CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 15 January 2024
Accepted 23 January 2024

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences

Keywords: crystal structure; hydrogen bonds; dimers; pyrazole ring; Hirshfeld surface analysis.

CCDC reference: 2327646

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 4-(2-chloroethyl)-5-methyl-1,2-dihydropyrazol-3one

Farid N. Naghiyev, ${ }^{\text {a }}$ Victor N. Khrustalev, ${ }^{\text {b,c }}$ Mehmet Akkurt, ${ }^{\text {d }}$ Evgeny A. Dukhnovsky, ${ }^{\text {b }}$ Ajaya Bhattarai, ${ }^{\text {e* }}$ Ali N. Khalilov ${ }^{\text {f,a }}$ and Ibrahim G. Mamedov ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, ${ }^{\mathbf{b}}$ Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, ${ }^{\mathrm{c}}$ N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ${ }^{\text {d D Department of Physics, }}$ Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, ${ }^{\text {e }}$ Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and ${ }^{\text {f"Composite Materials" Scientific Research Center, Azerbaijan State Economic }}$ University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the crystal of the title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$, molecular pairs form dimers with an $R_{2}^{2}(8)$ motif through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These dimers are connect into ribbons parallel to the (100) plane with $R_{4}^{4}(10)$ motifs by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds along the c-axis direction. In addition, $\pi-\pi$ [centroid-tocentroid distance $=3.4635(9) \AA$] and $\mathrm{C}-\mathrm{Cl} \cdots \pi$ interactions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the crystal structure is also ensured by $\mathrm{Cl} \cdots \mathrm{H}$ and $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions between these layers. According to a Hirshfeld surface study, $\mathrm{H} \cdots \mathrm{H}$ (43.3%) , $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}(22.1 \%)$ and $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}(18.7 \%)$ interactions are the most significant contributors to the crystal packing.

1. Chemical context

Nitrogen-based heterocyclic compounds are an important branch of organic chemistry. These systems have received increasing attention over the past two decades. Synthetic chemistry is growing extensively with recently developed heterocyclic systems for various research and commercial purposes (Maharramov et al., 2021, 2022; Erenler et al., 2022; Akkurt et al., 2023). These systems have found wide applications in diverse branches of chemistry, including the chemistry of coordination compounds (Gurbanov et al., 2021; Mahmoudi et al., 2021), drug development (Donmez \& Turkyılmaz, 2022;

Figure 1
The biological activities of compounds incorporating the pyrazole motif.

Published under a CC BY 4.0 licence

Figure 2
The proposed reaction mechanism for the formation of the title compound.

Askerova, 2022) and material science (Velásquez et al., 2019; Afkhami et al., 2019). The pyrazole motif is the most widespread five-membered heteroaromatic ring system in nitrogen heterocycles. It is an essential structural motif present in many natural bioactive molecules such as $\mathrm{L}-\alpha$-amino- β-(pyrazolylN)-propanoic acid, withasomnine, pyrazofurin, pyrazofurin B, formycin, formycin B, oxoformycin B, nostocine A, fluviols (A, B, C, D and E), pyrazole-3(5)-carboxylic acid, 4-Methyl pyrazole-3(5)-carboxylic acid, 3-n-nonylpyrazole (Khalilov et al., 2022; Kumar et al., 2013; Sobhi \& Faisal, 2023). The pyrazole ring incorporating derivatives with various biological activities (Singh et al., 2023), such as anticonvulsant, antidiabetic, anti-inflammatory, antioxidant, anticancer, antitubercular, antiulcer activities and other properties has been reviewed recently (Fig. 1).

