CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 22 November 2023
Accepted 27 December 2023

Edited by S.-L. Zheng, Harvard University, USA
Keywords: crystal structure; molybdate; phosphate; gadolinium; triangular dodecahedron.

CCDC reference: 2322198

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of a layered phosphate molybdate $\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$

Valeriia Zozulia, ${ }^{\text {a }}$ Kateryna Terebilenko, ${ }^{\text {a* }}$ Artem Voinalovych, ${ }^{\text {a }}$ Vadim Potaskalov ${ }^{\text {b }}$ and Mykola Slobodyanik ${ }^{\text {a }}$

${ }^{\text {a }}$ Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and ${ }^{\text {b }}$ Department of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Prospect Beresteiskyi, 03056 Kyiv, Ukraine. *Correspondence e-mail: kateryna_terebilenko@knu.ua

The title compound dipotassium gadolinium(III) phosphate(V) molybdate(VI), $\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$, was synthesized from a high-temperature melt starting from GdF_{3} as a source of gadolinium. Its structure is isotypic with other $M^{\mathrm{I}}{ }_{2} M^{\mathrm{III}}\left(M^{\mathrm{VI}} \mathrm{O}_{4}\right)\left(\mathrm{PO}_{4}\right)$ compounds, where $M^{\mathrm{I}}=\mathrm{Na}, \mathrm{K}$ or Cs , and $M^{\mathrm{III}}=$ rareearth cation, $M^{\mathrm{VI}}=$ Mo or W . The three-dimensional framework is built up from $\left[\mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)\right]$ anionic sheets, which are organized by adhesion of $\left[\mathrm{GdPO}_{4}\right]$ layers and $\left[\mathrm{MoO}_{4}\right]$ tetrahedra stacked above and below these layers. The interstitial space is occupied by K cations having eightfold oxygen coordination. The polyhedron of GdO_{8} was estimated to be a triangular dodecahedron by the continuous shape measurement method.

1. Chemical context

Layered phosphate(V) molybdates(VI) $\quad M_{2}^{\mathrm{I}} M^{\mathrm{III}}\left(M^{\mathrm{VI}} \mathrm{O}_{4}\right)$ $\left(\mathrm{PO}_{4}\right)$ comprising an alkali metal and a rare-earth metal $M^{\text {III }}$ such as Sm (Zhao et al., 2009), Eu (Terebilenko et al., 2022), Y (Zhang et al., 2016) or Bi (Grigorjevaite et al., 2020) are considered to be promising luminescent materials (Guo et al., 2019). The initial structural models of this group of compounds, $\mathrm{Na}_{2} \mathrm{Y}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$, were monoclinic, space group $C 2 / c$, as described by Ben Amara \& Dabbabi (1987). Subsequent work determined that the material crystallizes in an orthorhombic system, space group Ibca (Marsh, 1987). The discovery of $\mathrm{K}_{2} \mathrm{Bi}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$ by Zatovsky et al. (2006) opened a new group of luminescent materials that are isostructural to $\mathrm{Na}_{2} \mathrm{Y}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$ and have high color purity and quantum yield (Grigorjevaite \& Katelnikovas, 2016).

In the case of $\mathrm{Rb}_{2} \mathrm{Bi}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$: Eu^{3+} powders, the quantum efficiency has been shown to reach ca 100% for the $\mathrm{Rb}_{2} \mathrm{Bi}_{0.5} \mathrm{Eu}_{0.5}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$ phosphor (Grigorjevaite \& Katelnikovas, 2016). High color purity and emission spectra peculiarities make these compounds attractive for redcomponent design in near-UV LED-driven solid-state light sources (Zozulia et al., 2023). One of the main disadvantages of these luminescence hosts is the relatively high activator content needed (from 50 to 75%) to reach a high quantum efficiency (Grigorjevaite \& Katelnikovas, 2016). Different strategies have been applied to improve the luminescence performance and lower the luminescent dopant content, including rare-earth co-doping (Naidu et al., 2012) and anion modifications (Guo et al., 2019). To tune the luminescence properties of these phosphors, the quest for new representatives of this group of compounds can shed light on the development of new phosphors based on them.

