

Received 6 December 2023 Accepted 19 January 2024

Edited by M. Weil, Vienna University of Technology, Austria

**Keywords:** crystal structure; C—H···N hydrogen bonds; C—H··· $\pi$  interactions; C—CI··· $\pi$  interactions; Hirshfeld surface analysis.

**CCDC references:** 2327446; 2327447; 2327448

**Supporting information:** this article has supporting information at journals.iucr.org/e



Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-dichloro-1-[(*E*)-phenyldiazenyl]ethenyl}benzoate, methyl 4-{2,2-dichloro-1-[(*E*)-(4methylphenyl)diazenyl]ethenyl}benzoate and methyl 4-{2,2-dichloro-1-[(*E*)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate

Namiq Q. Shikhaliyev,<sup>a</sup> Shafiga A. Ibrahimova,<sup>a</sup> Gulnar T. Atakishiyeva,<sup>a</sup> Nigar E. Ahmedova,<sup>a</sup> Gulnara V. Babayeva,<sup>a,b</sup> Victor N. Khrustalev,<sup>c,d</sup> Zeliha Atioğlu,<sup>e</sup> Mehmet Akkurt<sup>f</sup> and Ajaya Bhattarai<sup>g</sup>\*

<sup>a</sup>Organic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, <sup>b</sup>Department of Analytical and Organic Chemistry, Azerbaijan State Pedagogical University, Uzeyir Hajibeyli str., 68, Baku, Azerbaijan, <sup>c</sup>Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, <sup>d</sup>N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, <sup>e</sup>Department of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, <sup>f</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and <sup>g</sup>Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. \*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

The crystal structures and Hirshfeld surface analyses of three similar azo compounds are reported. Methyl  $4-\{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl\}$ benzoate,  $C_{16}H_{12}Cl_2N_2O_2$ , (I), and methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate,  $C_{17}H_{14}Cl_2N_2O_2$ , (II), crystallize in the space group  $P2_1/c$  with Z = 4, and methyl 4-{2,2-dichloro-1-[(E)-(3,4-dimethylphenyl)diazenyl]ethenyl]benzoate,  $C_{18}H_{16}Cl_2N_2O_2$ , (III), in the space group  $P\overline{1}$  with Z =2. In the crystal of (I), molecules are linked by  $C-H \cdots N$  hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short intermolecular Cl...O contacts of 2.8421 (16) Å and weak van der Waals interactions between these chains stabilize the crystal structure. In (II), molecules are linked by  $C-H \cdots O$  hydrogen bonds and  $C-Cl \cdots \pi$  interactions, forming layers parallel to (010). Weak van der Waals interactions between these lavers consolidate the molecular packing. In (III), molecules are linked by  $C-H\cdots\pi$  and  $C-Cl\cdots\pi$ interactions forming chains parallel to [011]. Furthermore, these chains are connected by C-Cl··· $\pi$  interactions parallel to the *a* axis, forming (01) layers. The stability of the molecular packing is ensured by van der Waals forces between these layers.

### 1. Chemical context

When manufacturing new insecticides and pesticides, it is important that they are harmless to the environment and humans. This condition is fulfilled for most biopesticides. For example, methylbenzoate is considered to be a bio-insecticide (Mostafiz *et al.*, 2022; Chen *et al.*, 2015; Damalas & Eleftherohorinos, 2011; Goulson, 2013; Naqqash *et al.*, 2016; Zikankuba *et al.*, 2019) and is reported to be less harmful to the human body and the environment. Methylbenzoate is also found as a metabolite in plants and has an attractive odour to insects. At the same time, methyl benzoate is very effective as a pesticide against agricultural and warehouse pests (Isman, 2015, 2020; Pavela, 2016; Pavela & Benelli, 2016). It can therefore be concluded that methyl benzoate and its derivatives might exhibit applications as pesticides and insecticides, and the synthesis of such or related biopesticides is an urgent issue. Taking this into account, we focused on phenylhydrazones that were obtained from the reaction of methyl 4-formylbenzoate with the corresponding phenylhydrazines (Maharramov *et al.*, 2018; Nenajdenko *et al.*, 2020, Shikhaliyev *et al.*, 2018, 2019*a,b*, 2021*a,b,c*), and the synthesis of methyl (*E*)-4-{2,2-dichloro-1-[(substitutedphenyl)diazenyl]vinyl}benzoate derivatives was carried out from the reaction of the latter with CCl<sub>4</sub>. The here synthesized dichlorodiazadiene derivatives (**I**), (**II**) and (**III**) and arylhydrazo derivatives of  $\alpha$ -keto esters obtained from their solvolysis are intended to be studied in future research as compounds with the abovementioned properties (Fig. 1).



 $R_1 = H$  for (I),  $CH_3$  for (II) and (III)  $R_2 = H$  for (I) and (II),  $CH_3$  for (III)

### 2. Structural commentary

The central molecular fragment of (I), C1/C2/N1/N2/C3/C11/ Cl1/Cl2, is almost planar (Fig. 2), with a root-mean-square (r.m.s.) deviation of fitted atoms from the least-squares plane of 0.0471 Å. This plane forms dihedral angles of 23.39 (6) and 56.98 (4)°, respectively, with the planes of the phenyl (C11– C16) and methyl benzoate (C3–C8) rings. The central molecular fragment of (II), C1/C2/N1/C3/C11/Cl1/Cl2, is



#### Figure 3

The molecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.



Figure 2

The molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

likewise planar with an r.m.s. deviation of fitted atoms of 0.0680 Å (Fig. 3) and makes dihedral angles of 14.87 (8) and 70.88 (3)°, respectively, with the planes of the 4-methylphenyl (C11–C16) and methyl benzoate (C3–C8) rings. The central molecular fragment of (III), C1/C2/N1/N2/C3/C11/Cl1/Cl2 (r.m.s. deviation of fitted atoms = 0.0261 Å; Fig. 4) forms dihedral angles of 7.59 (6) and 69.58 (3)°, respectively, with the planes of the 3,4-dimethylphenyl (C11–C16) and methyl benzoate (C3–C8) rings.

All bond lengths and angles in (I), (II) and (III) are in agreement with those reported for the related azo compounds discussed in the *Database survey* section.

## 3. Supramolecular features and Hirshfeld surface analysis

In the crystal of (I), molecules are linked by C-H···N hydrogen bonds, forming chains with C(6) motifs (Bernstein *et al.*, 1995) extending parallel to the *b* axis. Short intermolecular Cl1···O1(-x,  $-\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ ) contacts of 2.8421 (16) Å and weak van der Waals interactions between these chains stabi-





The molecular structure of (III), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.



#### Figure 5

A general view of the C-H···N hydrogen bonds in the crystal structure of (I).

lize the crystal structure (Table 1; Fig. 5). In the crystal of (II), molecules are linked by C-H···O hydrogen bonds and  $C-Cl\cdots\pi$  interactions  $[C2-Cl2\cdots Cg1^a: Cl2\cdots Cg1^a =$ 3.5596 (8) Å, C2-Cl2···Cg1<sup>*a*</sup> = 101.11 (6)°; symmetry code (a)  $x, \frac{3}{2} - y, -\frac{1}{2} + z$ ; Cg1 is the centroid of the C3–C8 benzene ring], forming layers parallel to (010) (Table 2; Fig. 6). Weak van der Waals interactions between these layers stabilize the molecular packing. In the crystal of (III), molecules are linked by  $C-H \cdots \pi$  and  $C-Cl \cdots \pi$  interactions, forming chains parallel to [011]. Furthermore, these chains are connected by  $C-Cl\cdots\pi$  interactions  $[C2-Cl1\cdots Cg2^a: Cl1\cdots Cg2^a =$ 3.5398 (8) Å, C2-Cl1···Cg2<sup>*a*</sup> = 92.51 (5)°; C2-Cl2···Cg2<sup>*b*</sup>:  $Cl_{2} \cdots Cg_{2}^{b} = 3.9545 (8) \text{ Å}, C_{2} - Cl_{2} \cdots Cg_{2}^{b} = 88.18 (5)^{\circ};$ symmetry codes (a) -x, -y, 1-z; (b) 1 - x, -y, 1-z; Cg2 is the centroid of the 3,4-dimethylphenyl ring (C11-C16)] parallel to the *a* axis, forming layers parallel to  $(0\overline{1}1)$  (Table 3; Figs. 7, 8 and 9). The stability of the molecular packing is ensured by van der Waals forces between these layers.

To quantify intermolecular interactions between the molecules in the crystal structures of (I), (II) and (III), Hirshfeld surface analyses were performed, together with two-dimensional fingerprint plots by using *CrystalExplorer* (Spackman *et* 



Figure 6

The crystal packing of (II) viewed along the *c* axis with intermolecular  $C-H\cdots O$  and  $C-Cl\cdots \pi$  interactions shown as dashed lines.

| Table 1 | 1 |
|---------|---|
|---------|---|

Hydrogen-bond geometry (Å,  $^\circ)$  for (I).

| $D - H \cdots A$          | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|---------------------------|----------------|-------------------------|--------------|-----------------------------|
| $C4-H4\cdots N2^{i}$      | 0.95           | 2.54                    | 3.191 (3)    | 126                         |
| Commentation and as (i) a | 1              |                         |              |                             |

Symmetry code: (i) x, y - 1, z.

Table 2Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (II).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $C4-H4\cdots O1^i$          | 0.95 | 2.43                    | 3.268 (2)               | 148                                  |
| $C13-H13\cdots O1^{ii}$     | 0.95 | 2.40                    | 3.309 (3)               | 159                                  |
|                             | 3 1  |                         | 1 1                     |                                      |

Symmetry codes: (i)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ .

al., 2021). The two-dimensional fingerprint plots are shown in Fig. 10. Comparative interactions calculated for each compound are given in Table 3. The dominant interactions in the crystal packing of the title compounds are  $H \cdots H$  [(I): 33.5%, (II): 39.7% and (III): 37.0%],  $Cl \cdots H/H \cdots Cl$  [(I): 20.5%, (II): 14.4% and (III): 19.1%],  $C \cdots H/H \cdots C$  [(I): 14.3%, (II): 14.5% and (III): 16.0%] and  $O \cdots H/H \cdots O$  [(I): 8.1%, (II): 6.6% and (III): 8.7%]. These interactions play a crucial role in the overall stabilization of the crystal packing. The presence of different functional groups in the compounds leads to some differences in the remaining weak interactions.

