

Received 6 November 2023 Accepted 24 January 2024

Edited by J. M. Delgado, Universidad de Los Andes, Venezuela

Keywords: crystal structure; coordination polymer; lanthanide; pyridine-2,5dicarboxylate; phthalate..

CCDC reference: 2327873

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and characterization of a new lanthanide coordination polymer, $[Pr_2(pydc)(phth)_2(H_2O)_3] \cdot H_2O$

Bunlawee Yotnoi^a* and Apinpus Rujiwatra^b

^aDepartment of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand, and ^bDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. *Correspondence e-mail: bunlawee.yo@up.ac.th

A new lanthanide coordination polymer, poly[[triaquabis(μ_4 -phthalato)(μ_3 pyridine-2,5-dicarboxylato)dipraseodymium] monohydrate], {[Pr₂(C₇H₃NO₄) $_2(C_8H_4O_4)(H_2O)_3]\cdot H_2O_n$ or {[Pr₂(phth)₂(pydc)(H₂O)₃]·H₂O]_n, (pydc²⁻ = pyridine-2,5-dicarboxylate and phth²⁻ = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr₂(pydc)(phth)₂(H₂O)₃]_n layers. Each layer is built up by edge-sharing {Pr₂N₂O₁₄} and {Pr₂O₁₆} dimers, which are connected through a new coordination mode of pydc²⁻ and phth²⁻. These layers are stabilized by internal hydrogen bonds and π - π interactions. In addition, a three-dimensional supramolecular framework is built by interlayer hydrogen-bonding interactions involving the non-coordinated water molecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C.

1. Chemical context

Lanthanide coordination polymers (LnCPs) have attracted widespread interest because of their unique properties and wide range of potential applications, such as in luminescent temperature sensing (Rocha et al., 2016), catalysis (Sinchow et al., 2022), gas detection (Thammakan et al., 2023) and drug delivery (Wei et al., 2020). However, the high coordination numbers of the trivalent lanthanides (Ln^{III}) and the versatility in their coordination geometries complicates the control of intermolecular interactions and the prediction of coordination polymer frameworks. In addition, the synthesis of these frameworks is also influenced considerably by differences in synthetic procedures and conditions such as solvents, pH, reaction temperature and time, among other factors (Sinchow et al., 2019). Organic ligands are utilized as a template for the structural design, to direct the framework architecture. Among the organic ligands available, polycarboxylic acids are notably the most used because they are hard base ligands and can facilitate diverse coordination modes. In this work, pyridine-2,5-dicarboxylic acid (H₂pydc) and phthalic acid (H₂phth) were chosen to be the structure-directing ligands. Relevant structures include, for example, [Pr₃(phen)₂(phth) $_4(NO_3)]\cdot H_2O$ (phen = 1,10-phenanthroline)(refcode: LAXWOX; Thirumurugan & Natarajan, 2005), [Eu(phth)(OAc)(H₂O)] (OAc = acetate) (refcode: TAZDAD; Jittipiboonwat *et al.*, 2022), $[Pr(pydc)(pip)_{1/2}(H_2O)]$ (pip = 2,5piperazinedicarboxylate) (refcode: WUWBIB; Ay et al., 2016) and $[Pr(pydc)(NA)H_2O]n$ (NA = nicotinic acid) (refcode: MEJNEY; Hu et al., 2022).

2. Structural commentary

The asymmetric unit of [Pr₂(pydc)(phth)₂(H₂O)₃]·H₂O is composed of two Pr^{III} metal centers, one molecule of pydc²⁻, two molecules of phth²⁻, three coordinated water molecules and a non-ligated water molecule (Fig. 1). The Pr1 ion is ninefold coordinated to one N atom from pydc²⁻ and eight O atoms from four $phth^{2-}$, two $pydc^{2-}$ and one water molecule to form a $\{Pr(1)NO_8\}$ motif that can be described as a distorted tricapped trigonal prism. The Pr2 ion is also ninefold coordinated, being surrounded by nine O atoms from three $phth^{2-}$, one $pydc^{2-}$ and two water molecules in a distorted tricapped trigonal-prismatic $\{Pr(2)O_9\}$ motif. The Pr-O bond lengths are in the range 2.413 (3)–2.691 (3) Å and the Pr-Nbond is 2.696 (3) Å (Table 1), in accordance with a previous report for Pr^{III} frameworks of $pydc^{2-}$ [2.390 (2)–2.717 (3) Å; Sinchow et al., 2019] and phth²⁻ [2.456 (4)–2.696 (4) Å; Thirumurugan & Natarajan, 2005]. The {Pr(1)NO₈} motif is linked to the adjacent Pr1, forming edge-sharing $\{Pr(1)_2N_2O_{14}\}$

Figure 1

Extended asymmetric unit of $[Pr_2(pydc)(phth)_2(H_2O)_3] \cdot H_2O$ drawn using 50% probability for ellipsoids (hydrogen atoms are omitted for clarity). Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z; (v) $-x + \frac{3}{2}$, $-y + \frac{3}{2}$, $-z + \frac{1}{2}$.

Table 1	
Selected bond lengths (Å).	