Figure 1
Representation of the unit-cell content of $\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$.

2. Structural commentary

The three-dimensional framework of the title compound is organized by linking together slightly distorted GdO_{8} dodecahedra with non-condensed phosphate and molybdate tetrahedra (Fig. 1). These moieties are arranged into layers perpendicular to the [010] direction with each phosphate layer being followed by two molybdate layers. In this packing, the

Figure 2
Representation of the coordination environment of gadolinium atoms in $\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $2-x, \frac{1}{2}-y, z$; (ii) $\frac{3}{2}-x, \frac{1}{2}-y$, $\frac{1}{2}-z$; (iii) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (iv) $\frac{3}{2}-x, y, 1-z$; (v) $\frac{1}{2}+x, \frac{1}{2}-x, 1-z$; (vii) $1+x, y, z$; (viii) $\frac{3}{2}-x, y, 1-z$; (ix) $1-x, \frac{1}{2}-y, z$.]

Figure 3
Zigzag chains build up from (a) GdO_{8} and $(b) \mathrm{KO}_{8}$ polyhedra
gadolinium and potassium cations are eightfold coordinated by oxygen (Fig. 2) and ordered into zigzag chains (Fig. 3).

Each Gd cation is surrounded by two molybdate tetrahedra and four phosphate tetrahedra; two of the phosphate groups are coordinated in a bidentate manner (Fig. 2). The Gd-O bond lengths lie in the range 2.314 (3)-2.453 (3) Å. Among the $\mathrm{Gd}-\mathrm{O}$ bond lengths, those corresponding to the bidentately coordinated phosphate groups are the longest [2.427 (2) and 2.453 (2) \AA]. The chains built up from GdO_{8} polyhedra are interlinked by phosphate moieties into $\left[\mathrm{GdPO}_{4}\right]$ layers propagating in the $a c$ plane. The nearest $\mathrm{Gd} \cdots \mathrm{Gd}$ distance within a zigzag chain is $3.9332(2) \AA .\left[\mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)\right]$ nets are formed by adhesion of $\left[\mathrm{GdPO}_{4}\right]$ layers and MoO_{4} tetrahedra above and below these layers (Fig. 1).

Both the phosphate and molybdate tetrahedra have an almost regular geometry with typical bond lengths. The central atoms of the $\mathrm{GdO}_{8}, \mathrm{MoO}_{4}$ and PO_{4} polyhedra are located on a twofold axis. The potassium cation resides inside the interlayer space having eightfold coordination, as has been found for other potassium-based representatives of this family (Zatovsky et al., 2006). Importantly, there is a difference in the nearest oxygen coordination of sodium- and potassium-based frameworks. In case of $\mathrm{Na}_{2} \mathrm{Y}\left(\mathrm{PO}_{4}\right)\left(\mathrm{WO}_{4}\right)$, the NaO_{6} sodium environment is described as an effective $3+3$ coordination indicating a relatively large void between two successive $\left[\mathrm{Y}\left(\mathrm{PO}_{4}\right)\left(\mathrm{WO}_{4}\right)\right]$ layers (Daub et al., 2012).

3. Coordination environment calculations

The distortions of the coordination environment of gadolinium, potassium, phosphorus and molybdenum have been calculated by the continuous shape measurement method with the Shape 2.1 program (Llunell et al., 2013). The shape measurements in this work are taken from normalized coordination polyhedra (Alvarez, 2021). There are two types of polyhedra within the structure studied: two are tetrahedral,

Table 1
Experimental details.
Crystal data
Chemical
M_{r}
Crystal system, space group
Temperature (K)
a, b, c (\AA)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\min }, T_{\max }$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$
490.36

Orthorhombic, Ibca
200
6.9527 (2), 19.7112 (6), 12.2466 (3)
1678.35 (8)