### 4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom *et al.*, 2016) for the



#### Figure 7

The crystal packing of (III) viewed along the *a* axis with  $C-H\cdots\pi$  and  $C-Cl\cdots\pi$  interactions shown as dashed lines.

| Table 3                                                                   |
|---------------------------------------------------------------------------|
| Percentage contributions of interatomic contacts to the Hirshfeld surface |
| for the title compounds.                                                  |

| Contact                                         |             | Percentage contribution |       |  |
|-------------------------------------------------|-------------|-------------------------|-------|--|
|                                                 | <b>(I</b> ) | (II)                    | (III) |  |
| $H \cdot \cdot \cdot H$                         | 33.5        | 39.7                    | 37.0  |  |
| $Cl \cdot \cdot \cdot H/H \cdot \cdot \cdot Cl$ | 20.5        | 14.4                    | 19.1  |  |
| $C{\cdots}H/H{\cdots}C$                         | 14.3        | 14.5                    | 16.0  |  |
| $O{\cdots} H/H{\cdots} O$                       | 8.1         | 6.6                     | 8.7   |  |
| $C \cdots C$                                    | 6.0         | 4.0                     | 2.1   |  |
| $N{\cdots}H/H{\cdots}N$                         | 4.2         | 5.2                     | 4.9   |  |
| $N \cdots C/C \cdots N$                         | 4.0         | 0.3                     | 2.0   |  |
| $Cl \cdot \cdot \cdot O/O \cdot \cdot \cdot Cl$ | 3.7         | 2.6                     | 1.5   |  |
| $Cl \cdot \cdot \cdot C/C \cdot \cdot \cdot Cl$ | 3.3         | 2.8                     | 5.3   |  |
| $O \cdots C/C \cdots O$                         | 1.7         | 4.6                     | 1.4   |  |
| Cl···Cl                                         | 0.6         | 4.0                     | 1.0   |  |
| $O \cdots C/C \cdots O$                         | _           | 1.1                     | 1.4   |  |
| $Cl \cdot \cdot \cdot N/N \cdot Cl$             | _           | 0.8                     | 0.4   |  |
| $O \cdots C/C \cdots O$                         | -           | -                       | 0.2   |  |

(*E*)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene moiety resulted in 36 hits. Eighteen compounds are closely related to the title compound, *viz*. those with CSD refcodes NIKXEO (Maharramov et al., 2023), NIKXIS (Maharramov et al., 2023), NIKXOY (Maharramov et al., 2023), NIKXUE (Maharramov et al., 2023), TAZDIL (Atioğlu et al., 2022a), HEHKEO (Akkurt et al., 2022), ECUDAL (Atioğlu et al., 2022b), PAXDOL (Çelikesir et al., 2022), CANVUM (Shikhaliyev et al., 2021d), EBUCUD (Shikhaliyev et al., 2021a), GUPHIL (Özkaraca et al., 2020a), DULTAI (Özkaraca et al., 2020b), XIZREG (Atioğlu et al., 2019), HODQAV (Shikhaliyev et al., 2019a), HONBUK (Akkurt et al., 2019), HONBOE (Akkurt et al., 2019), LEQXOX (Shikhaliyev et al., 2018) and LEQXIR (Shikhaliyev et al., 2018).



**Figure 9** The crystal packing of (III) viewed along the *c* axis with  $C-H\cdots\pi$  and  $C-Cl\cdots\pi$  interactions.

In the crystal structures of NIKXEO and NIKXIS, molecules are linked by  $C-H\cdots\pi$  and  $C-Cl\cdots\pi$  interactions. forming layers parallel to  $(\overline{101})$ , while molecules of NIKXOY are linked by C-H···O contacts, C-H··· $\pi$  and C-Cl··· $\pi$ interactions, forming layers parallel to  $(\overline{3}02)$ . The stability of the molecular packing is ensured by van der Waals forces between these layers. In the crystal structure of NIKXUE, molecules are linked by  $C-H \cdots \pi$  and  $C-Cl \cdots \pi$  interactions, forming a tri-periodic network. The molecules in TAZDIL are joined into layers parallel to (011) by  $C-H\cdots O$  and  $C-H\cdots F$  hydrogen bonds.  $C-Br\cdots \pi$  and  $C-F\cdots \pi$  contacts, as well as  $\pi - \pi$  stacking interactions strengthen the crystal packing.  $C-H\cdots$ Br interactions connect the molecules in the crystal of the polymorph-1 of HEHKEO, resulting in zigzag C(8) chains parallel to [100]. These chains are connected by  $C-Br \cdots \pi$  interactions into layers parallel to (001). van der Waals interactions between the layers contribute to the crystal cohesion. In the crystals of ECUDAL, C-H···O hydrogen bonds link molecules into chains. These chains are linked by face-to-face  $\pi$ - $\pi$  stacking interactions, resulting in a layered structure. Short intermolecular Br...O contacts and van der Waals interactions between the layers aid in the cohesion of the crystal packing. The molecules in the crystal of PAXDOL are connected into chains running parallel to [001] by C-H···O hydrogen bonds. C-F··· $\pi$  contacts and  $\pi$ - $\pi$ stacking interactions help to consolidate the crystal packing, and short  $Br \cdots O[2.9828(13) A]$  distances are also observed. In CANVUM, the molecules are linked by  $C-H \cdots N$  interactions along [100], forming a C(6) chain. The molecules are further connected by  $C-Cl\cdots\pi$  interactions and face-to-face  $\pi$ - $\pi$  stacking interactions, resulting in ribbons along [100]. The crystal structure of EBUCUD features short C-H···Cl and  $C-H\cdots O$  contacts and  $C-H\cdots \pi$  and van der Waals inter-



**Figure 8** The crystal packing of (III) viewed along the *b* axis with  $C-H\cdots\pi$  and  $C-Cl\cdots\pi$  interactions shown as dashed lines.

## research communications





The full two-dimensional fingerprint plots for (I), (II) and (III), showing (*a*) all interactions, and delineated into (*b*)  $H \cdots H$ , (*c*)  $C I \cdots H/H \cdots CI$ , (*d*)  $C \cdots H/H \cdots C$ , and (*e*)  $O \cdots H/H \cdots O$  interactions. The  $d_i$  and  $d_e$  values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

actions. In GUPHIL, molecules are associated into inversion dimers *via* short Cl···Cl contacts [3.3763 (9) Å]. In DULTAI, the crystal structure is stabilized by a short C-H···Cl contact, C-Cl·· $\pi$  and van der Waals interactions. In XIZREG, the molecules are linked by C-H···O hydrogen bonds into zigzag chains running along [001]. The crystal packing also features C-Cl·· $\pi$ , C-F·· $\pi$  and N-O·· $\pi$  interactions. In HODQAV, molecules are stacked in columns along [100] *via* weak C-H···Cl hydrogen bonds and face-to-face  $\pi - \pi$ stacking interactions. The crystal packing is further consolidated by short Cl···Cl contacts. In HONBUK and HONBOE, molecules are linked through weak X···Cl contacts (X = Cl for HONBUK and Br for HONBOE), C-H···Cl and C-Cl·· $\pi$  interactions into sheets parallel to (001). Additional van der Waals interactions consolidate the threedimensional packing. In the crystals of LEQXOX,  $C-H\cdots N$ and short  $Cl\cdots Cl$  contacts are observed and in LEQXIR,  $C-H\cdots N$  and  $C-H\cdots O$  hydrogen bonds and short  $C-Cl\cdots O$  contacts occur.

### 5. Synthesis and crystallization

Dyes (I), (II) and (III) were synthesized according to a literature protocol (Maharramov *et al.*, 2018).

For dye (I), a 20 ml screw-neck vial was charged with DMSO (10 ml), methyl (E)-4-[(2-phenylhydrazineylidene) methyl]benzoate (254 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl<sub>4</sub> (1 mmol). After 1-3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a  $\sim 0.01 M$  solution of HCl (100 ml, pH = 2–3), and extracted with dichloromethane (3  $\times$  $\sim$ 20 ml). The combined organic phase was washed with water  $(3 \times \sim 50 \text{ ml})$ , brine (30 ml), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (v/v: 5/ 1-3/1-1/1). A red solid was obtained (yield 72%); m.p. 375 K. <sup>1</sup>H NMR (300 MHz, chloroform-d)  $\delta$  8.16–8.10 (m, 2H), 7.77 (*dd*, *J* = 6.8, 3.0 Hz, 2H), 7.48–7.43 (*m*, 3H), 7.29 (*d*, *J* = 8.3 Hz, 2H), 3.97 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 169.2, 137.4, 132.0, 131.8, 130.1, 129.3, 129.1, 123.6, 123.2, 121.3, 120.0, 52.2.

For dye (**II**), the procedure was the same as that for (**I**) using methyl (*E*)-4-{[2-(*p*-tolyl)hydrazineylidene]methyl} benzoate (268 mg, 1 mmol). A red solid was obtained (yield 78%); m.p. 399 K. <sup>1</sup>H NMR (300 MHz, chloroform-*d*)  $\delta$  8.13 (*d*, *J* = 8.3 Hz, 2H), 7.69 (*d*, *J* = 8.2 Hz, 2H), 7.32–7.22 (*m*, 4H), 3.95 (*s*, 3H), 2.40 (*s*, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 151.5, 150.9, 142.6, 137.6, 134.8, 130.2, 129.8, 129.3, 123.3, 52.2, 21.6.

For dye (**III**), the procedure was the same as that for (**I**) using methyl (*E*)-4-{[2-(3,4-dimethylphenyl)hydrazineylidene] methyl}benzoate (282 mg, 1 mmol). A red solid was obtained (yield 73%); m.p. 405 K. <sup>1</sup>H NMR (300 MHz, chloroform-*d*)  $\delta$  8.14 (*d*, *J* = 8.2 Hz, 2H), 7.60–7.52 (*m*, 2H), 7.29 (*d*, *J* = 8.1 Hz, 2H), 7.20 (*d*, *J* = 8.0 Hz, 1H), 3.96 (*s*, 3H), 2.31 (*s*, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.5, 151.2, 141.4, 137.7, 137.4, 134.5, 130.3, 130.2, 129.3, 124.6, 120.7, 52.2, 20.0.

Compounds (I), (II), and (III) were dissolved in dichloromethane and then left at room temperature for slow evaporation; red crystals of all compounds suitable for X-rays started to form after  $ca \ 2 \ d$ .

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. In all three compounds (**I**), (**II**) and (**III**), all H atoms were positioned geometrically and treated as riding atoms, with C-H = 0.95-0.98 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(C-methyl)$ .

 Table 4

 Experimental details.

|                                                                          | ( <b>I</b> )                                        | ( <b>II</b> )                                       | (III)                                               |
|--------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Crystal data                                                             |                                                     |                                                     |                                                     |
| Chemical formula                                                         | $C_{16}H_{12}Cl_2N_2O_2$                            | $C_{17}H_{14}Cl_2N_2O_2$                            | $C_{18}H_{16}Cl_2N_2O_2$                            |
| $M_{ m r}$                                                               | 335.18                                              | 349.20                                              | 363.23                                              |
| Crystal system, space group                                              | Monoclinic, $P2_1/c$                                | Monoclinic, $P2_1/c$                                | Triclinic, $P\overline{1}$                          |
| Temperature (K)                                                          | 100                                                 | 100                                                 | 100                                                 |
| a, b, c (Å)                                                              | 15.47572 (16), 4.16896 (4),<br>23.2257 (2)          | 15.6177 (2), 8.47502 (11),<br>13.10365 (17)         | 8.22057 (10), 8.53211 (9),<br>13.08729 (14)         |
| $lpha,eta,\gamma(^\circ)$                                                | 90, 100.1964 (9), 90                                | 90, 109.6555 (15), 90                               | 103.9484 (9), 101.9047 (10),<br>98.0600 (9)         |
| $V(Å^3)$                                                                 | 1474.80 (2)                                         | 1633.34 (4)                                         | 854.09 (2)                                          |
| Z                                                                        | 4                                                   | 4                                                   | 2                                                   |
| Radiation type                                                           | Cu Kα                                               | Cu Kα                                               | Cu Kα                                               |
| $\mu (\text{mm}^{-1})$                                                   | 4.04                                                | 3.67                                                | 3.53                                                |
| Crystal size (mm)                                                        | $0.22 \times 0.13 \times 0.11$                      | $0.26\times0.19\times0.17$                          | $0.20\times0.15\times0.09$                          |
| Data collection                                                          |                                                     |                                                     |                                                     |
| Diffractometer                                                           | XtaLAB Synergy, Dualflex, HyPix                     | XtaLAB Synergy, Dualflex, HyPix                     | XtaLAB Synergy, Dualflex, HyPix                     |
| Absorption correction                                                    | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2021) | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2021) | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2021) |
| $T_{\min}, T_{\max}$                                                     | 0.404, 0.600                                        | 0.307, 0.530                                        | 0.349, 0.700                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 23940, 3151, 2823                                   | 28857, 3469, 3197                                   | 29808, 3632, 3340                                   |
| R <sub>int</sub>                                                         | 0.060                                               | 0.054                                               | 0.063                                               |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.634                                               | 0.634                                               | 0.634                                               |
| Refinement                                                               |                                                     |                                                     |                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.038, 0.103, 1.04                                  | 0.038, 0.108, 1.13                                  | 0.035, 0.097, 1.08                                  |
| No. of reflections                                                       | 3151                                                | 3469                                                | 3632                                                |
| No. of parameters                                                        | 200                                                 | 211                                                 | 220                                                 |
| H-atom treatment                                                         | H-atom parameters constrained                       | H-atom parameters constrained                       | H-atom parameters constrained                       |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$    | 0.46, -0.32                                         | 0.30, -0.48                                         | 0.31, -0.46                                         |

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

### Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, SAİ, NEA, GTA and GVB; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, and GVB; supervision, NQS, MA and AB.

### **Funding information**

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).

### References

- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.
- Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736.
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022*a*). Acta Cryst. E**78**, 530–535.
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804–808.
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408.
- Chen, M., Chang, C. H., Tao, L. & Lu, C. (2015). *Pediatrics*, **136**, 719–729.
- Damalas, C. A. & Eleftherohorinos, I. G. (2011). Int. J. Environ. Res. Publ. Heal. 8, 1402–1419.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Goulson, D. (2013). J. Appl. Ecol. 50, 977–987.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Isman, M. B. (2015). Pest. Manag. Sci. 71, 1587-1590.
- Isman, M. B. (2020). Phytochem. Rev. 19, 235-241.
- Maharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). *Acta Cryst.* E**79**, 637–643.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). *Dyes Pigments*, **159**, 135–141.
- Mostafiz, M. M., Hassan, E. & Lee, K. Y. (2022). Agriculture, 12, 378.
- Naqqash, M. N., Gökçe, A., Bakhsh, A. & Salim, M. (2016). Parasitol. Res. 115, 1363–1373.
- Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). *Molecules*, **25**, 5013.
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020*a*). *Acta Cryst.* E**76**, 1251–1254.

- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020*b*). *Acta Cryst.* E**76**, 811–815.
- Pavela, R. (2016). Plant Prot. Sci. 52, 229-241.
- Pavela, R. & Benelli, G. (2016). Trends Plant Sci. 21, 1000-1007.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021b). *Mendeleev Commun.* **31**, 191–193.
- Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021c). Arkivoc, pp. 67–75.
- Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Org. Chem. pp. 64–73.

- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). *Dyes Pigments*, **150**, 377–381.
- Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021a). Acta Cryst. E77, 965–970.
- Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019*a*). *Acta Cryst.* E75, 465– 469.
- Shikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021d). Acta Cryst. E77, 1158–1163.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E. & James, A. (2019). Cogent Food Agric. 5, 1601544.

Acta Cryst. (2024). E80, 184-190 [https://doi.org/10.1107/S2056989024000732]

Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-dichloro-1-[(*E*)-phenyldiazenyl]ethenyl}benzoate, methyl 4-{2,2-dichloro-1-[(*E*)-(4-methylphenyl)diazenyl]ethenyl}benzoate and methyl 4-{2,2-dichloro-1-[(*E*)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate

Namiq Q. Shikhaliyev, Shafiga A. İbrahimova, Gulnar T. Atakishiyeva, Nigar E. Ahmedova, Gulnara V. Babayeva, Victor N. Khrustalev, Zeliha Atioğlu, Mehmet Akkurt and Ajaya Bhattarai

**Computing details** 

Methyl 4-{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzoate (I)

Crystal data

 $C_{16}H_{12}Cl_2N_2O_2$   $M_r = 335.18$ Monoclinic,  $P2_1/c$  a = 15.47572 (16) Å b = 4.16896 (4) Å c = 23.2257 (2) Å  $\beta = 100.1964$  (9)° V = 1474.80 (2) Å<sup>3</sup> Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021)  $T_{\min} = 0.404, T_{\max} = 0.600$ 23940 measured reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.103$ S = 1.043151 reflections 200 parameters 0 restraints F(000) = 688  $D_x = 1.510 \text{ Mg m}^{-3}$ Cu K $\alpha$  radiation,  $\lambda = 1.54184 \text{ Å}$ Cell parameters from 12282 reflections  $\theta = 2.9-77.0^{\circ}$   $\mu = 4.04 \text{ mm}^{-1}$  T = 100 KPrism, red  $0.22 \times 0.13 \times 0.11 \text{ mm}$ 

3151 independent reflections 2823 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.060$  $\theta_{max} = 77.8^{\circ}, \ \theta_{min} = 2.9^{\circ}$  $h = -19 \rightarrow 19$  $k = -5 \rightarrow 5$  $l = -29 \rightarrow 28$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 1.3375P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.46$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.32$  e Å<sup>-3</sup>

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|-------------|-----------------------------|
| Cl1  | 0.13479 (3)  | 0.05540 (11) | 0.40331 (2) | 0.02247 (13)                |
| Cl2  | 0.27874 (3)  | 0.32473 (12) | 0.48326 (2) | 0.02639 (14)                |
| 01   | 0.01936 (9)  | 0.1723 (4)   | 0.10978 (6) | 0.0285 (3)                  |
| O2   | 0.14455 (9)  | -0.0786 (4)  | 0.10100 (6) | 0.0268 (3)                  |
| N1   | 0.34295 (10) | 0.5658 (4)   | 0.38299 (7) | 0.0216 (3)                  |
| N2   | 0.38242 (10) | 0.6368 (4)   | 0.34161 (7) | 0.0211 (3)                  |
| C1   | 0.26399 (11) | 0.3911 (4)   | 0.36605 (8) | 0.0207 (4)                  |
| C2   | 0.22931 (12) | 0.2761 (5)   | 0.41127 (8) | 0.0214 (4)                  |
| C3   | 0.22169 (11) | 0.3354 (4)   | 0.30397 (8) | 0.0197 (4)                  |
| C4   | 0.26794 (11) | 0.1764 (5)   | 0.26603 (8) | 0.0210 (4)                  |
| H4   | 0.327649     | 0.119411     | 0.279023    | 0.025*                      |
| C5   | 0.22744 (12) | 0.1012 (5)   | 0.20969 (8) | 0.0220 (4)                  |
| Н5   | 0.259087     | -0.011130    | 0.184514    | 0.026*                      |
| C6   | 0.14025 (11) | 0.1895 (4)   | 0.18962 (8) | 0.0203 (4)                  |
| C7   | 0.09485 (11) | 0.3596 (4)   | 0.22649 (8) | 0.0215 (4)                  |
| H7   | 0.036219     | 0.427119     | 0.212652    | 0.026*                      |
| C8   | 0.13490 (12) | 0.4308 (5)   | 0.28326 (8) | 0.0220 (4)                  |
| H8   | 0.103337     | 0.544786     | 0.308278    | 0.026*                      |
| С9   | 0.09401 (12) | 0.0996 (5)   | 0.13000 (8) | 0.0215 (4)                  |
| C10  | 0.10264 (14) | -0.1883 (6)  | 0.04358 (8) | 0.0293 (4)                  |
| H10A | 0.087522     | -0.003127    | 0.017776    | 0.044*                      |
| H10B | 0.049121     | -0.307201    | 0.046928    | 0.044*                      |
| H10C | 0.142947     | -0.328838    | 0.027228    | 0.044*                      |
| C11  | 0.46037 (11) | 0.8199 (4)   | 0.36040 (8) | 0.0209 (4)                  |
| C12  | 0.51605 (12) | 0.8486 (5)   | 0.31977 (8) | 0.0228 (4)                  |
| H12  | 0.500723     | 0.751252     | 0.282364    | 0.027*                      |
| C13  | 0.59408 (13) | 1.0194 (5)   | 0.33381 (9) | 0.0255 (4)                  |
| H13  | 0.632190     | 1.038116     | 0.306098    | 0.031*                      |
| C14  | 0.61616 (12) | 1.1624 (5)   | 0.38829 (9) | 0.0258 (4)                  |
| H14  | 0.670157     | 1.274595     | 0.398327    | 0.031*                      |
| C15  | 0.55900 (13) | 1.1414 (5)   | 0.42850 (8) | 0.0264 (4)                  |
| H15  | 0.573440     | 1.245282     | 0.465361    | 0.032*                      |
| C16  | 0.48136 (12) | 0.9698 (5)   | 0.41483 (8) | 0.0233 (4)                  |
| H16  | 0.442743     | 0.954405     | 0.442280    | 0.028*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | <i>U</i> <sup>22</sup> | $U^{33}$   | $U^{12}$      | $U^{13}$     | <i>U</i> <sup>23</sup> |
|-----|------------|------------------------|------------|---------------|--------------|------------------------|
| Cl1 | 0.0167 (2) | 0.0264 (2)             | 0.0244 (2) | -0.00357 (16) | 0.00406 (15) | -0.00043 (16)          |

| C12 | 0.0217 (2)  | 0.0355 (3)  | 0.0213 (2)  | -0.00499 (17) | 0.00171 (16) | -0.00103 (17) |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| 01  | 0.0183 (6)  | 0.0359 (8)  | 0.0291 (7)  | 0.0048 (6)    | -0.0016 (5)  | -0.0043 (6)   |
| O2  | 0.0193 (6)  | 0.0382 (8)  | 0.0220 (6)  | 0.0047 (6)    | 0.0016 (5)   | -0.0046 (6)   |
| N1  | 0.0162 (7)  | 0.0232 (8)  | 0.0248 (7)  | 0.0001 (6)    | 0.0022 (6)   | 0.0017 (6)    |
| N2  | 0.0153 (7)  | 0.0216 (7)  | 0.0260 (8)  | 0.0007 (6)    | 0.0025 (6)   | 0.0023 (6)    |
| C1  | 0.0152 (8)  | 0.0208 (8)  | 0.0255 (9)  | 0.0019 (7)    | 0.0018 (7)   | -0.0006 (7)   |
| C2  | 0.0163 (8)  | 0.0233 (9)  | 0.0241 (9)  | 0.0006 (7)    | 0.0023 (6)   | -0.0014 (7)   |
| C3  | 0.0163 (8)  | 0.0202 (8)  | 0.0221 (9)  | -0.0004 (7)   | 0.0023 (6)   | 0.0026 (7)    |
| C4  | 0.0142 (8)  | 0.0244 (9)  | 0.0241 (9)  | 0.0035 (7)    | 0.0029 (6)   | 0.0038 (7)    |
| C5  | 0.0166 (8)  | 0.0260 (9)  | 0.0240 (9)  | 0.0034 (7)    | 0.0049 (7)   | 0.0022 (7)    |
| C6  | 0.0159 (8)  | 0.0220 (9)  | 0.0224 (8)  | -0.0002 (7)   | 0.0021 (6)   | 0.0025 (7)    |
| C7  | 0.0140 (8)  | 0.0221 (9)  | 0.0281 (9)  | 0.0019 (7)    | 0.0028 (7)   | 0.0016 (7)    |
| C8  | 0.0153 (8)  | 0.0248 (9)  | 0.0261 (9)  | 0.0004 (7)    | 0.0044 (7)   | -0.0011 (7)   |
| C9  | 0.0175 (8)  | 0.0233 (9)  | 0.0237 (9)  | 0.0013 (7)    | 0.0038 (7)   | 0.0019 (7)    |
| C10 | 0.0264 (10) | 0.0391 (11) | 0.0214 (9)  | 0.0002 (8)    | 0.0018 (7)   | -0.0053 (8)   |
| C11 | 0.0140 (8)  | 0.0219 (9)  | 0.0259 (9)  | 0.0017 (7)    | 0.0011 (6)   | 0.0034 (7)    |
| C12 | 0.0205 (9)  | 0.0238 (9)  | 0.0246 (9)  | 0.0002 (7)    | 0.0053 (7)   | 0.0005 (7)    |
| C13 | 0.0195 (9)  | 0.0274 (10) | 0.0306 (10) | 0.0009 (8)    | 0.0077 (7)   | 0.0020 (8)    |
| C14 | 0.0155 (8)  | 0.0291 (10) | 0.0319 (10) | -0.0030(7)    | 0.0014 (7)   | 0.0046 (8)    |
| C15 | 0.0233 (9)  | 0.0305 (10) | 0.0241 (9)  | -0.0045 (8)   | 0.0004 (7)   | 0.0017 (8)    |
| C16 | 0.0189 (9)  | 0.0282 (9)  | 0.0227 (9)  | -0.0010 (7)   | 0.0037 (7)   | 0.0035 (7)    |
|     |             |             |             |               |              |               |

## Geometric parameters (Å, °)

| Cl1—C2    | 1.7102 (19) | C7—C8       | 1.386 (3)   |
|-----------|-------------|-------------|-------------|
| Cl2—C2    | 1.7231 (18) | С7—Н7       | 0.9500      |
| O1—C9     | 1.206 (2)   | C8—H8       | 0.9500      |
| O2—C9     | 1.343 (2)   | C10—H10A    | 0.9800      |
| O2—C10    | 1.450 (2)   | C10—H10B    | 0.9800      |
| N1—N2     | 1.262 (2)   | C10—H10C    | 0.9800      |
| N1-C1     | 1.417 (2)   | C11—C12     | 1.391 (3)   |
| N2-C11    | 1.429 (2)   | C11—C16     | 1.396 (3)   |
| C1—C2     | 1.349 (3)   | C12—C13     | 1.390 (3)   |
| C1—C3     | 1.492 (2)   | C12—H12     | 0.9500      |
| C3—C4     | 1.397 (3)   | C13—C14     | 1.386 (3)   |
| C3—C8     | 1.402 (2)   | C13—H13     | 0.9500      |
| C4—C5     | 1.383 (3)   | C14—C15     | 1.398 (3)   |
| C4—H4     | 0.9500      | C14—H14     | 0.9500      |
| C5—C6     | 1.397 (2)   | C15—C16     | 1.386 (3)   |
| С5—Н5     | 0.9500      | C15—H15     | 0.9500      |
| С6—С7     | 1.394 (3)   | C16—H16     | 0.9500      |
| С6—С9     | 1.490 (3)   |             |             |
| C9—O2—C10 | 115.49 (15) | 01—C9—02    | 123.12 (17) |
| N2—N1—C1  | 114.77 (15) | O1—C9—C6    | 124.62 (17) |
| N1—N2—C11 | 112.90 (15) | O2—C9—C6    | 112.26 (15) |
| C2-C1-N1  | 114.12 (16) | O2-C10-H10A | 109.5       |
| C2—C1—C3  | 121.99 (16) | O2-C10-H10B | 109.5       |
|           |             |             |             |

| N1—C1—C3            | 123.89 (16)  | H10A—C10—H10B   | 109.5        |
|---------------------|--------------|-----------------|--------------|
| C1—C2—Cl1           | 123.88 (14)  | O2—C10—H10C     | 109.5        |
| C1—C2—Cl2           | 122.96 (14)  | H10A-C10-H10C   | 109.5        |
| Cl1—C2—Cl2          | 113.11 (11)  | H10B—C10—H10C   | 109.5        |
| C4—C3—C8            | 119.01 (16)  | C12—C11—C16     | 120.20 (17)  |
| C4—C3—C1            | 119.81 (16)  | C12—C11—N2      | 115.44 (16)  |
| C8—C3—C1            | 121.15 (16)  | C16—C11—N2      | 124.36 (16)  |
| C5—C4—C3            | 120.48 (16)  | C13—C12—C11     | 120.10 (18)  |
| C5—C4—H4            | 119.8        | C13—C12—H12     | 119.9        |
| C3—C4—H4            | 119.8        | C11—C12—H12     | 119.9        |
| C4—C5—C6            | 120.35 (17)  | C14—C13—C12     | 119.88 (18)  |
| C4—C5—H5            | 119.8        | C14—C13—H13     | 120.1        |
| С6—С5—Н5            | 119.8        | С12—С13—Н13     | 120.1        |
| C7—C6—C5            | 119.42 (17)  | C13—C14—C15     | 120.01 (18)  |
| C7—C6—C9            | 119.19 (16)  | C13—C14—H14     | 120.0        |
| C5—C6—C9            | 121.38 (17)  | C15—C14—H14     | 120.0        |
| C8—C7—C6            | 120.28 (16)  | C16—C15—C14     | 120.30 (18)  |
| С8—С7—Н7            | 119.9        | C16—C15—H15     | 119.8        |
| С6—С7—Н7            | 119.9        | C14—C15—H15     | 119.8        |
| C7—C8—C3            | 120.38 (17)  | C15—C16—C11     | 119.46 (17)  |
| C7—C8—H8            | 119.8        | С15—С16—Н16     | 120.3        |
| С3—С8—Н8            | 119.8        | C11—C16—H16     | 120.3        |
| C1—N1—N2—C11        | 178.44 (15)  | C4—C3—C8—C7     | 1.9 (3)      |
| N2—N1—C1—C2         | 170.71 (16)  | C1—C3—C8—C7     | -176.03 (17) |
| N2—N1—C1—C3         | -9.2 (3)     | C10—O2—C9—O1    | -1.8 (3)     |
| N1—C1—C2—Cl1        | -179.62 (13) | C10—O2—C9—C6    | 177.22 (16)  |
| C3—C1—C2—Cl1        | 0.3 (3)      | C7—C6—C9—O1     | 2.5 (3)      |
| N1—C1—C2—Cl2        | -2.2 (2)     | C5-C6-C9-01     | -178.85 (19) |
| C3—C1—C2—Cl2        | 177.66 (14)  | C7—C6—C9—O2     | -176.46 (17) |
| C2-C1-C3-C4         | -120.9 (2)   | C5—C6—C9—O2     | 2.2 (3)      |
| N1—C1—C3—C4         | 59.0 (3)     | N1—N2—C11—C12   | 167.20 (16)  |
| C2-C1-C3-C8         | 57.0 (3)     | N1—N2—C11—C16   | -14.1 (3)    |
| N1—C1—C3—C8         | -123.1 (2)   | C16—C11—C12—C13 | 1.8 (3)      |
| C8—C3—C4—C5         | -2.9 (3)     | N2-C11-C12-C13  | -179.43 (17) |
| C1—C3—C4—C5         | 175.04 (17)  | C11—C12—C13—C14 | -0.3 (3)     |
| C3—C4—C5—C6         | 1.4 (3)      | C12—C13—C14—C15 | -1.6 (3)     |
| C4—C5—C6—C7         | 1.2 (3)      | C13—C14—C15—C16 | 2.0 (3)      |
| C4—C5—C6—C9         | -177.42 (17) | C14-C15-C16-C11 | -0.5 (3)     |
| C5—C6—C7—C8         | -2.2 (3)     | C12—C11—C16—C15 | -1.4 (3)     |
| C9—C6—C7—C8         | 176.44 (17)  | N2-C11-C16-C15  | 179.91 (18)  |
| C(C, C, T, C, C, C) | 0.7(3)       |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                 | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------|-----------|-------------------------|
| C4—H4···N2 <sup>i</sup> | 0.95        | 2.54  | 3.191 (3) | 126                     |

|     |    |    |     |    | •  | <b>c</b> |    |     |    |
|-----|----|----|-----|----|----|----------|----|-----|----|
| SH  | nı | nn | rti | nσ | in | <b>O</b> | rm | ati | on |
| Jun |    |    |     |    |    |          |    | uu  |    |

| С5—Н5…О2 | 0.95 | 2.40 | 2.726 (2) | 100 |
|----------|------|------|-----------|-----|
|          |      |      |           |     |

F(000) = 720

 $\theta = 3.0-77.0^{\circ}$ 

 $\mu = 3.67 \text{ mm}^{-1}$ 

T = 100 K

Prism. red

 $R_{\rm int} = 0.054$ 

 $k = -10 \rightarrow 10$ 

 $l = -16 \rightarrow 16$ 

 $D_{\rm x} = 1.420 {\rm ~Mg} {\rm ~m}^{-3}$ 

 $0.26 \times 0.19 \times 0.17$  mm

 $\theta_{\text{max}} = 78.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$  $h = -15 \rightarrow 19$ 

3469 independent reflections

3197 reflections with  $I > 2\sigma(I)$ 

Cu Ka radiation,  $\lambda = 1.54184$  Å

Cell parameters from 12932 reflections

Symmetry code: (i) x, y-1, z.

Methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate (II)

Crystal data

 $C_{17}H_{14}Cl_2N_2O_2$   $M_r = 349.20$ Monoclinic,  $P2_1/c$  a = 15.6177 (2) Å b = 8.47502 (11) Å c = 13.10365 (17) Å  $\beta = 109.6555$  (15)° V = 1633.34 (4) Å<sup>3</sup> Z = 4

### Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021)  $T_{\min} = 0.307, T_{\max} = 0.530$ 28857 measured reflections

Refinement

| 5                                     |                                                            |
|---------------------------------------|------------------------------------------------------------|
| Refinement on $F^2$                   | H-atom parameters constrained                              |
| Least-squares matrix: full            | $w = 1/[\sigma^2(F_o^2) + (0.0579P)^2 + 0.7484P]$          |
| $R[F^2 > 2\sigma(F^2)] = 0.038$       | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| $wR(F^2) = 0.108$                     | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| S = 1.13                              | $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$  |
| 3469 reflections                      | $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$ |
| 211 parameters                        | Extinction correction: SHELXL-2018/3                       |
| 0 restraints                          | (Sheldrick, 2015b),                                        |
| Hydrogen site location: inferred from | $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$    |
| neighbouring sites                    | Extinction coefficient: 0.0012 (3)                         |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|--------------|--------------|-----------------------------|--|
| Cl1 | 0.98647 (3) | 0.77109 (5)  | 0.27683 (3)  | 0.02442 (14)                |  |
| Cl2 | 0.94376 (3) | 0.63249 (5)  | 0.06421 (3)  | 0.02432 (14)                |  |
| 01  | 0.69644 (8) | 0.59702 (16) | 0.60175 (10) | 0.0264 (3)                  |  |
| 02  | 0.81960 (8) | 0.44134 (15) | 0.66154 (9)  | 0.0245 (3)                  |  |
| N1  | 0.78451 (9) | 0.49845 (18) | 0.10125 (11) | 0.0209 (3)                  |  |
| N2  | 0.71406 (9) | 0.44374 (18) | 0.11566 (11) | 0.0219 (3)                  |  |
|     |             |              |              |                             |  |

| C1   | 0.84094 (11) | 0.5841 (2) | 0.19136 (13)  | 0.0199 (3) |
|------|--------------|------------|---------------|------------|
| C2   | 0.91421 (11) | 0.6533 (2) | 0.17879 (13)  | 0.0210 (3) |
| C3   | 0.82373 (11) | 0.5849 (2) | 0.29668 (13)  | 0.0196 (3) |
| C4   | 0.74921 (11) | 0.6634 (2) | 0.30912 (13)  | 0.0216 (3) |
| H4   | 0.710519     | 0.725291   | 0.251576      | 0.026*     |
| C5   | 0.73197 (11) | 0.6504 (2) | 0.40622 (14)  | 0.0220 (3) |
| Н5   | 0.682177     | 0.705534   | 0.415595      | 0.026*     |
| C6   | 0.78742 (11) | 0.5568 (2) | 0.48977 (13)  | 0.0195 (3) |
| C7   | 0.86273 (11) | 0.4802 (2) | 0.47817 (13)  | 0.0208 (3) |
| H7   | 0.901389     | 0.418074   | 0.535632      | 0.025*     |
| C8   | 0.88054 (11) | 0.4957 (2) | 0.38166 (13)  | 0.0207 (3) |
| H8   | 0.932079     | 0.444724   | 0.373610      | 0.025*     |
| С9   | 0.76178 (11) | 0.5361 (2) | 0.58862 (13)  | 0.0204 (3) |
| C10  | 0.79809 (13) | 0.4119 (2) | 0.75872 (14)  | 0.0275 (4) |
| H10A | 0.839975     | 0.332619   | 0.802976      | 0.041*     |
| H10B | 0.735518     | 0.373025   | 0.739045      | 0.041*     |
| H10C | 0.804167     | 0.510044   | 0.800106      | 0.041*     |
| C11  | 0.65821 (11) | 0.3536 (2) | 0.02710 (13)  | 0.0215 (3) |
| C12  | 0.57409 (12) | 0.3086 (3) | 0.03265 (15)  | 0.0296 (4) |
| H12  | 0.556200     | 0.343233   | 0.091445      | 0.036*     |
| C13  | 0.51651 (13) | 0.2138 (3) | -0.04704 (16) | 0.0314 (4) |
| H13  | 0.458899     | 0.185192   | -0.043069     | 0.038*     |
| C14  | 0.54206 (12) | 0.1597 (2) | -0.13325 (14) | 0.0249 (4) |
| C15  | 0.62625 (12) | 0.2063 (2) | -0.13829 (14) | 0.0233 (4) |
| H15  | 0.644226     | 0.171215   | -0.196914     | 0.028*     |
| C16  | 0.68413 (11) | 0.3026 (2) | -0.05973 (13) | 0.0217 (3) |
| H16  | 0.741000     | 0.333796   | -0.064785     | 0.026*     |
| C17  | 0.48059 (13) | 0.0527 (3) | -0.21805 (16) | 0.0337 (4) |
| H17A | 0.516980     | -0.029287  | -0.236871     | 0.050*     |
| H17B | 0.448259     | 0.114318   | -0.282843     | 0.050*     |
| H17C | 0.436482     | 0.003205   | -0.189705     | 0.050*     |
|      |              |            |               |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|------------|------------|------------|---------------|--------------|---------------|
| Cl1 | 0.0228 (2) | 0.0257 (2) | 0.0259 (2) | -0.00466 (15) | 0.00965 (16) | -0.00107 (15) |
| Cl2 | 0.0258 (2) | 0.0280 (2) | 0.0246 (2) | 0.00138 (15)  | 0.01564 (16) | 0.00240 (15)  |
| 01  | 0.0245 (6) | 0.0358 (7) | 0.0220 (6) | 0.0048 (5)    | 0.0119 (5)   | -0.0007 (5)   |
| O2  | 0.0266 (6) | 0.0303 (7) | 0.0204 (6) | 0.0048 (5)    | 0.0131 (5)   | 0.0057 (5)    |
| N1  | 0.0212 (6) | 0.0230 (7) | 0.0204 (6) | -0.0009 (5)   | 0.0094 (5)   | 0.0002 (5)    |
| N2  | 0.0223 (7) | 0.0248 (7) | 0.0202 (7) | -0.0011 (6)   | 0.0093 (5)   | -0.0005 (6)   |
| C1  | 0.0209 (7) | 0.0203 (8) | 0.0200 (8) | 0.0022 (6)    | 0.0087 (6)   | 0.0015 (6)    |
| C2  | 0.0219 (8) | 0.0212 (8) | 0.0214 (8) | 0.0017 (6)    | 0.0092 (6)   | 0.0008 (6)    |
| C3  | 0.0206 (7) | 0.0205 (8) | 0.0197 (8) | -0.0039 (6)   | 0.0095 (6)   | -0.0019 (6)   |
| C4  | 0.0213 (8) | 0.0228 (8) | 0.0209 (8) | 0.0013 (6)    | 0.0075 (6)   | 0.0026 (6)    |
| C5  | 0.0209 (8) | 0.0231 (8) | 0.0246 (8) | 0.0008 (6)    | 0.0112 (6)   | -0.0010 (6)   |
| C6  | 0.0206 (7) | 0.0205 (8) | 0.0188 (7) | -0.0028 (6)   | 0.0086 (6)   | -0.0019 (6)   |
| C7  | 0.0199 (7) | 0.0228 (8) | 0.0206 (7) | -0.0001 (6)   | 0.0079 (6)   | -0.0009 (6)   |
|     |            |            |            |               |              |               |

| C8  | 0.0200 (7) | 0.0221 (8)  | 0.0221 (8) | -0.0009 (6) | 0.0099 (6) | -0.0030 (6) |
|-----|------------|-------------|------------|-------------|------------|-------------|
| C9  | 0.0199 (7) | 0.0223 (8)  | 0.0201 (7) | -0.0026 (6) | 0.0081 (6) | -0.0032 (6) |
| C10 | 0.0323 (9) | 0.0340 (10) | 0.0210 (8) | 0.0027 (8)  | 0.0153 (7) | 0.0043 (7)  |
| C11 | 0.0227 (8) | 0.0230 (8)  | 0.0196 (8) | -0.0004 (6) | 0.0081 (6) | 0.0001 (6)  |
| C12 | 0.0265 (9) | 0.0407 (11) | 0.0261 (9) | -0.0058 (8) | 0.0146 (7) | -0.0065 (8) |
| C13 | 0.0238 (8) | 0.0438 (12) | 0.0302 (9) | -0.0093 (8) | 0.0138 (7) | -0.0067 (8) |
| C14 | 0.0260 (8) | 0.0256 (9)  | 0.0226 (8) | -0.0018 (7) | 0.0076 (7) | -0.0007 (7) |
| C15 | 0.0273 (8) | 0.0244 (9)  | 0.0206 (8) | 0.0019 (7)  | 0.0112 (7) | 0.0008 (7)  |
| C16 | 0.0222 (8) | 0.0236 (8)  | 0.0214 (8) | 0.0002 (6)  | 0.0101 (6) | 0.0015 (7)  |
| C17 | 0.0319 (9) | 0.0391 (11) | 0.0300 (9) | -0.0093 (8) | 0.0105 (8) | -0.0090 (8) |
|     |            |             |            |             |            |             |

## Geometric parameters (Å, °)

| Cl1—C2     | 1.7159 (17) | С7—Н7         | 0.9500      |
|------------|-------------|---------------|-------------|
| Cl2—C2     | 1.7217 (16) | C8—H8         | 0.9500      |
| O1—C9      | 1.207 (2)   | C10—H10A      | 0.9800      |
| O2—C9      | 1.339 (2)   | C10—H10B      | 0.9800      |
| O2—C10     | 1.4438 (19) | C10—H10C      | 0.9800      |
| N1—N2      | 1.265 (2)   | C11—C12       | 1.393 (2)   |
| N1—C1      | 1.414 (2)   | C11—C16       | 1.398 (2)   |
| N2-C11     | 1.418 (2)   | C12—C13       | 1.383 (3)   |
| C1—C2      | 1.345 (2)   | C12—H12       | 0.9500      |
| C1—C3      | 1.492 (2)   | C13—C14       | 1.396 (3)   |
| С3—С8      | 1.391 (2)   | C13—H13       | 0.9500      |
| C3—C4      | 1.397 (2)   | C14—C15       | 1.396 (2)   |
| C4—C5      | 1.391 (2)   | C14—C17       | 1.504 (2)   |
| C4—H4      | 0.9500      | C15—C16       | 1.385 (2)   |
| С5—С6      | 1.393 (2)   | C15—H15       | 0.9500      |
| С5—Н5      | 0.9500      | C16—H16       | 0.9500      |
| С6—С7      | 1.396 (2)   | C17—H17A      | 0.9800      |
| С6—С9      | 1.489 (2)   | C17—H17B      | 0.9800      |
| С7—С8      | 1.389 (2)   | С17—Н17С      | 0.9800      |
| C9—O2—C10  | 115.59 (13) | O2—C10—H10A   | 109.5       |
| N2-N1-C1   | 113.13 (13) | O2-C10-H10B   | 109.5       |
| N1—N2—C11  | 113.70 (13) | H10A—C10—H10B | 109.5       |
| C2-C1-N1   | 116.03 (14) | O2-C10-H10C   | 109.5       |
| C2—C1—C3   | 122.48 (15) | H10A—C10—H10C | 109.5       |
| N1-C1-C3   | 121.28 (14) | H10B-C10-H10C | 109.5       |
| C1—C2—Cl1  | 122.31 (13) | C12—C11—C16   | 119.63 (16) |
| C1—C2—Cl2  | 123.43 (13) | C12—C11—N2    | 115.85 (15) |
| Cl1—C2—Cl2 | 114.26 (9)  | C16—C11—N2    | 124.45 (15) |
| C8—C3—C4   | 119.85 (15) | C13—C12—C11   | 120.30 (16) |
| C8—C3—C1   | 118.23 (14) | C13—C12—H12   | 119.8       |
| C4—C3—C1   | 121.77 (15) | C11—C12—H12   | 119.8       |
| C5—C4—C3   | 119.63 (15) | C12—C13—C14   | 120.76 (16) |
| С5—С4—Н4   | 120.2       | C12—C13—H13   | 119.6       |
| С3—С4—Н4   | 120.2       | C14—C13—H13   | 119.6       |

| C4—C5—C6                | 120.25 (15)  | C15-C14-C13                  | 118.40 (16)  |
|-------------------------|--------------|------------------------------|--------------|
| C4—C5—H5                | 119.9        | C15—C14—C17                  | 120.88 (16)  |
| С6—С5—Н5                | 119.9        | C13—C14—C17                  | 120.72 (16)  |
| C5—C6—C7                | 120.22 (14)  | C16-C15-C14                  | 121.44 (15)  |
| $C_{5} - C_{6} - C_{9}$ | 118 22 (14)  | $C_{16}$ $-C_{15}$ $-H_{15}$ | 119.3        |
| C7-C6-C9                | 121 52 (15)  | $C_{14}$ $C_{15}$ $H_{15}$   | 119.3        |
| C8-C7-C6                | 119 28 (15)  | $C_{15}$ $-C_{16}$ $-C_{11}$ | 119.45 (15)  |
| C8—C7—H7                | 120.4        | $C_{15}$ $-C_{16}$ $-H_{16}$ | 120.3        |
| С6—С7—Н7                | 120.4        | $C_{11}$ $-C_{16}$ $-H_{16}$ | 120.3        |
| C7-C8-C3                | 120.73 (15)  | $C_{14}$ $C_{17}$ $H_{17A}$  | 109 5        |
| C7-C8-H8                | 119.6        | C14— $C17$ — $H17B$          | 109.5        |
| C3—C8—H8                | 119.6        | H17A-C17-H17B                | 109.5        |
| 01 - C9 - 02            | 123 68 (15)  | C14-C17-H17C                 | 109.5        |
| 01 - C9 - C6            | 124 15 (15)  | H17A - C17 - H17C            | 109.5        |
| 02-09-06                | 112.117(13)  | H17B-C17-H17C                | 109.5        |
| 02 03 00                | 112.17 (10)  | myb en mye                   | 107.0        |
| C1—N1—N2—C11            | -178.24 (14) | C1—C3—C8—C7                  | -173.98 (15) |
| N2—N1—C1—C2             | -176.18 (15) | C10-02-C9-01                 | 1.4 (2)      |
| N2—N1—C1—C3             | 8.9 (2)      | C10—O2—C9—C6                 | -178.45 (14) |
| N1—C1—C2—Cl1            | 176.23 (12)  | C5-C6-C9-O1                  | -1.0(3)      |
| C3—C1—C2—Cl1            | -8.9 (2)     | C7—C6—C9—O1                  | -178.47 (17) |
| N1—C1—C2—Cl2            | -3.7 (2)     | C5—C6—C9—O2                  | 178.82 (14)  |
| C3—C1—C2—Cl2            | 171.16 (13)  | C7—C6—C9—O2                  | 1.4 (2)      |
| C2—C1—C3—C8             | -69.6 (2)    | N1—N2—C11—C12                | -171.71 (16) |
| N1—C1—C3—C8             | 104.94 (19)  | N1—N2—C11—C16                | 11.5 (2)     |
| C2-C1-C3-C4             | 114.81 (19)  | C16—C11—C12—C13              | 0.1 (3)      |
| N1—C1—C3—C4             | -70.6 (2)    | N2-C11-C12-C13               | -176.77 (18) |
| C8—C3—C4—C5             | -0.6(2)      | C11—C12—C13—C14              | 1.0 (3)      |
| C1—C3—C4—C5             | 174.91 (16)  | C12—C13—C14—C15              | -1.3 (3)     |
| C3—C4—C5—C6             | -1.5 (3)     | C12—C13—C14—C17              | 178.15 (19)  |
| C4—C5—C6—C7             | 2.4 (3)      | C13—C14—C15—C16              | 0.6 (3)      |
| C4—C5—C6—C9             | -175.06 (15) | C17—C14—C15—C16              | -178.87 (17) |
| C5—C6—C7—C8             | -1.3 (2)     | C14-C15-C16-C11              | 0.5 (3)      |
| C9—C6—C7—C8             | 176.06 (15)  | C12—C11—C16—C15              | -0.9 (3)     |
| C6—C7—C8—C3             | -0.7 (3)     | N2-C11-C16-C15               | 175.78 (16)  |
| C4—C3—C8—C7             | 1.7 (3)      |                              |              |
|                         |              |                              |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H  | H···A | D····A    | D—H··· $A$ |
|--------------------------|------|-------|-----------|------------|
| C4—H4…O1 <sup>i</sup>    | 0.95 | 2.43  | 3.268 (2) | 148        |
| C13—H13…O1 <sup>ii</sup> | 0.95 | 2.40  | 3.309 (3) | 159        |

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, y-1/2, -z+1/2.

Methyl 4-{2,2-dichloro-1-[(E)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate (III)

Z = 2

F(000) = 376

 $\theta = 3.6 - 77.0^{\circ}$ 

 $\mu = 3.53 \text{ mm}^{-1}$ 

T = 100 K

Prism, red

 $R_{\rm int} = 0.063$ 

 $h = -10 \rightarrow 10$  $k = -8 \rightarrow 10$  $l = -16 \rightarrow 16$ 

 $D_{\rm x} = 1.412 {\rm Mg m^{-3}}$ 

 $0.20 \times 0.15 \times 0.09 \text{ mm}$ 

 $\theta_{\text{max}} = 77.8^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ 

3632 independent reflections 3340 reflections with  $I > 2\sigma(I)$ 

Cu *K* $\alpha$  radiation,  $\lambda = 1.54184$  Å

Cell parameters from 14210 reflections

### Crystal data

 $C_{18}H_{16}Cl_2N_2O_2$  $M_r = 363.23$ Triclinic,  $P\overline{1}$ a = 8.22057 (10) Å b = 8.53211 (9) Å*c* = 13.08729 (14) Å  $\alpha = 103.9484 \ (9)^{\circ}$  $\beta = 101.9047 (10)^{\circ}$  $\gamma = 98.0600 \ (9)^{\circ}$ V = 854.09 (2) Å<sup>3</sup>

### Data collection

| XtaLAB Synergy, Dualflex, HyPix                 |
|-------------------------------------------------|
| diffractometer                                  |
| Radiation source: micro-focus sealed X-ray tube |
| $\varphi$ and $\omega$ scans                    |
| Absorption correction: multi-scan               |
| (CrysAlisPro; Rigaku OD, 2021)                  |
| $T_{\min} = 0.349, \ T_{\max} = 0.700$          |
| 29808 measured reflections                      |
|                                                 |

### Refinement

Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.035$ H-atom parameters constrained  $wR(F^2) = 0.097$  $w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.2636P]$ S = 1.08where  $P = (F_0^2 + 2F_c^2)/3$ 3632 reflections  $(\Delta/\sigma)_{\rm max} = 0.001$ 220 parameters  $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$ 0 restraints

### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (2 | Ų) |
|------------------------------------------------------------------------------------------------|----|
|                                                                                                |    |

|     | x            | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|--------------|-----------------------------|
| Cl1 | 0.07283 (5)  | -0.14861 (4)  | 0.77715 (3)  | 0.02444 (11)                |
| C12 | 0.13915 (5)  | -0.31047 (4)  | 0.57534 (3)  | 0.02637 (12)                |
| 01  | 0.30977 (14) | 0.68544 (14)  | 1.04185 (9)  | 0.0315 (3)                  |
| O2  | 0.04043 (13) | 0.67433 (12)  | 0.95696 (8)  | 0.0208 (2)                  |
| N1  | 0.21612 (15) | 0.01951 (15)  | 0.54534 (10) | 0.0198 (2)                  |
| N2  | 0.26094 (15) | 0.16265 (15)  | 0.53648 (10) | 0.0208 (3)                  |
| C1  | 0.17177 (17) | 0.02110 (17)  | 0.64440 (11) | 0.0189 (3)                  |
| C2  | 0.13347 (18) | -0.12681 (18) | 0.66254 (11) | 0.0206 (3)                  |
| C3  | 0.17331 (18) | 0.17742 (17)  | 0.72590 (11) | 0.0185 (3)                  |
| C4  | 0.05481 (18) | 0.27494 (17)  | 0.70373 (11) | 0.0203 (3)                  |

| H4   | -0.026457    | 0.242988     | 0.635554     | 0.024*     |
|------|--------------|--------------|--------------|------------|
| C5   | 0.05592 (18) | 0.41897 (17) | 0.78162 (12) | 0.0203 (3) |
| Н5   | -0.026072    | 0.484181     | 0.767260     | 0.024*     |
| C6   | 0.17767 (17) | 0.46736 (17) | 0.88079 (11) | 0.0188 (3) |
| C7   | 0.29835 (18) | 0.37242 (17) | 0.90121 (11) | 0.0202 (3) |
| H7   | 0.382930     | 0.406872     | 0.968032     | 0.024*     |
| C8   | 0.29570 (18) | 0.22742 (17) | 0.82428 (12) | 0.0202 (3) |
| H8   | 0.377651     | 0.162276     | 0.838900     | 0.024*     |
| C9   | 0.18624 (18) | 0.61892 (17) | 0.96841 (12) | 0.0209 (3) |
| C10  | 0.0464 (2)   | 0.82424 (18) | 1.03931 (12) | 0.0244 (3) |
| H10A | -0.063270    | 0.858160     | 1.025427     | 0.037*     |
| H10B | 0.135720     | 0.911518     | 1.037093     | 0.037*     |
| H10C | 0.070772     | 0.804528     | 1.111150     | 0.037*     |
| C11  | 0.31099 (18) | 0.16259 (18) | 0.43840 (11) | 0.0207 (3) |
| C12  | 0.33518 (19) | 0.31514 (18) | 0.41637 (12) | 0.0232 (3) |
| H12  | 0.318547     | 0.409355     | 0.466000     | 0.028*     |
| C13  | 0.38330 (18) | 0.3316 (2)   | 0.32285 (13) | 0.0249 (3) |
| C14  | 0.40929 (18) | 0.1914 (2)   | 0.25099 (12) | 0.0258 (3) |
| C15  | 0.38626 (19) | 0.0399 (2)   | 0.27461 (12) | 0.0260 (3) |
| H15  | 0.403729     | -0.054527    | 0.225581     | 0.031*     |
| C16  | 0.33864 (19) | 0.02371 (19) | 0.36759 (12) | 0.0231 (3) |
| H16  | 0.325038     | -0.079976    | 0.382923     | 0.028*     |
| C17  | 0.4088 (2)   | 0.4974 (2)   | 0.30023 (15) | 0.0333 (4) |
| H17A | 0.376239     | 0.578206     | 0.355458     | 0.050*     |
| H17B | 0.338263     | 0.488834     | 0.228149     | 0.050*     |
| H17C | 0.528407     | 0.532926     | 0.302386     | 0.050*     |
| C18  | 0.4627 (2)   | 0.2029 (3)   | 0.14898 (14) | 0.0363 (4) |
| H18A | 0.377011     | 0.242730     | 0.103353     | 0.055*     |
| H18B | 0.473909     | 0.093688     | 0.108817     | 0.055*     |
| H18C | 0.571996     | 0.279612     | 0.168542     | 0.055*     |
|      |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | <i>U</i> <sup>22</sup> | $U^{33}$     | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|------------|------------------------|--------------|--------------|--------------|-----------------|
| Cl1 | 0.0346 (2) | 0.02094 (19)           | 0.02065 (18) | 0.00298 (14) | 0.01118 (14) | 0.00900 (14)    |
| Cl2 | 0.0402 (2) | 0.01643 (18)           | 0.02316 (19) | 0.00645 (14) | 0.01064 (15) | 0.00402 (13)    |
| O1  | 0.0278 (6) | 0.0277 (6)             | 0.0306 (6)   | 0.0074 (5)   | 0.0038 (5)   | -0.0053 (5)     |
| 02  | 0.0259 (5) | 0.0182 (5)             | 0.0211 (5)   | 0.0070 (4)   | 0.0100 (4)   | 0.0059 (4)      |
| N1  | 0.0231 (6) | 0.0194 (6)             | 0.0185 (6)   | 0.0034 (5)   | 0.0077 (5)   | 0.0066 (5)      |
| N2  | 0.0240 (6) | 0.0199 (6)             | 0.0198 (6)   | 0.0025 (5)   | 0.0092 (5)   | 0.0060 (5)      |
| C1  | 0.0214 (6) | 0.0188 (7)             | 0.0171 (6)   | 0.0034 (5)   | 0.0071 (5)   | 0.0044 (5)      |
| C2  | 0.0251 (7) | 0.0191 (7)             | 0.0180 (6)   | 0.0041 (5)   | 0.0070 (5)   | 0.0049 (5)      |
| C3  | 0.0234 (7) | 0.0164 (6)             | 0.0187 (6)   | 0.0017 (5)   | 0.0108 (5)   | 0.0069 (5)      |
| C4  | 0.0247 (7) | 0.0203 (7)             | 0.0174 (6)   | 0.0040 (5)   | 0.0071 (5)   | 0.0070 (5)      |
| C5  | 0.0242 (7) | 0.0190 (7)             | 0.0216 (7)   | 0.0063 (5)   | 0.0097 (6)   | 0.0088 (5)      |
| C6  | 0.0234 (7) | 0.0170 (6)             | 0.0189 (7)   | 0.0029 (5)   | 0.0103 (5)   | 0.0067 (5)      |
| C7  | 0.0216 (7) | 0.0204 (7)             | 0.0186 (6)   | 0.0020 (5)   | 0.0063 (5)   | 0.0056 (5)      |
| C8  | 0.0227 (7) | 0.0191 (7)             | 0.0218 (7)   | 0.0060 (5)   | 0.0093 (5)   | 0.0070 (5)      |
|     |            |                        |              |              |              |                 |

| C9  | 0.0248 (7) | 0.0194 (7)  | 0.0219 (7) | 0.0050 (5) | 0.0105 (6) | 0.0079 (6) |  |
|-----|------------|-------------|------------|------------|------------|------------|--|
| C10 | 0.0337 (8) | 0.0179 (7)  | 0.0262 (7) | 0.0080 (6) | 0.0152 (6) | 0.0066 (6) |  |
| C11 | 0.0212 (7) | 0.0231 (7)  | 0.0190 (7) | 0.0025 (5) | 0.0085 (5) | 0.0063 (6) |  |
| C12 | 0.0247 (7) | 0.0226 (7)  | 0.0230 (7) | 0.0022 (6) | 0.0084 (6) | 0.0069 (6) |  |
| C13 | 0.0214 (7) | 0.0299 (8)  | 0.0252 (7) | 0.0006 (6) | 0.0064 (6) | 0.0129 (6) |  |
| C14 | 0.0206 (7) | 0.0376 (9)  | 0.0214 (7) | 0.0024 (6) | 0.0085 (6) | 0.0114 (6) |  |
| C15 | 0.0245 (7) | 0.0313 (8)  | 0.0235 (7) | 0.0052 (6) | 0.0119 (6) | 0.0049 (6) |  |
| C16 | 0.0247 (7) | 0.0226 (7)  | 0.0244 (7) | 0.0042 (6) | 0.0108 (6) | 0.0072 (6) |  |
| C17 | 0.0366 (9) | 0.0343 (9)  | 0.0335 (9) | 0.0011 (7) | 0.0109 (7) | 0.0192 (7) |  |
| C18 | 0.0376 (9) | 0.0506 (11) | 0.0260 (8) | 0.0047 (8) | 0.0162 (7) | 0.0157 (8) |  |
|     |            |             |            |            |            |            |  |

## Geometric parameters (Å, °)

| Cl1—C2     | 1.7176 (14) | C10—H10A      | 0.9800      |  |
|------------|-------------|---------------|-------------|--|
| Cl2—C2     | 1.7148 (14) | C10—H10B      | 0.9800      |  |
| O1—C9      | 1.2041 (19) | C10—H10C      | 0.9800      |  |
| О2—С9      | 1.3422 (17) | C11—C16       | 1.396 (2)   |  |
| O2—C10     | 1.4478 (17) | C11—C12       | 1.396 (2)   |  |
| N1—N2      | 1.2651 (17) | C12—C13       | 1.393 (2)   |  |
| N1-C1      | 1.4148 (17) | C12—H12       | 0.9500      |  |
| N2-C11     | 1.4263 (17) | C13—C14       | 1.404 (2)   |  |
| C1—C2      | 1.346 (2)   | C13—C17       | 1.509 (2)   |  |
| C1—C3      | 1.4901 (19) | C14—C15       | 1.397 (2)   |  |
| C3—C8      | 1.390 (2)   | C14—C18       | 1.509 (2)   |  |
| C3—C4      | 1.397 (2)   | C15—C16       | 1.384 (2)   |  |
| C4—C5      | 1.392 (2)   | C15—H15       | 0.9500      |  |
| C4—H4      | 0.9500      | C16—H16       | 0.9500      |  |
| C5—C6      | 1.395 (2)   | C17—H17A      | 0.9800      |  |
| С5—Н5      | 0.9500      | C17—H17B      | 0.9800      |  |
| C6—C7      | 1.390 (2)   | C17—H17C      | 0.9800      |  |
| С6—С9      | 1.4894 (19) | C18—H18A      | 0.9800      |  |
| C7—C8      | 1.388 (2)   | C18—H18B      | 0.9800      |  |
| С7—Н7      | 0.9500      | C18—H18C      | 0.9800      |  |
| С8—Н8      | 0.9500      |               |             |  |
| C9—O2—C10  | 113.91 (11) | O2—C10—H10C   | 109.5       |  |
| N2-N1-C1   | 112.85 (11) | H10A—C10—H10C | 109.5       |  |
| N1—N2—C11  | 113.33 (12) | H10B-C10-H10C | 109.5       |  |
| C2-C1-N1   | 116.08 (12) | C16-C11-C12   | 120.15 (13) |  |
| C2—C1—C3   | 121.77 (12) | C16—C11—N2    | 124.38 (13) |  |
| N1—C1—C3   | 122.12 (12) | C12—C11—N2    | 115.46 (13) |  |
| C1—C2—Cl2  | 124.19 (11) | C13—C12—C11   | 121.13 (14) |  |
| C1—C2—Cl1  | 122.44 (11) | C13—C12—H12   | 119.4       |  |
| Cl2—C2—Cl1 | 113.37 (8)  | C11—C12—H12   | 119.4       |  |
| C8—C3—C4   | 119.86 (13) | C12—C13—C14   | 118.70 (14) |  |
| C8—C3—C1   | 119.43 (13) | C12—C13—C17   | 120.45 (15) |  |
| C4—C3—C1   | 120.70 (13) | C14—C13—C17   | 120.84 (14) |  |
| C5—C4—C3   | 119.96 (13) | C15—C14—C13   | 119.55 (13) |  |

| C5—C4—H4           | 120.0        | C15-C14-C18       | 119.66 (15)  |
|--------------------|--------------|-------------------|--------------|
| C3—C4—H4           | 120.0        | C13—C14—C18       | 120.80 (15)  |
| C4—C5—C6           | 119.88 (13)  | C16—C15—C14       | 121.71 (14)  |
| C4—C5—H5           | 120.1        | С16—С15—Н15       | 119.1        |
| C6—C5—H5           | 120.1        | C14—C15—H15       | 119.1        |
| C7—C6—C5           | 119.93 (13)  | C15—C16—C11       | 118.75 (14)  |
| C7—C6—C9           | 117.03 (13)  | C15—C16—H16       | 120.6        |
| C5—C6—C9           | 123.04 (13)  | C11—C16—H16       | 120.6        |
| C8-C7-C6           | 120.22(13)   | C13—C17—H17A      | 109.5        |
| C8—C7—H7           | 119.9        | C13—C17—H17B      | 109.5        |
| C6—C7—H7           | 119.9        | H17A—C17—H17B     | 109.5        |
| C7-C8-C3           | 120.10 (13)  | C13—C17—H17C      | 109.5        |
| C7—C8—H8           | 119.9        | H17A - C17 - H17C | 109.5        |
| C3—C8—H8           | 119.9        | H17B-C17-H17C     | 109.5        |
| 01 - C9 - 02       | 123 20 (13)  | C14-C18-H18A      | 109.5        |
| 01 - C9 - C6       | 124.17 (13)  | C14—C18—H18B      | 109.5        |
| 02-09-06           | 112.64(12)   | H18A—C18—H18B     | 109.5        |
| 02 - C10 - H10A    | 109 5        | C14-C18-H18C      | 109.5        |
| 02— $C10$ — $H10B$ | 109.5        | H18A - C18 - H18C | 109.5        |
| H10A—C10—H10B      | 109.5        | H18B-C18-H18C     | 109.5        |
|                    | 107.0        | hitob ero hitoe   | 109.0        |
| C1—N1—N2—C11       | 178.17 (11)  | C10—O2—C9—O1      | 1.63 (19)    |
| N2—N1—C1—C2        | -175.79 (13) | C10—O2—C9—C6      | -178.38 (11) |
| N2—N1—C1—C3        | 2.06 (19)    | C7—C6—C9—O1       | 19.0 (2)     |
| N1—C1—C2—Cl2       | 1.1 (2)      | C5-C6-C9-01       | -161.01 (14) |
| C3—C1—C2—Cl2       | -176.74 (11) | C7—C6—C9—O2       | -161.04 (12) |
| N1-C1-C2-Cl1       | -178.69 (10) | C5—C6—C9—O2       | 19.00 (18)   |
| C3—C1—C2—Cl1       | 3.5 (2)      | N1—N2—C11—C16     | -11.1 (2)    |
| C2—C1—C3—C8        | 67.37 (19)   | N1—N2—C11—C12     | 170.08 (13)  |
| N1—C1—C3—C8        | -110.35 (15) | C16—C11—C12—C13   | 1.5 (2)      |
| C2-C1-C3-C4        | -113.54 (16) | N2-C11-C12-C13    | -179.65 (13) |
| N1-C1-C3-C4        | 68.73 (18)   | C11—C12—C13—C14   | -0.7 (2)     |
| C8—C3—C4—C5        | -2.2 (2)     | C11—C12—C13—C17   | 179.96 (14)  |
| C1—C3—C4—C5        | 178.73 (12)  | C12—C13—C14—C15   | 0.1 (2)      |
| C3—C4—C5—C6        | 1.3 (2)      | C17—C13—C14—C15   | 179.40 (14)  |
| C4—C5—C6—C7        | 0.5 (2)      | C12-C13-C14-C18   | -179.55 (14) |
| C4—C5—C6—C9        | -179.51 (12) | C17—C13—C14—C18   | -0.2 (2)     |
| C5—C6—C7—C8        | -1.6 (2)     | C13—C14—C15—C16   | -0.2 (2)     |
| C9—C6—C7—C8        | 178.48 (12)  | C18—C14—C15—C16   | 179.48 (14)  |
| C6—C7—C8—C3        | 0.7 (2)      | C14-C15-C16-C11   | 0.9 (2)      |
| C4—C3—C8—C7        | 1.2 (2)      | C12—C11—C16—C15   | -1.5 (2)     |
| C1—C3—C8—C7        | -179.74 (12) | N2-C11-C16-C15    | 179.72 (13)  |
|                    |              |                   |              |