$Pr1 - O7^{i}$	2,536 (3)	$Pr2-O12^{iv}$	2,514 (2)
$Pr1-O2^{ii}$	2.580 (2)	Pr2-015W	2.413 (3)
Pr1-O5 ⁱⁱⁱ	2.473 (2)	$Pr2-O9^{v}$	2.691 (3)
Pr1-O8 ⁱ	2.689 (2)	Pr2–O9	2.469 (2)
$Pr1-O8^{iv}$	2.473 (3)	Pr2-O4	2.526 (2)
Pr1-O6	2.446 (3)	$Pr2-O10^{v}$	2.510 (3)
Pr1-O1	2.439 (2)	Pr2-O3	2.575 (3)
Pr1-N1	2.696 (3)	Pr2-O14W	2.460 (2)
Pr1-O13W	2.571 (4)	Pr2-O11 ^{iv}	2.529 (3)

dimers, and two neighboring {Pr(1)₂N₂O₁₄} dimers are fused through the μ_4 - η^2 : η^1 : η^1 : η^1 carboxyl group of phth²⁻ to form an infinite chain in the *b*-axis direction. In a similar fashion, two {Pr(2)O₉} motifs are linked to produce {Pr(2)₂O₁₆} dimers. These dimers are then connected by the carboxyl groups of phth²⁻ in a μ_3 - η^2 : η^1 : η^1 : η^1 fashion to form a mono-periodic chain also extending in the *b*-axis direction. These chains are connected through a novel coordination mode for pydc²⁻ involving a μ_1 - η^1 : η^1 carboxyl group at one side and a μ_2 - η^1 : η^1 carboxyl group together with the pyridyl N atom coordinated on the other side to form a {[Pr₂(pydc)(phth)₂(H₂O)₃]}_n layer extending in the (101) plane (Fig. 2a).

 ${Pr(2)_{2O_{16}}}n \text{ dimers}$ ${Pr(1)_{2N_{2O_{14}}}}n \text{ dimers}$ ${Pr(2)_{2O_{16}}}n \text{ dimers}$ (a)

Figure 2

View of (a) the {Pr(1)₂N₂O₁₄} and {Pr(2)₂O₁₆} dimers in the (101) plane and (b) the hydrogen bonding and π - π interactions in the dimers.

research communications

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O13W-H13A\cdots O11^{vi}$	0.85	2.57	3.003 (5)	113
$O13W - H13A \cdots O16W^{vi}$	0.85	2.26	2.881 (5)	130
$O13W - H13B \cdot \cdot \cdot O2^{ii}$	0.86	2.52	2.820 (4)	102
$O14W-H14A\cdots O12^{vii}$	0.85	1.95	2.766 (4)	160
$O14W-H14B\cdots O4^{ii}$	0.85	2.04	2.887 (4)	174
$O14W-H14B\cdots O10^{vii}$	0.85	2.58	2.912 (4)	104
$O15W-H15A\cdots O16W$	0.85	1.75	2.595 (4)	170
$O15W-H15B\cdots O4^{ii}$	0.85	1.92	2.725 (3)	158
$O16W - H16B \cdots O7^{viii}$	0.85	2.31	2.709 (4)	109
$O16W-H16B\cdots O1^{ix}$	0.85	2.13	2.938 (5)	158
$C11-H11\cdots O14W$	0.93	2.51	3.375 (5)	156

Symmetry codes: (ii) x, y + 1, z; (vi) $-x + \frac{3}{2}$, y - 1, -z + 1; (vii) $-x + \frac{3}{2}$, $-y + \frac{5}{2}$, $-z + \frac{1}{2}$; (viii) $x + \frac{1}{2}$, -y + 2, z; (ix) $-x + \frac{3}{2}$, y + 1, -z + 1.

3. Supramolecular features

di-periodic supramolecular framework The of the $\{[Pr_2(pydc)(phth)_2(H_2O)_3]\}_n$ layers is further connected by intralayer hydrogen bonding, *i.e.* $O13W-H13B\cdots O2$, $O14W-H14A\cdots O12$, $O14W-H14B\cdots O4$, $O14W-H14B\cdots$ O10, O15W-H15B···O4 and C11-H11···O14W interactions and $\pi - \pi$ interactions (Fig. 2b and Table 2). The $\pi - \pi$ interaction between two aromatic rings ($pydc^{2-}$ and $phth^{2-}$) is classified as a parallel stacked geometry (Banerjee et al., 2019), with an offset of 1.250 Å, interplanar angle of 5.96° and centroid-to-centroid distance of 3.892 (2) Å. In addition, the interlayer hydrogen-bonding interactions involve the coordinated water (O13W) and the hydrogen-bonded water (O16W). These interactions are $O13W - H13A \cdots O11$, O13W-H13A...O16W, O15W-H15A...O16W, O16W-

Figure 3 Three-dimensional supramolecular framework of $[Pr_2(pydc)(phth)_2(H_2O)_3]$ ·H₂O.

Figure 4 Thermogravimetric analysis of [Pr₂(pydc)(pth)₂(H₂O)₃]·H₂O.

H16A···O7, O16W-H16B···O1 and O16W-H16B···O7 interactions (Fig. 3 and Table 2).

4. Thermogravimetric analysis

The thermogravimetric curve of the title compound shows four steps of weight loss in the temperature range 30°C to 1000° C (Fig. 4). The first step occurs at $100-185^{\circ}$ C with a 6.0% weight loss attributed to the removal of one hydrogen-bonded water and two coordinated water molecules (calc. 6.4%). The second step observed at 300-350°C is due to the loss of the other coordinated water molecule (exp. 2.5%, calc. 2.1%). This step is possibly due to the removal of O14W, which is held by both strong and weak hydrogen-bonding interactions. The next step of weight loss occurs in the temperature range 400-580°C and represents a higher weight loss of 37.3%. This step can be attributed to the pyrolysis of the organic ligands (two phth²⁻ ligands, calc. 38.7%). The last step of weight loss, from 580 to 1000°C, could be due to the elimination of the bridging $pydc^{2-}$ ligand to form praseodymium oxide residues (exp. 14.7%, calc. 19.5%).

5. Database survey

A search for the title compound in the Cambridge Structural Database (CSD version 5.44, April 2023; Groom *et al.*, 2016) using CONQUEST software (version 2023.2.0; Bruno *et al.*, 2002) did not match with any reported structures. Regarding organic ligands, there were 123 structures of lanthanide coordination polymers that included $pydc^{2-}$. Among these structures, interestingly, there were none in which $pydc^{2-}$ adopts the same coordination mode as in the title compound (Sinchow *et al.*, 2019). This new mode of coordination acts as a μ_3 -bridge to link three Pr^{III} ions and facilitates the formation of a di-periodic coordination framework. Regarding $pthh^{2-}$, there were 118 structures deposited in the CSD, none of which

contains $pydc^{2-}$ in the structure. However, there is a structure including both $pydc^{2-}$ and $phth^{2-}$ ligands that incorporates a first-row transition metal: $[Gd_2(H_2O)_2Ni(H_2O)_2(phth)_2(pydc) _2]_3 \cdot 8H_2O$ (refcode: XOZYER; Mahata *et al.*, 2009).

6. Synthesis and crystallization

All chemicals were used as received without further purification: Pr_6O_{11} (TJTM, 99.9%), pyridine-2,5-dicarboxylic acid (H₂pydc; Sigma-Aldrich, 98%), 1,2-benzenedicarboxylic acid (H₂phth; Sigma-Aldrich, 98%) and NaOH (QReC, 99%). The $Pr(NO_3)_3$ ·6H₂O precursor was prepared by crystallization from solution of the lanthanide oxide in nitric acid (RCI Labscan, 65%).

To synthesize $[Pr_2(pydc)(phth)_2(H_2O)_3]$ ·H₂O, a solution of H_2 pydc (0.125 mmol, 20.8 mg) and H_2 phth (0.25 mmol, 41.5 mg) was prepared in 8 mL of deionized water, then 1.35 mL of 0.5 M NaOH were added and the pH adjusted to 5. $Pr(NO_3)$ ·6H₂O (0.25 mmol, 146.6 mg) was dissolved in 2 mL of deionized water and mixed with the ligand solution. The reaction mixture was then transferred into a 23 mL Teflonlined hydrothermal reactor and held at 423 K for 72 h. Green block-shaped crystals were collected and dried at room temperature. The crystals were characterized using FT-IR spectroscopy (Nicolet iS5 FTIR Spectrometer; iD5 ATR mode; cm^{-1}): 3243(*br*), 1615(*w*), 1575(*m*), 1543(*m*), 1517(*m*), 1481(m), 1450(w), 1391(m), 1354(m), 1283(w), 1143(w),1088(w), 1028(w), 870(w), 840(m), 762(m), 670(m), 648(w).The FT-IR spectrum shows a broad band at 3243 cm^{-1} attributed to the $\nu(O-H)$ stretching from the water molecules. The characteristic peak at 1615 cm^{-1} corresponds to the C=O stretching vibrational mode of the carboxylate group. The peak at 1283 cm⁻¹ is due to the C–N stretching of the $pydc^{2-}$ ligand.

Thermogravimetric analyses (TGA) were carried out using a Mettler Toledo TGA/DSC 3+, with a heating rate of 20° C min⁻¹, ramping from 30 to 1100° C under a nitrogen gas flow.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms of aromatic rings and water molecules were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2-1.5U_{eq}(C,O)$.

Funding information

This work was supported financially by the Fundamental Fund (FF65-RIM055) of the University of Phayao, Thailand, and by the School of Science, University of Phayao (funding No. PBTSC66046).

References

Ay, B., Yildiz, E. & Kani, I. (2016). J. Solid State Chem. 233, 44–51.Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.

Table 3	
E	1 - 4 - 1 -

Experimental	details.
1	

Crystal data	
Chemical formula	$[Pr_2(C_7H_3NO_4)_2(C_8H_4O_4)-$
	$(H_2O)_3]\cdot H_2O$
M _r	847.21
Crystal system, space group	Monoclinic, I2/a
Temperature (K)	293
a, b, c (Å)	27.4898 (4), 5.9436 (1), 32.0473 (5)
β (°)	93.854 (1)
$V(Å^3)$	5224.31 (14)
Ζ	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.77
Crystal size (mm)	$0.3 \times 0.2 \times 0.08$
Data collection	
Diffractometer	SuperNova, Single source at offset/ far, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.448, 1.000
No. of measured, independent and	26747, 5561, 5004
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.062
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.648
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.081, 1.05
No. of reflections	5561
No. of parameters	387
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.03, -1.08

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hu, R.-H., Liu, S.-Z., Xu, Y.-Y., Yi, X.-G., Chen, W.-T. & Lin, W.-S. (2022). J. Mol. Struct. **1265**, 133396.
- Jittipiboonwat, P., Chuasaard, T. & Rujiwatra, A. (2022). Acta Cryst. E78, 536–539.
- Mahata, P., Ramya, K. V. & Natarajan, S. (2009). *Inorg. Chem.* 48, 4942–4951.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rocha, J., Brites, C. D. S. & Carlos, L. D. (2016). Chem. Eur. J. 22, 14782–14795.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.
- Sinchow, M., Konno, T. & Rujiwatra, A. (2022). *Inorg. Chem.* **61**, 10383–10392.
- Thammakan, S., Sinchow, M., Chiangraeng, N., Yoshinari, N., Konno, T., Ngamjarurojana, A., Nimmanpipug, P. & Rujiwatra, A. (2023). *Cryst. Growth Des.* 23, 6840–6850.
- Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594.
- Wei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121–1131.

supporting information

Acta Cryst. (2024). E80, 228-231 [https://doi.org/10.1107/S2056989024000872]

Crystal structure and characterization of a new lanthanide coordination polymer, $[Pr_2(pydc)(phth)_2(H_2O)_3]\cdot H_2O$

Bunlawee Yotnoi and Apinpus Rujiwatra

Computing details

Poly[[triaquabis(μ_4 -phthalato)(μ_3 -pyridine-2,5-dicarboxylato)dipraseodymium] monohydrate]

Crystal data

 $[\Pr_{2}(C_{7}H_{3}NO_{4})_{2}(C_{8}H_{4}O_{4})(H_{2}O)_{3}]\cdot H_{2}O$ $M_{r} = 847.21$ Monoclinic, I2/a a = 27.4898 (4) Å b = 5.9436 (1) Å c = 32.0473 (5) Å $\beta = 93.854$ (1)° V = 5224.31 (14) Å³ Z = 8

Data collection

SuperNova, Single source at offset/far, HyPix3000 diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.081$ S = 1.055561 reflections 387 parameters 0 restraints F(000) = 3280 $D_x = 2.154 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 20454 reflections $\theta = 2.0-27.3^{\circ}$ $\mu = 3.77 \text{ mm}^{-1}$ T = 293 KBlock, clear light green $0.3 \times 0.2 \times 0.08 \text{ mm}$

 $T_{\min} = 0.448, T_{\max} = 1.000$ 26747 measured reflections 5561 independent reflections 5004 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.062$ $\theta_{\text{max}} = 27.4^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$ $h = -32 \rightarrow 34$ $k = -7 \rightarrow 7$ $l = -40 \rightarrow 40$

Primary atom site location: dual Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0445P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 1.03$ e Å⁻³ $\Delta\rho_{min} = -1.08$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal structure was solved using the dual-space algorithm with the SHELXT program (Sheldrick, 2015a) and refined on F^2 by the full-matrix least-squares technique using the SHELXL program (Sheldrick, 2015b) via the Olex2 interface (Dolomanov *et al.*, 2009).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pr1	0.57085 (2)	0.43694 (3)	0.52003 (2)	0.01775 (8)
Pr2	0.75715 (2)	0.65833 (3)	0.31515 (2)	0.01807 (8)
07	0.45283 (10)	1.3428 (4)	0.41664 (9)	0.0278 (6)
02	0.63896 (9)	-0.2639 (4)	0.52143 (8)	0.0258 (6)
O12	0.80011 (9)	1.3574 (4)	0.27660 (8)	0.0233 (6)
05	0.48823 (9)	0.7809 (4)	0.44133 (8)	0.0245 (6)
08	0.50558 (9)	1.2895 (4)	0.47057 (8)	0.0225 (6)
O15W	0.79900 (10)	0.9333 (4)	0.35981 (10)	0.0348 (7)
H15A	0.828906	0.931811	0.368452	0.052*
H15B	0.788865	1.062225	0.366759	0.052*
09	0.79607 (10)	0.8562 (4)	0.25842 (8)	0.0247 (6)
O4	0.74925 (10)	0.3284 (4)	0.36394 (9)	0.0288 (7)
O10	0.82266 (10)	1.0318 (4)	0.20438 (9)	0.0285 (6)
O6	0.56535 (10)	0.6744 (4)	0.45754 (9)	0.0270 (6)
03	0.71029 (11)	0.6308 (4)	0.38190 (9)	0.0332 (7)
O14W	0.70712 (9)	1.0001 (4)	0.30575 (9)	0.0272 (6)
H14A	0.711517	1.058376	0.282044	0.041*
H14B	0.717297	1.099306	0.323394	0.041*
O11	0.84297 (10)	1.5114 (5)	0.32951 (9)	0.0328 (7)
01	0.59351 (10)	0.0418 (4)	0.52815 (9)	0.0314 (7)
N1	0.63969 (11)	0.2702 (5)	0.47251 (10)	0.0237 (7)
O16W	0.89141 (13)	0.9700 (6)	0.38119 (11)	0.0511 (9)
H16A	0.898260	0.843887	0.370560	0.077*
H16B	0.898930	0.954362	0.407190	0.077*
O13W	0.63638 (14)	0.3845 (6)	0.58034 (11)	0.0575 (10)
H13A	0.623288	0.331315	0.601685	0.086*
H13B	0.647446	0.512964	0.588387	0.086*
C15	0.49303 (14)	1.2686 (5)	0.43171 (12)	0.0201 (8)
C22	0.88149 (13)	1.2236 (6)	0.29160 (12)	0.0224 (8)
C17	0.87562 (14)	1.0344 (6)	0.26623 (12)	0.0226 (8)
C23	0.83927 (13)	1.3731 (6)	0.29984 (12)	0.0214 (8)
C6	0.66161 (14)	0.3836 (6)	0.44322 (12)	0.0236 (8)
H6	0.650321	0.527214	0.436258	0.028*
C16	0.82826 (14)	0.9752 (6)	0.24196 (12)	0.0209 (8)
C2	0.65666 (13)	0.0621 (5)	0.48235 (12)	0.0200 (8)
C8	0.53344 (13)	0.7948 (5)	0.43889 (12)	0.0192 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C5	0.70056 (13)	0.2984 (6)	0.42248 (12)	0.0229 (8)
C1	0.62796 (14)	-0.0633 (5)	0.51323 (12)	0.0196 (8)
C14	0.52822 (13)	1.1759 (5)	0.40244 (12)	0.0194 (8)
C7	0.72085 (14)	0.4317 (6)	0.38760 (12)	0.0236 (9)
C18	0.91496 (15)	0.8966 (7)	0.26096 (15)	0.0364 (11)
H18	0.911010	0.769656	0.244119	0.044*
C21	0.92728 (15)	1.2708 (7)	0.31040 (14)	0.0347 (10)
H21	0.931630	1.397619	0.327226	0.042*
C4	0.71830 (15)	0.0895 (6)	0.43396 (13)	0.0299 (10)
H4	0.744967	0.029575	0.421450	0.036*
C11	0.59980 (15)	1.0454 (7)	0.35039 (14)	0.0355 (11)
H11	0.623695	1.001566	0.332856	0.043*
C3	0.69586 (14)	-0.0308 (6)	0.46450 (12)	0.0266 (9)
H3	0.707294	-0.172427	0.472697	0.032*
C10	0.58662 (14)	0.9040 (6)	0.38164 (13)	0.0271 (9)
H10	0.602064	0.765556	0.385436	0.033*
C9	0.55037 (13)	0.9663 (6)	0.40764 (12)	0.0213 (8)
C13	0.54177 (15)	1.3151 (6)	0.37105 (13)	0.0300 (10)
H13	0.526545	1.453984	0.367252	0.036*
C12	0.57745 (16)	1.2535 (7)	0.34501 (14)	0.0377 (11)
H12	0.586413	1.350458	0.324088	0.045*
C19	0.96019 (16)	0.9438 (8)	0.28028 (16)	0.0454 (13)
H19	0.986346	0.847910	0.276856	0.054*
C20	0.96632 (17)	1.1326 (8)	0.30449 (17)	0.0485 (13)
H20	0.996917	1.167448	0.316952	0.058*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.01815 (13)	0.01481 (12)	0.02073 (14)	0.00126 (7)	0.00452 (9)	0.00299 (8)
Pr2	0.01974 (13)	0.01567 (12)	0.01921 (14)	0.00040 (7)	0.00422 (9)	0.00159 (8)
O7	0.0247 (15)	0.0284 (14)	0.0302 (17)	0.0052 (12)	0.0009 (13)	-0.0047 (12)
O2	0.0305 (15)	0.0164 (12)	0.0310 (16)	0.0006 (11)	0.0054 (13)	0.0040 (11)
O12	0.0186 (14)	0.0230 (13)	0.0278 (16)	0.0040 (11)	-0.0032 (12)	0.0000 (11)
05	0.0222 (14)	0.0220 (13)	0.0300 (16)	-0.0022 (11)	0.0078 (12)	0.0052 (12)
08	0.0312 (15)	0.0179 (12)	0.0184 (15)	-0.0023 (11)	0.0024 (12)	-0.0003 (11)
O15W	0.0267 (16)	0.0304 (15)	0.046 (2)	0.0023 (12)	-0.0064 (15)	-0.0147 (14)
09	0.0262 (15)	0.0207 (12)	0.0280 (16)	-0.0066 (11)	0.0077 (12)	0.0032 (11)
O4	0.0362 (17)	0.0229 (13)	0.0292 (17)	0.0071 (12)	0.0155 (14)	0.0060 (11)
O10	0.0278 (15)	0.0332 (15)	0.0245 (16)	-0.0063 (12)	0.0020 (12)	0.0058 (12)
06	0.0262 (15)	0.0261 (14)	0.0288 (16)	0.0055 (11)	0.0032 (13)	0.0105 (12)
O3	0.052 (2)	0.0198 (13)	0.0305 (17)	0.0036 (13)	0.0216 (15)	0.0004 (12)
O14W	0.0332 (16)	0.0228 (13)	0.0256 (16)	0.0057 (12)	0.0024 (13)	0.0019 (11)
011	0.0314 (16)	0.0359 (15)	0.0299 (17)	0.0070 (13)	-0.0053 (13)	-0.0145 (13)
01	0.0379 (17)	0.0202 (13)	0.0386 (18)	0.0036 (12)	0.0206 (14)	0.0074 (12)
N1	0.0259 (17)	0.0156 (14)	0.0306 (19)	0.0024 (13)	0.0097 (15)	0.0037 (14)
O16W	0.046 (2)	0.059 (2)	0.046 (2)	0.0062 (18)	-0.0142 (18)	0.0038 (17)
O13W	0.072 (3)	0.054 (2)	0.044 (2)	0.0244 (19)	-0.0162 (19)	0.0018 (17)

supporting information

C15	0.023 (2)	0.0133 (16)	0.024 (2)	-0.0063 (15)	0.0044 (17)	0.0010 (15)
C22	0.021 (2)	0.0225 (18)	0.023 (2)	0.0021 (16)	0.0008 (16)	0.0015 (16)
C17	0.023 (2)	0.0228 (18)	0.022 (2)	0.0010 (16)	0.0028 (16)	0.0041 (16)
C23	0.020 (2)	0.0191 (17)	0.025 (2)	0.0008 (15)	0.0029 (17)	0.0022 (16)
C6	0.030 (2)	0.0174 (16)	0.024 (2)	0.0029 (16)	0.0075 (18)	0.0038 (16)
C16	0.021 (2)	0.0173 (17)	0.025 (2)	0.0039 (15)	0.0078 (17)	0.0030 (16)
C2	0.020 (2)	0.0177 (17)	0.022 (2)	0.0009 (14)	0.0037 (16)	-0.0003 (15)
C8	0.022 (2)	0.0146 (16)	0.021 (2)	0.0011 (15)	0.0046 (16)	-0.0022 (15)
C5	0.024 (2)	0.0221 (18)	0.023 (2)	0.0001 (16)	0.0077 (17)	0.0028 (16)
C1	0.023 (2)	0.0170 (17)	0.019 (2)	-0.0009 (15)	0.0020 (16)	0.0020 (14)
C14	0.0198 (19)	0.0174 (17)	0.021 (2)	-0.0037 (14)	0.0003 (16)	0.0019 (14)
C7	0.028 (2)	0.0210 (19)	0.023 (2)	-0.0004 (16)	0.0091 (18)	0.0012 (16)
C18	0.027 (2)	0.035 (2)	0.047 (3)	0.0083 (19)	0.004 (2)	-0.007 (2)
C21	0.026 (2)	0.034 (2)	0.044 (3)	0.0017 (19)	-0.001 (2)	-0.009 (2)
C4	0.029 (2)	0.0241 (19)	0.039 (3)	0.0037 (17)	0.014 (2)	0.0032 (18)
C11	0.029 (2)	0.046 (3)	0.033 (3)	-0.0025 (19)	0.015 (2)	0.003 (2)
C3	0.032 (2)	0.0202 (18)	0.029 (2)	0.0065 (16)	0.0095 (18)	0.0060 (16)
C10	0.028 (2)	0.0261 (19)	0.028 (2)	0.0016 (17)	0.0112 (18)	0.0018 (17)
C9	0.0182 (19)	0.0225 (18)	0.024 (2)	-0.0012 (15)	0.0035 (16)	0.0002 (16)
C13	0.039 (3)	0.0239 (19)	0.027 (2)	0.0015 (17)	0.005 (2)	0.0052 (17)
C12	0.043 (3)	0.039 (2)	0.033 (3)	-0.006 (2)	0.018 (2)	0.014 (2)
C19	0.026 (2)	0.053 (3)	0.056 (3)	0.018 (2)	0.000 (2)	-0.010 (3)
C20	0.018 (2)	0.063 (3)	0.063 (4)	0.002 (2)	-0.008 (2)	-0.012 (3)

Geometric parameters (Å, °)

Pr1—Pr1 ⁱ	4.0877 (4)	N1—C2	1.352 (4)
Pr1—O7 ⁱⁱ	2.536 (3)	O16W—H16A	0.8495
Pr1—O2 ⁱⁱⁱ	2.580 (2)	O16W—H16B	0.8500
Pr1—O5 ⁱ	2.473 (2)	O13W—H13A	0.8548
Pr1—O8 ⁱⁱ	2.689 (2)	O13W—H13B	0.8552
Pr1-O8 ^{iv}	2.473 (3)	C15—C14	1.497 (5)
Pr1—O6	2.446 (3)	C22—C17	1.391 (5)
Pr1—O1	2.439 (2)	C22—C23	1.499 (5)
Pr1—N1	2.696 (3)	C22—C21	1.387 (5)
Pr1—O13W	2.571 (4)	C17—C16	1.513 (5)
Pr1—C15 ⁱⁱ	2.984 (4)	C17—C18	1.376 (5)
Pr2—O12 ^{iv}	2.514 (2)	С6—Н6	0.9300
Pr2—O15W	2.413 (3)	C6—C5	1.393 (5)
Pr2—O9 ^v	2.691 (3)	C2—C1	1.504 (5)
Pr2—O9	2.469 (2)	C2—C3	1.370 (5)
Pr2—O4	2.526 (2)	C8—C9	1.523 (5)
Pr2—O10 ^v	2.510 (3)	C5—C7	1.507 (5)
Pr2—O3	2.575 (3)	C5—C4	1.375 (5)
Pr2—O14W	2.460 (2)	C14—C9	1.392 (5)
Pr2—O11 ^{iv}	2.529 (3)	C14—C13	1.373 (5)
Pr2—C23 ^{iv}	2.891 (4)	C18—H18	0.9300
Pr2—C16 ^v	2.986 (4)	C18—C19	1.380 (6)

O7—C15	1.256 (5)	C21—H21	0.9300
O2—C1	1.254 (4)	C21—C20	1.374 (6)
O12—C23	1.271 (4)	C4—H4	0.9300
O5—C8	1.253 (4)	C4—C3	1.390 (5)
O8—C15	1.276 (4)	C11—H11	0.9300
O15W—H15A	0.8498	C11—C10	1.375 (5)
O15W—H15B	0.8499	C11—C12	1.386 (5)
O9—C16	1.274 (4)	С3—Н3	0.9300
O4—C7	1.281 (4)	C10—H10	0.9300
O10—C16	1.250 (4)	C10—C9	1.391 (5)
O6—C8	1.252 (4)	С13—Н13	0.9300
O3—C7	1.229 (4)	C13—C12	1.379 (5)
O14W—H14A	0.8511	C12—H12	0.9300
O14W—H14B	0.8512	С19—Н19	0.9300
O11—C23	1.256 (4)	C19—C20	1.368 (6)
01—C1	1.255 (4)	C20—H20	0.9300
N1—C6	1.332 (4)		
	1002(1)		
$O7^{ii}$ — $Pr1$ — $Pr1^{i}$	82.31 (6)	C23 ^{iv} —Pr2—C16 ^v	109.32 (10)
O7 ⁱⁱ —Pr1—O2 ⁱⁱⁱ	81.68 (8)	C15—O7—Pr1 ⁱⁱ	98.1 (2)
O7 ⁱⁱ —Pr1—O8 ⁱⁱ	49.76 (8)	$C1 - O2 - Pr1^{iv}$	119.2 (2)
O7 ⁱⁱ —Pr1—N1	150.37 (10)	C23—O12—Pr2 ⁱⁱⁱ	93.8 (2)
O7 ⁱⁱ —Pr1—O13W	70.46 (10)	$C8-O5-Pr1^{i}$	138.9 (2)
$O7^{ii}$ —Pr1—C15 ⁱⁱ	24.63 (10)	Pr1 ⁱⁱⁱ —O8—Pr1 ⁱⁱ	104.62 (8)
$O2^{iii}$ — $Pr1$ — $Pr1^i$	123.65 (6)	C15—O8—Pr1 ⁱⁱⁱ	142.8 (2)
O2 ⁱⁱⁱ —Pr1—O8 ⁱⁱ	98.79 (7)	C15—O8—Pr1 ⁱⁱ	90.4 (2)
O2 ⁱⁱⁱ —Pr1—N1	74.17 (8)	Pr2—015W—H15A	126.8
O2 ⁱⁱⁱ —Pr1—C15 ⁱⁱ	92.20 (8)	Pr2—O15W—H15B	127.9
$O5^{i}$ — $Pr1$ — $Pr1^{i}$	67.00 (6)	H15A—O15W—H15B	104.5
$O5^{i}$ — $Pr1$ — $O7^{ii}$	69.95 (8)	$Pr2-O9-Pr2^{v}$	113.13 (9)
$O5^{i}$ — $Pr1$ — $O2^{iii}$	148.44 (9)	C16—O9—Pr2	156.4 (3)
$O5^{i}$ — $Pr1$ — $O8^{ii}$	73.52 (7)	C16—O9—Pr2 ^v	90.4 (2)
O5 ⁱ —Pr1—N1	126.85 (8)	C7—O4—Pr2	94.3 (2)
O5 ⁱ —Pr1—O13W	90.61 (11)	C16—O10—Pr2 ^v	99.7 (2)
$O5^{i}$ — $Pr1$ — $C15^{ii}$	67.57 (8)	C8—O6—Pr1	136.3 (2)
$O8^{iv}$ — $Pr1$ — $Pr1^i$	39.54 (6)	C7—O3—Pr2	93.4 (2)
$O8^{ii}$ — $Pr1$ — $Pr1^{i}$	35.83 (6)	Pr2—014W—H14A	109.5
$O8^{iv}$ — $Pr1$ — $O7^{ii}$	118.78 (9)	Pr2—O14W—H14B	109.6
O8 ^{iv} —Pr1—O2 ⁱⁱⁱ	138.56 (8)	H14A—O14W—H14B	104.5
$O8^{iv}$ — $Pr1$ — $O5^{i}$	70.29 (9)	C23—O11—Pr2 ⁱⁱⁱ	93.5 (2)
$O8^{iv}$ — $Pr1$ — $O8^{ii}$	75.37 (8)	C1—O1—Pr1	129.2 (2)
O8 ⁱⁱ —Pr1—N1	150.31 (9)	C6—N1—Pr1	125.4 (2)
$O8^{iv}$ — $Pr1$ — $N1$	90.82 (9)	C6—N1—C2	117.5 (3)
O8 ^{iv} —Pr1—O13W	151.68 (10)	C2—N1—Pr1	116.7 (2)
$O8^{iv}$ —Pr1—C15 ⁱⁱ	96.50 (10)	H16A—O16W—H16B	104.5
O8 ⁱⁱ —Pr1—C15 ⁱⁱ	25.31 (9)	Pr1—O13W—H13A	109.6
O6—Pr1—Pr1 ⁱ	68.41 (6)	Pr1—O13W—H13B	109.6
O6—Pr1—O7 ⁱⁱ	110.62 (9)	H13A—O13W—H13B	104.4