8
Mo $K \alpha$
10.52
$0.10 \times 0.08 \times 0.02$

XtaLAB Synergy, Dualflex, HyPix Gaussian (CrysAlis PRO; Rigaku OD, 2020)
0.422, 1.000

6547, 1079, 999
0.026
0.707

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
namely, MoO_{4} and PO_{4} and two are eightfold coordinated, KO_{8} and GdO_{8}. The shape measurements of a set of atoms with respect to a reference shape (e.g., the tetrahedron, abbreviated T-4 by IUPAC) calibrates the overall distance of the atoms to the vertices of the tetrahedral shape in the same position. Thus, a zero-shape measurement for a set of atoms indicates that the polyhedron has exactly the reference shape, expressed as $S(\mathrm{~T}-4)=0.00$ for an ideal tetrahedron. Increasing values of the shape measurement will be found for more distorted polyhedra, in other words, these values are essentially spatial distance minima of the central atom from a minimization polyhedral fitting procedure. For the title compound, the MoO_{4} tetrahedron has minor distortions, as indicated by the value of S of 0.053 . In contrast, the PO_{4} tetrahedron reveals more severe deviations, having C_{2} site symmetry with a calculated value of $S=0.238$.

In case of GdO_{8}, the lowest value of S of 2.725 was obtained for a triangular dodecahedron (TDD-8) (Casanova et al. 2005) and KO_{8} is best described as as biaugmented trigonal prism, as indicated by the value of S of 3.999 . Thus, the GdO_{8} polyhedron in $\mathrm{K}_{2} \mathrm{Bi}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$ is found to be a triangular dodecahedron (TDD-8), as has also been observed for $\mathrm{K}_{2} \mathrm{Eu}\left(\mathrm{PO}_{4}\right)\left(\mathrm{WO}_{4}\right)$ (Terebilenko et al., 2022).

4. Synthesis and crystallization

Single crystals of the title compound were grown from molten salts $7 \mathrm{~K}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}-3 \mathrm{~K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ containing $5 \% \mathrm{~mol}$ of GdF_{3}. A mixture of $\mathrm{K}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ and $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ was heated in a platinum
crucible up to 1273 K . After melting, $5 \% \mathrm{~mol}$ of GdF_{3} was added to the initial molten salts under stirring. The mixture was then held at this temperature for 2 h and cooled down to room temperature at a rate of $50 \mathrm{~K} \mathrm{~h}^{-1}$. The solidified melt was leached out with warm water to dissolve the superfluous flux. The final product consisted of colourless plates. The yield was 64% by Gd.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors are grateful to Sergiu G. Shova from the "Petru Poni" Institute of Macromolecular Chemistry for the diffraction data collection.

Funding information

Funding for this research was provided by: National Research Foundation of Ukraine (grant No. 2022.01/0168).

References

Alvarez, S. (2021). Eur. J. Inorg. Chem. pp. 3632-3647.
Ben Amara, M. \& Dabbabi, M. (1987). Acta Cryst. C43, 616-618.
Casanova, D., Llunell, M., Alemany, P. \& Alvarez, S. (2005). Eur. J. Inorg. Chem. 11(5), 1479-1494.
Daub, M., Lehner, A. J. \& Höppe, H. A. (2012). Dalton Trans. 41, 12121-12128.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Grigorjevaite, J., Ezerskyte, E., Páterek, J., Saitzek, S., ZabiliūtėKaraliūnè, A., Vitta, P., Enseling, D., Jüstel, T. \& Katelnikovas, A. (2020). Mater. Adv. 1, 1427-1438.

Grigorjevaite, J. \& Katelnikovas, A. (2016). Appl. Mater. Interfaces, 8 , 31772-31782.
Guo, Z., Wu, Z. C., Milićević, B., Zhou, L., Khan, W. U., Hong, J., Shi, J. \& Wu, M. (2019). Opt. Mater. 97, 109376.

Llunell, M., Casanova, D., Cirera, J., Alemany, P. \& Alvarez, S. (2013). SHAPE 2.1. University of Barcelona, Spain.
Marsh, R. E. (1987). Acta Cryst. C43, 2470.
Naidu, S. A., Boudin, S., Varadaraju, U. V. \& Raveau, B. (2012). J. Electrochem. Soc. 159, J122-J126.
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Terebilenko, K. V., Chornii, V. P., Zozulia, V. O., Gural'skiy, I. A., Shova, S. G., Nedilko, S. G. \& Slobodyanik, M. S. (2022). RSC Adv. 12, 8901-8907.
Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. \& Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550-3555.
Zhang, X., Chen, M., Zhang, J., Qin, X. \& Gong, M. (2016). Mater. Res. Bull. 73, 219-225.
Zhao, D., Li, F., Cheng, W. \& Zhang, H. (2009). Acta Cryst. E65, i78.
Zozulia, V. O., Terebilenko, K. V., Nedilko, S. G., Chornii, V. P. \& Slobodyanik, M. S. (2023). Theor. Exp. Chem. 59, 107-111.

supporting information

Crystal structure of a layered phosphate molybdate $\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$

Valeriia Zozulia, Kateryna Terebilenko, Artem Voinalovych, Vadim Potaskalov and Mykola Slobodyanik

Computing details

Dipotassium gadolinium(III) phosphate(V) molybdate(VI)

Crystal data

$\mathrm{K}_{2} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)\left(\mathrm{MoO}_{4}\right)$
$M_{r}=490.36$
Orthorhombic, $I b c a$
$a=6.9527$ (2) Å
$b=19.7112$ (6) \AA
$c=12.2466(3) \AA$
$V=1678.35(8) \AA^{3}$
$Z=8$
$F(000)=1784$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source
Mirror monochromator
Detector resolution: 10 pixels mm^{-1}
ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.045$
$S=1.13$
1079 reflections
61 parameters
0 restraints
$D_{\mathrm{x}}=3.881 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4624 reflections
$\theta=3.3-30.0^{\circ}$
$\mu=10.52 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, clear light colourless
$0.10 \times 0.08 \times 0.02 \mathrm{~mm}$

$$
T_{\min }=0.422, T_{\max }=1.000
$$

6547 measured reflections
1079 independent reflections
999 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=30.2^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-26 \rightarrow 26$
$l=-16 \rightarrow 16$

Primary atom site location: dual
Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0204 P)^{2}+6.0211 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.53 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.64 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Gd1	1.000000	0.250000	$0.42488(2)$	$0.00554(8)$
Mo1	0.750000	$0.41682(2)$	0.500000	$0.00954(10)$
K1	$0.71711(11)$	$0.09429(4)$	$0.32974(5)$	$0.01672(16)$
P1	0.500000	0.250000	$0.32047(8)$	$0.0060(2)$
O1	$0.6709(3)$	$0.24105(10)$	$0.40045(17)$	$0.0095(4)$
O2	$0.4787(3)$	$0.18814(11)$	$0.24608(17)$	$0.0094(4)$
O3	$0.9564(3)$	$0.36581(11)$	$0.47067(18)$	$0.0139(4)$
O4	$0.8056(4)$	$0.46677(12)$	$0.61376(19)$	$0.0204(5)$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	$0.00341(13)$	$0.00828(12)$	$0.00493(11)$	$-0.00007(6)$	0.000	0.000
Mo1	$0.0102(2)$	$0.00749(16)$	$0.01089(17)$	0.000	$0.00090(13)$	0.000
K1	$0.0158(4)$	$0.0130(3)$	$0.0213(3)$	$0.0014(3)$	$-0.0007(3)$	$0.0027(2)$
P1	$0.0038(6)$	$0.0093(5)$	$0.0047(5)$	$0.0000(3)$	0.000	0.000
O1	$0.0037(11)$	$0.0172(10)$	$0.0076(9)$	$0.0001(8)$	$0.0006(8)$	$0.0003(8)$
O2	$0.0101(11)$	$0.0110(10)$	$0.0070(9)$	$-0.0009(8)$	$-0.0016(7)$	$-0.0012(8)$
O3	$0.0129(11)$	$0.0111(10)$	$0.0178(11)$	$-0.0004(9)$	$0.0034(9)$	$-0.0019(9)$
O4	$0.0209(13)$	$0.0177(11)$	$0.0226(12)$	$0.0014(10)$	$-0.0022(10)$	$-0.0108(10)$

