si1—C11—C12—C1712.0 (3)C10—N2—C6—O4176.3 (2)
Si1—C11—C16—C15170.09 (17)C10—N2—C6—C71.8 (3)
Si1—C11—C16—C199.9 (3)C10—C6'—N2'—O4176.3 (2)
Si1—C20—C21—C22172.32 (16)C10—C6'—N2'—C71.8 (3)
Si1—C20—C21—C2610.1 (3)C11—Si1—O2—C1162.73 (15)
Si1—C20—C25—C24173.31 (16)C11—Si1—O2—N1'162.73 (15)
Si1—C20—C25—C286.9 (3)C11—Si1—O4—C698.55 (16)
O1—Si1—O2—C16.88 (15)C11—Si1—O4—N2'98.55 (16)
O1—Si1—O2—N1'6.88 (15)C11—C12—C13—C141.2 (3)
O1—Si1—O4—C671.06 (15)C12—C11—C16—C152.2 (3)
O1—Si1—O4—N2'71.06 (15)C12—C11—C16—C19177.9 (2)
O1—N1—C1—O21.8 (3)C12—C13—C14—C150.9 (3)
O1—N1—C1—C2177.11 (19)C12—C13—C14—C18178.1 (2)
O1—N1—C5—C4177.0 (2)C13—C14—C15—C161.4 (3)
O1—C1'—N1'—O21.8 (3)C14—C15—C16—C110.2 (3)
O1—C1'—N1'—C2177.11 (19)C14—C15—C16—C19179.8 (2)
O2—Si1—O4—C626.2 (4)C16—C11—C12—C132.7 (3)
O2—Si1—O4—N2'26.2 (4)C16—C11—C12—C17175.4 (2)
O2—C1—C2—C3179.6 (2)C17—C12—C13—C14177.1 (2)
O3—Si1—O2—C174.71 (15)C18—C14—C15—C16177.6 (2)
O3—Si1—O2—N1'74.71 (15)C20—Si1—O2—C196.19 (16)
O3—Si1—O4—C610.62 (15)C20—Si1—O2—N1'96.19 (16)
O3—Si1—O4—N2'10.62 (15)C20—Si1—O4—C6160.58 (15)
O3—N2—C6—O41.0 (3)C20—Si1—O4—N2'160.58 (15)
O3—N2—C6—C7179.0 (2)C20—C21—C22—C232.5 (3)
O3—N2—C10—C9177.3 (2)C21—C20—C25—C243.9 (3)
O3—C6'—N2'—O41.0 (3)C21—C20—C25—C28175.9 (2)
O3—C6'—N2'—C7179.0 (2)C21—C22—C23—C241.4 (3)
O4—Si1—O2—C138.1 (4)C21—C22—C23—C27179.4 (2)
O4—Si1—O2—N1'38.1 (4)C22—C23—C24—C252.6 (3)
O4—C6—C7—C8175.9 (2)C23—C24—C25—C200.2 (3)
N1—C1—C2—C30.8 (3)C23—C24—C25—C28179.6 (2)
N2—C6—C7—C82.0 (4)C25—C20—C21—C225.0 (3)
C1—N1—C5—C42.8 (3)C25—C20—C21—C26172.6 (2)
C1—C2—C3—C40.8 (4)C26—C21—C22—C23175.3 (2)
C2—C3—C4—C50.6 (4)C27—C23—C24—C25178.2 (2)
C3—C2—N1'—O2179.6 (2)N1'—C2—C3—C40.8 (4)
C3—C2—N1'—C1'0.8 (3)N2'—C7—C8—C90.9 (4)
 

Acknowledgements

The authors gratefully acknowledge St. John Fisher University for support, NSF MRI program award #1828310 for the purchase of an NMR spectrometer, and the University of Rochester X-ray Crystallographic Facility and associated funding from NSF MRI program award CHE-1725028.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1828310; grant No. CHE-1725028).

References

First citationBruker (2013). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasellato, U., Vigato, P. A., Tamburini, S., Vidali, M. & Graziani, R. (1983). Inorg. Chim. Acta, 69, 77–82.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoward, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613–12622.  CrossRef CAS Web of Science Google Scholar
First citationJakusch, T., Dean, A., Oncsik, T., Bényei, A. C., Di Marco, V. & Kiss, T. (2010). Dalton Trans. 39, 212–220.  CSD CrossRef CAS Google Scholar
First citationKoch, J. G., Brennessel, W. W. & Kraft, B. M. (2017). Organometallics, 36, 594–604.  CSD CrossRef CAS Google Scholar
First citationKraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationKraft, B. M., Brennessel, W. W., Ryan, A. E. & Benjamin, C. K. (2015). Acta Cryst. E71, 1531–1535.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLewis, J. A. & Cohen, S. M. (2004). Inorg. Chem. 43, 6534–6536.  CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeyroux, E., Ghattas, W., Hardré, R., Giorgi, M., Faure, B., Simaan, A. J., Belle, C. & Réglier, M. (2009). Inorg. Chem. 48, 10874–10876.  CSD CrossRef PubMed CAS Google Scholar
First citationPuerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423–3430.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzigethy, G. & Raymond, K. N. (2011). J. Am. Chem. Soc. 133, 7942–7956.  CSD CrossRef CAS PubMed Google Scholar
First citationTacke, R., Burschka, C., Willeke, M. & Willeke, R. (2001). Eur. J. Inorg. Chem. pp. 1671–1674.  CrossRef Google Scholar
First citationTacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236–1240.  Web of Science CSD CrossRef CAS Google Scholar
First citationTedeschi, C., Azéma, J., Gornitzka, H., Tisnès, P. & Picard, C. (2003). Dalton Trans. pp. 1738–1745.  Web of Science CSD CrossRef Google Scholar
First citationTiede, E. R., Heckman, M. T., Brennessel, W. W. & Kraft, B. M. (2022). Organometallics, 41, 3522–3537.  CSD CrossRef CAS Google Scholar
First citationWang, X., Dai, X., Shi, C., Wan, J., Silver, M. A., Zhang, L., Chen, L., Yi, X., Chen, B., Zhang, D., Yang, K., Diwu, J., Wang, J., Xu, Y., Zhou, R., Chai, Z. & Wang, S. (2019). Nat. Commun. 10, article No. 2570. https://www.nature.com/articles/s41467-019-10276-z  Google Scholar
First citationWeiss, A. & Harvey, D. R. (1964). Angew. Chem. Int. Ed. Engl. 3, 698–699.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds