

ISSN 2056-9890

Received 13 November 2023 Accepted 13 January 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: alkali aluminoboracite; self-flux method; weak structure ordering; isotypism; crystal structure.

CCDC references: 2325537; 2325536; 2325535; 2325534

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Crystal structures of the alkali aluminoboracites $A_4B_4Al_3O_{12}Cl$ (*A* = Li, Na)

Sho Yoshino, Hidechika Arima, Masanao Ishijima and Koichi Kajihara*

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachoji, Tokyo 192-0397, Japan. *Correspondence e-mail: kkaji@tmu.ac.jp

Single crystals of alkali aluminoboracites, $A_4B_4Al_3O_{12}Cl$ (A = Li, Na), were grown using the self-flux method, and their isotypic cubic crystal structures were determined by single-crystal X-ray diffraction. Na₄B₄Al₃O₁₂Cl is the first reported sodium boracite, and its lattice parameter [13.5904 (1) Å] is the largest among the boracites consisting of a cation–oxygen framework reported so far. For both crystals, structure models refined in the cubic space group $F\overline{4}3c$, which assume that all cubic octant subcells in the unit cell are equivalent, converged with *R*1 factors of ~0.03. However, the presence of weak *hhl* reflections with odd *h* and *l* values indicates that refinements in the space group *F*23, which presume a checkerboard-like ordering of two types of subcells with slightly different atomic positions, are more appropriate.

1. Chemical context

Boracite is originally known as a mineral with the formula Mg₃B₇O₁₃Cl. The name boracite also refers to borate compounds with the general formula $M_3B_7O_{13}X$, consisting of a negatively charged B-O framework, extraframework divalent cations M, such as Mg²⁺, Cr²⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu^{2+} , Zn^{2+} and Cd^{2+} , and extraframework anions X, such as Cl⁻, Br⁻, I⁻ and S²⁻ (Schmid, 1965; Nelmes, 1974). The extraframework cations can also be an alkali ion, but only lithium variants $Li_{4-x}B_7O_{12+x/2}X$, $Li_4B_{7-3x}Al_{3x}O_{12}X$ and $Li_4B_{7-3x}Ga_{3x}O_{12}Cl$ (X = Cl, Br; x = 0-1) have been reported to date (Levasseur et al., 1971; Réau et al., 1976; Jeitschko et al., 1977; Calès et al., 1977; Sorokin, 2015; Tezuka et al., 2017; Kajihara et al., 2017; Katsumata et al., 2022). The latter two compounds (Kajihara et al., 2017; Katsumata et al., 2022) are the first examples of boracites containing framework cations other than B³⁺ ions. The lithium boracites are lithium-ion conducting, and their dc Li⁺ ion conductivity can be increased to $\sim 10^{-5}$ S cm⁻¹ at room temperature in glass-ceramics consisting mainly of $Li_4B_4M_3O_{12}Cl$ (M = Al, Ga; Kajihara et al., 2017). In addition, $Li_4B_4Al_3O_{12}Cl$ is stable in contact with Li metal and is water-resistant; solid-state cells consisting of an Li₄B₄Al₃O₁₂Cl-based glass-ceramic solid electrolyte, an LiCoO₂-based composite cathode containing an ionic liquid and an Li-Au alloy anode worked successfully (Saito et al., 2021). More recently, a thioboracite, Li₆B₇S₁₃I, a sulfide variant of lithium boracite with room-temperature Li⁺ ion conductivity of $\sim 5 \times 10^{-4}$ S cm⁻¹ has been reported (Kaup *et* al., 2021). However, single crystals of Li₄B₄Al₃O₁₂Cl have not yet been grown, and the preliminary crystal structure analysis of Li₄B₄Al₃O₁₂Cl (Kajihara et al., 2017; Katsumata et al., 2022) was incomplete. In addition, boracites containing alkali ions other than Li⁺ have not been reported. Furthermore, a rhombohedral distortion of the unit cell of single-crystalline

Tabl	e 1
------	-----

Summary	of the	observed	hhl	reflections	in	Li ₄ B ₄ Al ₃ O ₁₂ Cl	and	Na ₄ B ₄ A	Al ₃ O ₁	12Cl.
5 anning j	01 1110	00001104		101100010110		2142411301201		1104241		1201

	Li ₄ B ₄ Al ₃ O ₁₂ Cl		Na ₄ B ₄ Al ₃ O ₁₂ Cl	
	$\langle I/\sigma(I) \rangle$	Number of reflections	$\langle I/\sigma(I) \rangle$	Number of reflections
No conditions	14.35	325	12.14	340
h even	30.24	153	24.96	165
h odd	0.21	172	0.04	175
<i>l</i> even	30.24	153	24.96	165
<i>l</i> odd	0.21	172	0.04	175
h + l even	14.35	325	12.14	340
h + l odd	0.00	0	0.00	0

 $Li_4B_7O_{12}Cl$ was experimentally observed at room temperature (Jeitschko *et al.*, 1977) and was recently theoretically confirmed (Li & Holzwarth, 2022), raising the question whether similar unit-cell distortions occur in other alkali boracites.

In the present study, we report the growth of single crystals of $A_4B_4Al_3O_{12}Cl$ (A = Li, Na) using the self-flux method and

their structural characterization by single-crystal X-ray diffraction (XRD).

2. Structural commentary

The crystallites of $Li_4B_4Al_3O_{12}Cl$ exhibit complete extinction under cross-polarized light, supporting cubic symmetry. Hence, the unit cell of $Li_4B_4Al_3O_{12}Cl$ is not distorted. At first,

Figure 1

Schematic illustrations of two neighbouring cubic octant subcells in the unit cell of $Li_4B_4Al_3O_{12}Cl$ in the space groups $F\overline{43}c$ (top left) and F23 (middle left), those of $Na_4B_4Al_3O_{12}Cl$ in the space groups $F\overline{43}c$ (top right) and F23 (middle right), and asymmetric units with displacement ellipsoids at the 50% probability level of $Li_4B_4Al_3O_{12}Cl$ (bottom left) and $Na_4B_4Al_3O_{12}Cl$ (bottom right) in the space group F23. Red, large green, small green and yellow spheres denote O, Cl, Li and Na atoms, respectively. Green triangles and gray tetrahedra denote BO₃ and AlO₄ units, respectively. The forefront Al atoms located at z = 0.5 are not shown for clarity. In the middle and bottom figures, red and pale-red spheres denote O1 and O2 atoms, respectively.

Table 2
Selected bond lengths and angles (Å, $^{\circ}$) in $A_4B_4Al_3O_{12}Cl$ crystal structures.

	Space group $F\overline{4}3c$			Space group F23	
	A = Li	A = Na		A = Li	A = Na
A1-O1	2.0828 (17)	2.2588 (16)	A1-O1	2.053 (3)	2.2585 (18)
$A1-O1^{i}$	2.0828 (17)	2.446 (2)	$A1-O2^{ii}$	2.143 (16)	2.452 (3)
			$A2-O2^{iii}$	2.056 (4)	2.2602 (18)
			$A2-O1^{iv}$	2.132 (16)	2.442 (3)
A1-Cl1	3.2460 (1)	2.936 (4)	A1-Cl1	2.98 (6)	2.925 (6)
			A2-Cl2	3.03 (6)	2.948 (6)
$A2-O1^{v}$	2.22 (3)	2.484 (5)	$A3-O2^{vi}$	2.23 (3)	2.488 (6)
A2-O1 ^{vii}	2.828 (8)	2.913 (2)	A3–O1 ^{vii}	2.824 (8)	2.912 (2)
			$A4-O1^{viii}$	2.23 (3)	2.480 (6)
			$A4-O2^{ix}$	2.826 (8)	2.914 (2)
A2-Cl1	2.57 (5)	2.605 (9)	A3-Cl1	2.55 (6)	2.599 (10)
			A4-Cl2	2.55 (5)	2.612 (10)
B1-O1	1.3700 (16)	1.3693 (15)	B1-O1	1.3693 (17)	1.3684 (16)
			$B2-O2^{x}$	1.3702 (17)	1.3684 (16)
Al1-O1 ^{xi}	1.7533 (17)	1.7506 (16)	Al1-O1 ^{xi}	1.754 (2)	1.7495 (18)
			Al1-O2 ^{xii}	1.754 (2)	1.7522 (18)
B1-O1-Al1 ^{xiii}	118.97 (12)	128.59 (12)	B1-O1-Al1 ^{xiii}	119.05 (13)	128.62 (14)
	~ /		B2 ^{xiv} -O2-Al1 ^{vii}	118.94 (13)	128.66 (14)

Symmetry code(s): (i) $-x, -z + \frac{1}{2}, y$; (ii) -x, y, -z + 1; (iii) $x + \frac{1}{2}, -y + 1, -z + \frac{3}{2}$; (iv) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2};$ (v) $-y + \frac{1}{2}, x + \frac{1}{2}, -z + \frac{1}{2};$ (vi) $-z + 1, x + \frac{1}{2}, -y + \frac{1}{2};$ (viii) x + 1, -y + 1, -z + 1; (ix) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2};$ (x) $z, x + \frac{1}{2}, y + \frac{1}{2};$ (xii) $-y + \frac{1}{2}, z - \frac{1}{2}, -x;$ (xiii) y, z, x; (xiv) $x - \frac{1}{2}, y - \frac{1}{2}; z.$

the crystal structure was refined in the noncentrosymmetric cubic space group $F\overline{4}3c$ following the model from the Rietveld refinement of powder X-ray diffraction data (Kajihara et al., 2017; Katsumata et al., 2022). The occupancy (g) of Cl1 converged to the upper bound [g(Cl1) = 1] and was fixed at this value. The reliability factor R1 converged to 0.031, and the refinement results agreed well with those derived from the powder samples (Kajihara et al., 2017; Katsumata et al., 2022). The unit cell of Li₄B₄Al₃O₁₂Cl can be divided into eight equivalent cubic subcells, each containing one Cl1 at the cube centre. The Cl1 site is surrounded by six sites with multiplicity 24 (Wyckoff letter c) and four sites with multiplicity 32 (Wyckoff letter e) containing four Li atoms in total, and the resulting ClLi₄ moiety is embedded in a negatively charged framework consisting of alternating corner-shared bridges of planar BO3 triangles and AlO4 tetrahedra. The occupancy of Li1 is close to 1, whereas that of Li2 is $\sim \frac{1}{4}$. The lattice parameter of $Li_4B_4Al_3O_{12}Cl [a = 12.9839 (1) Å]$ is similar to that of the polycrystalline sample obtained by solid-state synthesis [a = 12.9687 (1) Å; Katsumata *et al.*, 2022] but larger than that crystallized from glass-ceramics [a = 12.9149 (5) Å; Kajihara etal., 2017], probably because of an incomplete uptake of Al in crystals obtained from glass-ceramics.

Similar to Li₄B₄Al₃O₁₂Cl, the crystallites of Na₄B₄Al₃O₁₂Cl exhibit complete cross-polarized extinction. Refinement in the space group $F\overline{4}3c$ resulted in a reliability factor R1 of 0.022, and the results indicate that Na₄B₄Al₃O₁₂Cl is isostructural with Li₄B₄Al₃O₁₂Cl, except that Na1 is located at the 48 g site and displaced from the 24 c site at the midpoint between neighbouring Cl1 atoms. The lattice parameter of Na₄B₄-Al₃O₁₂Cl [a = 13.5904 (1) Å] is the largest among known cubic boracites, apart from the sulfide variant Li₆B₇S₁₃I [a = 15.245 (2) Å; Kaup *et al.*, 2021]. The occupancy of Cl1 is less than 1 (~0.92), possibly because of its higher growth temperature compared to that of Li₄B₄Al₃O₁₂Cl. The equivalent

isotropic displacement parameters (U_{eq}) of extraframework species [Cl1, 0.0350 (9) Å²; Na1, 0.0422 (14) Å²; Na2, 0.017 (2) Å²] of Na₄B₄Al₃O₁₂Cl are notably smaller than those of Li₄B₄Al₃O₁₂Cl [Cl1, 0.0787 (15) Å²; Li1, 0.066 (6) Å²; Li2, 0.028 (11) Å²], despite that the species in the framework (B1, Al1 and O1) are similar or even larger in Na₄B₄Al₃O₁₂Cl. These observations suggest that replacing Li with Na increases the packing density at the extraframework sites and suppresses the thermal motion of the atoms located therein.

The convergence of the structure refinements of Li₄B₄-Al₃O₁₂Cl and Na₄B₄Al₃O₁₂Cl in the space group $F\overline{4}3c$ was satisfactory ($R1 \simeq 0.03$). However, these crystals both exhibit weak hhl reflections with odd h and l, which violate the extinction conditions in space group $F\overline{4}3c$, as listed in Table 1. The noncentrosymmetric cubic space groups compatible with the observed reflection condition (*hhl*: h + l = 2n) are F23, F432 and $F\overline{4}3m$. Among them, only the structure analyses in the space group F23 were successful. The conversion of the space group from $F\overline{4}3c$ to F23 is accompanied by the splitting of atoms except for Al1. This conversion also splits Li1 at the 24 c site of $F\overline{4}3c$ into Li1 and Li2 at the 24 g site of F23. The occupancies of A1 and A2 (A = Li, Na) converged to the upper bound [g(A1) = g(A2) = 0.5] both in Li₄B₄Al₃O₁₂Cl and Na₄B₄Al₃O₁₂Cl, and were fixed at this value. The slightly larger R1 factors in F23 compared to $F\overline{4}3c$ are due to an increased number of measured reflections partially with low intensities.

Fig. 1 summarizes the schematic illustrations of two adjacent cubic octant subcells of the unit cells of $Li_4B_4Al_3O_{12}Cl$ and $Na_4B_4Al_3O_{12}Cl$, along with their asymmetric units derived from the analyses in the space group F23. In the space group $F\overline{4}3c$, the eight subcells in a unit cell are equivalent. In contrast, in the space group F23, they are classified into two types of subcells stacked alternately in three dimensions. Nevertheless, the atomic displacements associated with the

Table 3

Experimental details.

Crystal data Chemical formulaLi $_4B_4Al_3O_{12}Cl$ Li $_4B_4Al_3O_{12}Cl$ Na $_{3,92}B_4Al_3O_{12}Cl_{0,92}$ Na $_{3,92}B_4Al_3O_{12}Cl_{0,92}$ M_r 379.39379.39438.91438.91Crystal system, space groupCubic, $F\overline{43}c$ Cubic, $F23$ Cubic, $F\overline{43}c$ Cubic, $F23$ Temperature (K)297297294294 a (Å)12.9839 (1)12.9839 (1)13.5904 (1)13.5904 (1) V (Å ³)2188.85 (5)2188.85 (5)2510.13 (6)2510.13 (6) Z 8888Radiation typeCu K α Cu K α Cu K α Cu K α μ (mm ⁻¹)6.126.126.786.78Crystal size (mm)0.11 × 0.10 × 0.060.11 × 0.10 × 0.060.08 × 0.06 × 0.040.08 × 0.06 × 0.04Data collectionDiffractometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerMulti-scan (SADABS; Krause et al., 2015)multi-scan (SADABS; Krause et al., 2015)et al., 2015)et al., 2015)		Li ₄ B ₄ Al ₃ O ₁₂ Cl in F43c	Li ₄ B ₄ Al ₃ O ₁₂ Cl in F23	$Na_{3.92}B_4Al_3O_{12}Cl_{0.92}$ in $F\overline{4}3c$	Na _{3.92} B ₄ Al ₃ O ₁₂ Cl _{0.92} in F23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Crystal data				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chemical formula	Li ₄ B ₄ Al ₃ O ₁₂ Cl	Li ₄ B ₄ Al ₃ O ₁₂ Cl	Na _{3.92} B ₄ Al ₃ O ₁₂ Cl _{0.92}	Na _{3.92} B ₄ Al ₃ O ₁₂ Cl _{0.92}
Crystal system, space group Cubic, $F\overline{43}c$ Cubic, $F23$ Cubic, $F\overline{43}c$ Cubic, $F23$ Temperature (K) 297 297 294 294 a (Å) 12.9839 (1) 12.9839 (1) 13.5904 (1) 13.5904 (1) V (Å ³) 2188.85 (5) 2188.85 (5) 2510.13 (6) 2510.13 (6) Z 8 8 8 8 8 Radiation type Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ μ (mm ⁻¹) 6.12 6.12 6.78 6.78 Crystal size (mm) 0.11 × 0.10 × 0.06 0.11 × 0.10 × 0.06 0.08 × 0.06 × 0.04 0.08 × 0.06 × 0.04 Data collection Diffractometer Bruker D8 goniometer Bruker D8 goniometer Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)	$M_{\rm r}$	379.39	379.39	438.91	438.91
Temperature (K)297297294294 a (Å)12.9839 (1)12.9839 (1)13.5904 (1)13.5904 (1) V (Å ³)2188.85 (5)2188.85 (5)2510.13 (6)2510.13 (6) Z 8888Radiation typeCu K α Cu K α Cu K α μ (mm ⁻¹)6.126.126.786.78Crystal size (mm)0.11 × 0.10 × 0.060.11 × 0.10 × 0.060.08 × 0.06 × 0.040.08 × 0.06 × 0.04Data collectionDiffractometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerAbsorption correctionMulti-scan (SADABS; Krause et al., 2015)Bruker D8 goniometerMulti-scan (SADABS; Krause et al., 2015)Bruker 2015)	Crystal system, space group	Cubic, $F\overline{4}3c$	Cubic, F23	Cubic, $F\overline{4}3c$	Cubic, F23
a (Å)12.9839 (1)12.9839 (1)13.5904 (1)13.5904 (1) V (Å ³)2188.85 (5)2188.85 (5)2510.13 (6)2510.13 (6) Z 8888Radiation typeCu K α Cu K α Cu K α μ (mm ⁻¹)6.126.126.786.78Crystal size (mm)0.11 × 0.10 × 0.060.11 × 0.10 × 0.060.08 × 0.06 × 0.040.08 × 0.06 × 0.04Data collectionDiffractometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerAbsorption correctionMulti-scan (SADABS; Krause et al., 2015)Bruker D8 goniometerMulti-scan (SADABS; Krause et al., 2015)Bruker 2015)	Temperature (K)	297	297	294	294
$V(Å^3)$ 2188.85 (5) 2188.85 (5) 2510.13 (6) 2510.13 (6) Z 8 8 8 8 8 Radiation type Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ μ (mm ⁻¹) 6.12 6.12 6.78 6.78 6.78 Crystal size (mm) 0.11 × 0.10 × 0.06 0.11 × 0.10 × 0.06 0.08 × 0.06 × 0.04 0.08 × 0.06 × 0.04 Data collection Diffractometer Bruker D8 goniometer Bruker D8 goniometer Bruker D8 goniometer Bruker D8 goniometer Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)	a (Å)	12.9839 (1)	12.9839 (1)	13.5904 (1)	13.5904 (1)
Z88888Radiation typeCu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ μ (mm ⁻¹)6.126.126.786.78Crystal size (mm)0.11 × 0.10 × 0.060.11 × 0.10 × 0.060.08 × 0.06 × 0.040.08 × 0.06 × 0.04Data collectionDiffractometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerMulti-scan (SADABS; KrauseMulti-scan (SADABS; KrauseMulti-scan (SADABS; KrauseMulti-scan (SADABS; Krauseet al., 2015)et al., 2015)et al., 2015)et al., 2015)et al., 2015)	$V(Å^3)$	2188.85 (5)	2188.85 (5)	2510.13 (6)	2510.13 (6)
Radiation typeCu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ Cu $K\alpha$ μ (mm ⁻¹)6.126.126.786.78Crystal size (mm)0.11 × 0.10 × 0.060.11 × 0.10 × 0.060.08 × 0.06 × 0.040.08 × 0.06 × 0.04Data collectionDiffractometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerAbsorption correctionMulti-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (san (san strain s	Ζ	8	8	8	8
$ \begin{array}{ccccc} \mu \ (\mathrm{mm}^{-1}) & 6.12 & 6.12 & 6.78 & 6.78 \\ \mathrm{Crystal\ size\ (\mathrm{mm})} & 0.11 \times 0.10 \times 0.06 & 0.11 \times 0.10 \times 0.06 & 0.08 \times 0.06 \times 0.04 & 0.08 \times 0.06 \times 0.04 \\ \end{array} $	Radiation type	Cu Ka	Cu Ka	Cu Ka	Cu Ka
Crystal size (mm) $0.11 \times 0.10 \times 0.06$ $0.11 \times 0.10 \times 0.06$ $0.08 \times 0.06 \times 0.04$ $0.08 \times 0.06 \times 0.04$ Data collectionDiffractometerAbsorption correctionMulti-scan (SADABS; Krauseet al., 2015)et al., 2015)	$\mu \text{ (mm}^{-1})$	6.12	6.12	6.78	6.78
Data collectionBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerAbsorption correctionMulti-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)	Crystal size (mm)	$0.11 \times 0.10 \times 0.06$	$0.11 \times 0.10 \times 0.06$	$0.08 \times 0.06 \times 0.04$	$0.08 \times 0.06 \times 0.04$
DiffractometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerBruker D8 goniometerAbsorption correctionMulti-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)Multi-scan (SADABS; Krause et al., 2015)	Data collection				
Absorption correctionMulti-scan (SADABS; KrauseMulti-scan (SADABS; KrauseMulti-scan (SADABS; Krauseet al., 2015)et al., 2015)et al., 2015)et al., 2015)	Diffractometer	Bruker D8 goniometer	Bruker D8 goniometer	Bruker D8 goniometer	Bruker D8 goniometer
	Absorption correction	Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)	Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)	Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)	Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)
T_{\min}, T_{\max} 0.62, 0.75 0.62, 0.75 0.66, 0.75 0.66, 0.75	T_{\min}, T_{\max}	0.62, 0.75	0.62, 0.75	0.66, 0.75	0.66, 0.75
No. of measured, independent 3843, 193, 191 4728, 389, 317 4504, 218, 216 5514, 437, 355 and observed $[I > 2\sigma(I)]$ reflections	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3843, 193, 191	4728, 389, 317	4504, 218, 216	5514, 437, 355
R _{int} 0.023 0.024 0.027 0.028	R _{int}	0.023	0.024	0.027	0.028
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.621 0.624 0.624	$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.621	0.621	0.624	0.624
Refinement	Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S = 0.031, 0.075, 1.16 = 0.032, 0.081, 1.17 = 0.022, 0.055, 1.20 = 0.024, 0.066, 1.12 = 0.024, 0.066, 0.024, 0.02$	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.075, 1.16	0.032, 0.081, 1.17	0.022, 0.055, 1.20	0.024, 0.066, 1.12
No. of reflections 193 389 218 437	No. of reflections	193	389	218	437
No. of parameters 23 50 27 52	No. of parameters	23	50	27	52
No. of restraints 1 1 1 1	No. of restraints	1	1	1	1
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ A}^{-3})$ 0.20, -0.63 0.20, -0.91 0.15, -0.45 0.17, -0.58	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.20, -0.63	0.20, -0.91	0.15, -0.45	0.17, -0.58
Absolute structureFlack x determined using 80 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ Flack x determined using 132 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ Flack x determined using 89 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ Flack x determined 	Absolute structure	Flack x determined using 80 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 132 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013).	Flack x determined using 89 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 142 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013).
Absolute structure parameter $-0.03(3)$ $-0.03(2)$ $0.01(3)$ $0.01(2)$	Absolute structure parameter	-0.03 (3)	-0.03 (2)	0.01 (3)	0.01 (2)

Computer programs: BIS (Bruker, 2021), SAINT (Bruker, 2019), SHELXTL (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010).

conversion of the space group from $F\overline{4}3c$ to F23 are small, and the structures solved in these two space groups are very similar, apart from the splitting of Li1 in space group $F\overline{4}3c$ into Li1 and Li2 in space group F23. Such subcell ordering is also observed in the lithium-rich boracite Li₅B₇O_{12.5}Cl (space group F23) (Vlasse *et al.*, 1981; Tezuka *et al.*, 2017; Li & Holzwarth, 2022); in Li₅B₇O_{12.5}Cl, the chemical compositions of adjacent subcells differ notably as a result of the incorporation of excess Li and O and the resulting partial conversion of BO₃ triangles to BO₄ tetrahedra, as well as the ordering of Li. In contrast, in the title compounds Li₄B₄-Al₃O₁₂Cl and Na₄B₄Al₃O₁₂Cl, such a distinct structural ordering associated with a compositional change is not observed, as the conversion of BO₃ triangles to BO₄ tetrahedra is unlikely even under alkali-rich conditions.

Table 2 lists selected atomic distances and angles. The B–O and Al–O distances are similar between Li₄B₄Al₃O₁₂Cl and Na₄B₄Al₃O₁₂Cl. In contrast, the B–O–Al angles in Na₄B₄Al₃O₁₂Cl are larger than those in Li₄B₄Al₃O₁₂Cl by ~10°. This widening in the B–O–Al angles is responsible for the expansion of the unit cell in Na₄B₄Al₃O₁₂Cl. The increase in A–O (A = Li, Na) distances from Li₄B₄Al₃O₁₂Cl and Na₄B₄Al₃O₁₂Cl amounts to ~0.2–0.3 Å, and is consistent with the difference in the ionic radii between Li and Na with the same coordination numbers (1.13–0.73 Å = 0.40 Å for fourfold corrdination and 1.16–0.90 Å = 0.26 Å for sixfold coordination; Shannon, 1976). In contrast, the increase in A-Cldistances is notably smaller (~0.05 Å) or even negative, indicating an increase in the packing density of extraframework A and Cl. This observation is consistent with the smaller atomic displacement parameters of extraframework A and Cl in Na₄B₄Al₃O₁₂Cl compared to Li₄B₄Al₃O₁₂Cl (see above).

3. Synthesis and crystallization

Li₂CO₃ (Fujifilm Wako Chemicals, 99%), Na₂CO₃ (Fujifilm Wako Chemicals, 99%), B₂O₃ (Kojundo Chemical Laboratory, 99.9%), γ -Al₂O₃ (Kojundo Chemical Laboratory, 99.9%), LiCl (Kanto Chemical, 99.9%) and NaCl (Kojundo Chemical Laboratory, 99.9%) were mixed in an A_2 CO₃:B₂O₃: γ -Al₂O₃: ACl (A = Li, Na) molar ratio of 3:4:3:14, with a B₂O₃ content of 10 mmol. LiCl (melting point: 878 K) and NaCl (melting point: 1074 K), acting as self-fluxes, were added in excess. The mixture of sample 1 (A = Li) or 2 (A = Na) was placed in a platinum crucible covered by an alumina crucible, heated to 1073 K for 3 h (sample 1) or 1123 K for 4 h (sample 2), maintained for 5 h, cooled at a rate of 3 K h⁻¹ for 50 h, and then cooled to room temperature in the furnace by turning off the power.

The resulting mixtures were washed with water to leach out water-soluble components. The residues were characterized by powder X-ray diffraction (SmartLab diffractometer, Rigaku) using Cu $K\alpha$ radiation. The main impurity phases in the residues of samples 1 and 2 were Li₂BAlO₄ (space group $P2_1/c$) and LiAl₅O₈ (space group $P4_132$), and Na₂Al₂B₄O₇ (space group $P\overline{3}1c$), respectively. Single-crystal particles with cubic symmetry were selected using an optical microscope (BH2, Olympus), showing complete light extinction under crossed polarizers.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The crystal structures of $Li_4B_4Al_3O_{12}Cl$ and $Na_4B_4Al_3O_{12}Cl$ were solved both in the space groups $F\overline{4}3c$ and F23 using the same *hkl* file. In the refinements in the space group F23, all reflections were used. In the refinements in the space group $F\overline{43}c$, reflections that violate the extinction conditions (885 in Li₄B₄Al₃O₁₂Cl and 1010 in Na₄B₄Al₃O₁₂Cl) were rejected by SHELXL (Sheldrick, 2015b), but few rejected reflections had intensities with $I/\sigma(I) > 3$ (3 in Li₄B₄Al₃O₁₂Cl and 4 in Na₄B₄Al₃O₁₂Cl). To maintain charge neutrality, the occupancies, g, of A (A = Li, Na) and Cl were refined under the restraint that the total number of A in the unit cell was larger by 24 than that of Cl [e.g. 24g(Li1) + 32g(Li2) - 8g(Cl1) = 24 for $Li_4B_4Al_3O_{12}Cl$ solved in $F\overline{4}3c$], while permitting possible Cl deficiency. The summary of reflections was derived by the program Space-Group in WinGX (Farrugia, 2012).

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 19H00828).

References

- Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2021). BIS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calès, B., Levasseur, A., Fouassier, C., Réau, J. M. & Hagenmuller, P. (1977). Solid State Commun. 24, 323–325.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Jeitschko, W., Bither, T. A. & Bierstedt, P. E. (1977). Acta Cryst. B33, 2767–2775.
- Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279–1286.
- Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). *Solid State Ionics*, **380**, 115921.
- Kaup, K., Bishop, K., Assoud, A., Liu, J. & Nazar, L. F. (2021). J. Am. Chem. Soc. 143, 6952–6961.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Levasseur, A., Fouassier, C. & Hagenmuller, P. (1971). Mater. Res. Bull. 6, 15–22.
- Li, Y. & Holzwarth, N. A. W. (2022). Phys. Rev. Mater. 6, 025401.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Nelmes, R. J. (1974). J. Phys. C.: Solid State Phys. 7, 3840-3854.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Réau, J.-M., Levasseur, A., Magniez, G. & Calès, B. (1976). *Mater. Res. Bull.* **11**, 1087–1090.
- Saito, M., Arima, H., Shoji, M., Kizuki, Y., Munakata, H., Kanamura, K. & Kajihara, K. (2021). J. Electrochem. Soc. 168, 040524.
- Schmid, H. (1965). J. Phys. Chem. Solids, 26, 973-976.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sorokin, N. I. (2015). Phys. Solid State, 57, 314-315.
- Tezuka, N., Okawa, Y., Kajihara, K. & Kanamura, K. (2017). J. Ceram. Soc. Japan, **125**, 348–352.
- Vlasse, M., Levasseur, A. & Hagenmuller, P. (1981). Solid State Ionics, 2, 33–37.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2024). E80, 169-173 [https://doi.org/10.1107/S2056989024000501]

Crystal structures of the alkali aluminoboracites $A_4B_4AI_3O_{12}CI$ (A = Li, Na)

Sho Yoshino, Hidechika Arima, Masanao Ishijima and Koichi Kajihara

Computing details

Lithium aluminoboracite (kjh0818yoshinoL14 0m a)

Crystal data

Li₄B₄Al₃O₁₂Cl $M_r = 379.39$ Cubic, $F\overline{4}3c$ a = 12.9839(1) Å $V = 2188.85 (5) \text{ Å}^3$ Z = 8F(000) = 1472

$0.11 \times 0.10 \times 0.00$ mm
3843 measured reflections
193 independent reflections
191 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\rm max} = 73.2^\circ, \ \theta_{\rm min} = 6.8^\circ$
$h = -15 \rightarrow 12$
$k = -15 \rightarrow 16$
$l = -16 \rightarrow 15$
$w = 1/[\sigma^2(F_0^2) + (0.0536P)^2 + 3.2978P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm max} = 0.20 \text{ e Å}^{-1}$ $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack x determined using 80 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) Absolute structure parameter: -0.03 (3)

Cu *K* α radiation, $\lambda = 1.54178$ Å

 $\theta = 6.8 - 73.2^{\circ}$

 $\mu = 6.12 \text{ mm}^{-1}$

Plate, colorless

 $0.11 \times 0.10 \times 0.06$ mm

T = 297 K

Cell parameters from 2808 reflections

Special details

193 reflections

23 parameters

1 restraint

S = 1.16

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Lil	0.000000	0.250000	0.250000	0.066 (6)	0.991 (13)
Li2	0.364 (2)	0.364 (2)	0.364 (2)	0.028 (11)	0.256 (10)
B1	0.1057 (3)	0.1057 (3)	0.1057 (3)	0.0114 (10)	
A11	0.250000	0.000000	0.000000	0.0118 (6)	
01	0.02786 (13)	0.11000 (13)	0.17680 (15)	0.0166 (6)	
Cl1	0.250000	0.250000	0.250000	0.0787 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lil	0.156 (18)	0.021 (4)	0.021 (4)	0.000	0.000	0.000
Li2	0.028 (11)	0.028 (11)	0.028 (11)	0.000 (9)	0.000 (9)	0.000 (9)
B1	0.0114 (10)	0.0114 (10)	0.0114 (10)	-0.0014 (14)	-0.0014 (14)	-0.0014 (14)
Al1	0.0115 (8)	0.0120 (6)	0.0120 (6)	0.000	0.000	0.000
01	0.0185 (11)	0.0154 (10)	0.0158 (9)	0.0048 (7)	0.0067 (10)	0.0044 (9)
C11	0.0787 (15)	0.0787 (15)	0.0787 (15)	0.000	0.000	0.000

Geometric parameters (Å, °)

Li1—01	2.0828 (17)	Li2—O1 ^{xiii}	2.22 (3)
Li1-01 ⁱ	2.0828 (17)	Li2—C11	2.57 (5)
Li1—O1 ⁱⁱ	2.0828 (17)	Li2—O1 ^{ix}	2.828 (8)
Li1—O1 ⁱⁱⁱ	2.0828 (17)	Li2—O1 ^{xiv}	2.828 (8)
Li1—Li2 ^{iv}	2.740 (13)	Li2—O1 ^{vi}	2.828 (8)
Li1—Li2 ^v	2.740 (13)	Li2—Al1 ^{xv}	2.90 (2)
Li1—Li2 ^{vi}	2.740 (13)	Li2—Al1 ^{xvi}	2.90 (2)
Li1—Li2 ^{vii}	2.740 (13)	B1—O1 ^x	1.3700 (16)
Li1—Cl1	3.2460 (1)	B1—O1 ^{xvii}	1.3700 (16)
Li1—Al1 ^{viii}	3.2460 (1)	B1—O1	1.3700 (16)
Li1—Al1 ^{ix}	3.2460 (1)	Al1—O1 ^{xviii}	1.7533 (17)
Li1—Al1 ^x	3.2460 (1)	Al1—O1 ^{xix}	1.7533 (17)
Li2—O1 ^{xi}	2.22 (3)	Al1—O1 ^{xvii}	1.7533 (17)
Li2—O1 ^{xii}	2.22 (3)	Al1—O1 ^{xx}	1.7533 (17)
01 131 01	160.00 (10)		119 0 (5)
$OI - LII - OI^{*}$	100.00(10)	OI^{m}	118.0 (5)
$OI-LII-OI^{*}$	91.729 (17)	$O1^{xi}$ $L12$ $O1^{xi}$	118.0 (5)
	91.729 (17)	$OI^{\star i}$ L12 All^*	69.0 (7)
Ol—L1l—Ol ^m	91.729 (17)	$O1^{xn}$ —L12—Al1 ^{xv}	37.1 (3)
O1 ¹ —Li1—O1 ¹¹¹	91.729 (17)	$O1^{xuu}$ —Li2—Al 1^{xv}	123 (2)
O1 ⁱⁱ —Li1—O1 ⁱⁱⁱ	160.00 (10)	Cl1—Li2—Al1 ^{xv}	114.0 (9)
O1-Li1-Li2 ^{iv}	52.6 (10)	Li1 ^{xiv} —Li2—Al1 ^{xv}	171 (2)
O1 ⁱ —Li1—Li2 ^{iv}	146.2 (9)	Li1 ^{ix} —Li2—Al1 ^{xv}	70.20 (14)
O1 ⁱⁱ —Li1—Li2 ^{iv}	70.29 (8)	Li1 ^{vi} —Li2—Al1 ^{xv}	70.20 (14)
O1 ⁱⁱⁱ —Li1—Li2 ^{iv}	96.5 (4)	O1 ^{ix} —Li2—Al1 ^{xv}	106.4 (4)
O1—Li1—Li2 ^v	96.5 (4)	O1 ^{xiv} —Li2—Al1 ^{xv}	134.8 (7)

O1ⁱⁱⁱ—Li1—Al1^x

127.4 (4)

O1 ⁱ —Li1—Li2 ^v	70.29 (8)	O1 ^{vi} —Li2—Al1 ^{xv}	35.62 (12)
O1 ⁱⁱ —Li1—Li2 ^v	52.6 (10)	O1 ^{xi} —Li2—Al1 ^{xvi}	123 (2)
O1 ⁱⁱⁱ —Li1—Li2 ^v	146.2 (9)	O1 ^{xii} —Li2—Al1 ^{xvi}	69.0 (7)
Li2 ^{iv} —Li1—Li2 ^v	114.4 (12)	O1 ^{xiii} —Li2—Al1 ^{xvi}	37.1 (3)
O1—Li1—Li2 ^{vi}	70.29 (8)	Cl1—Li2—Al1 ^{xvi}	114.0 (9)
O1 ⁱ —Li1—Li2 ^{vi}	96.5 (4)	Li1 ^{xiv} —Li2—Al1 ^{xvi}	70.20 (14)
O1 ⁱⁱ —Li1—Li2 ^{vi}	146.2 (9)	Li1 ^{ix} —Li2—Al1 ^{xvi}	70.20 (14)
O1 ⁱⁱⁱ —Li1—Li2 ^{vi}	52.6 (10)	Li1 ^{vi} —Li2—Al1 ^{xvi}	171 (2)
Li2 ^{iv} —Li1—Li2 ^{vi}	114.4 (12)	O1 ^{ix} —Li2—Al1 ^{xvi}	35.62 (12)
Li2 ^v —Li1—Li2 ^{vi}	100 (2)	O1 ^{xiv} —Li2—Al1 ^{xvi}	106.4 (4)
O1—Li1—Li2 ^{vii}	146.2 (9)	O1 ^{vi} —Li2—Al1 ^{xvi}	134.8 (7)
O1 ⁱ —Li1—Li2 ^{vii}	52.6 (10)	Al1 ^{xv} —Li2—Al1 ^{xvi}	104.6 (11)
O1 ⁱⁱ —Li1—Li2 ^{vii}	96.5 (4)	O1 ^x —B1—O1 ^{xvii}	119.981 (12)
O1 ⁱⁱⁱ —Li1—Li2 ^{vii}	70.29 (8)	O1 ^x —B1—O1	119.980 (12)
Li2 ^{iv} —Li1—Li2 ^{vii}	100 (2)	O1 ^{xvii} —B1—O1	119.982 (12)
Li2v—Li1—Li2vii	114.4 (12)	O1 ^{xviii} —Al1—O1 ^{xix}	107.09 (6)
Li2 ^{vi} —Li1—Li2 ^{vii}	114.4 (12)	O1 ^{xviii} —Al1—O1 ^{xvii}	114.35 (13)
O1—Li1—Cl1	80.00 (5)	O1 ^{xix} —A11—O1 ^{xvii}	107.09 (6)
Ol ⁱ —Lil—Cll	80.00 (5)	O1 ^{xviii} —Al1—O1 ^{xx}	107.09 (6)
O1 ⁱⁱ —Li1—Cl1	100.00 (5)	$O1^{xix}$ $A11 - O1^{xx}$	114.35 (13)
O1 ⁱⁱⁱ —Li1—Cl1	100.00 (5)	O1 ^{xvii} —Al1—O1 ^{xx}	107.09 (6)
Li2 ^{iv} —Li1—Cl1	130.0 (11)	O1 ^{xviii} —Al1—Li2 ⁱ	153.8 (2)
Li2 ^v —Li1—Cl1	50.0 (11)	O1 ^{xix} —Al1—Li2 ⁱ	49.7 (3)
Li2 ^{vi} —Li1—Cl1	50.0 (11)	O1 ^{xvii} —Al1—Li2 ⁱ	69.9 (9)
Li2 ^{vii} —Li1—Cl1	130.0 (11)	O1 ^{xx} —Al1—Li2 ⁱ	95.3 (7)
O1—Li1—Al1 ^{viii}	150.78 (5)	O1 ^{xviii} —Al1—Li2 ^{xxi}	69.9 (9)
O1 ⁱ —Li1—Al1 ^{viii}	29.22 (5)	O1 ^{xix} —Al1—Li2 ^{xxi}	95.3 (7)
O1 ⁱⁱ —Li1—Al1 ^{viii}	62.85 (5)	O1 ^{xvii} —Al1—Li2 ^{xxi}	153.8 (2)
O1 ⁱⁱⁱ —Li1—Al1 ^{viii}	117.15 (5)	O1 ^{xx} —Al1—Li2 ^{xxi}	49.7 (3)
Li2 ^{iv} —Li1—Al1 ^{viii}	122.8 (6)	Li2 ⁱ —Al1—Li2 ^{xxi}	118.5 (19)
Li2 ^v —Li1—Al1 ^{viii}	57.2 (6)	O1 ^{xviii} —Al1—Li2 ^{xxii}	95.3 (7)
Li2 ^{vi} —Li1—Al1 ^{viii}	122.8 (6)	O1 ^{xix} —Al1—Li2 ^{xxii}	153.8 (2)
Li2 ^{vii} —Li1—Al1 ^{viii}	57.2 (6)	O1 ^{xvii} —Al1—Li2 ^{xxii}	49.7 (3)
Cl1—Li1—Al1 ^{viii}	90.0	O1 ^{xx} —Al1—Li2 ^{xxii}	69.9 (9)
O1—Li1—Al1 ^{ix}	117.15 (5)	Li2 ⁱ —Al1—Li2 ^{xxii}	105.2 (9)
O1 ⁱ —Li1—Al1 ^{ix}	62.85 (5)	Li2 ^{xxi} —Al1—Li2 ^{xxii}	105.2 (9)
O1 ⁱⁱ —Li1—Al1 ^{ix}	150.78 (5)	O1 ^{xviii} —Al1—Li2 ^{xxiii}	49.7 (3)
O1 ⁱⁱⁱ —Li1—Al1 ^{ix}	29.22 (5)	O1 ^{xix} —Al1—Li2 ^{xxiii}	69.9 (9)
Li2 ^{iv} —Li1—Al1 ^{ix}	122.8 (6)	O1 ^{xvii} —Al1—Li2 ^{xxiii}	95.3 (7)
Li2 ^v —Li1—Al1 ^{ix}	122.8 (6)	O1 ^{xx} —Al1—Li2 ^{xxiii}	153.8 (2)
Li2 ^{vi} —Li1—Al1 ^{ix}	57.2 (6)	Li2 ⁱ —Al1—Li2 ^{xxiii}	105.2 (9)
Li2 ^{vii} —Li1—Al1 ^{ix}	57.2 (6)	Li2 ^{xxi} —Al1—Li2 ^{xxiii}	105.2 (9)
Cl1—Li1—Al1 ^{ix}	90.0	Li2 ^{xxii} —Al1—Li2 ^{xxiii}	118.5 (19)
All ^{viii} —Li1—All ^{ix}	90.0	O1 ^{xviii} —Al1—Li1 ^{xxiv}	78.09 (5)
O1—Li1—Al1 ^x	29.22 (5)	O1 ^{xix} —Al1—Li1 ^{xxiv}	144.55 (6)
O1 ⁱ —Li1—Al1 ^x	150.78 (5)	O1 ^{xvii} —Al1—Li1 ^{xxiv}	101.91 (5)
O1 ⁱⁱ —Li1—Al1 ^x	117.15 (5)	O1 ^{xx} —Al1—Li1 ^{xxiv}	35.45 (6)

62.85 (5)

Li2ⁱ—Al1—Li1^{xxiv}

Li2 ^{iv} —Li1—Al1 ^x	57.2 (6)	Li2 ^{xxi} —Al1—Li1 ^{xxiv}	52.6 (4)
Li2 ^v —Li1—Al1 ^x	122.8 (6)	Li2 ^{xxii} —Al1—Li1 ^{xxiv}	52.6 (4)
Li2 ^{vi} —Li1—Al1 ^x	57.2 (6)	Li2 ^{xxiii} —Al1—Li1 ^{xxiv}	127.4 (4)
Li2 ^{vii} —Li1—Al1 ^x	122.8 (6)	O1 ^{xviii} —Al1—Li1 ^x	101.91 (5)
Cl1—Li1—Al1 ^x	90.0	O1 ^{xix} —Al1—Li1 ^x	35.45 (6)
Al1 ^{viii} —Li1—Al1 ^x	180.0	O1 ^{xvii} —Al1—Li1 ^x	78.09 (5)
All ^{ix} —Li1—All ^x	90.0	O1 ^{xx} —Al1—Li1 ^x	144.55 (6)
O1 ^{xi} —Li2—O1 ^{xii}	97.0 (15)	Li2 ⁱ —Al1—Li1 ^x	52.6 (4)
O1 ^{xi} —Li2—O1 ^{xiii}	97.0 (15)	Li2 ^{xxi} —Al1—Li1 ^x	127.4 (4)
O1 ^{xii} —Li2—O1 ^{xiii}	97.0 (15)	$Li2^{xxii}$ —Al1—Li1 ^x	127.4 (4)
O1 ^{xi} —Li2—Cl1	120.1 (12)	Li2 ^{xxiii} —Al1—Li1 ^x	52.6 (4)
$O1^{xii}$ —Li2—Cl1	120.1 (12)	$Li1^{xxiv}$ $Al1 - Li1^{x}$	180.0
$O1^{\text{xiii}}$ _Li2_Cl1	120.1(12)	$O1^{xviii}$ $A11$ $Li1^{xvii}$	144.55 (6)
$O1^{xi}$ _Li2_Li1^{xiv}	107.0 (3)	$O1^{xix}$ $A11$ $Li1^{xvii}$	101.91 (5)
01^{xii} $Li2$ $Li1^{xiv}$	139 1 (8)	01^{xvii} $A11$ $U1^{\text{xvii}}$	35 45 (6)
$O1^{xiii}$ _Li2_Li1 ^{xiv}	48 29 (9)	$O1^{xx}$ $A11$ $U1^{xvii}$	78.09(5)
$C11 - Li2 - Li1^{xiv}$	75 3 (11)	$Li2^{i}$ All $Li1^{xvii}$	52.6(4)
$O1^{xi}$ _Li2_Li1 ^{ix}	139 1 (8)	I_{12}^{xxi} A_{11} I_{11}^{xvii}	1274(4)
$O1^{xii}$ $Ii2$ $Ii1^{ix}$	48 29 (9)	I_{12}^{xxii} A_{11} I_{1}^{xvii}	526(4)
$O1^{xiii}$ _Li2_Li1 ^{ix}	107.0(3)	I_{12} I_{11} I_{11} I_{11} I_{11}	1274(4)
$C11 _ Ii2 _ Ii1^{ix}$	75 3 (11)	$Li12 \qquad \text{All} Li11 \qquad \text{I} Li11 \qquad \text{L} Li11 Li11 \qquad \text{L} Li11 Li11 \qquad \text{L} Li11 Li111 Li111 Li111 Li111 Li111 Li111 Li111 Li111$	90.0
$\begin{array}{c} \text{Li1} \text{Li2} \text{Li1} \\ \text{Li1} \text{xiv} \\ \text{Li2} \\ \text{Li1} \\ \text{xiv} \\ \text{Li2} \\ \text{xiv} \\ \text{Li2} \\ \text{xiv} \\ \text{Li2} \\ \text{xiv} \\ $	113.8 (9)	$\mathbf{L}\mathbf{i}1\mathbf{x}_{}\mathbf{\Delta}11_{}\mathbf{L}\mathbf{i}1^{\mathbf{x}\mathbf{v}\mathbf{i}\mathbf{i}}$	90.0
$O1^{xi}$ $Ii2$ $Ii1^{vi}$	48 29 (9)	Ω_{1}^{xviii} A_{11} I_{1}^{xviii}	35 45 (6)
$O1^{xii}$ $Ii2$ $Ii1^{vi}$	107.0(3)	$\Omega_1^{xix} = \Lambda_{11} = L_{11}^{xviii}$	78.09(5)
$O1^{xiii}$ Li2 Li1 ^{vi}	130 1 (8)	$O1^{xvii}$ $A11$ $U1^{xviii}$	144 55 (6)
$C_{11} = L_{12} = L_{11} L_{12}$	75 3 (11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144.55(0)
$Li1^{xiv}$ $Li2^{-Li1}$	113.8 (0)	$1 i 2^{i}$ All $1 i 1^{i} x^{i} i^{i}$	101.91(3) 127.4(4)
$Li1 - Li2 - Li1$ $Li1^{ix} Li2 Li1^{vi}$	113.8(9) 113.8(0)	$Li2 \longrightarrow AII \longrightarrow LII$	127.4(4)
$\Box_{11} - \Box_{12} - \Box_{11}$	115.0(9) 158(2)	$L_{12} = A_{11} = L_{11}$ $L_{12} = A_{11} = L_{11} = L_{11} = L_{11}$	32.0(4)
$O1 \xrightarrow{12} O1$	138(2) 71.54(10)	$L_{12} = A_{11} = L_{11}$	127.4(4)
$O_1 = L_1 = O_1$	(1.34(19))	$L_{12} = A_{11} = L_{11}$ $L_{11} = L_{11} = L_{11}$	32.0 (4) 00.0
$C_{11} = C_{12} = C_{11}$	00.75(10)	$LII \longrightarrow AII \longrightarrow LII$	90.0
$L_{11} = L_{12} = 01$	74.1(2)	$L_{11} = A_{11} = L_{11}$ $L_{11} = L_{11} = L_{11} = L_{11}$	180.0
$L_{11} = L_{12} = O_1$	74.1(3)	$\begin{array}{ccc} \text{LII} &\text{AII} \\ \text{PI} & \text{OI} & \text{AIIX} \\ \end{array}$	100.0
L_{11} L_{12} O_{11}	43.90(17)	BI-OI Li	118.97(12)
$\begin{array}{c} \text{LII}^{-1} - \text{LI2} - \text{OI}^{-1} \\ \text{OIxi} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{OIxi} \\ \text{I} \\ $	132.3(17)		116.1(2)
$O1^{\text{m}}$ $L12$ $O1^{\text{m}}$	00.73(10)	$AII^{-} OI - LII$	115.55(9)
01^{min} L^2 01^{min}	158(2)		123.3(10)
U_{1}^{m} L_{12}^{m} U_{1}^{m}	/1.54 (19)	$AII^{*} - OI - Li2^{*}$	93.18 (8)
$L_{12} = 01^{x_{1y}}$	81.8 (11)	$L11 - 01 - L12^{iv}$	/9.2 (11)
L_{11}	43.90 (17)	L_{12} C_{11} L_{12}	109.4/1 (6)
$L_1 I^{IX} - L_1 2 - O I^{XIV}$	152.3 (17)	L_{12} — C_{11} — L_{12} ^{VI}	109.471 (1)
$L11^{v_1} - L12 - O1^{v_1v}$	/4.1 (3)	L_{12} $-C_{11}$ $-L_{12}$	109.5
$O1^{1x}$ — $L12$ — $O1^{xiv}$	118.0 (5)	L_{12} — C_{11} — L_{12}^{v}	109.471 (3)
$O1^{x_1}$ —L12— $O1^{y_1}$	71.54 (19)	L_{12} $-C_{11}$ $-L_{12}$	109.471 (1)
$O1^{xn}$ $L12$ $O1^{v1}$	66.73 (16)	$L_{12^{v_1}}$ $Cl1$ $L_{12^{v}}$	109.471 (1)
$O1^{x_{111}}$ L12 $O1^{v_1}$	158 (2)	L12—CII—Li1	125.264 (1)
$C11$ — $Li2$ — $O1^{v_1}$	81.8 (11)	L12 ⁱ —Cl1—Li1	125.264 (1)
Li1 ^{xiv} —Li2—O1 ^{vi}	152.3 (17)	Li2 ^{vi} —Cl1—Li1	54.736 (1)

Li1 ^{ix} —Li2—O1 ^{vi}	74.1 (3)	Li2 ^v —Cl1—Li1	54.736 (1)
$Li1^{vi}$ — $Li2$ — $O1^{vi}$	43.90 (17)		

Symmetry codes: (i) x, -y+1/2, -z+1/2; (ii) -x, -z+1/2, y; (iii) -x, z, -y+1/2; (iv) y-1/2, -x+1/2, -z+1/2; (v) -x+1/2, y, -z+1/2; (vi) -x+1/2, -y+1/2, z; (vii) y-1/2, x, z; (viii) -y, z+1/2, -x+1/2; (ix) z, -x+1/2, -y+1/2; (x) y, z, x; (xi) x+1/2, -z+1/2, -y+1/2; (xii) -y+1/2, x+1/2, -z+1/2; (xiii) -y+1/2, x+1/2; (xiii) -z+1/2, -y+1/2; (xiii) -z+1/2, -y+1/2; (xiii) -z+1/2, -y+1/2; (xiii) -z+1/2, -z+1/2; (xiii) -z+1/2; (xiii) -z+1/2; (xiii) -z+1/2; (z) -z+1/2;

Cu Ka radiation. $\lambda = 1.54178$ Å

 $\theta = 6.8 - 73.2^{\circ}$

 $\mu = 6.12 \text{ mm}^{-1}$

Plate, colorless

 $0.11 \times 0.10 \times 0.06 \text{ mm}$

T = 297 K

Cell parameters from 2808 reflections

Lithium aluminoboracite (kjh0818yoshinoL14_0m_a_1)

Crystal data

Li₄B₄Al₃O₁₂Cl $M_r = 379.39$ Cubic, F23 a = 12.9839 (1) Å V = 2188.85 (5) Å³ Z = 8 F(000) = 1472 $D_x = 2.303$ Mg m⁻³

Data collection

Bruker D8 goniometer	4728 measured reflections
diffractometer	389 independent reflections
Radiation source: sealed tube	317 reflections with $I > 2\sigma(I)$
Detector resolution: 7.3910 pixels mm ⁻¹	$R_{\rm int} = 0.024$
ω scans	$\theta_{\rm max} = 73.2^\circ, \ \theta_{\rm min} = 5.9^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 12$
(SADABS; Krause et al., 2015)	$k = -15 \rightarrow 16$
$T_{\min} = 0.62, \ T_{\max} = 0.75$	$l = -16 \rightarrow 15$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 1.5774P]$
Least-squares matrix: full	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.032$	$(\Lambda/\sigma)_{\rm max} = 0.003$

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $(\Delta/\sigma)_{max} = 0.003$ $wR(F^2) = 0.081$ $\Delta\rho_{max} = 0.20 \text{ e Å}^{-3}$ S = 1.17 $\Delta\rho_{min} = -0.91 \text{ e Å}^{-3}$ 389 reflectionsAbsolute structure: Flack x determined using50 parameters132 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et
al., 2013).1 restraintAbsolute structure parameter: -0.03 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates an	d isotropic or e	equivalent isotropic	displacement	parameters ($(Å^2)$
----------------------------------	------------------	----------------------	--------------	--------------	---------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Li1	0.020 (4)	0.250000	0.250000	0.047 (13)	0.5
Li2	0.517 (5)	0.750000	0.750000	0.050 (15)	0.5
Li3	0.363 (3)	0.363 (3)	0.363 (3)	0.020 (12)	0.205 (14)
Li4	0.864 (2)	0.864 (2)	0.864 (2)	0.035 (12)	0.295 (14)

B1 B2 Al1	0.1060 (3) 0.6057 (3) 0.24997 (11)	0.1060 (3) 0.6057 (3) 0.000000	0.1060 (3) 0.6057 (3) 0.000000	0.0112 (10) 0.0119 (10) 0.0118 (5)	
01	0.02797 (13)	0.11005 (14)	0.17683 (14)	0.0170 (5)	
O2	0.02784 (13)	0.17681 (14)	0.61004 (14)	0.0171 (5)	
Cl1	0.250000	0.250000	0.250000	0.0774 (16)	
Cl2	0.750000	0.750000	0.750000	0.0786 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lil	0.08 (3)	0.015 (11)	0.040 (17)	0.000	0.000	-0.012 (14)
Li2	0.11 (5)	0.031 (14)	0.010 (11)	0.000	0.000	-0.008 (13)
Li3	0.020 (12)	0.020 (12)	0.020 (12)	-0.004 (10)	-0.004 (10)	-0.004 (10)
Li4	0.035 (12)	0.035 (12)	0.035 (12)	0.000 (10)	0.000 (10)	0.000 (10)
B1	0.0112 (10)	0.0112 (10)	0.0112 (10)	-0.0005 (15)	-0.0005 (15)	-0.0005 (15)
B2	0.0119 (10)	0.0119 (10)	0.0119 (10)	-0.0001 (15)	-0.0001 (15)	-0.0001 (15)
Al1	0.0115 (6)	0.0119 (6)	0.0120 (6)	0.000	0.000	0.0003 (4)
O1	0.0185 (10)	0.0161 (9)	0.0164 (10)	0.0050 (6)	0.0069 (9)	0.0048 (9)
O2	0.0196 (11)	0.0164 (10)	0.0154 (9)	0.0071 (9)	0.0050 (6)	0.0048 (9)
Cl1	0.0774 (16)	0.0774 (16)	0.0774 (16)	0.000	0.000	0.000
C12	0.0786 (16)	0.0786 (16)	0.0786 (16)	0.000	0.000	0.000

Geometric parameters (Å, °)

Li1—Li2 ⁱ	0.48 (10)	Li3—O2 ^{xxiii}	2.23 (3)
Li1—O1 ⁱⁱ	2.053 (3)	Li3—O2 ^{xxiv}	2.23 (3)
Li1—O1	2.053 (3)	Li3—C11	2.55 (6)
Li1—O2 ⁱⁱⁱ	2.143 (16)	Li3—O1 ^{xxv}	2.824 (8)
Li1—O2 ^{iv}	2.143 (16)	Li3—O1 ^{xxvi}	2.824 (8)
Li1—Li3 ^v	2.57 (4)	Li3—O1 ^{vi}	2.824 (8)
Li1—Li3 ^{vi}	2.57 (4)	Li4—O1 ^{xxvii}	2.23 (3)
Li1—Li4 ^{vii}	2.91 (4)	Li4—O1 ^{xxviii}	2.23 (3)
Li1—Li4 ^{viii}	2.91 (4)	Li4—O1 ^{xxix}	2.23 (3)
Li1—Cl1	2.98 (6)	Li4—Cl2	2.55 (5)
Li1—Al1 ^{ix}	3.256 (5)	Li4—O2 ^{xxx}	2.826 (8)
Li1—Al1 ^x	3.256 (5)	Li4—O2 ^{xxxi}	2.826 (8)
Li2—O2 ^{xi}	2.056 (4)	Li4—O2 ^{xxxii}	2.826 (8)
Li2—O2 ^{xii}	2.056 (4)	Li4—Al1 ^{xxxiii}	2.91 (2)
Li2—O1 ^{xiii}	2.132 (16)	Li4—Al1 ^{xxxiv}	2.91 (2)
Li2—O1 ^{xiv}	2.132 (16)	B1—O1	1.3693 (17)
Li2—Li4 ^{xv}	2.60 (4)	B1—O1 ^{ix}	1.3693 (17)
Li2—Li4 ^{xvi}	2.60 (4)	B1—O1 ^x	1.3693 (17)
Li2—Li3 ^{xvii}	2.88 (4)	$B2-O2^{xxxv}$	1.3702 (17)
Li2—Li3 ^{xviii}	2.88 (4)	B2—O2 ^{xii}	1.3702 (17)
Li2—Cl2	3.03 (6)	B2—O2 ^{xxxvi}	1.3702 (17)
Li2—Al1 ^{xix}	3.253 (4)	Al1—O1 ^{xxxvii}	1.754 (2)
Li2—Al1 ^{xx}	3.253 (4)	Al1—O2 ^{xxxviii}	1.754 (2)

Li2—Al1 ^{xxi}	3.253 (4)	Al1—O1 ^x	1.754 (2)
Li3—O2 ^{xxii}	2.23 (3)	Al1—O2 ^{xxxix}	1.754 (2)
$Li2^{i}$ — $Li1$ — $O1^{ii}$	92.8 (16)	Li2 ^{xvi} —Li4—Li2 ^{xliii}	110.8 (14)
$Li2^{i}$ —Li1—O1	92.8 (16)	$Li2^{xlii}$ — $Li4$ — $Li2^{xliii}$	110.9 (14)
01^{ii} Li1 01	174 (3)	01^{xxvii} I i4 02^{xxx}	157 (2)
$Li2^{i}$ $Li1$ $O2^{iii}$	73 1 (14)	01^{xxviii} $1i4$ 02^{xxx}	715(2)
01^{ii} Li1 02^{iii}	90.8 (4)	01^{xxix} I_{i4} 02^{xxx}	66 70 (16)
$01 - Li1 - 02^{iii}$	90.8 (4)	$C12$ I_14 $O2^{xxx}$	82 1 (11)
L_{12}^{i} L_{11}^{i} Ω^{2}^{iv}	73.1(14)	$I_1 2^{xyi} I_1 4 0 2^{xxx}$	443(2)
$O1^{ii}$ Li1 $O2^{iv}$	90.8(4)	$Li2$ $Li4$ $O2^{xxx}$	74.0(2)
$O_1 = U_1 = O_2$	90.8(4)	$L_{12} - L_{14} - 0_2$	74.0(4)
O1— $L11$ — $O2$	146(2)	$C_{12} = C_{14} = O_{2}$	130(2)
$U_2 = U_1 = U_2$	140(3) 126 0 (15)	$O_1 \longrightarrow D_1 4 \longrightarrow O_2$	157(2)
L12 - L11 - L13	120.0(13)	$O_1^{\text{xxix}} = L_1^2 + O_2^{\text{xxxi}}$	137(2)
O1 $L11$ $L13$	/4.3 (8)	OI^{AAA} $- L14 - O2^{\text{AAA}}$	/1.5 (2)
O1—L11—L13 ^v	102.3 (12)	$C12$ — $L14$ — $O2^{AAAI}$	82.1 (11)
$O2^{m}$ —L11—L13 ^v	55.4 (12)	L_{12}	150 (2)
O2 ^{IV} —Li1—Li3 ^V	155 (2)	$Li2^{xin}$ — $Li4$ — $O2^{xxxi}$	44.3 (2)
Li2 ¹ —Li1—Li3 ^{v1}	126.0 (15)	$Li2^{xlm}$ — $Li4$ — $O2^{xxn}$	74.0 (4)
O1 ⁱⁱ —Li1—Li3 ^{vi}	102.3 (12)	$O2^{xxx}$ —Li4— $O2^{xxxi}$	118.2 (5)
O1—Li1—Li3 ^{vi}	74.3 (8)	$O1^{xxvii}$ —Li4— $O2^{xxxii}$	71.5 (2)
O2 ⁱⁱⁱ —Li1—Li3 ^{vi}	155 (2)	O1 ^{xxviii} —Li4—O2 ^{xxxii}	66.70 (16)
O2 ^{iv} —Li1—Li3 ^{vi}	55.4 (12)	O1 ^{xxix} —Li4—O2 ^{xxxii}	157 (2)
Li3 ^v —Li1—Li3 ^{vi}	108 (3)	Cl2—Li4—O2 ^{xxxii}	82.1 (11)
Li2 ⁱ —Li1—Li4 ^{vii}	45.7 (13)	Li2 ^{xvi} —Li4—O2 ^{xxxii}	74.0 (4)
O1 ⁱⁱ —Li1—Li4 ^{vii}	136 (2)	Li2 ^{xlii} —Li4—O2 ^{xxxii}	150 (2)
O1—Li1—Li4 ^{vii}	49.6 (13)	Li2 ^{xliii} —Li4—O2 ^{xxxii}	44.3 (2)
O2 ⁱⁱⁱ —Li1—Li4 ^{vii}	65.9 (10)	O2 ^{xxx} —Li4—O2 ^{xxxii}	118.2 (5)
O2 ^{iv} —Li1—Li4 ^{vii}	90.1 (14)	O2 ^{xxxi} —Li4—O2 ^{xxxii}	118.2 (5)
Li3 ^v —Li1—Li4 ^{vii}	114.3 (10)	O1 ^{xxvii} —Li4—Al1 ^{xxxiii}	68.7 (7)
Li3 ^{vi} —Li1—Li4 ^{vii}	114.3 (10)	O1 ^{xxviii} —Li4—Al1 ^{xxxiii}	37.0 (3)
Li2 ⁱ —Li1—Li4 ^{viii}	45.7 (13)	O1 ^{xxix} —Li4—Al1 ^{xxxiii}	122 (2)
O1 ⁱⁱ —Li1—Li4 ^{viii}	49.6 (13)	Cl2—Li4—Al1 ^{xxxiii}	114.3 (9)
O1—Li1—Li4 ^{viii}	136 (2)	Li2 ^{xvi} —Li4—Al1 ^{xxxiii}	72.2 (6)
O2 ⁱⁱⁱ —Li1—Li4 ^{viii}	90.1 (14)	Li2 ^{xlii} —Li4—Al1 ^{xxxiii}	174 (2)
$O2^{iv}$ —Li1—Li4 ^{viii}	65.9 (10)	$Li2^{xliii}$ — $Li4$ — $A11^{xxxiii}$	72.2 (6)
$Li3^{v}$ — $Li1$ — $Li4^{viii}$	114.3 (10)	$O2^{xxx}$ —Li4—All ^{xxxiii}	106.3(4)
I_{i3}^{vi} I_{i1} I_{i4}^{viii}	1143(10)	$O2^{xxxi}$ $Ii4$ $A11^{xxxiii}$	1346(7)
I_{i4}^{vii} I_{i1} I_{i4}^{viii}	91 (3)	O^{2xxxii} I i4 All xxxiii	3559(12)
$Li2^{i}$ $Li1$ $Cl1$	180.0	$O1^{xxvii}$ I id $A11^{xxxiv}$	37.0(3)
$O1^{ii}$ _Li1_Cl1	87.2 (16)	$01^{xxviii} I i4 A 11^{xxxiv}$	122(2)
O1 - Li1 - Cl1	87.2 (16)	$01^{xxix} I i 4 - 411^{xxxiv}$	68.7(7)
$O_{1} = U_{1} = C_{1}$	106.0(14)	C12 Li4 A11 xxiv	1143(0)
O^{2} — Lii — Cii	106.9 (14)	$\begin{array}{c} \mathbf{C}_{12} \longrightarrow \mathbf{C}_{14} \longrightarrow \mathbf{C}_{11} \\ \mathbf{L}_{12} \mathbf{C}_{14} \longrightarrow \mathbf{C}_{11} \\ \mathbf{L}_{12} \mathbf{C}_{14} \longrightarrow \mathbf{C}_{11} \\ \mathbf{L}_{14} \longrightarrow \mathbf{C}_{14} \mathbf{C}_{1$	174.3(9)
$U_2 = U_1 = U_1$	54.0(15)	$\mathbf{L}_{\mathbf{I}}^{\mathbf{I}} = \mathbf{L}_{\mathbf{I}}^{\mathbf{I}} = \mathbf{L}_{\mathbf$	17+(2)
$L_{13} = L_{11} = C_{11}$	54.0(15)	$L_{12} = L_{14} = A_{11}$	12.2 (0) 72.2 (6)
$L13^{}L11^{}U11$	34.0(13)	$L12^{\text{ALL}} - L14 - A11^{\text{ALL}}$	12.2(0)
	134.3 (13)		134.0 (/)
$L14^{\text{vm}}$ — $L11$ — $C11$	134.3 (13)	$U2^{AAAI}$ —L14—All^AAAIV	33.39 (12)

Li4^{xvi}—Li2—Li3^{xviii}

114.4 (10)

145.8 (3)

Li2 ⁱ —Li1—Al1 ^{ix}	85.4 (10)	O2 ^{xxxii} —Li4—Al1 ^{xxxiv}	106.3 (4)
O1 ⁱⁱ —Li1—Al1 ^{ix}	152.41 (19)	All ^{xxxiii} —Li4—All ^{xxxiv}	104.3 (11)
O1—Li1—Al1 ^{ix}	28.56 (17)	O1—B1—O1 ^{ix}	119.972 (15)
O2 ⁱⁱⁱ —Li1—Al1 ^{ix}	114.7 (7)	O1—B1—O1 ^x	119.972 (15)
O2 ^{iv} —Li1—Al1 ^{ix}	62.3 (2)	$O1^{ix}$ B1 $O1^{x}$	119.972 (15)
Li3 ^v —Li1—Al1 ^{ix}	128.1 (12)	$O2^{xxxv}$ —B2— $O2^{xii}$	119.982 (12)
Li3 ^{vi} —Li1—Al1 ^{ix}	58.5 (7)	$O2^{xxxv}$ —B2— $O2^{xxxvi}$	119.982 (13)
Li4 ^{vii} —Li1—Al1 ^{ix}	55.9 (7)	O2 ^{xii} —B2—O2 ^{xxxvi}	119.982 (12)
Li4 ^{viii} —Li1—Al1 ^{ix}	116.6 (14)	O1 ^{xxxvii} —Al1—O2 ^{xxxviii}	107.12 (9)
Cl1—Li1—Al1 ^{ix}	94.6 (10)	O1 ^{xxxvii} —Al1—O1 ^x	114.42 (15)
Li2 ⁱ —Li1—Al1 ^x	85.4 (10)	$O2^{xxxviii}$ Al1 $- O1^{x}$	107.03 (8)
O1 ⁱⁱ —Li1—Al1 ^x	117.73 (11)	O1 ^{xxxvii} —Al1—O2 ^{xxxix}	107.03 (8)
O1—Li1—Al1 ^x	62.78 (10)	O2 ^{xxxviii} —Al1—O2 ^{xxxix}	114.35 (15)
O2 ⁱⁱⁱ —Li1—Al1 ^x	29.72 (10)	O1 ^x —Al1—O2 ^{xxxix}	107.12 (9)
O2 ^{iv} —Li1—Al1 ^x	145.3 (15)	O1 ^{xxxvii} —Al1—Li4 ^{xliv}	95.5 (7)
Li3 ^v —Li1—Al1 ^x	58.5 (7)	O2 ^{xxxviii} —Al1—Li4 ^{xliv}	153.8 (2)
Li3 ^{vi} —Li1—Al1 ^x	128.1 (12)	O1 ^x —A11—Li4 ^{xliv}	49.8 (3)
Li4 ^{vii} —Li1—Al1 ^x	55.9 (7)	O2 ^{xxxix} —Al1—Li4 ^{xliv}	69.7 (8)
Li4 ^{viii} —Li1—Al1 ^x	116.6 (14)	O1 ^{xxxvii} —Al1—Li4 ^{xlv}	49.8 (3)
Cl1—Li1—Al1 ^x	94.6 (10)	O2 ^{xxxviii} —Al1—Li4 ^{xlv}	69.7 (8)
All ^{ix} —Li1—All ^x	89.62 (17)	O1 ^x —Al1—Li4 ^{xlv}	95.5 (7)
O2 ^{xi} —Li2—O2 ^{xii}	172 (3)	O2 ^{xxxix} —Al1—Li4 ^{xlv}	153.8 (2)
O2 ^{xi} —Li2—O1 ^{xiii}	91.1 (4)	Li4 ^{xliv} —Al1—Li4 ^{xlv}	119.1 (19)
O2 ^{xii} —Li2—O1 ^{xiii}	91.1 (4)	O1 ^{xxxvii} —Al1—Li3 ⁱⁱ	153.8 (2)
O2 ^{xi} —Li2—O1 ^{xiv}	91.1 (4)	O2 ^{xxxviii} —A11—Li3 ⁱⁱ	49.8 (3)
O2 ^{xii} —Li2—O1 ^{xiv}	91.1 (4)	O1 ^x —A11—Li3 ⁱⁱ	69.5 (9)
O1 ^{xiii} —Li2—O1 ^{xiv}	148 (3)	O2 ^{xxxix} —Al1—Li3 ⁱⁱ	95.6 (7)
O2 ^{xi} —Li2—Li4 ^{xv}	101.4 (13)	Li4 ^{xliv} —Al1—Li3 ⁱⁱ	104.9 (7)
O2 ^{xii} —Li2—Li4 ^{xv}	73.7 (9)	Li4 ^{xlv} —Al1—Li3 ⁱⁱ	104.9 (7)
O1 ^{xiii} —Li2—Li4 ^{xv}	154 (2)	O1 ^{xxxvii} —Al1—Li3 ^{xli}	69.5 (9)
O1 ^{xiv} —Li2—Li4 ^{xv}	55.1 (12)	O2 ^{xxxviii} —A11—Li3 ^{xli}	95.6 (7)
O2 ^{xi} —Li2—Li4 ^{xvi}	73.7 (9)	O1 ^x —A11—Li3 ^{xli}	153.8 (2)
O2 ^{xii} —Li2—Li4 ^{xvi}	101.4 (13)	O2 ^{xxxix} —Al1—Li3 ^{xli}	49.8 (3)
O1 ^{xiii} —Li2—Li4 ^{xvi}	55.1 (12)	Li4 ^{xliv} —Al1—Li3 ^{xli}	104.9 (7)
O1 ^{xiv} —Li2—Li4 ^{xvi}	154 (2)	Li4 ^{xlv} —Al1—Li3 ^{xli}	104.9 (7)
Li4 ^{xv} —Li2—Li4 ^{xvi}	107 (3)	Li3 ⁱⁱ —Al1—Li3 ^{xli}	119 (2)
O2 ^{xi} —Li2—Li3 ^{xvii}	137 (2)	O1 ^{xxxvii} —Al1—Li2 ^{xlvi}	37.0 (5)
O2 ^{xii} —Li2—Li3 ^{xvii}	50.2 (14)	O2 ^{xxxviii} —Al1—Li2 ^{xlvi}	74.9 (9)
O1 ^{xiii} —Li2—Li3 ^{xvii}	66.6 (10)	O1 ^x —A11—Li2 ^{xlvi}	143.0 (5)
O1 ^{xiv} —Li2—Li3 ^{xvii}	91.1 (15)	O2 ^{xxxix} —Al1—Li2 ^{xlvi}	105.1 (9)
Li4 ^{xv} —Li2—Li3 ^{xvii}	114.4 (10)	Li4 ^{xliv} —Al1—Li2 ^{xlvi}	130.5 (9)
Li4 ^{xvi} —Li2—Li3 ^{xvii}	114.4 (10)	Li4 ^{xlv} —Al1—Li2 ^{xlvi}	49.5 (9)
O2 ^{xi} —Li2—Li3 ^{xviii}	50.2 (13)	Li3 ⁱⁱ —Al1—Li2 ^{xlvi}	124.6 (9)
O2 ^{xii} —Li2—Li3 ^{xviii}	137 (2)	Li3 ^{xli} —Al1—Li2 ^{xlvi}	55.4 (9)
O1 ^{xiii} —Li2—Li3 ^{xviii}	91.1 (15)	O1 ^{xxxvii} —Al1—Li2 ^{xlvii}	98.7 (9)
O1 ^{xiv} —Li2—Li3 ^{xviii}	66.6 (10)	O2 ^{xxxviii} —Al1—Li2 ^{xlvii}	34.2 (3)
Li4 ^{xv} —Li2—Li3 ^{xviii}	114.4 (10)	O1 ^x —A11—Li2 ^{xlvii}	81.3 (9)

O2^{xxxix}—Al1—Li2^{xlvii}

	02(2)		120 5 (0)
$L13^{m}$ $L12$ $L13^{m}$	92(3)	L_{14} All L_{12}	130.3 (9)
$O_2 = C_1 Z = C_1 Z$	86.0(17)	$L_{14} = A_{11} = L_{12}$	49.3 (9) 55 4 (9)
$O_2 = L_1 = C_1 Z$	105.0(17)	LI3 - AII - LI2 $L 32ki = A11 - L 32kii$	33.4(9)
O1 - C12 - C12	105.9(15)	LI3 - AII - LI2 $L 3 2 x V i A 1 + L 3 2 x V i i$	124.0(9)
L_{12} L_{12} L_{12} L_{12}	103.9(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82 (2) 81 2 (0)
L_{14} $-L_{12}$ C_{12}	55.5(15)		81.5(9)
$L14^{m}$ $L12$ $C12$	33.3(13)		143.8(3)
$L13^{mm}$ $L12$ $C12$	133.8(13) 122.8(12)	$O_{1}^{$	98.7 (9)
$LI3^{\text{A}}$ $LI2$ $CI2$	155.8 (15)	U_{1}^{All} All U_{1}^{All}	34.2 (3)
$O2^{\text{AII}}$	11/.0(0)	L_{14} A_{11} L_{12} L	49.5 (9)
$O_{2^{\text{AII}}}$ L_{12} $A_{11^{\text{AII}}}$	62.84(9)	L_{14}^{AV} All L_{12}^{AVW}	130.5 (9)
$O1^{xin}$ L12 All xix	29.66 (11)	L_{13}^{n} All $-L_{12}^{n}$	124.6 (9)
$U_{\text{AV}}^{\text{AV}}$ L12—All All	146.3 (15)	L_{13}^{An} All $-L_{12}^{Ann}$	55.4 (9)
L_{14}^{AV} L_{12}^{AII} L_{12}^{AII}	127.3 (13)	$L_{12}^{AVV} - AII - L_{12}^{AVVI}$	98 (2) 170 00 (5)
L_{14}^{AVI} L_{12}^{AVI} L_{12}^{AVI}	58.3 (7)	$L12^{\text{AVIII}}$ $A11 - L12^{\text{AVIIII}}$	179.99 (5)
L_{13}^{xvii} L_{12}^{i} A_{11}^{xix}	56.2 (7)	OI^{xxxvii} All $-Li2^{xiix}$	143.0 (5)
L_{13}^{xvm} L_{12}^{xvm} A_{11}^{xix}	117.5 (15)	O2 ^{xxxviii} —All—Li2 ^{xiix}	105.1 (9)
Cl2—Li2—All ^{xix}	93.9 (10)	O1 ^x —Al1—Li2 ^{xiix}	37.0 (5)
O2 ^{x1} —Li2—All ^{xx}	152.45 (6)	$O2^{xxxix}$ —Al1—Li 2^{xiix}	74.9 (9)
O2 ^{xn} —Li2—Al1 ^{xx}	28.68 (17)	Li4 ^{xliv} —Al1—Li2 ^{xlix}	49.5 (9)
O1 ^{xm} —Li2—Al1 ^{xx}	115.2 (7)	$Li4^{xiv}$ —Al1— $Li2^{xix}$	130.5 (9)
O1 ^{xiv} —Li2—Al1 ^{xx}	62.41 (19)	Li3 ⁱⁱ —Al1—Li2 ^{xlix}	55.4 (9)
Li4 ^{xv} —Li2—Al1 ^{xx}	58.3 (7)	Li3 ^{xli} —Al1—Li2 ^{xlix}	124.6 (9)
Li4 ^{xvi} —Li2—Al1 ^{xx}	127.3 (13)	Li2 ^{xlvi} —Al1—Li2 ^{xlix}	180.0 (17)
Li3 ^{xvii} —Li2—Al1 ^{xx}	56.2 (7)	Li2 ^{xlvii} —Al1—Li2 ^{xlix}	98 (2)
Li3 ^{xviii} —Li2—Al1 ^{xx}	117.5 (15)	Li2 ^{xlviii} —Al1—Li2 ^{xlix}	82 (2)
Cl2—Li2—Al1 ^{xx}	93.9 (10)	B1—O1—Al1 ^{ix}	119.05 (13)
All ^{xix} —Li2—All ^{xx}	89.75 (15)	B1—O1—Li1	112.4 (12)
O2 ^{xi} —Li2—Al1 ^{xxi}	28.68 (17)	All ^{ix} —O1—Li1	117.4 (4)
O2 ^{xii} —Li2—Al1 ^{xxi}	152.45 (6)	B1—O1—Li2 ⁱ	122.3 (12)
O1 ^{xiii} —Li2—Al1 ^{xxi}	62.41 (19)	All ^{ix} —O1—Li2 ⁱ	113.4 (6)
O1 ^{xiv} —Li2—Al1 ^{xxi}	115.2 (7)	Li1—O1—Li2 ⁱ	13 (3)
Li4 ^{xv} —Li2—Al1 ^{xxi}	127.3 (13)	B1—O1—Li4 ^{vii}	123.9 (9)
Li4 ^{xvi} —Li2—Al1 ^{xxi}	58.3 (7)	All ^{ix} —O1—Li4 ^{vii}	93.12 (8)
Li3 ^{xvii} —Li2—Al1 ^{xxi}	117.5 (15)	Li1—O1—Li4 ^{vii}	85.7 (19)
Li3 ^{xviii} —Li2—Al1 ^{xxi}	56.2 (7)	Li2 ⁱ —O1—Li4 ^{vii}	73.2 (19)
Cl2—Li2—Al1 ^{xxi}	93.9 (10)	B1—O1—Li3 ^{vi}	102.2 (9)
All ^{xix} —Li2—All ^{xxi}	89.73 (15)	Al1 ^{ix} —O1—Li3 ^{vi}	74.9 (10)
Al1 ^{xx} —Li2—Al1 ^{xxi}	172 (2)	Li1—O1—Li3 ^{vi}	61.3 (10)
O2 ^{xxii} —Li3—O2 ^{xxiii}	96.4 (16)	Li2 ⁱ —O1—Li3 ^{vi}	69.5 (10)
O2 ^{xxii} —Li3—O2 ^{xxiv}	96.4 (16)	Li4 ^{vii} —O1—Li3 ^{vi}	131.5 (12)
O2 ^{xxiii} —Li3—O2 ^{xxiv}	96.4 (16)	B1	75.8 (3)
O2 ^{xxii} —Li3—Cl1	120.6 (12)	All ^{ix} —O1—Li3	112.35 (10)
O2 ^{xxiii} —Li3—Cl1	120.6 (12)	Li1—O1—Li3	50.3 (16)
O2 ^{xxiv} —Li3—Cl1	120.6 (12)	Li2 ⁱ —O1—Li3	63.2 (15)
O2 ^{xxii} —Li3—Li1 ^{vi}	108.9 (5)	Li4 ^{vii} —O1—Li3	135.3 (9)
O2 ^{xxiii} —Li3—Li1 ^{vi}	140.8 (8)	Li3 ^{vi} —O1—Li3	38.8 (10)
O2 ^{xxiv} —Li3—Li1 ^{vi}	52.5 (10)	B2 ¹ —O2—Al1 ^{xxvi}	118.94 (13)

Cl1—Li3—Li1 ^{vi}	71.3 (15)	$B2^{l}$ — $O2$ — $Li2^{l}$	113.5 (13)
O2 ^{xxii} —Li3—Li1 ^{xxvi}	52.4 (10)	Al1 ^{xxvi} —O2—Li2 ¹	117.1 (5)
O2 ^{xxiii} —Li3—Li1 ^{xxvi}	108.9 (5)	B2 ¹ —O2—Li1 ¹ⁱ	123.2 (11)
O2 ^{xxiv} —Li3—Li1 ^{xxvi}	140.8 (8)	Al1 ^{xxvi} —O2—Li1 ^{li}	113.0 (5)
Cl1—Li3—Li1 ^{xxvi}	71.3 (15)	Li2 ¹ —O2—Li1 ¹ⁱ	13 (3)
Li1 ^{vi} —Li3—Li1 ^{xxvi}	110.2 (15)	$B2^{l}$ — $O2$ — $Li3^{lii}$	123.8 (10)
O2 ^{xxii} —Li3—Li1 ^{xxv}	140.8 (8)	Al1 ^{xxvi} —O2—Li3 ^{lii}	93.19 (8)
O2 ^{xxiii} —Li3—Li1 ^{xxv}	52.4 (10)	Li2 ¹ —O2—Li3 ¹ⁱⁱ	85 (2)
O2 ^{xxiv} —Li3—Li1 ^{xxv}	108.9 (5)	Li1 ^{li} —O2—Li3 ^{lii}	72.1 (18)
Cl1—Li3—Li1 ^{xxv}	71.3 (15)	B2 ¹ —O2—Li4 ^{liii}	102.4 (9)
Li1 ^{vi} —Li3—Li1 ^{xxv}	110.2 (15)	Al1 ^{xxvi} —O2—Li4 ^{liii}	74.7 (10)
Li1 ^{xxvi} —Li3—Li1 ^{xxv}	110.2 (15)	Li2 ¹ —O2—Li4 ¹ⁱⁱⁱ	62.0 (11)
$O2^{xxii}$ —Li3— $O1^{xxv}$	157 (2)	Li1 ^{li} —O2—Li4 ^{liii}	70.2 (10)
$O2^{xxiii}$ —Li3— $O1^{xxv}$	71.5 (2)		131.4 (12)
$O2^{xxiv}$ —Li3— $O1^{xxv}$	66.68 (17)	$B2^1$ —O2—Li4	82.6 (3)
C_{11} — L_{i3} — O_{1xxy}	82.2 (11)	All ^{xxvi} —O2—Li4	90.33 (9)
$Li1^{vi}$ — $Li3$ — $O1^{xxv}$	74.0 (4)	$Li2^{1}$ $O2$ $Li4$	64.2 (14)
$Li1^{xxvi}$ $Li3$ $O1^{xxv}$	149 (2)	$Li1^{li} - O2 - Li4$	75.6 (13)
$Li1^{xxv}$ — $Li3$ — $O1^{xxv}$	44.4 (3)	$Li3^{lii}$ $O2$ $Li4$	146.2(12)
02^{xxii} $13 - 01^{xxvi}$	71.5(2)	$Li4^{liii}$ $O2$ $Li4$	21.0(10)
$O^{2^{xxiii}}$ $Li^3 O^{1^{xxvi}}$	66 68 (17)	$Li3-Cl1-Li3^{ii}$	109468(7)
02^{xxiv} 13^{01}	157 (2)	$Li3$ — $Cl1$ — $Li3^{v}$	109.473 (3)
$C_{11} = L_{13} = O_{1xxvi}$	82.2(11)	$Li3^{ii}$ —Cl1—Li3 ^v	109.473 (1)
$Li1^{vi}$ $Li3$ $O1^{xxvi}$	149 (2)	$Li3$ — $Cl1$ — $Li3^{vi}$	109 473 (1)
$Li1^{xxvi}$ $Li3^{O1^{xxvi}}$	444(3)	$Li3^{ii}$ —Cl1—Li3 ^{vi}	109.5
$Li1^{xxv}$ — $Li3$ — $O1^{xxvi}$	73.9 (4)	$Li3^{v}$ —Cl1—Li 3^{vi}	109.468 (2)
01^{xxv} $13 - 01^{xxvi}$	118.2 (5)	Li3—Cl1—Li1	125.266 (1)
$O2^{xxii}$ —Li3— $O1^{vi}$	66.68 (17)	Li3 ⁱⁱ —Cl1—Li1	125.266 (4)
$O2^{xxiii}$ Li3 $O1^{vi}$	157 (2)	Li ³ ^v —Cl1—Li1	54.734 (1)
$O2^{xxiv}$ Li3 $O1^{vi}$	71.5 (2)	$Li3^{vi}$ —Cl1—Li1	54,734 (2)
C_{11} L_{i3} O_{1}^{vi}	82.2 (11)	$Li3$ — $Cl1$ — $Li1^{xxvi}$	54.736 (2)
$Li1^{vi}$ — $Li3$ — $O1^{vi}$	44.4 (3)	$Li3^{ii}$ —Cl1—Li1 ^{xxvi}	125.264 (3)
$Li1^{xxvi}$ $Li3$ $O1^{vi}$	73.9 (4)	$Li3^{v}$ —Cl1—Li1 ^{xxvi}	54.736 (2)
$Li1^{xxv}$ $Li3$ $O1^{vi}$	149 (2)	$Li3^{vi}$ Cl1 $Li1^{xxvi}$	125 264 (2)
$O1^{xxv}$ —Li3— $O1^{vi}$	118.2 (5)	Li1—Cl1—Li1 ^{xxvi}	90.000 (3)
01^{xxvi} $13 - 01^{vi}$	118.2(5)	Li3—Cl1—Li1 ^{ix}	125.264 (5)
$O2^{xxii}$ —Li3—Li2 ^{xl}	45.2 (8)	Li3 ⁱⁱ —Cl1—Li1 ^{ix}	54.736 (1)
$O^{2^{xxiii}}$ $I_i 3 - I_i 2^{xl}$	105.2 (6)	$Li3^{v}$ —Cl1—Li1 ^{ix}	54 736 (2)
$O2^{xxiv}$ $Li3$ $Li2^{xl}$	137.0(11)	$Li3^{vi}$ $Cl1$ $Li1^{ix}$	125.264 (4)
C_{11} L_{i3} L_{i2x^1}	79.1 (13)	Li1—Cl1—Li1 ^{ix}	90.000 (3)
$Li1^{vi} Li3 - Li2^{xl}$	1138(9)	$Li1^{xxvi}$ $Cl1$ $Li1^{ix}$	90.0
$Li1^{xxvi}$ $Li3$ $Li2^{xl}$	7.8 (17)	Li3—Cl1—Li1 ^{xxv}	54,736 (2)
$Li1^{xxv}$ $Li3$ $Li2^{xl}$	113 8 (9)	$Li3^{ii}$ —Cl1—Li1 ^{xxv}	125 264 (1)
$O1^{xxv}$ —Li3—Li2 ^{xl}	155.6 (18)	$Li3^{v}$ —Cl1—Li1 ^{xxv}	125.264 (2)
$O1^{xxvi}$ —Li3—Li2 ^{xl}	43.86 (15)	$Li3^{vi}$ —Cl1—Li1 ^{xxv}	54.736 (2)
$O1^{vi}$ —Li3—Li2 ^{xl}	74.5 (3)	Li1—Cl1—Li1 ^{xxv}	90.000 (3)
$O2^{xxii}$ —Li3—Li2 ^{xli}	105.2 (6)	$Li1^{xxvi}$ $Cl1 - Li1^{xxv}$	90.0
$O2^{xxiii}$ —Li3—Li2 ^{xli}	137.0 (11)	Li1 ^{ix} —Cl1—Li1 ^{xxv}	180.0
			100.0

45 2 (8)	I_{i3} Cl1 I_{i1x}	125264(1)
79.1 (13)	I_{i3i} C_{11} I_{i1x}	54 736 (1)
79.1(13)	$Li3^{v}$ Cl1 $Li1^{x}$	125,264,(4)
7.0(17)		123.204(4)
113.8 (9)		54./36(1)
113.8 (9)	Li1—Cl1—Li1 ^x	90.000 (4)
74.5 (3)	Li1 ^{xxvi} —Cl1—Li1 ^x	180.0
155.6 (18)	Li1 ^{ix} —Cl1—Li1 ^x	90.000 (2)
43.86 (15)	Li1 ^{xxv} —Cl1—Li1 ^x	90.0
116.5 (8)	Li3—Cl1—Li1 ^{vi}	54.734 (2)
96.6 (15)	Li3 ⁱⁱ —Cl1—Li1 ^{vi}	54.734 (3)
96.6 (15)	Li3 ^v —Cl1—Li1 ^{vi}	125.266 (2)
96.6 (15)	Li3 ^{vi} —Cl1—Li1 ^{vi}	125.266 (1)
120.5 (12)	Li1—Cl1—Li1 ^{vi}	180.0
120.5 (12)	Li1 ^{xxvi} —Cl1—Li1 ^{vi}	90.000 (5)
120.5 (12)	Li1 ^{ix} —Cl1—Li1 ^{vi}	90.0
140.6 (8)	Li1 ^{xxv} —Cl1—Li1 ^{vi}	90.000 (4)
51.7 (10)	Li1 ^x —Cl1—Li1 ^{vi}	90.000 (1)
108.6 (5)	Li4—Cl2—Li4 ^{liv}	109.474 (11)
71.9 (15)	Li4—Cl2—Li4 ^{xvi}	109.470 (2)
108.6 (5)	Li4 ^{liv} —Cl2—Li4 ^{xvi}	109.470 (3)
140.6 (8)	Li4—Cl2—Li4 ^{xv}	109.470 (6)
51.7 (10)	Li4 ^{liv} —Cl2—Li4 ^{xv}	109.5
71.9 (15)	Li4 ^{xvi} —Cl2—Li4 ^{xv}	109.474 (7)
110.8 (14)	Li4—Cl2—Li2	125.263 (4)
51.7 (10)	Li4 ^{liv} —Cl2—Li2	125.263 (12)
108.6 (5)	Li4 ^{xvi} —Cl2—Li2	54.737 (7)
140.6 (8)	Li4 ^{xv} —Cl2—Li2	54.737 (6)
71.9 (15)		
	$\begin{array}{c} 45.2 \ (8) \\ 79.1 \ (13) \\ 7.8 \ (17) \\ 113.8 \ (9) \\ 113.8 \ (9) \\ 74.5 \ (3) \\ 155.6 \ (18) \\ 43.86 \ (15) \\ 116.5 \ (8) \\ 96.6 \ (15) \\ 96.6 \ (15) \\ 96.6 \ (15) \\ 96.6 \ (15) \\ 120.5 \ (12) \\ 120.5 \ (12) \\ 120.5 \ (12) \\ 120.5 \ (12) \\ 120.5 \ (12) \\ 120.5 \ (12) \\ 120.5 \ (12) \\ 140.6 \ (8) \\ 51.7 \ (10) \\ 108.6 \ (5) \\ 140.6 \ (8) \\ 51.7 \ (10) \\ 71.9 \ (15) \\ 110.8 \ (14) \\ 51.7 \ (10) \\ 108.6 \ (5) \\ 140.6 \ (8) \\ 71.9 \ (15) \\ 108.6 \ (5) \\ 140.6 \ (8) \\ 71.9 \ (15) \end{array}$	45.2 (8) Li3—Cl1—Li1 ^x 79.1 (13) Li3 ⁱⁱ —Cl1—Li1 ^x 7.8 (17) Li3 ^v —Cl1—Li1 ^x 113.8 (9) Li3 ^{vi} —Cl1—Li1 ^x 113.8 (9) Li1—Cl1—Li1 ^x 74.5 (3) Li1 ^{xvi} —Cl1—Li1 ^x 74.5 (3) Li3 ^{wi} —Cl1—Li1 ^{vi} 75.6 (18) Li3 ^{wi} —Cl1—Li1 ^{vi} 96.6 (15) Li3 ^{vi} —Cl1—Li1 ^{vi} 96.6 (15) Li3 ^{vi} —Cl1—Li1 ^{vi} 96.6 (15) Li3 ^{xvi} —Cl1—Li1 ^{vi} 120.5 (12) Li1 ^{xxvi} —Cl1—Li1 ^{vi} 120.5 (12) Li1 ^{xxv} —Cl1—Li1 ^{vi} 140.6 (8) Li4 ^{xvi} —Cl2—Li4 ^{xvi} 108.6 (5) Li4 ^{4^{iv}} —Cl2—Li4 ^{xvi} 108.6 (5) Li4 ^{xvi} —Cl2—Li4 ^{xvi} 110.8 (14) Li4 ^{xvi} —Cl2—Li2 110.8 (14) Li4 ^{xvi} —Cl2—Li2 108.6 (5) Li4 ^{xvi} —Cl2—Li2

Symmetry codes: (i) -x+1/2, -y+1, z-1/2; (ii) x, -y+1/2, -z+1/2; (iii) -x, -y+1/2, z-1/2; (iv) -x, y, -z+1; (v) -x+1/2, y, -z+1/2; (vi) -x+1/2, -y+1/2, z; (vii) x-1, -y+1, -z+1; (viii) x-1, y-1/2, z-1/2; (ix) y, z, x; (x) z, x, y; (xi) x+1/2, -y+1, -z+3/2; (xii) x+1/2, y+1/2, z; (xiii) -x+1/2, y+1/2, -z+1; (xiv) -x+1/2, y+1/2, z-1/2; (xiv) -x+3/2, y, -z+3/2; (xvi) -x+3/2, -y+3/2, z; (xvii) x, -y+1, -z+1; (xviii) x, y+1/2, z+1/2; (xix) -y+1/2, z+1/2, -x+1; (xx) z+1/2, -x+1; (xx) z+1/2, -x+1; (xx) z+1/2, x+1/2, y+1/2, z+1/2; (xii) -y+1/2, z+1/2; (xiii) -x+1/2, y+1/2, z+1/2; (xx) -y+1/2, z-x+1; (xx) z+1/2, -x+1; (xx) z+1/2, -x+1/2; (xxii) -z+1, x+1/2, -y+1/2; (xxii) -z+1, x+1/2; (xxii) -z+1, x+1/2; (xxii) -z+1, x+1, -y+1; (xx) -y+1/2, -z+1; (xx) -y+1/2, -z+1; (xx) -y+1/2, -z+3/2; (xxii) y+1/2, -z+3/2; (xxii) -y+1/2, -z+1/2; (xxiii) -y+1/2, -z+3/2; (xiii) -y+1/2, -z+1/2; (xiii) -x+1, -y+1/2; (xxiii) -x+1, -y+1/2; (xxiii) -x+1, -y+1/2; (xxiii) -x+1, -y+1/2; (xxiii) -x+1/2; (xxiii) -x+1/2; (xxiii) -y+1/2, -z+3/2; (xxiii) -x+1/2; (xxiii) -y+1/2, -z+1; (xiv) -y+1/2, -z+3/2; (xiii) z-x+3/2; (xiii) z-x+3/

Sodium aluminoboracite (kjh230804yoshinoN4_0m_a)

Crystal data

Na_{3.92}B₄Al₃O₁₂Cl_{0.92} $M_r = 438.91$ Cubic, $F\overline{43}c$ a = 13.5904 (1) Å V = 2510.13 (6) Å³ Z = 8 F(000) = 1728 $D_x = 2.323$ Mg m⁻³ Cu K α radiation, $\lambda = 1.54178$ Å Cell parameters from 3423 reflections $\theta = 4.6-74.3^{\circ}$ $\mu = 6.78 \text{ mm}^{-1}$ T = 294 KPlate, colorless $0.08 \times 0.06 \times 0.04 \text{ mm}$ Data collection

Bruker D8 goniometer diffractometer Radiation source: sealed tube Detector resolution: 7.3910 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015) $T_{min} = 0.66, T_{max} = 0.75$ <i>Refinement</i>	4504 measured reflections 218 independent reflections 216 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 74.3^{\circ}, \theta_{min} = 6.5^{\circ}$ $h = -16 \rightarrow 16$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 14$
Refinement on F^2	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0311P)^{2} + 4.0293P]$
Least-squares matrix: full	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$R[F^2 > 2\sigma(F^2)] = 0.022$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.055$	$\Delta\rho_{max} = 0.15$ e Å ⁻³
S = 1.20	$\Delta\rho_{min} = -0.45$ e Å ⁻³
218 reflections	Absolute structure: Flack <i>x</i> determined using 89
27 parameters	quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et al.</i> , 2013)
1 restraint	Absolute structure parameter: 0.01 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional d	atomic	coordinates	and i	isotrop	oic or e	equivalent	isotrop	ic dis	placement	parameters	(Å	2)
				P						P	1	

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
Na1	0.0340 (3)	0.250000	0.250000	0.0422 (14)	0.499 (4)
Na2	0.3606 (4)	0.3606 (4)	0.3606 (4)	0.017 (2)	0.231 (6)
B1	0.1039 (2)	0.1039 (2)	0.1039 (2)	0.0143 (9)	
Al1	0.250000	0.000000	0.000000	0.0095 (4)	
01	0.03513 (13)	0.10047 (12)	0.17745 (12)	0.0176 (5)	
Cl1	0.250000	0.250000	0.250000	0.0350 (9)	0.920 (10)

Atomic displacement parameters $(Å^2)$

)
)
-)))

Geometric parameters (Å, °)

Na1—Na1 ⁱ	0.923 (8)	Na2—O1 ^x	2.484 (5)
Na1—O1 ⁱⁱ	2.2588 (16)	Na2—Cl1	2.605 (9)

Na1—O1	2.2588 (16)	Na2—O1 ^{xi}	2.913 (2)
Na1—O1 ⁱⁱⁱ	2.446 (2)	Na2—O1 ^v	2.913 (2)
Na1—O1 ⁱ	2.446 (2)	Na2—O1 ^{xii}	2.913 (2)
Na1—Na2 ^{iv}	2.564 (4)	Na2—Al1 ^{xiii}	3.072 (4)
Na1—Na2 ^v	2.564 (4)	Na2—Al1 ^{xiv}	3.072 (4)
Na1—Cl1	2.936 (4)	B1—O1 ^{xv}	1.3692 (15)
Na1—B1 ⁱⁱ	2.965 (3)	B1—O1 ^{xvi}	1.3692 (15)
Na1—B1	2.965 (3)	B1—O1	1.3693 (15)
Na1—Na2 ^{vi}	3.174 (3)	Al1—O1 ^{xvii}	1.7506 (16)
Na1—Na2 ^{vii}	3.174 (3)	Al1—O1 ^{xviii}	1.7506 (16)
Na2—O1 ^{viii}	2.484 (5)	Al1—O1 ^{xvi}	1.7506 (16)
Na2—O1 ^{ix}	2.484 (5)	Al1—O1 ^{xix}	1.7506 (16)
		-	
Na1 ⁱ —Na1—O1 ⁱⁱ	90.40 (11)	O1—B1—Na1	46.75 (14)
Na1 ⁱ —Na1—O1	90.40 (11)	O1 ^{xv} —B1—Na1 ^{xv}	46.75 (14)
O1 ⁱⁱ —Na1—O1	179.2 (2)	O1 ^{xvi} —B1—Na1 ^{xv}	87.53 (15)
Na1 ⁱ —Na1—O1 ⁱⁱⁱ	67.42 (9)	O1—B1—Na1 ^{xv}	135.5 (3)
O1 ⁱⁱ —Na1—O1 ⁱⁱⁱ	90.15 (4)	Na1—B1—Na1 ^{xv}	88.88 (15)
O1—Na1—O1 ⁱⁱⁱ	90.15 (4)	O1 ^{xv} —B1—Na1 ^{xvi}	135.5 (3)
Na1 ⁱ —Na1—O1 ⁱ	67.42 (9)	O1 ^{xvi} —B1—Na1 ^{xvi}	46.75 (14)
O1 ⁱⁱ —Na1—O1 ⁱ	90.15 (4)	O1—B1—Na1 ^{xvi}	87.53 (15)
O1—Na1—O1 ⁱ	90.15 (4)	Na1—B1—Na1 ^{xvi}	88.88 (15)
O1 ⁱⁱⁱ —Na1—O1 ⁱ	134.84 (18)	Na1 ^{xv} —B1—Na1 ^{xvi}	88.88 (15)
Na1 ⁱ —Na1—Na2 ^{iv}	124.0 (2)	O1 ^{xvii} —Al1—O1 ^{xviii}	108.49 (6)
O1 ⁱⁱ —Na1—Na2 ^{iv}	74.01 (7)	O1 ^{xvii} —Al1—O1 ^{xvi}	111.44 (11)
O1—Na1—Na2 ^{iv}	105.53 (9)	O1 ^{xviii} —Al1—O1 ^{xvi}	108.49 (6)
O1 ⁱⁱⁱ —Na1—Na2 ^{iv}	59.39 (18)	O1 ^{xvii} —Al1—O1 ^{xix}	108.49 (6)
O1 ⁱ —Na1—Na2 ^{iv}	159.73 (13)	O1 ^{xviii} —Al1—O1 ^{xix}	111.44 (11)
Na1 ⁱ —Na1—Na2 ^v	124.0 (2)	O1 ^{xvi} —Al1—O1 ^{xix}	108.49 (6)
O1 ⁱⁱ —Na1—Na2 ^v	105.53 (9)	O1 ^{xvii} —Al1—Na2 ⁱⁱ	157.64 (7)
O1—Na1—Na2 ^v	74.01 (7)	O1 ^{xviii} —Al1—Na2 ⁱⁱ	53.95 (9)
O1 ⁱⁱⁱ —Na1—Na2 ^v	159.73 (13)	O1 ^{xvi} —Al1—Na2 ⁱⁱ	68.08 (15)
O1 ⁱ —Na1—Na2 ^v	59.39 (18)	O1 ^{xix} —Al1—Na2 ⁱⁱ	92.12 (11)
Na2 ^{iv} —Na1—Na2 ^v	112.1 (4)	O1 ^{xvii} —Al1—Na2 ^{xx}	68.08 (15)
Na1 ⁱ —Na1—Cl1	180.0	O1 ^{xviii} —Al1—Na2 ^{xx}	92.12 (11)
O1 ⁱⁱ —Na1—Cl1	89.60 (11)	O1 ^{xvi} —Al1—Na2 ^{xx}	157.64 (7)
O1—Na1—Cl1	89.60 (11)	O1 ^{xix} —Al1—Na2 ^{xx}	53.95 (9)
O1 ⁱⁱⁱ —Na1—Cl1	112.58 (9)	Na2 ⁱⁱ —Al1—Na2 ^{xx}	121.4 (3)
O1 ⁱ —Na1—Cl1	112.58 (9)	O1 ^{xvii} —Al1—Na2 ^{xxi}	92.12 (11)
Na2 ^{iv} —Na1—Cl1	56.0 (2)	O1 ^{xviii} —Al1—Na2 ^{xxi}	157.64 (7)
Na2 ^v —Na1—Cl1	56.0 (2)	O1 ^{xvi} —Al1—Na2 ^{xxi}	53.95 (9)
Na1 ⁱ —Na1—B1 ⁱⁱ	108.69 (11)	O1 ^{xix} —Al1—Na2 ^{xxi}	68.08 (15)
O1 ⁱⁱ —Na1—B1 ⁱⁱ	26.20 (7)	Na2 ⁱⁱ —Al1—Na2 ^{xxi}	103.87 (13)
O1—Na1—B1 ⁱⁱ	153.23 (14)	Na2 ^{xx} —Al1—Na2 ^{xxi}	103.87 (13)
O1 ⁱⁱⁱ —Na1—B1 ⁱⁱ	114.17 (5)	O1 ^{xvii} —Al1—Na2 ^{xxii}	53.95 (9)
O1 ⁱ —Na1—B1 ⁱⁱ	80.59 (6)	O1 ^{xviii} —Al1—Na2 ^{xxii}	68.08 (15)
Na2 ^{iv} —Na1—B1 ⁱⁱ	79.69 (9)	O1 ^{xvi} —Al1—Na2 ^{xxii}	92.12 (11)
Na2 ^v —Na1—B1 ⁱⁱ	79.69 (9)	O1 ^{xix} —A11—Na2 ^{xxii}	157.64 (7)
	× /		、 <i>/</i>

Cl1—Na1—B1 ⁱⁱ	71.31 (11)	Na2 ⁱⁱ —Al1—Na2 ^{xxii}	103.87 (13)
Na1 ⁱ —Na1—B1	108.68 (11)	Na2 ^{xx} —Al1—Na2 ^{xxii}	103.87 (13)
O1 ⁱⁱ —Na1—B1	153.23 (14)	Na2 ^{xxi} —Al1—Na2 ^{xxii}	121.4 (3)
O1—Na1—B1	26.20 (7)	O1 ^{xvii} —Al1—Na1 ^{xxiii}	67.96 (7)
O1 ⁱⁱⁱ —Na1—B1	80.59 (6)	O1 ^{xviii} —Al1—Na1 ^{xxiii}	137.41 (6)
O1 ⁱ —Na1—B1	114.17 (5)	O1 ^{xvi} —Al1—Na1 ^{xxiii}	112.04 (7)
Na2 ^{iv} —Na1—B1	79.69 (9)	O1 ^{xix} —Al1—Na1 ^{xxiii}	42.59 (6)
Na2 ^v —Na1—B1	79.69 (9)	Na2 ⁱⁱ —Al1—Na1 ^{xxiii}	133.95 (9)
Cl1—Na1—B1	71.32 (11)	Na2 ^{xx} —Al1—Na1 ^{xxiii}	46.05 (9)
B1 ⁱⁱ —Na1—B1	142.6 (2)	Na2 ^{xxi} —Al1—Na1 ^{xxiii}	58.13 (7)
Na1 ⁱ —Na1—Na2 ^{vi}	42.07 (17)	Na2 ^{xxii} —Al1—Na1 ^{xxiii}	121.87 (7)
O1 ⁱⁱ —Na1—Na2 ^{vi}	129.7 (2)	O1 ^{xvii} —Al1—Na1 ^{xvii}	35.94 (5)
O1—Na1—Na2 ^{vi}	51.10 (16)	O1 ^{xviii} —Al1—Na1 ^{xvii}	80.49 (8)
O1 ⁱⁱⁱ —Na1—Na2 ^{vi}	60.81 (7)	O1 ^{xvi} —Al1—Na1 ^{xvii}	144.06 (5)
O1 ⁱ —Na1—Na2 ^{vi}	85.28 (12)	O1 ^{xix} —Al1—Na1 ^{xvii}	99.51 (8)
Na2 ^{iv} —Na1—Na2 ^{vi}	114.50 (19)	Na2 ⁱⁱ —Al1—Na1 ^{xvii}	133.95 (9)
Na2 ^v —Na1—Na2 ^{vi}	114.50 (19)	Na2 ^{xx} —A11—Na1 ^{xvii}	46.05 (9)
Cl1—Na1—Na2 ^{vi}	137.93 (17)	$Na2^{xxi}$ All $Na1^{xvii}$	121.87 (7)
$B1^{ii}$ Na1 Na2 ^{vi}	150.8 (2)	Na2 ^{xxii} —Al1—Na1 ^{xvii}	58.13 (7)
B1—Na1—Na2 ^{vi}	66.6 (2)	Na1 ^{xxiii} —Al1—Na1 ^{xvii}	74.52 (12)
Na1 ⁱ —Na1—Na2 ^{vii}	42.07 (17)	O1 ^{xvii} —A11—Na1 ^{xvi}	144.06 (5)
O1 ⁱⁱ —Na1—Na2 ^{vii}	51.10 (16)	$O1^{xviii}$ $A11$ $Na1^{xvi}$	99.51 (8)
O1—Na1—Na2 ^{vii}	129.7 (2)	$O1^{xvi}$ Al1 Na1 ^{xvi}	35.94 (5)
01^{iii} Na1 Na2 ^{vii}	85.28 (12)	$O1^{xix}$ Al1 Na1 ^{xvi}	80.49 (8)
$O1^{i}$ Na1 Na2 ^{vii}	60.81 (7)	Na2 ⁱⁱ —Al1—Na1 ^{xvi}	46.05 (9)
$Na2^{iv}$ $Na1$ $Na2^{vii}$	114.50 (19)	$Na2^{xx}$ All $Na1^{xvi}$	133.95 (9)
Na2 ^v —Na1—Na2 ^{vii}	114.50 (19)	$Na2^{xxi}$ All $Na1^{xvi}$	58.13 (7)
Cl1—Na1—Na2 ^{vii}	137.93 (17)	Na2 ^{xxii} —Al1—Na1 ^{xvi}	121.87 (7)
B1 ⁱⁱ —Na1—Na2 ^{vii}	66.6 (2)	Na1 ^{xxiii} —Al1—Na1 ^{xvi}	105.48 (12)
B1—Na1—Na2 ^{vii}	150.8 (2)	Na1 ^{xvii} —A11—Na1 ^{xvi}	180.00 (12)
Na2 ^{vi} —Na1—Na2 ^{vii}	84.1 (3)	$O1^{xvii}$ All Na 1^{xv}	112.04 (7)
01^{viii} Na2- 01^{ix}	92.3 (2)	$O1^{xviii}$ $A11$ $Na1^{xv}$	42.59 (6)
01^{viii} Na2- 01^{x}	92.3 (2)	$O1^{xvi}$ All Na1 ^{xv}	67.96 (7)
01^{ix} Na2 01^{x}	92.3(2)	$O1^{xix}$ $A11$ $Na1^{xv}$	137 41 (6)
01^{viii} Na2 Na1 ^{xi}	108 59 (7)	$Na2^{ii}$ All $Na1^{xv}$	46 05 (9)
01^{ix} Na2 Na1 ^{xi}	143 23 (13)	$Na2^{xx}$ All $Na1^{xv}$	133 95 (9)
$O1^{x}$ Na2 Na1 ^{xi}	57 95 (8)	$Na2^{xxi}$ All $Na1^{xv}$	121.87(7)
01^{viii} Na2 Na1 ^{xii}	57 95 (8)	Na2 ^{xxii} —Al1—Na1 ^{xv}	58 13 (7)
01^{ix} Na2 Na1 ^{xii}	108 59 (7)	Na1 ^{xxiii} —Al1—Na1 ^{xv}	180.0
$O1^{x}$ Na2 Na1 ^{xii}	143 23 (13)	Na1 ^{xvii} —A11—Na1 ^{xv}	105.48(12)
$Na1^{xi}$ Na2 Na1 ^{xii}	1081(2)	Na 1^{xvi} All Na 1^{xv}	74 52 (12)
$\Omega 1^{\text{viii}}$ Na2 Na1v	143 23 (13)	$B1 \longrightarrow O1 \longrightarrow A11^{xv}$	12859(12)
Ω^{1ix} Na2 Na1v	57.95 (8)	B1Na1	120.39(12) 107.1(2)
Ω^{1x} Na2 Na1	108 59 (7)	$\Delta 11^{xv} - \Omega 1 - Na1$	107.1(2) 117.00(8)
$Na1^{xi}$ Na2 Na1v	108.07(7)	$B1 \longrightarrow 01 \longrightarrow Na1^i$	121 89 (16)
Na1 = Na2 = Na1 $Na1^{xii} = Na2 = Na1^{v}$	108.1(2) 108.1(2)	$A11^{xv} - O1 - Na1^{i}$	108 44 (8)
$01^{\text{viii}} N_2 2 - C11$	100.1(2) 123.62(17)	Na1 = 01 = Na1	22 18 (18)
$O_1 = Na2 = O_1 $	123.02(17) 123.62(17)	$\mathbf{R}_{1} = \mathbf{O}_{1} = \mathbf{N}_{0} 2^{\mathrm{vi}}$	22.10(10)
OI - Na2 - OII	123.02(17)	DI-UI-Na2	119.3 (2)

O1 ^x —Na2—Cl1	123.62 (17)	Al1 ^{xv} —O1—Na2 ^{vi}	91.32 (7)
Na1 ^{xi} —Na2—Cl1	69.2 (2)	Na1—O1—Na2 ^{vi}	83.85 (18)
Na1 ^{xii} —Na2—Cl1	69.2 (2)	Na1 ⁱ —O1—Na2 ^{vi}	62.66 (18)
Na1 ^v —Na2—Cl1	69.2 (2)	B1—O1—Na2 ^v	106.6 (3)
O1 ^{viii} —Na2—O1 ^{xi}	62.95 (7)	All ^{xv} —O1—Na2 ^v	78.04 (18)
O1 ^{ix} —Na2—O1 ^{xi}	151.5 (3)	Na1—O1—Na2 ^v	57.80 (10)
O1 ^x —Na2—O1 ^{xi}	75.84 (7)	Na1 ⁱ —O1—Na2 ^v	72.03 (7)
Na1 ^{xi} —Na2—O1 ^{xi}	48.20 (5)	Na2 ^{vi} —O1—Na2 ^v	127.14 (10)
Na1 ^{xii} —Na2—O1 ^{xi}	71.49 (6)	Na2 ⁱⁱ —Cl1—Na2 ^{iv}	109.5
Na1 ^v —Na2—O1 ^{xi}	150.4 (3)	Na2 ⁱⁱ —Cl1—Na2 ^v	109.5
Cl1—Na2—O1 ^{xi}	83.80 (18)	Na2 ^{iv} —Cl1—Na2 ^v	109.5
O1 ^{viii} —Na2—O1 ^v	151.5 (3)	Na2 ⁱⁱ —Cl1—Na2	109.471 (1)
O1 ^{ix} —Na2—O1 ^v	75.84 (7)	Na2 ^{iv} —Cl1—Na2	109.471 (1)
O1 ^x —Na2—O1 ^v	62.95 (7)	Na2 ^v —Cl1—Na2	109.5
Na1 ^{xi} —Na2—O1 ^v	71.49 (6)	Na2 ⁱⁱ —Cl1—Na1	125.3
Na1 ^{xii} —Na2—O1 ^v	150.4 (3)	Na2 ^{iv} —Cl1—Na1	54.7
Na1 ^v —Na2—O1 ^v	48.20 (5)	Na2 ^v —Cl1—Na1	54.7
Cl1—Na2—O1 ^v	83.80 (18)	Na2—Cl1—Na1	125.3
O1 ^{xi} —Na2—O1 ^v	118.85 (6)	Na2 ⁱⁱ —Cl1—Na1 ^{xi}	125.3
O1 ^{viii} —Na2—O1 ^{xii}	75.84 (7)	Na2 ^{iv} —Cl1—Na1 ^{xi}	54.7
O1 ^{ix} —Na2—O1 ^{xii}	62.95 (7)	Na2 ^v —Cl1—Na1 ^{xi}	125.3
O1 ^x —Na2—O1 ^{xii}	151.5 (3)	Na2—Cl1—Na1 ^{xi}	54.7
Na1 ^{xi} —Na2—O1 ^{xii}	150.4 (3)	Na1—Cl1—Na1 ^{xi}	90.0
Na1 ^{xii} —Na2—O1 ^{xii}	48.20 (5)	Na2 ⁱⁱ —Cl1—Na1 ^{xv}	54.7
Na1 ^v —Na2—O1 ^{xii}	71.49 (6)	Na2 ^{iv} —Cl1—Na1 ^{xv}	54.7
Cl1—Na2—O1 ^{xii}	83.80 (18)	Na2 ^v —Cl1—Na1 ^{xv}	125.3
O1 ^{xi} —Na2—O1 ^{xii}	118.85 (6)	Na2—Cl1—Na1 ^{xv}	125.3
O1 ^v —Na2—O1 ^{xii}	118.85 (6)	Na1—Cl1—Na1 ^{xv}	90.0
O1 ^{viii} —Na2—Al1 ^{xiii}	117.7 (3)	Na1 ^{xi} —Cl1—Na1 ^{xv}	90.0
O1 ^{ix} —Na2—Al11 ^{xiii}	69.15 (13)	Na2 ⁱⁱ —Cl1—Na1 ^{xii}	125.3
O1 ^x —Na2—Al1 ^{xiii}	34.73 (6)	Na2 ^{iv} —Cl1—Na1 ^{xii}	125.3
Na1 ^{xi} —Na2—Al1 ^{xiii}	74.34 (5)	Na2 ^v —Cl1—Na1 ^{xii}	54.7
Na1 ^{xii} —Na2—Al1 ^{xiii}	175.4 (3)	Na2—Cl1—Na1 ^{xii}	54.7
Na1 ^v —Na2—Al1 ^{xiii}	74.34 (5)	Na1—Cl1—Na1 ^{xii}	90.0
Cl1—Na2—Al1 ^{xiii}	115.42 (15)	Na1 ^{xi} —Cl1—Na1 ^{xii}	90.0
O1 ^{xi} —Na2—Al1 ^{xiii}	108.42 (8)	Na1 ^{xv} —Cl1—Na1 ^{xii}	180.0
O1 ^v —Na2—Al1 ^{xiii}	33.89 (4)	Na2 ⁱⁱ —Cl1—Na1 ^v	54.7
O1 ^{xii} —Na2—Al1 ^{xiii}	130.79 (12)	Na2 ^{iv} —Cl1—Na1 ^v	125.3
O1viii—Na2—Al1xiv	69.15 (13)	Na2 ^v —Cl1—Na1 ^v	125.3
O1 ^{ix} —Na2—Al11 ^{xiv}	34.73 (6)	Na2—Cl1—Na1 ^v	54.7
O1 ^x —Na2—Al1 ^{xiv}	117.7 (3)	Na1—Cl1—Na1 ^v	180.0
Na1 ^{xi} —Na2—Al1 ^{xiv}	175.4 (3)	Na1 ^{xi} —Cl1—Na1 ^v	90.0
Na1 ^{xii} —Na2—Al1 ^{xiv}	74.34 (5)	Na1 ^{xv} —Cl1—Na1 ^v	90.0
Na1 ^v —Na2—Al1 ^{xiv}	74.34 (5)	Na1 ^{xii} —Cl1—Na1 ^v	90.0
Cl1—Na2—Al1 ^{xiv}	115.42 (15)	Na2 ⁱⁱ —Cl1—Na1 ^{xvi}	54.7
O1 ^{xi} —Na2—Al1 ^{xiv}	130.79 (12)	Na2 ^{iv} —Cl1—Na1 ^{xvi}	125.3
O1v—Na2—Al1xiv	108.42 (8)	Na2 ^v —Cl1—Na1 ^{xvi}	54.7
O1 ^{xii} —Na2—Al1 ^{xiv}	33.89 (4)	Na2—Cl1—Na1 ^{xvi}	125.3

All ^{xiii} —Na2—All ^{xiv}	102.92 (18)	Na1—Cl1—Na1 ^{xvi}	90.0
01 ^{xv} —B1—O1 ^{xvi}	119.993 (7)	Na1 ^{xi} —Cl1—Na1 ^{xvi}	180.0
O1 ^{xv} —B1—O1	119.993 (7)	Na1 ^{xv} —Cl1—Na1 ^{xvi}	90.0
01 ^{xvi} —B1—O1	119.993 (7)	Na1 ^{xii} —Cl1—Na1 ^{xvi}	90.0
O1 ^{xv} —B1—Na1	87.53 (15)	Na1 ^v —Cl1—Na1 ^{xvi}	90.0
O1 ^{xvi} —B1—Na1	135.5 (3)		

Symmetry codes: (i) -x, z, -y+1/2; (ii) x, -y+1/2, -z+1/2; (iii) -x, -z+1/2, y; (iv) -x+1/2, y, -z+1/2; (v) -x+1/2, -y+1/2, z; (vi) y-1/2, -x+1/2, -z+1/2; (vi) y-1/2, x, z; (vii) -z+1/2, -y+1/2, x+1/2, -z+1/2, (x) + 1/2, z + 1/2, -y+1/2; (xi) -y+1/2, x+1/2, -z+1/2; (xi) -y+1/2, x+1/2, -z+1/2; (xi) -y+1/2, x+1/2, -z+1/2; (xi) -y+1/2, x+1/2, -z+1/2; (xii) -y+1/2, x-1/2, -z+1/2; (xiii) -y+1/2, -z+1/2; (xiiii) -y+1/2, -z+1/2; (xiiii)

Sodium aluminoboracite (kjh230804yoshinoN4_0m_a_1)

Crystal data	
$Na_{3.92}B_4Al_3O_{12}Cl_{0.92}$	Cu K α radiation, $\lambda = 1.54178$ Å
$M_r = 438.91$	Cell parameters from 3423 reflections
Cubic, F23	$\theta = 4.6-74.3^{\circ}$
a = 13.5904(1) Å	$\mu = 6.78 \text{ mm}^{-1}$
V = 2510.13 (6) Å ³	T = 294 K
Z = 8	Plate, colorless
F(000) = 1728	$0.08 \times 0.06 \times 0.04 \text{ mm}$
$D_{\rm x} = 2.323 {\rm ~Mg} {\rm ~m}^{-3}$	
Data collection	
Bruker D8 goniometer	5514 measured reflections
diffractometer	437 independent reflections
Radiation source: sealed tube	355 reflections with $I > 2\sigma(I)$
Detector resolution: 7.3910 pixels mm ⁻¹	$R_{\rm int} = 0.028$
ω scans	$\theta_{\rm max} = 74.3^\circ, \ \theta_{\rm min} = 5.6^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Krause et al., 2015)	$k = -16 \rightarrow 16$
$T_{\min} = 0.66, \ T_{\max} = 0.75$	$l = -16 \rightarrow 14$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 2.0455P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.024$	$(\Delta/\sigma)_{\rm max} = 0.006$
$wR(F^2) = 0.066$	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
S = 1.12	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$
437 reflections	Absolute structure: Flack x determined using
52 parameters	142 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons
1 restraint	<i>al.</i> , 2013).
	Absolute structure parameter: 0.01 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Na1	0.0348 (5)	0.250000	0.250000	0.0429 (12)	0.5

et

Na2	0.5331 (5)	0.750000	0.750000	0.0430 (12)	0.5
Na3	0.3604 (4)	0.3604 (4)	0.3604 (4)	0.015 (2)	0.226 (7)
Na4	0.8610 (4)	0.8610 (4)	0.8610 (4)	0.020 (2)	0.235 (7)
B1	0.1039 (3)	0.1039 (3)	0.1039 (3)	0.0149 (10)	
B2	0.6039 (3)	0.6039 (3)	0.6039 (3)	0.0138 (10)	
Al1	0.25008 (10)	0.000000	0.000000	0.0099 (3)	
01	0.03517 (13)	0.10051 (12)	0.17740 (13)	0.0181 (5)	
O2	0.03517 (13)	0.17741 (13)	0.60039 (12)	0.0182 (5)	
Cl1	0.250000	0.250000	0.250000	0.0359 (9)	0.921 (9)
Cl2	0.750000	0.750000	0.750000	0.0350 (9)	0.921 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.092 (4)	0.0156 (18)	0.0210 (19)	0.000	0.000	-0.0062 (17)
Na2	0.100 (4)	0.0169 (18)	0.0118 (17)	0.000	0.000	-0.0067 (16)
Na3	0.015 (2)	0.015 (2)	0.015 (2)	-0.0008 (19)	-0.0008 (19)	-0.0008 (19)
Na4	0.020(2)	0.020 (2)	0.020(2)	-0.002(2)	-0.002(2)	-0.002(2)
B1	0.0149 (10)	0.0149 (10)	0.0149 (10)	0.0013 (13)	0.0013 (13)	0.0013 (13)
B2	0.0138 (10)	0.0138 (10)	0.0138 (10)	0.0030 (13)	0.0030 (13)	0.0030 (13)
Al1	0.0100 (5)	0.0099 (5)	0.0099 (5)	0.000	0.000	-0.0001 (4)
01	0.0192 (9)	0.0153 (8)	0.0198 (10)	0.0061 (7)	0.0107 (8)	0.0059 (8)
O2	0.0194 (9)	0.0196 (10)	0.0156 (8)	0.0105 (8)	0.0056 (7)	0.0070 (8)
C11	0.0359 (9)	0.0359 (9)	0.0359 (9)	0.000	0.000	0.000
Cl2	0.0350 (9)	0.0350 (9)	0.0350 (9)	0.000	0.000	0.000

Geometric parameters (Å, °)

Na1—Na2 ⁱ	0.922 (6)	Na3—Cl1	2.599 (10)
Na1—O1 ⁱⁱ	2.2585 (18)	Na3—O1 ^{xxi}	2.912 (2)
Na1—O1	2.2585 (18)	Na3—O1 ^{xxii}	2.912 (2)
Na1—O2 ⁱⁱⁱ	2.452 (3)	Na3—O1 ^{vi}	2.912 (2)
Na1—O2 ^{iv}	2.452 (3)	Na3—Al1 ^{xvii}	3.074 (4)
Na1—Na3 ^v	2.556 (5)	Na3—Al1 ^{xxiii}	3.074 (4)
Na1—Na3 ^{vi}	2.556 (5)	Na4—O1 ^{xxiv}	2.480 (6)
Na1—Cl1	2.925 (6)	Na4—O1 ^{xxv}	2.480 (6)
Na1—B1 ⁱⁱ	2.961 (4)	Na4—O1 ^{xxvi}	2.480 (6)
Na1—B1	2.961 (4)	Na4—Cl2	2.612 (10)
Na1—Na4 ^{vii}	3.182 (5)	Na4—O2 ^{xxvii}	2.914 (2)
Na1—Na4 ^{viii}	3.182 (5)	Na4—O2 ^{xxviii}	2.914 (2)
Na2—O2 ^{ix}	2.2602 (18)	Na4—O2 ^{xxix}	2.914 (2)
Na2—O2 ^x	2.2602 (18)	Na4—Al1 ^{xxx}	3.069 (4)
Na2—O1 ^{xi}	2.442 (3)	Na4—Al1 ^{xxxi}	3.069 (4)
Na2—O1 ^{xii}	2.442 (3)	B1—O1 ^{xxxii}	1.3684 (16)
Na2—Na4 ^{xiii}	2.573 (5)	B1—O1 ^{xxxiii}	1.3684 (16)
Na2—Na4 ^{xiv}	2.573 (5)	B1—O1	1.3684 (16)
Na2—Cl2	2.948 (6)	B2—O2 ^{xxxiv}	1.3685 (16)
Na2—B2 ^{xv}	2.969 (4)	B2—O2 ^{xxxv}	1.3684 (16)

Na2—B2	2.969 (4)	B2—O2 ^x	1.3684 (16)
Na2—Na3 ^{xvi}	3.164 (5)	Al1—O2 ^{xxxvi}	1.7495 (18)
Na2—Na3 ^{xvii}	3.164 (5)	Al1—O2 ^{xxxvii}	1.7495 (18)
Na3—O2 ^{xviii}	2.488 (6)	Al1—O1 ^{xxxviii}	1.7522 (18)
Na3—O2 ^{xix}	2.488 (6)	Al1—O1 ^{xxxii}	1.7522 (18)
Na3—O2 ^{xx}	2.488 (6)		
Na2 ⁱ —Na1—O1 ⁱⁱ	90.14 (17)	Cl2—Na4—O2 ^{xxix}	83.7 (2)
Na2 ⁱ —Na1—O1	90.14 (17)	O2 ^{xxvii} —Na4—O2 ^{xxix}	118.80 (8)
O1 ⁱⁱ —Na1—O1	179.7 (3)	O2 ^{xxviii} —Na4—O2 ^{xxix}	118.80 (8)
Na2 ⁱ —Na1—O2 ⁱⁱⁱ	67.19 (14)	O1 ^{xxiv} —Na4—Al1 ^{xxx}	118.0 (4)
O1 ⁱⁱ —Na1—O2 ⁱⁱⁱ	90.07 (9)	O1 ^{xxv} —Na4—Al1 ^{xxx}	69.23 (15)
O1—Na1—O2 ⁱⁱⁱ	90.04 (9)	O1 ^{xxvi} —Na4—Al1 ^{xxx}	34.80 (7)
Na2 ⁱ —Na1—O2 ^{iv}	67.19 (14)	Na2 ^{xxxix} —Na4—Al1 ^{xxx}	74.23 (8)
O1 ⁱⁱ —Na1—O2 ^{iv}	90.04 (9)	Na2 ^{xiv} —Na4—Al1 ^{xxx}	74.23 (8)
O1—Na1—O2 ^{iv}	90.07 (9)	Na2 ^{xl} —Na4—Al1 ^{xxx}	175.4 (4)
O2 ⁱⁱⁱ —Na1—O2 ^{iv}	134.4 (3)	Cl2—Na4—Al1 ^{xxx}	115.28 (18)
Na2 ⁱ —Na1—Na3 ^v	123.9 (3)	O2 ^{xxvii} —Na4—Al1 ^{xxx}	33.88 (5)
O1 ⁱⁱ —Na1—Na3 ^v	74.16 (9)	O2 ^{xxviii} —Na4—Al1 ^{xxx}	130.86 (15)
O1—Na1—Na3 ^v	105.68 (13)	O2 ^{xxix} —Na4—Al1 ^{xxx}	108.51 (9)
O2 ⁱⁱⁱ —Na1—Na3 ^v	59.5 (2)	O1 ^{xxiv} —Na4—Al1 ^{xxxi}	34.80 (7)
O2 ^{iv} —Na1—Na3 ^v	159.92 (19)	O1 ^{xxv} —Na4—Al1 ^{xxxi}	118.0 (4)
Na2 ⁱ —Na1—Na3 ^{vi}	123.9 (3)	O1 ^{xxvi} —Na4—Al1 ^{xxxi}	69.23 (15)
O1 ⁱⁱ —Na1—Na3 ^{vi}	105.68 (13)	Na2 ^{xxxix} —Na4—Al1 ^{xxxi}	175.4 (4)
O1—Na1—Na3 ^{vi}	74.16 (9)	Na2 ^{xiv} —Na4—Al11 ^{xxxi}	74.23 (8)
O2 ⁱⁱⁱ —Na1—Na3 ^{vi}	159.92 (19)	Na2 ^{xl} —Na4—Al1 ^{xxxi}	74.23 (8)
O2 ^{iv} —Na1—Na3 ^{vi}	59.5 (2)	Cl2—Na4—Al1 ^{xxxi}	115.28 (18)
Na3 ^v —Na1—Na3 ^{vi}	112.2 (5)	O2 ^{xxvii} —Na4—Al11 ^{xxxi}	130.86 (15)
Na2 ⁱ —Na1—Cl1	180.0	O2 ^{xxviii} —Na4—Al1 ^{xxxi}	108.51 (9)
O1 ⁱⁱ —Na1—Cl1	89.86 (17)	O2 ^{xxix} —Na4—Al1 ^{xxxi}	33.88 (5)
O1—Na1—Cl1	89.86 (17)	All ^{xxx} —Na4—All ^{xxxi}	103.1 (2)
O2 ⁱⁱⁱ —Na1—Cl1	112.81 (14)	O1 ^{xxxii} —B1—O1 ^{xxxiii}	119.995 (7)
O2 ^{iv} —Na1—Cl1	112.81 (14)	O1 ^{xxxii} —B1—O1	119.995 (7)
Na3 ^v —Na1—Cl1	56.1 (3)	O1 ^{xxxiii} —B1—O1	119.992 (7)
Na3 ^{vi} —Na1—Cl1	56.1 (3)	O1 ^{xxxii} —B1—Na1 ^{xxxii}	46.89 (18)
Na2 ⁱ —Na1—B1 ⁱⁱ	108.51 (15)	O1 ^{xxxiii} —B1—Na1 ^{xxxii}	135.4 (3)
O1 ⁱⁱ —Na1—B1 ⁱⁱ	26.25 (9)	O1—B1—Na1 ^{xxxii}	87.58 (17)
O1—Na1—B1 ⁱⁱ	153.5 (2)	O1 ^{xxxii} —B1—Na1 ^{xxxiii}	87.58 (17)
O2 ⁱⁱⁱ —Na1—B1 ⁱⁱ	114.16 (5)	O1 ^{xxxiii} —B1—Na1 ^{xxxiii}	46.89 (18)
O2 ^{iv} —Na1—B1 ⁱⁱ	80.61 (6)	O1—B1—Na1 ^{xxxiii}	135.4 (3)
Na3 ^v —Na1—B1 ⁱⁱ	79.81 (13)	Na1 ^{xxxii} —B1—Na1 ^{xxxiii}	88.6 (2)
Na3 ^{vi} —Na1—B1 ⁱⁱ	79.81 (13)	O1 ^{xxxii} —B1—Na1	135.4 (3)
Cl1—Na1—B1 ⁱⁱ	71.49 (15)	O1 ^{xxxiii} —B1—Na1	87.58 (17)
Na2 ⁱ —Na1—B1	108.51 (15)	O1—B1—Na1	46.89 (18)
O1 ⁱⁱ —Na1—B1	153.5 (2)	Na1 ^{xxxii} —B1—Na1	88.6 (2)
O1—Na1—B1	26.25 (9)	Na1 ^{xxxiii} —B1—Na1	88.6 (2)
O2 ⁱⁱⁱ —Na1—B1	80.61 (6)	$O2^{xxxiv}$ —B2— $O2^{xxxv}$	119.993 (8)
O2 ^{iv} —Na1—B1	114.16 (5)	$O2^{xxxiv}$ —B2— $O2^{x}$	119.994 (8)

Na3 ^v —Na1—B1	79.81 (13)	$O2^{xxxv}$ —B2— $O2^{x}$	119.995 (8)
Na3 ^{vi} —Na1—B1	79.81 (13)	O2 ^{xxxiv} —B2—Na2	135.7 (3)
Cl1—Na1—B1	71.49 (15)	O2 ^{xxxv} —B2—Na2	87.51 (17)
B1 ⁱⁱ —Na1—B1	143.0 (3)	O2 ^x —B2—Na2	46.65 (18)
Na2 ⁱ —Na1—Na4 ^{vii}	42.1 (2)	O2 ^{xxxiv} —B2—Na2 ^{xxxiii}	46.65 (18)
O1 ⁱⁱ —Na1—Na4 ^{vii}	129.4 (3)	O2 ^{xxxv} —B2—Na2 ^{xxxiii}	135.7 (3)
O1—Na1—Na4 ^{vii}	50.85 (19)	O2 ^x —B2—Na2 ^{xxxiii}	87.51 (17)
O2 ⁱⁱⁱ —Na1—Na4 ^{vii}	60.65 (11)	Na2—B2—Na2 ^{xxxiii}	89.2 (2)
O2 ^{iv} —Na1—Na4 ^{vii}	85.09 (18)	O2xxxiv—B2—Na2xxxii	87.51 (17)
Na3 ^v —Na1—Na4 ^{vii}	114.45 (17)	O2 ^{xxxv} —B2—Na2 ^{xxxii}	46.65 (18)
Na3 ^{vi} —Na1—Na4 ^{vii}	114.45 (17)	O2 ^x —B2—Na2 ^{xxxii}	135.7 (3)
Cl1—Na1—Na4 ^{vii}	137.9 (2)	Na2—B2—Na2 ^{xxxii}	89.2 (2)
B1 ⁱⁱ —Na1—Na4 ^{vii}	150.6 (3)	Na2xxxiii—B2—Na2xxxii	89.2 (2)
B1—Na1—Na4 ^{vii}	66.4 (2)	O2 ^{xxxvi} —Al1—O2 ^{xxxvii}	111.44 (14)
Na2 ⁱ —Na1—Na4 ^{viii}	42.1 (2)	O2 ^{xxxvi} —Al1—O1 ^{xxxviii}	108.50 (8)
O1 ⁱⁱ —Na1—Na4 ^{viii}	50.85 (19)	O2 ^{xxxvii} —Al1—O1 ^{xxxviii}	108.53 (8)
O1—Na1—Na4 ^{viii}	129.4 (3)	$O2^{xxxvi}$ Al1 $O1^{xxxii}$	108.53 (8)
Ω^{2iii} Na1 Na4 ^{viii}	85.09 (18)	$\Omega^{2xxxvii}$ Al1 Ω^{1xxxii}	108.50 (8)
$O2^{iv}$ Na1 Na4 ^{viii}	60.65 (11)	$O1^{xxxviii}$ $A11 - O1^{xxxii}$	111.37 (14)
Na3 ^v —Na1—Na4 ^{viii}	114.45 (17)	O^{2xxxvi} All Na4 ^{xli}	157.72 (8)
Na3 ^{vi} —Na1—Na4 ^{viii}	114.45 (17)	$O2^{xxxvii}$ All Na4 ^{xli}	68.19 (18)
Cl1—Na1—Na4 ^{viii}	137.9 (2)	$01^{xxxviii}$ Al1 Na4 ^{xli}	92.00 (14)
$B1^{ii}$ Na1 Na4 ^{viii}	66 4 (2)	01^{xxxii} $A11$ $Na4^{xli}$	53 90 (9)
B1—Na1—Na4 ^{viii}	150.6.(3)	Ω^{2xxxvi} All Na4 ^{xlii}	68 19 (18)
$Na4^{vii}$ $Na1$ $Na4^{viii}$	84 1 (4)	$\Omega^{2^{xxxvii}}$ All Na4 ^{xlii}	157 72 (8)
Na1 ^{xii} —Na2— Ω 2 ^{ix}	90.71 (17)	$01^{xxxviii}$ $A11$ $Na4^{xlii}$	53 90 (9)
$Na1^{xii} Na2 O2$	90.71 (17)	$O1^{xxxii}$ $A11$ Na 4^{xlii}	92.00(14)
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$	178 6 (3)	$N_2 A^{xli} = A_{11} = N_2 A^{xlii}$	121.00(14)
$N_2 1^{xii} N_2 2 \Omega 1^{xi}$	67.66(14)	$O2^{xxxvi} A11 Na3^{ii}$	54.03(9)
Ω^{2ix} N ₂ 2 Ω^{1xi}	07.00(14)	$O2^{xxxvii}$ All Na3 ⁱⁱ	97.03(9)
$O_2^x = N_2^2 = O_1^{xi}$	90.25 (9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{32.18} (13)
$N_2 = N_2 = 01$	90.29 (9) 67.66 (15)	O1 A11 Na3i	137.01(3)
Ω^{2ix} No2 Ω^{1xii}	07.00(13)	$N_{1} = A_{11} = N_{1}a_{3}$	103.88(11)
$O_2 - N_{a2} - O_1$	90.29(9)	Na4 = AII = Na3 $Na4 \times 11 = Na3$	103.88(11) 103.88(11)
$O_2 = Na_2 = O_1$	90.23(9) 125.2(2)	1 Na4 - All - Na3	103.86(11) 02.18(12)
$V_1 - Na2 - V_1$	133.3(3) 124.0(2)	$O_2 - A_1 - Na_3$	92.10(13)
$Na1^{m}$ $Na2$ $Na4^{m}$	124.0(5) 105.22(14)	O_{1} $A_{11} = Na_{2}$	54.05(9)
O_2^{x} Na2—Na4 ^{xxx}	105.55(14)	O_{1}	0/.99(1/)
O_2^{-} Na2-Na4 ⁻	/3.84 (9)	VI^{AAA} All Na^{AAA}	157.01(8)
$O1^{x_1}$ Na2 Na4 ^{x_11}	159.0 (2)	$N_{4}^{A} - A_{11} - N_{3}^{A}$	103.88 (11)
$OI^{\text{A}\text{II}}$ Na2—Na4 ^A	59.2 (2)	$Na4^{AII} - Na3^{AII}$	103.88 (11)
$Na1^{AI} - Na2 - Na4^{AIV}$	124.0 (3)	$Na3^{n}$ $All Na3^{n}$	121.6 (4)
O_2^{II} Na2—Na4 ^{AIV}	/3.84 (9)	$O2^{\text{ANV}}$ All N_{2}^{ANV}	68.10 (10)
$O2^{x}$ —Na2—Na4 ^{xiv}	105.33 (14)	$O2^{AAVII}$ All $Na2^{AIV}$	111.93 (11)
$O1^{24}$ Na2-Na4 ^{x1y}	59.2 (2)	O_{1}^{AAVIII} All N_{1}^{AIV}	42.50 (8)
$V1^{xu}$ Na2 Na4 ^{xu}	159.6 (2)	VI^{AAH} All NI^{2AHV}	137.46 (9)
$Na4^{xin}$ $Na2$ $Na4^{xiv}$	111.9 (5)	$Na4^{xii}$ All $Na2^{xiiv}$	133.72 (12)
Na1 ^{xii} —Na2—Cl2	180.0	Na4 ^{xin} —All—Na2 ^{xiv}	46.26 (12)
O2 ^{1x} —Na2—Cl2	89.29 (17)	Na3 ⁿ —Al1—Na2 ^{xliv}	122.08 (10)

O2 ^x —Na2—Cl2	89.29 (17)	Na3 ^{xliii} —Al1—Na2 ^{xliv}	57.94 (10)
O1 ^{xi} —Na2—Cl2	112.34 (14)	O2 ^{xxxvi} —Al1—Na2 ^{xlv}	36.03 (6)
O1 ^{xii} —Na2—Cl2	112.34 (14)	O2 ^{xxxvii} —Al1—Na2 ^{xlv}	144.01 (8)
Na4 ^{xiii} —Na2—Cl2	56.0 (3)	O1 ^{xxxviii} —Al1—Na2 ^{xlv}	99.67 (11)
Na4 ^{xiv} —Na2—Cl2	56.0 (3)	O1 ^{xxxii} —Al1—Na2 ^{xlv}	80.31 (10)
Na1 ^{xii} —Na2—B2 ^{xv}	108.90 (15)	Na4 ^{xli} —Al1—Na2 ^{xlv}	133.72 (12)
O2 ^{ix} —Na2—B2 ^{xv}	26.12 (9)	Na4 ^{xlii} —Al1—Na2 ^{xlv}	46.26 (12)
O2 ^x —Na2—B2 ^{xv}	152.8 (2)	Na3 ⁱⁱ —Al1—Na2 ^{xlv}	57.94 (10)
O1 ^{xi} —Na2—B2 ^{xv}	114.17 (5)	Na3 ^{xliii} —Al1—Na2 ^{xlv}	122.08 (10)
$O1^{xii}$ —Na2—B2 ^{xv}	80.61 (6)	Na2 ^{xliv} —A11—Na2 ^{xlv}	74.9 (2)
$Na4^{xiii}$ $Na2 B2^{xv}$	79 56 (13)	Ω^{2xxxvi} All Na 2^{xlvi}	144 01 (8)
$Na4^{xiv}$ $Na2 B2^{xv}$	79 56 (13)	$O^{2xxxvii}$ All Na 2xlvi	36.03 (6)
C12—Na2—B2 ^{xv}	71.10(15)	$01^{xxxviii}$ All Na2 ^{xlvi}	80.31 (10)
$Na1^{xii}$ Na2 B2	108.90(15)	01^{xxxii} $A11$ $Na2^{xlvi}$	99 67 (11)
Ω^{2ix} Na ² B ²	152.9 (2)	$Na4^{xli}$ All $Na2^{xlvi}$	46 26 (12)
O^{2x} Na ² B ²	26 12 (9)	$Na4^{xlii}$ All $Na2^{xlvi}$	13372(12)
$O_2 = N_{a2} = D_2$ $O_1^{xi} = N_{a2} = B_2$	20.12 (<i>J</i>) 80.61 (6)	N_{2}^{ii} All N_{2}^{2}	133.72(12) 122.08(10)
O1 - Na2 - D2 $O1^{xii} - Na2 - D2$	114 17 (5)	$N_{0}2^{xliii}$ All $N_{0}2^{xlvi}$	122.08(10)
$M_1 = M_2 = M_2$	70.56(12)	Na 2xliv A11 Na 2xlvi	37.94(10)
1 a 4 - 1 a 2 - b 2	79.50 (15)	Na2 —AII—Na2	103.1(2)
Na4 $Ma2$ $B2$	79.30 (13)	$Na2^{m} - AII - Na2^{m}$	1/9.90 (4)
C12—INa2—D2	/1.10(13)	$O_2^{\text{AII}} = A_{II} = N_a 2^{\text{AIII}}$	(111.95(11))
BZ^{**} —INAZ—BZ	142.2(3)	O_2 All N_2 All N_2	68.10(10)
$Na1^{AA}$ $Na2$ $Na3^{AA}$	42.1(2)	$O1^{XXVIII}$ All $Na2^{XVIII}$	137.40 (9)
$O2^{n}$ Na2-Na3 ^{NI}	130.0 (3)	OI^{AAA} All $Na2^{AVA}$	42.50 (8)
$O2^{x}$ —Na2—Na3 ^{xvi}	51.37 (19)	$Na4^{xii}$ All $Na2^{xivii}$	46.26 (12)
$O1^{x_1}$ Na2 Na3 ^{x_1}	61.00 (11)	Na4 ^{xin} —All—Na2 ^{xin}	133.72 (12)
O1 ^{xn} —Na2—Na3 ^{xvi}	85.47 (18)	Na ³ⁿ —All—Na ^{2xivii}	57.94 (10)
Na4 ^{xm} —Na2—Na3 ^{xvi}	114.53 (18)	Na3 ^{xim} —Al1—Na2 ^{xivi}	122.08 (10)
$Na4^{xiv}$ $Na2$ $Na3^{xvi}$	114.53 (18)	$Na2^{xiv}$ All $Na2^{xivi}$	179.96 (12)
Cl2—Na2—Na3 ^{xvi}	137.9 (2)	$Na2^{xlv}$ —Al1— $Na2^{xlvn}$	105.1 (2)
B2 ^{xv} —Na2—Na3 ^{xvi}	151.0 (3)	Na2 ^{xlvi} —Al1—Na2 ^{xlvii}	74.9 (2)
B2—Na2—Na3 ^{xvi}	66.8 (2)	B1—O1—Al1 ^{xxxiii}	128.62 (14)
Na1 ^{xii} —Na2—Na3 ^{xvii}	42.1 (2)	B1—O1—Na1	106.9 (3)
O2 ^{ix} —Na2—Na3 ^{xvii}	51.37 (18)	All ^{xxxiii} —O1—Na1	117.02 (10)
O2 ^x —Na2—Na3 ^{xvii}	130.0 (3)	B1—O1—Na2 ⁱ	121.75 (19)
O1 ^{xi} —Na2—Na3 ^{xvii}	85.47 (18)	All ^{xxxiii} —O1—Na2 ⁱ	108.49 (10)
O1 ^{xii} —Na2—Na3 ^{xvii}	61.00 (11)	Na1—O1—Na2 ⁱ	22.20 (14)
Na4 ^{xiii} —Na2—Na3 ^{xvii}	114.53 (18)	B1—O1—Na4 ^{vii}	119.4 (2)
Na4 ^{xiv} —Na2—Na3 ^{xvii}	114.53 (18)	All ^{xxxiii} —O1—Na4 ^{vii}	91.30 (7)
Cl2—Na2—Na3 ^{xvii}	137.9 (2)	Na1—O1—Na4 ^{vii}	84.2 (2)
B2 ^{xv} —Na2—Na3 ^{xvii}	66.8 (2)	Na2 ⁱ —O1—Na4 ^{vii}	63.0 (2)
B2—Na2—Na3 ^{xvii}	151.0 (3)	B1—O1—Na3 ^{vi}	106.5 (3)
Na3 ^{xvi} —Na2—Na3 ^{xvii}	84.2 (4)	Al1 ^{xxxiii} —O1—Na3 ^{vi}	78.1 (2)
O2 ^{xviii} —Na3—O2 ^{xix}	92.1 (3)	Na1—O1—Na3 ^{vi}	57.59 (12)
O2 ^{xviii} —Na3—O2 ^{xx}	92.1 (3)	Na2 ⁱ —O1—Na3 ^{vi}	71.84 (11)
O2 ^{xix} —Na3—O2 ^{xx}	92.1 (3)	Na4 ^{vii} —O1—Na3 ^{vi}	127.3 (2)
O2 ^{xviii} —Na3—Na1 ^{vi}	143.25 (16)	B2 ^{xlviii} —O2—Al1 ^{xxii}	128.66 (14)
O2 ^{xix} —Na3—Na1 ^{vi}	108.65 (10)	B2 ^{xlviii} —O2—Na2 ^{xlviii}	107.2 (3)

O2 ^{xx} —Na3—Na1 ^{vi}	58.15 (12)	Al11xxii-O2-Na2xlviii	116.89 (10)
O2 ^{xviii} —Na3—Na1 ^{xxi}	58.15 (12)	B2 ^{xlviii} —O2—Na1 ^{xlix}	121.99 (19)
O2 ^{xix} —Na3—Na1 ^{xxi}	143.26 (16)	Al11xxii-O2-Na1xlix	108.31 (10)
O2 ^{xx} —Na3—Na1 ^{xxi}	108.65 (10)	Na2 ^{xlviii} —O2—Na1 ^{xlix}	22.10 (14)
Na1 ^{vi} —Na3—Na1 ^{xxi}	108.1 (3)	B2 ^{xlviii} —O2—Na3 ¹	119.5 (2)
O2 ^{xviii} —Na3—Na1 ^{xxii}	108.65 (10)	Al11xxii - O2-Na31	91.29 (7)
O2 ^{xix} —Na3—Na1 ^{xxii}	58.15 (12)	Na2 ^{xlviii} —O2—Na3 ¹	83.4 (2)
O2 ^{xx} —Na3—Na1 ^{xxii}	143.25 (16)	Na1 ^{xlix} —O2—Na3 ¹	62.3 (2)
Na1 ^{vi} —Na3—Na1 ^{xxii}	108.1 (3)	B2 ^{xlviii} —O2—Na4 ^{li}	106.8 (3)
Na1 ^{xxi} —Na3—Na1 ^{xxii}	108.1 (3)	Al11 ^{xxii} —O2—Na4 ^{li}	77.9 (2)
O2 ^{xviii} —Na3—Cl1	123.8 (2)	Na2 ^{xlviii} —O2—Na4 ^{li}	58.00 (12)
O2 ^{xix} —Na3—Cl1	123.8 (2)	Na1 ^{xlix} —O2—Na4 ^{li}	72.17 (10)
O2 ^{xx} —Na3—Cl1	123.8 (2)	Na3 ¹ —O2—Na4 ^{li}	126.9 (2)
Na1 ^{vi} —Na3—Cl1	69.1 (3)	Na3—Cl1—Na3 ⁱⁱ	109.472 (1)
Na1 ^{xxi} —Na3—Cl1	69.1 (3)	Na3—Cl1—Na3 ^v	109.5
Na1 ^{xxii} —Na3—Cl1	69.1 (3)	Na3 ⁱⁱ —Cl1—Na3 ^v	109.5
O2 ^{xviii} —Na3—O1 ^{xxi}	75.84 (8)	Na3—Cl1—Na3 ^{vi}	109.5
O2 ^{xix} —Na3—O1 ^{xxi}	151.3 (4)	Na3 ⁱⁱ —Cl1—Na3 ^{vi}	109.5
O2 ^{xx} —Na3—O1 ^{xxi}	62.94 (6)	Na3v—Cl1—Na3vi	109.5
Na1 ^{vi} —Na3—O1 ^{xxi}	71.52 (7)	Na3—Cl1—Na1 ^{vi}	54.7
Na1 ^{xxi} —Na3—O1 ^{xxi}	48.25 (5)	Na3 ⁱⁱ —Cl1—Na1 ^{vi}	54.736 (1)
Na1 ^{xxii} —Na3—O1 ^{xxi}	150.4 (4)	Na3v—Cl1—Na1vi	125.3
Cl1—Na3—O1 ^{xxi}	83.9 (2)	Na3 ^{vi} —C11—Na1 ^{vi}	125.3
O2 ^{xviii} —Na3—O1 ^{xxii}	62.94 (6)	Na3—Cl1—Na1 ^{xxii}	54.7
O2 ^{xix} —Na3—O1 ^{xxii}	75.84 (8)	Na3 ⁱⁱ —Cl1—Na1 ^{xxii}	125.3
O2 ^{xx} —Na3—O1 ^{xxii}	151.3 (4)	Na3v—Cl1—Na1xxii	54.7
Na1 ^{vi} —Na3—O1 ^{xxii}	150.4 (4)	Na3 ^{vi} —C11—Na1 ^{xxii}	125.3
Na1 ^{xxi} —Na3—O1 ^{xxii}	71.53 (7)	Na1 ^{vi} —Cl1—Na1 ^{xxii}	90.0
Na1 ^{xxii} —Na3—O1 ^{xxii}	48.25 (5)	Na3—Cl1—Na1 ^{xxxiii}	125.3
Cl1—Na3—O1 ^{xxii}	83.9 (2)	Na3 ⁱⁱ —Cl1—Na1 ^{xxxiii}	54.7
O1 ^{xxi} —Na3—O1 ^{xxii}	118.89 (7)	Na3v—Cl1—Na1xxxiii	54.7
O2 ^{xviii} —Na3—O1 ^{vi}	151.3 (4)	Na3 ^{vi} —Cl1—Na1 ^{xxxiii}	125.3
O2 ^{xix} —Na3—O1 ^{vi}	62.94 (6)	Na1 ^{vi} —Cl1—Na1 ^{xxxiii}	90.0
O2 ^{xx} —Na3—O1 ^{vi}	75.84 (8)	Na1 ^{xxii} —Cl1—Na1 ^{xxxiii}	90.0
Na1 ^{vi} —Na3—O1 ^{vi}	48.25 (5)	Na3—Cl1—Na1 ^{xxi}	54.7
Na1 ^{xxi} —Na3—O1 ^{vi}	150.4 (4)	Na3 ⁱⁱ —Cl1—Na1 ^{xxi}	125.3
Na1 ^{xxii} —Na3—O1 ^{vi}	71.52 (7)	Na3v—Cl1—Na1xxi	125.3
Cl1—Na3—O1 ^{vi}	83.9 (2)	Na3 ^{vi} —Cl1—Na1 ^{xxi}	54.7
O1 ^{xxi} —Na3—O1 ^{vi}	118.88 (7)	Na1 ^{vi} —Cl1—Na1 ^{xxi}	90.0
O1 ^{xxii} —Na3—O1 ^{vi}	118.88 (7)	Na1 ^{xxii} —Cl1—Na1 ^{xxi}	90.0
O2 ^{xviii} —Na3—Al1 ^{xvii}	34.68 (7)	Na1 ^{xxxiii} —Cl1—Na1 ^{xxi}	180.0
O2 ^{xix} —Na3—Al1 ^{xvii}	69.06 (15)	Na3—Cl1—Na1 ^{xxxii}	125.3
O2 ^{xx} —Na3—Al11 ^{xvii}	117.4 (4)	Na3 ⁱⁱ —Cl1—Na1 ^{xxxii}	54.7
Na1 ^{vi} —Na3—Al11 ^{xvii}	175.3 (4)	Na3v—Cl1—Na1xxxii	125.3
Na1 ^{xxi} —Na3—A11 ^{xvii}	74.45 (8)	Na3 ^{vi} —Cl1—Na1 ^{xxxii}	54.7
Na1 ^{xxii} —Na3—Al1 ^{xvii}	74.45 (8)	Na1 ^{vi} —Cl1—Na1 ^{xxxii}	90.0
Cl1—Na3—Al11xvii	115.54 (18)	Na1 ^{xxii} —Cl1—Na1 ^{xxxii}	180.0
O1 ^{xxi} —Na3—Al1 ^{xvii}	108.38 (9)	Na1 ^{xxxiii} —Cl1—Na1 ^{xxxii}	90.0

O1 ^{xxii} —Na3—Al1 ^{xvii}	33.91 (5)	Na1 ^{xxi} —Cl1—Na1 ^{xxxii}	90.0
O1 ^{vi} —Na3—Al1 ^{xvii}	130.71 (15)	Na3—Cl1—Na1	125.3
O2 ^{xviii} —Na3—Al1 ^{xxiii}	117.4 (4)	Na3 ⁱⁱ —Cl1—Na1	125.264 (1)
O2 ^{xix} —Na3—Al1 ^{xxiii}	34.68 (7)	Na3 ^v —Cl1—Na1	54.7
O2 ^{xx} —Na3—Al1 ^{xxiii}	69.06 (15)	Na3 ^{vi} —Cl1—Na1	54.7
Na1 ^{vi} —Na3—Al1 ^{xxiii}	74.45 (8)	Na1 ^{vi} —Cl1—Na1	180.0
Na1 ^{xxi} —Na3—Al1 ^{xxiii}	175.3 (4)	Na1 ^{xxii} —Cl1—Na1	90.0
Na1 ^{xxii} —Na3—Al1 ^{xxiii}	74.45 (8)	Na1 ^{xxxiii} —Cl1—Na1	90.0
Cl1—Na3—Al1 ^{xxiii}	115.54 (18)	Na1 ^{xxi} —Cl1—Na1	90.0
O1 ^{xxi} —Na3—A11 ^{xxiii}	130.71 (14)	Na1 ^{xxxii} —Cl1—Na1	90.0
O1 ^{xxii} —Na3—A11 ^{xxiii}	108.38 (10)	Na4 ^{xiv} —Cl2—Na4 ^{xv}	109.472 (1)
$O1^{vi}$ —Na3—A11 ^{xxiii}	33.91 (5)	Na4 ^{xiv} —Cl2—Na4 ^{xiii}	109.470 (1)
All ^{xvii} —Na3—All ^{xxiii}	102.8 (2)	Na4 ^{xv} —Cl2—Na4 ^{xiii}	109.472 (1)
$O1^{xxiv}$ Na4 $O1^{xxv}$	92.5 (3)	Na4 ^{xiv} —Cl2—Na4	109.5
01^{xxiv} Na4 01^{xxvi}	92.5 (3)	$Na4^{xv}$ —Cl2—Na4	109.470(2)
$O1^{xxv}$ Na4 $O1^{xxvi}$	92.5 (3)	Na4 ^{xiii} —Cl2—Na4	109.472(1)
01^{xxiv} Na4 Na 2^{xxxix}	143.20(16)	$Na4^{xiv}$ Cl2 $Na2^{xxxii}$	54 7
01^{xxv} Na4 Na2 Na2	57 75 (12)	$Na4^{xv}$ Cl2 $Na2^{xxxii}$	54.7
01^{xxvi} Na4 Na2	108 55 (10)	$Na4^{xiii}$ $(12 Na2^{xxxii})$	125,264,(2)
01^{xxiv} Na4 Na2	108.55(10)	N_{24} C_{12} N_{22} N_{22} N_{22}	125.204 (2)
01^{xxv} Na4 Na2 ^{xiv}	100.55(10) 143.20(16)	$N_2 4^{xiv}$ $C_1 2^{-1} N_2 2^{xxxix}$	125.3
01^{xxvi} Na4 Na2	57 75 (12)	$N_2 4^{xv} - C_1^{12} - N_2^{2xxxix}$	125.3 125.264(1)
Na^{2xxxix} Na^{4} Na^{2xiv}	108.2(3)	$Na4^{xiii}$ $(12 - Na2^{xxxix})$	54 736 (1)
$\frac{1}{1} \frac{1}{1} \frac{1}$	57.75(12)	$N_{24} = C_{12} = N_{22}$	54.750 (1)
$O1 \xrightarrow{\text{IN}a4} \text{IN}a2$	10855(10)	$N_{a}2^{xxxii}$ C12 $N_{a}2^{xxxix}$	180.0
O1 - Na4 - Na2 $O1^{xxyi} - Na4 - Na2^{xl}$	108.33(10) 143.20(16)	$Na \Delta xiv C12 Na \Delta xxxiii$	125,264,(1)
$N_{a}2^{xxxix} N_{a}4 N_{a}2^{xl}$	143.20(10) 108.2(3)	$N_{2}A^{xy} = C_{12} = N_{2}A^{xxxiii}$	123.204(1)
$Na2^{xiv} Na4 Na2^{xl}$	108.2(3)	Na4 = C12 = Na2	54.750 (1)
1 Maz = 1 Maz	108.2(3) 123.5(2)	Na4 - C12 - Na2	$\frac{1}{25}$
$O_1 = Na4 = Cl_2$	123.3(2) 123.5(2)	Na2xxxii C12 $Na2xxxiii$	123.204(1)
O1 - Na4 - C12	123.3(2) 122.5(2)	Na2 - C12 - Na2	90.0
$V1^{max}$ Na4— $C12$	125.5(2)	Na2 $C12$ $Na2$	90.0
$Na2^{max} Na4 Cl2$	(9.3(3))	$INa4^{xxy}$ Cl_2 $INa2^{xx}$	34.730 (1) 125.2
$Na2^{m}$ $Na4$ $Cl2$	(9.3(3))	$Na4^{m} - C12 - Na2^{m}$	125.5
$Na2^{}Na4^{}Cl2$	09.5 (5)	$Na4$ Cl_2 $Na2^{xl}$	125.204(1)
$O1^{\text{ANY}}$ Na4 $O2^{\text{ANY}}$	151.8 (4)	Na4 - Cl2 - Na2	54.750(1)
$O1^{xxyi}$ Na4 $O2^{xxyii}$	/5.89 (8) (2.08 (6)	$Na2^{mm} - Cl2 - Na2^{m}$	90.0
$V_1 = Na4 = 02^{AAAA}$	02.98 (0)	$Na2^{max} - C12 - Na2^{max}$	90.0
$Na2^{AAAA} = Na4 = O2^{AAAA}$	48.10 (5)	$Na2^{AAAA} - CI2 - Na2^{AA}$	180.0
$Na2^{AV} - Na4 - O2^{AVH}$	/1.42 (/)	$Na4^{AV}$ Cl_{2} Na_{2}	54./35(1)
$Na2^{A}$ $Na4$ $O2^{A}$	150.3 (4)	$Na4^{**}$ —Cl2—Na2	125.265 (1)
$CI2$ —Na4— $O2^{xxvii}$	83.7 (2)	Na4 ^{xm} —Cl2—Na2	54.735 (1)
$O1^{\text{ANV}}$ Na4 $O2^{\text{ANV}}$	75.89 (8)	Na4—Cl2—Na2	125.3
O1 ^{xxv} —Na4—O2 ^{xxvm}	62.98 (6)	Na2 ^{xxxn} —Cl2—Na2	90.000 (2)
01^{xxyi} Na4 02^{xxyiii}	151.8 (4)	Na2 ^{AAXIA} —Cl2—Na2	90.0
$Na2^{xxxix}$ $Na4$ $O2^{xxviii}$	71.42 (7)	Na2 ^{xxxin} —Cl2—Na2	90.000 (1)
Na2 ^{xiv} —Na4—O2 ^{xxviii}	150.3 (4)	Na2 ^{xi} —Cl2—Na2	90.0
Na2 ^{x1} —Na4—O2 ^{xxviii}	48.16 (5)	Na4 ^{xiv} —Cl2—Na2 ^{xiv}	125.3
Cl2—Na4—O2 ^{xxviii}	83.7 (2)	Na4 ^{xv} —Cl2—Na2 ^{xiv}	54.735 (1)

O2 ^{xxvii} —Na4—O2 ^{xxviii}	118.80 (8)	Na4 ^{xiii} —Cl2—Na2 ^{xiv}	125.265 (1)
O1 ^{xxiv} —Na4—O2 ^{xxix}	62.98 (6)	Na4—Cl2—Na2 ^{xiv}	54.735 (1)
O1 ^{xxv} —Na4—O2 ^{xxix}	151.8 (4)	Na2 ^{xxxii} —Cl2—Na2 ^{xiv}	90.0
O1 ^{xxvi} —Na4—O2 ^{xxix}	75.89 (8)	Na2 ^{xxxix} —Cl2—Na2 ^{xiv}	90.000 (2)
Na2 ^{xxxix} —Na4—O2 ^{xxix}	150.3 (4)	Na2xxxiii—Cl2—Na2xiv	90.0
Na2 ^{xiv} —Na4—O2 ^{xxix}	48.16 (5)	Na2 ^{xl} —Cl2—Na2 ^{xiv}	90.000 (1)
Na2 ^{x1} —Na4—O2 ^{xxix}	71.42 (7)	Na2—Cl2—Na2 ^{xiv}	180.0

Symmetry codes: (i) -x+1/2, -y+1, z-1/2; (ii) x, -y+1/2, -z+1/2; (iii) -x, -y+1/2, z-1/2; (iv) -x, y, -z+1; (v) -x+1/2, y, -z+1/2; (vi) -x+1/2, -y+1/2, z; (vii) x-1, -y+1/2, z-1/2; (iii) x-1, y-1/2, z-1/2; (iii) x+1/2, -y+1/2, z-1/2; (iv) -x+1/2, y+1/2, z-1/2; (viii) -x+1/2, -y+1/2, z-1/2; (viii) -x+1/2, -y+1/2, z-1/2; (viii) -x+1/2, -y+1/2, -z+1; (viii) x-1, -y+1/2, -z+1/2; (viii) -x+1/2, -y+1/2, -z+1/2; (viii) -x+1/2, -y+1/2, -z+1/2; (viii) -x+1/2, -y+1/2; (xiii) -x+1/2, -x+1/2; (xiii) -x+1, -x+1; (xiii) -x+1, -y+1; (xiii) -x+1, -y+1; (xiii) -x+1, -x+1; (xiii) -x+1, -y+1; (xiii) -x+1, -x+1; (xiii) -x+1, -y+1; (xiiii) -x+1, -y+1; (xiii) -