On the other hand, the incorporation of various pharmacophore groups in a pyrazole scaffold has led to the development of best-selling drugs such as ibrutinib, ruxolitinib, axitinib, niraparib and baricitinib (Atalay et al., 2022; Alam, 2023). Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020, 2021, 2022), we herein report the crystal structure and Hirshfeld surface analysis of the title compound, 4-(2-chloroethyl)-5-methyl-1,2-dihydropyrazol-3one, for which the proposed reaction mechanism is shown in Fig. 2.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	$0.88(3)$	$1.81(3)$	$2.6861(18)$	$174(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots 1^{\mathrm{ii}}$	$0.92(3)$	$1.75(3)$	$2.6772(17)$	$177(2)$

Symmetry codes: (i) $-x,-y+2,-z+1$; (ii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

2. Structural commentary

In the title compound (Fig. 3), the pyrazoline ring (N1/N2/C3C5) has an essentially planar conformation [maximum deviation $=0.006(1) \AA$ for N 1$]$. The $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 1$ torsion angles are 105.67 (19) and $172.38(11)^{\circ}$, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds given in the Database survey section.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, molecular pairs form dimers with an $R_{2}^{2}(8)$ motif (Bernstein et al., 1995) through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1 and Fig. 4). These dimers are also connected into ribbons parallel to the (100) plane by forming $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with $R_{4}^{4}(10)$ motifs along the c-axis direction (Figs. 5 and 6). In addition, $\pi-\pi\left[C g 1 \cdots C g 1^{1}=3.4635\right.$ (9) \AA, slippage $=0.511 \AA$; symmetry code: (i) $-x, 1-y, 1-z ; C g 1$ is a centroid of the pyrazole ring (N1/N2/C3-C5)] and $\mathrm{C}-\mathrm{Cl} \cdots \pi \quad\left[\mathrm{C} 8-\mathrm{Cl} 1 \cdots \mathrm{Cg} 1^{\mathrm{ii}}: \quad \mathrm{C} 8-\mathrm{Cl} 1=1.8040(18) \AA\right.$, $\mathrm{Cl} 1 \cdots \mathrm{Cg} 1^{\mathrm{ii}}=3.8386(8) \AA, \mathrm{C} 8-\mathrm{Cl} 1 \cdots C g 1^{\mathrm{ii}}=84.57(6)^{\circ}$; symmetry code: (ii) $\left.x, \frac{3}{2}-y, \frac{1}{2}+z\right]$ interactions between the ribbons form layers parallel to the (100) plane. The threedimensional consolidation of the crystal structure is also ensured by the $\mathrm{Cl} \cdots \mathrm{H}$ and $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions [(C8) $\mathrm{Cl} 1 \cdots \mathrm{H} 6 B^{\mathrm{iii}}=3.12$ (3) $\AA, \mathrm{C} 8-\mathrm{Cl} 1 \cdots \mathrm{H} 6 B^{\mathrm{iii}}=135.3$ (6) ${ }^{\circ}$ and $(\mathrm{C} 8) \mathrm{Cl} 1 \cdots \mathrm{Cl} 1^{\text {iv }}=3.5071(7) \AA, \mathrm{C} 8-\mathrm{Cl} 1 \cdots \mathrm{Cl}^{\text {iv }}=161.79(7)^{\circ}$; symmetry codes: (iii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $\left.1-x, 1-y, 2-z\right]$ between these layers (Table 2; Fig. 7).

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 4
View of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of the title compound down the a-axis.

To quantify the intermolecular interactions in the crystal, two-dimensional fingerprint plots and Hirshfeld surfaces were

Figure 5
View of the $\mathrm{N}-\mathrm{H} \cdots$ O hydrogen bonds of the title compound down the b-axis.

Table 2
Summary of short interatomic contacts (\AA) in the title compound.