Geometric parameters ($A,{ }^{\circ}$)

Gd1-O1	2.314 (2)	$\mathrm{K} 1-\mathrm{O} 1$	3.037 (2)
Gd1- Ol^{1}	2.314 (2)	$\mathrm{K} 1-\mathrm{O} 2$	2.687 (2)
$\mathrm{Gd} 1-\mathrm{O} 1^{\text {ii }}$	2.453 (2)	$\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$	2.755 (2)
$\mathrm{Gd} 1-\mathrm{O} 1^{\text {iii }}$	2.453 (2)	$\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	2.958 (2)
$\mathrm{Gd} 1-\mathrm{O} 2^{\mathrm{iv}}$	2.427 (2)	$\mathrm{K} 1-\mathrm{O}^{\text {vi }}$	3.143 (2)
Gd1-O2v	2.427 (2)	$\mathrm{K} 1-\mathrm{O} 4^{\text {vii }}$	2.970 (3)
$\mathrm{Gd1}-\mathrm{O} 3$	2.370 (2)	$\mathrm{K} 1-\mathrm{O} 4^{\text {viii }}$	2.679 (2)
Gd1-O3 ${ }^{\text {i }}$	2.370 (2)	$\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vi }}$	3.180 (3)
Mo1-O3 ${ }^{\text {ii }}$	1.788 (2)	P1-O1	1.550 (2)
$\mathrm{Mo} 1-\mathrm{O} 3$	1.788 (2)	$\mathrm{P} 1-\mathrm{O} 1^{\text {ix }}$	1.550 (2)
Mol-O4	1.749 (2)	$\mathrm{P} 1-\mathrm{O} 2^{\text {ix }}$	1.529 (2)
$\mathrm{Mo} 1-\mathrm{O} 4{ }^{\text {ii }}$	1.749 (2)	$\mathrm{P} 1-\mathrm{O} 2$	1.529 (2)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O} 1^{\text {iii }}$	126.66 (6)	$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 4$	111.50 (16)
O1- ${ }^{\text {i }}$ Gd1-O1 ${ }^{\text {iii }}$	68.18 (8)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {vi }}$	58.59 (6)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O} 1^{\text {i }}$	165.14 (10)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 4^{\text {vi }}$	101.73 (6)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Gd} 1-\mathrm{O} 1^{\text {ii }}$	58.64 (10)	$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$	79.43 (6)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Gd} 1-\mathrm{Ol}^{\text {ii }}$	126.66 (6)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	60.76 (6)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O}{ }^{1 i}$	68.18 (8)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {vi }}$	118.34 (6)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O} 2{ }^{\text {v }}$	77.86 (7)	$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	76.61 (6)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O}^{2 \mathrm{iv}}$	77.86 (7)	$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {i }}$	120.86 (7)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Gd} 1-\mathrm{O}^{\text {iv }}$	89.27 (7)	$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vi }}$	77.78 (6)

$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O}^{\text {v }}$	89.27 (7)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O} 3$	88.71 (8)
$\mathrm{O} 1{ }^{\mathrm{i}}$ - $\mathrm{Gd} 1-\mathrm{O} 3$	94.81 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Gd1}-\mathrm{O}^{\text {i }}$	88.71 (8)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O}^{3}$	94.81 (8)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Gd} 1-\mathrm{O} 1^{\mathrm{ii}}$	144.86 (7)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Gd} 1-\mathrm{O} 1^{\text {iii }}$	133.34 (7)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Gd} 1-\mathrm{O} 1^{\text {iii }}$	144.86 (7)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Gd} 1-\mathrm{O} 1^{\text {ii }}$	133.34 (7)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Gd} 1-\mathrm{O} 2^{\text {v }}$	60.80 (10)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Gd} 1-\mathrm{O} 1^{\text {ii }}$	77.67 (7)
$\mathrm{O} 3-\mathrm{Gd} 1-\mathrm{O} 1^{\text {iii }}$	77.67 (7)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Gd} 1-\mathrm{Ol}^{\text {iii }}$	78.52 (7)
$\mathrm{O} 3-\mathrm{Gd} 1-\mathrm{Ol}^{\text {ii }}$	78.52 (7)
$\mathrm{O} 3-\mathrm{Gd} 1-\mathrm{O} 2^{\text {v }}$	74.22 (7)
$\mathrm{O} 3 \mathrm{i}-\mathrm{Gd} 1-\mathrm{O} 2^{\text {iv }}$	74.22 (7)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Gd} 1-\mathrm{O} 2^{\text {v }}$	132.85 (7)
$\mathrm{O} 3-\mathrm{Gd} 1-\mathrm{O} 2{ }^{\text {iv }}$	132.85 (7)
O3--Gd1-O3	152.63 (11)
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O}^{3 i}$	111.59 (14)
O4-Mo1-O3	107.39 (11)
$\mathrm{O} 4-\mathrm{Mo} 1-\mathrm{O}^{3 i}$	109.51 (11)
$\mathrm{O} 4{ }^{\text {iii-Mol-O3 }}$	109.50 (11)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Mo} 1-\mathrm{O}^{\text {ii }}$	107.39 (11)
$\mathrm{O} 1{ }^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Gd} 1$	-156.6 (3)
$\mathrm{O} 1{ }^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Gd} 1^{\text {ii }}$	-0.001 (1)
$\mathrm{O} 1{ }^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{K} 1$	112.05 (8)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{P} 1^{\text {ix }}$	0 (100)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Gd} 1^{\text {v }}$	-123.85 (10)
$\mathrm{O} 1{ }^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Gd} 1^{\mathrm{v}}$	122.59 (11)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{x}}$	15.7 (2)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{x}}$	129.30 (18)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{K} 1$	-103.53 (11)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{K} 1$	10.03 (14)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{P} 1^{\text {ix }}$	0 (78)
$\mathrm{O} 1^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{P} 1^{\text {ix }}$	0 (100)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Gd} 1^{\text {ii }}$	-120.61 (11)
$\mathrm{O} 2{ }^{2 \mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Gd} 1$	-37.5 (3)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Gd} 1^{\mathrm{ii}}$	119.18 (11)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Gd} 1$	82.7 (2)
$\mathrm{O} 2{ }^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1-\mathrm{K} 1$	-128.76 (10)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{K} 1$	-8.56 (12)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{P} 1^{\text {ix }}$	0 (100)

89.27 (7)
88.71 (8)
94.81 (8)
88.71 (8)
94.81 (8)
144.86 (7)
133.34 (7)
144.86 (7)
133.34 (7)
60.80 (10)
77.67 (7)
77.67 (7)
78.52 (7)
78.52 (7)
74.22 (7)
74.22 (7)
132.85 (7)
132.85 (7)
152.63 (11)
111.59 (14)
107.39 (11)
109.51 (11)
109.50 (11)
107.39 (11)
-156.6 (3)
-0.001 (1)
112.05 (8)

0 (100)
-123.85 (10)
122.59 (11)
15.7 (2)
129.30 (18)
-103.53 (11)
10.03 (14)

0 (78)
0 (100)
-120.61 (11)
-37.5 (3)
119.18 (11)
82.7 (2)
-128.76 (10)

0 (100)

$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 4^{\text {vi }}$	157.11 (7)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vii }}$	80.51 (7)
$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vii }}$	93.86 (7)
O3-K1-O1	70.21 (6)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	85.55 (7)
$\mathrm{O} 3^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 4^{\text {vi }}$	53.60 (6)
O3 ${ }^{\text {i }}$ - $\mathrm{K} 1-\mathrm{O} 4^{\text {vii }}$	117.92 (7)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vi }}$	131.61 (7)
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{K} 1-\mathrm{O} 1$	131.43 (6)
O4 ${ }^{\text {viii }}-\mathrm{K} 1-\mathrm{O} 1$	147.62 (7)
$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iv }}$	124.43 (7)
$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{K} 1-\mathrm{O} 2$	152.41 (7)
$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{K} 1-\mathrm{O}^{\text {vi }}$	99.58 (7)
$\mathrm{O} 4{ }^{\text {viii- }} \mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	85.55 (7)
$\mathrm{O} 4^{\text {vii }}-\mathrm{K} 1-\mathrm{O} 3^{\text {vi }}$	155.97 (7)
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{K} 1-\mathrm{O} 4^{\text {vi }}$	103.12 (7)
O4 ${ }^{\text {viii }}$-K1-O4 $4^{\text {vii }}$	78.60 (7)
O4 ${ }^{\text {viii }}-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {vi }}$	78.20 (5)
$\mathrm{Ol}^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1$	101.63 (17)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	111.11 (11)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 1^{\mathrm{ix}}$	111.11 (11)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1^{\text {ix }}$	113.12 (11)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 1$	113.12 (11)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 2$	106.87 (17)
$\mathrm{O} 2{ }^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{K} 1$	133.88 (11)
$\mathrm{O} 2^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{x}}$	-106.9 (2)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{P} 1^{\text {ix }}$	0 (100)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{Gd} 1$	15.95 (10)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	-114.91 (9)
O3ii-Mo1-O3-K1 ${ }^{\text {i }}$	152.13 (15)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {xi }}$	32.18 (14)
O3-Mo1-O4-K1 ${ }^{\text {xii }}$	143.40 (15)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {xii }}$	-95.27 (17)
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{K}{ }^{\text {xi }}$	-89.15 (12)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {iii }}$	116.29 (10)
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{K}{ }^{\text {iii }}$	-5.05 (11)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{Gd} 1$	-102.81 (16)
$\mathrm{O} 4-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{Gd1}$	135.96 (16)
$\mathrm{O} 4-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{i}}$	-87.85 (14)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	126.33 (10)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{i}}$	33.37 (16)
$\mathrm{O} 4-\mathrm{Mo} 1-\mathrm{O} 3-\mathrm{K}{ }^{\text {iii }}$	5.11 (11)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {xi }}$	150.89 (14)

supporting information

$\mathrm{O} 2^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 1 — \mathrm{P} 1^{\mathrm{ix}}$	$0(23)$	$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Mo} 1-\mathrm{O} 4 — \mathrm{~K} 1^{\mathrm{iii}}$	$-125.01(10)$
$\mathrm{O} 2^{\mathrm{ix}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Gd} 1^{\mathrm{v}}$	$0.000(1)$	$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Mo} 1-\mathrm{O} 4 — \mathrm{~K} 1^{\mathrm{xii}}$	$23.44(10)$

Symmetry codes: (i) $-x+2,-y+1 / 2, z$; (ii) $-x+3 / 2, y,-z+1$; (iii) $x+1 / 2,-y+1 / 2,-z+1$; (iv) $x+1 / 2, y,-z+1 / 2$; (v) $-x+3 / 2,-y+1 / 2,-z+1 / 2$; (vi) $x-1 / 2$, $-y+1 / 2,-z+1$; (vii) $x,-y+1 / 2, z-1 / 2$; (viii) $x, y-1 / 2,-z+1$; (ix) $-x+1,-y+1 / 2, z$; (x) $x-1 / 2, y,-z+1 / 2$; (xi) $x,-y+1 / 2, z+1 / 2$; (xii) $x, y+1 / 2,-z+1$.