$\mathrm{Cl} 1 \cdots \mathrm{H} 6 B$	3.12	$1-x, \frac{1}{2}+y, \frac{3}{2}-z$
$\mathrm{Cl} 1 \cdots \mathrm{Cl} 1$	3.51	$1-x, 1-y, 2-z$
$\mathrm{H} 1 \cdots \mathrm{O} 1$	1.80	$-x, 2-y, 1-z$
$\mathrm{H} 6 C \cdots \mathrm{O} 1$	2.89	$-x, 1-y, 1-z$
$\mathrm{O} 1 \cdots \mathrm{H} 2$	1.76	$x, \frac{3}{2}-y, \frac{1}{2}+z$
$\mathrm{H} 6 A \cdots \mathrm{H} 7 B$	2.60	$x, \frac{1}{2}-y,-\frac{1}{2}+z$

produced using Crystal Explorer 17.5 (Spackman et al., 2021). Fig. 8 shows the mapping of the Hirshfeld surfaces over $d_{\text {norm }}$ in the range -0.7296 (red) to +1.3271 (blue) a.u. The interactions given in Tables 1 and 2 play a key role in the molecular packing of the title compound. $\mathrm{H} \cdots \mathrm{H}$ is the most significant interatomic contact because it contributes the most to the crystal packing (43.3%, Fig. 9b). Other significant contributions are made by $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}(22.1 \%$, Fig. $9 c$) and $\mathrm{O} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{O}(18.7 \%$, Fig. 9d) interactions. The following inter-

Figure 6
View of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of the title compound down the c axis.

Figure 7
View of the $\pi-\pi$ - and $\mathrm{C}-\mathrm{Cl} \cdots \pi$ interactions of the title compound down the b-axis.

(a)

(b)

Figure 8
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over $d_{\text {norm }}$, with a fixed colour scale of -0.7296 to +1.3271 a.u.
actions make minor contributions: $\mathrm{Cl} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{Cl}(2.4 \%)$, $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(2.6 \%), \quad \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}(4.3 \%), \mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}$ (3.4\%), $\mathrm{Cl} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{Cl}(0.7 \%)$, and $\mathrm{C} \cdots \mathrm{C}(0.7 \%)$.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the central five-membered ring 2,3-dihydro-1H-pyrazole yielded six compounds related to the title compound, viz. 3-methyl-5-(3-methylphenoxy)-1-phenyl-1H-pyrazole-4-carbaldehyde (CSD refcode TERZAV; Archana, et al., 2022), $N-\{3-$

Figure 9

The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into $(b) \mathrm{H} \cdots \mathrm{H},(c) \mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ and (d) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ interactions. [d_{e} and d_{i} represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(ethylsulf-anyl)-1H-pyrazol-5-yl\}-2,2,2-trifluoroacetamide (FERPOL; Priyanka et al., 2022), 4-[3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]-2-methoxyphenol monohydrate (KOXGAI; Duong Khanh et al., 2019), 5-chloro- N^{1}-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine (CAXZUZ; Yartsev et al., 2017), 5-(butylamino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde (EYEHEX; Macías et al., 2016) and 5-amino-1-(2-chlorophenyl)-1H-pyrazole-4-carbonitrile (AFIJOP; Lin et al., 2007).

The molecular packing of TERZAV features aromatic $\pi-\pi$ stacking and weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. In the crystal of FERPOL, strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains that extend parallel to the a-axis. In the crystal of KOXGAI, the molecules are connected into chains running in the b-axis direction by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. Parallel chains interact through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking of the trisubstituted phenyl rings. In the crystal of CAXZUZ, the A and B molecules are linked by two pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming $A-B$ dimers. These are further linked by a fifth $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, forming tetramer-like units that stack along the a-axis direction, forming columns, which are in turn linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming layers parallel to the $a c$ plane. The supramolecular structure of EYEHEX assembly has a threedimensional arrangement controlled mainly by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The crystal structure of AFIJOP is consolidated by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

5. Synthesis and crystallization

Acetoacetic ether (7.7 mmol), dichloroethane $(7.7 \mathrm{mmol})$ and hydrazine hydrate (15.4 mmol) were dissolved in 40 ml of ethanol and the reaction mixture was refluxed for 4 h . Then the reaction mixture was cooled to room temperature with the formation of white crystals. The crystals were separated by filtration and recrystallized from an ethanol-water mixture (m.p. 499-500 K, yield 78\%).
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}, ppm.): $2.06\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $2.64\left(t, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{\mathrm{H}-\mathrm{H}} \mathrm{J}_{2}=7.2\right) ; 3.49(s, 2 \mathrm{H}, 2 \mathrm{NH}) ; 3.58(t, 2 \mathrm{H}$, $\mathrm{ClCH}_{2},{ }^{\mathrm{H}-\mathrm{H}} J_{2}=7.2$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, ppm.): $10.28\left(\mathrm{CH}_{3}\right), 26.02\left(\mathrm{CH}_{2}\right), 44.91\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 97.63\left(\mathrm{C}_{\text {tert. }}=\right)$, $160.12\left(\mathrm{HN}-\mathrm{C}_{\text {tert }}=\right), 162.34(\mathrm{~N}-\mathrm{C}=\mathrm{O})$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were placed in calculated positions $(0.95-0.99 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The N -bound H atoms were located in a difference map and freely refined.

Acknowledgements

Authors contributions are as follows. Conceptualization, IGM, ANK and EAD; methodology, AB and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK;

Table 3
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$
$M_{\text {r }}$	160.60
Crystal system, space group	Monoclinic, $P 2{ }_{1} / \mathrm{c}$
Temperature (K)	100
$a, b, c(\AA)$	9.8420 (2), 6.9145 (2), 11.1807 (2)
$\beta{ }^{\circ}$)	93.618 (2)
$V\left(\AA^{3}\right)$	759.36 (3)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.92
Crystal size (mm)	$0.20 \times 0.12 \times 0.06$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
$T_{\text {min }}, T_{\text {max }}$	0.513, 0.750
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	6642, 1532, 1467
$R_{\text {int }}$	0.027
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.633
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.036, 0.097, 1.05
No. of reflections	1532
No. of parameters	127
H -atom treatment	All H -atom parameters refined
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.28, -0.41

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).
writing (review and editing of the manuscript), MA and ANK; visualization, MA, IGM and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. \& Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262-270.
Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. \& Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.

Alam, M. A. (2023). Future Med. Chem. 15, 2011-2023.
Archana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. \& Butcher, R. J. (2022). IUCrData, 7, x220924.
Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.
Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. \& Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Donmez, M. \& Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 4348.

Duong Khanh, L., Hanh Trinh Thi, M., Quynh Bui Thi, T., Vu Quoc, T., Nguyen Thien, V. \& Van Meervelt, L. (2019). Acta Cryst. E75, 1590-1594.
Erenler, R., Dag, B. \& Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. \& Pombeiro, A. J. L. (2021). Crystals, 11, 112.
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. \& Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.
Kumar, V., Kaur, K., Gupta, G. K. \& Sharma, A. K. (2013). Eur. J. Med. Chem. 69, 735-753.
Lin, Q.-L., Zhong, P. \& Hu, M.-L. (2007). Acta Cryst. E63, o3813.
Macías, M. A., Orrego-Hernández, J. \& Portilla, J. (2016). Acta Cryst. E72, 1672-1674.
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. \& Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. \& Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. \& Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. \& Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. \& Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. \& Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.
Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. \& Parkin, S. (2022). Acta Cryst. E78, 1084-1088.

Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Singh, S., Tehlan, S. \& Kumar Verma, P. (2023). Mini Rev. Med. Chem. 23, 2142-2165.
Sobhi, R. M. \& Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. \& Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.
Yartsev, Y., Palchikov, V., Gaponov, A. \& Shishkina, S. (2017). Acta Cryst. E73, 876-879.

supporting information

Acta Cryst. (2024). E80, 223-227 [https://doi.org/10.1107/S2056989024000835]
Crystal structure and Hirshfeld surface analysis of 4-(2-chloroethyl)-5-methyl-1,2-dihydropyrazol-3-one

Farid N. Naghiyev, Victor N. Khrustalev, Mehmet Akkurt, Evgeny A. Dukhnovsky, Ajaya
Bhattarai, Ali N. Khalilov and İbrahim G. Mamedov

Computing details

4-(2-Chloroethyl)-5-methyl-1,2-dihydropyrazol-3-one

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=160.60$
Monoclinic, $P 2_{1} / c$
$a=9.8420$ (2) \AA
$b=6.9145$ (2) \AA
$c=11.1807(2) \AA$
$\beta=93.618(2)^{\circ}$
$V=759.36(3) \AA^{3}$
$Z=4$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
$T_{\min }=0.513, T_{\max }=0.750$
6642 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.097$
$S=1.05$
1532 reflections
127 parameters
0 restraints
Primary atom site location: difference Fourier map
$F(000)=336$
$D_{\mathrm{x}}=1.405 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 4592 reflections
$\theta=4.5-77.6^{\circ}$
$\mu=3.92 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.20 \times 0.12 \times 0.06 \mathrm{~mm}$

1532 independent reflections
1467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=77.5^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-8 \rightarrow 7$
$l=-14 \rightarrow 8$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0501 P)^{2}+0.606 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C11	$0.45324(5)$	$0.61848(7)$	$0.86496(4)$	$0.03447(18)$
O1	$0.06705(13)$	$0.89161(17)$	$0.64445(10)$	$0.0231(3)$
N1	$0.05777(14)$	$0.7905(2)$	$0.44644(12)$	$0.0197(3)$
H1	$0.013(3)$	$0.890(4)$	$0.413(2)$	$0.040(7)^{*}$
N2	$0.11129(14)$	$0.6437(2)$	$0.38217(12)$	$0.0195(3)$
H2	$0.096(2)$	$0.636(3)$	$0.300(2)$	$0.038(6)^{*}$
C3	$0.18687(16)$	$0.5302(2)$	$0.45765(14)$	$0.0189(3)$
C4	$0.18362(16)$	$0.6035(2)$	$0.57245(14)$	$0.0181(3)$
C5	$0.10154(16)$	$0.7717(2)$	$0.56311(13)$	$0.0188(3)$
C6	$0.2560(2)$	$0.3553(3)$	$0.41307(16)$	$0.0254(4)$
H6A	$0.282(3)$	$0.372(4)$	$0.331(3)$	$0.058(8)^{*}$
H6B	$0.338(3)$	$0.328(5)$	$0.458(3)$	$0.065(9)^{*}$
H6C	$0.205(3)$	$0.250(5)$	$0.414(3)$	$0.066(9)^{*}$
C7	$0.25721(17)$	$0.5342(2)$	$0.68559(14)$	$0.0205(3)$
H7A	$0.194(2)$	$0.527(3)$	$0.7508(18)$	$0.021(5)^{*}$
H7B	$0.295(2)$	$0.406(3)$	$0.676(2)$	$0.029(5)^{*}$
C8	$0.37260(18)$	$0.6724(3)$	$0.71941(16)$	$0.0254(4)$
H8A	$0.340(2)$	$0.807(4)$	$0.724(2)$	$0.031(6)^{*}$
H8B	$0.443(2)$	$0.665(4)$	$0.664(2)$	$0.037(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0401(3)$	$0.0366(3)$	$0.0249(3)$	$0.00431(18)$	$-0.01242(19)$	$-0.00157(17)$
O1	$0.0374(7)$	$0.0209(6)$	$0.0110(5)$	$0.0082(5)$	$0.0007(5)$	$-0.0010(4)$
N 1	$0.0297(7)$	$0.0180(7)$	$0.0114(6)$	$0.0045(5)$	$0.0008(5)$	$-0.0006(5)$
N 2	$0.0278(7)$	$0.0194(7)$	$0.0115(7)$	$0.0026(5)$	$0.0013(5)$	$-0.0028(5)$
C3	$0.0237(7)$	$0.0179(7)$	$0.0153(7)$	$-0.0011(6)$	$0.0027(6)$	$0.0008(6)$
C4	$0.0238(7)$	$0.0177(7)$	$0.0128(7)$	$0.0008(6)$	$0.0024(6)$	$0.0017(6)$
C5	$0.0273(8)$	$0.0183(7)$	$0.0110(7)$	$-0.0002(6)$	$0.0023(6)$	$0.0003(6)$
C6	$0.0333(9)$	$0.0233(8)$	$0.0198(9)$	$0.0057(7)$	$0.0033(7)$	$-0.0036(7)$
C7	$0.0280(8)$	$0.0192(8)$	$0.0144(8)$	$0.0036(6)$	$0.0015(6)$	$0.0016(6)$
C8	$0.0264(8)$	$0.0315(9)$	$0.0180(8)$	$0.0006(7)$	$-0.0019(6)$	$0.0029(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl1}-\mathrm{C} 8$	$1.8040(18)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.496(2)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.2920(19)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	$0.97(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.354(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	$0.95(3)$

N1—N2
N1-H1
N2-C3
N2-H2
C3-C4
C3-C6
C4-C5

C5-N1-N2
C5-N1-H1
N2-N1-H1
C3-N2-N1
C3-N2-H2
N1-N2-H2
N2-C3-C4
N2-C3-C6
C4-C3-C6
C3-C4-C5
C3-C4-C7
C5-C4-C7
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 1$
O1-C5-C4
N1-C5-C4
C3-C6-H6A
C3-C6-H6B

C5—N1-N2-C3
N1—N2-C3-C4
N1—N2-C3-C6
N2-C3-C4-C5
C6-C3-C4-C5
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$
C6-C3-C4-C7
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{O} 1$
1.3685 (19)
0.88 (3)
1.342 (2)
0.92 (3)
1.382 (2)
1.489 (2)
1.416 (2)
108.95 (13)
126.8 (17)
123.6 (17)
108.66 (13)
129.9 (15)
121.4 (15)
108.96 (14)
120.74 (15)
130.29 (15)
106.22 (14)
128.97 (15)
124.69 (14)
122.31 (15)
130.49 (14)
107.19 (13)
111.6 (17)
111.9 (19)
0.98 (18)
-0.30 (18)
178.79 (15)
-0.45 (18)
-179.43 (17)
-176.56 (16)
4.5 (3)
179.70 (15)
C6-H6C
C7-C8
C7-H7A
C7-H7B
C8-H8A
C8-H8B

H6A-C6-H6B
C3-C6-H6C
H6A-C6-H6C
H6B-C6-H6C
C4-C7-C8
C4-C7-H7A
C8-C7-H7A
C4-C7- H 7 B
C8-C7- H 7 B
H7A-C7-H7B
C7-C8-Cl1
C7-C8-H8A
Cl1-C8-H8A
C7-C8-H8B
Cl1-C8-H8B
H8A-C8-H8B
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 1$
0.88 (3)
1.514 (2)
0.99 (2)
0.97 (2)
0.99 (2)
0.95 (2)

105 (2)
113 (2)
107 (3)
107 (3)
108.91 (14)
110.2 (12)
110.3 (12)
111.5 (13)
108.6 (13)
107.3 (18)
112.04 (12)
111.5 (13)
105.7 (13)
111.5 (15)
106.1 (15)
109.7 (19)
-1.24 (18)
179.99 (17)
-3.7 (3)
1.04 (18)
177.36 (15)
105.67 (19)
-69.8 (2)
172.38 (11)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.88(3)$	$1.81(3)$	$2.6861(18)$	$174(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots 1^{\mathrm{ii}}$	$0.92(3)$	$1.75(3)$	$2.6772(17)$	$177(2)$

Symmetry codes: (i) $-x,-y+2,-z+1$; (ii) $x,-y+3 / 2, z-1 / 2$.