O6—Pr1—O2 ⁱⁱⁱ	67.76 (9)	O7—C15—Pr1 ⁱⁱ	57.32 (19)
$O6$ — $Pr1$ — $O5^i$	134.86 (9)	O7—C15—O8	121.0 (3)
$O6$ — $Pr1$ — $O8^{iv}$	71.19 (9)	O7—C15—C14	118.5 (3)
O6—Pr1—O8 ⁱⁱ	74.76 (8)	O8—C15—Pr1 ⁱⁱ	64.34 (18)
O6—Pr1—N1	75.93 (9)	O8—C15—C14	120.2 (3)
O6—Pr1—O13W	133.39 (12)	C14—C15—Pr1 ⁱⁱ	165.5 (2)
O6—Pr1—C15 ⁱⁱ	94.57 (9)	C17—C22—C23	121.4 (3)
O1—Pr1—Pr1 ⁱ	116.18 (7)	C21—C22—C17	118.9 (3)
O1—Pr1—O7 ⁱⁱ	119.27 (9)	C21—C22—C23	119.6 (3)
O1—Pr1—O2 ⁱⁱⁱ	118.80 (9)	C22—C17—C16	123.4 (3)
$O1$ — $Pr1$ — $O5^i$	67.30 (8)	C18—C17—C22	119.5 (4)
O1—Pr1—O8 ⁱⁱ	140.00 (8)	C18—C17—C16	117.1 (3)
O1—Pr1—O8 ^{iv}	84.05 (9)	O12—C23—Pr2 ⁱⁱⁱ	60.15 (18)
O1—Pr1—O6	130.10 (9)	O12—C23—C22	119.2 (3)
O1—Pr1—N1	61.47 (8)	O11—C23—Pr2 ⁱⁱⁱ	60.80 (19)
O1—Pr1—O13W	69.03 (11)	O11—C23—O12	121.0 (3)
O1—Pr1—C15 ⁱⁱ	131.64 (9)	O11—C23—C22	119.8 (4)
N1—Pr1—Pr1 ⁱ	125.47 (7)	C22—C23—Pr2 ⁱⁱⁱ	179.4 (3)
N1—Pr1—C15 ⁱⁱ	165.50 (9)	N1—C6—H6	118.3
O13W—Pr1—Pr1 ⁱ	149.66 (8)	N1—C6—C5	123.4 (3)
O13W—Pr1—O2 ⁱⁱⁱⁱ	66.39 (11)	С5—С6—Н6	118.3
O13W—Pr1—O8 ⁱⁱ	120.15 (9)	O9—C16—Pr2 ^v	64.3 (2)
O13W—Pr1—N1	84.09 (11)	O9—C16—C17	120.9 (3)
O13W—Pr1—C15 ⁱⁱ	95.07 (11)	O10—C16—Pr2 ^v	56.0 (2)
$C15^{ii}$ — $Pr1$ — $Pr1^{i}$	58.24 (8)	O10-C16-O9	120.3 (4)
$O12^{iv}$ — $Pr2$ — $O9^{v}$	78.00 (8)	O10-C16-C17	118.6 (3)
O12 ^{iv} —Pr2—O4	79.32 (8)	C17—C16—Pr2 ^v	172.4 (2)
O12 ^{iv} —Pr2—O3	129.85 (8)	N1-C2-C1	114.8 (3)
O12 ^{iv} —Pr2—O11 ^{iv}	51.70 (9)	N1—C2—C3	122.7 (3)
O12 ^{iv} —Pr2—C23 ^{iv}	26.01 (9)	C3—C2—C1	122.5 (3)
$O12^{iv}$ —Pr2—C16 ^v	83.43 (9)	O5—C8—C9	115.7 (3)
O15W—Pr2—O12 ^{iv}	123.55 (9)	O6—C8—O5	126.7 (3)
O15W—Pr2—O9 ^v	138.66 (9)	O6—C8—C9	117.5 (3)
O15W—Pr2—O9	84.33 (10)	C6—C5—C7	119.8 (3)
O15W—Pr2—O4	102.48 (10)	C4—C5—C6	118.1 (3)
O15W—Pr2—O10 ^v	145.79 (9)	C4—C5—C7	122.1 (3)
O15W—Pr2—O3	78.21 (10)	O2—C1—O1	124.8 (3)
O15W—Pr2—O14W	75.74 (9)	O2—C1—C2	118.6 (3)
O15W—Pr2—O11 ^{iv}	73.99 (9)	O1—C1—C2	116.5 (3)
O15W—Pr2—C23 ^{iv}	98.70 (10)	C9—C14—C15	123.4 (3)
O15W—Pr2—C16 ^v	150.18 (9)	C13—C14—C15	117.1 (3)
O9—Pr2—O12 ^{iv}	74.68 (8)	C13—C14—C9	119.3 (3)
O9—Pr2—O9 ^v	66.86 (9)	O4—C7—C5	117.2 (3)
O9—Pr2—O4	152.26 (8)	O3—C7—O4	121.4 (3)
O9—Pr2—O10 ^v	116.47 (9)	O3—C7—C5	121.4 (3)
O9—Pr2—O3	155.19 (8)	C17—C18—H18	119.5
O9—Pr2—O11 ^{iv}	81.57 (9)	C17—C18—C19	121.1 (4)
$O9^{v}$ —Pr2—C23 ^{iv}	102.54 (10)	C19—C18—H18	119.5

O9—Pr2—C23 ^{iv}	76.84 (9)	C22—C21—H21	119.6
O9—Pr2—C16 ^v	92.12 (10)	C20—C21—C22	120.9 (4)
$O9^{v}$ —Pr2—C16 ^v	25.27 (8)	C20—C21—H21	119.6
O4—Pr2—O9 ^v	116.93 (9)	C5—C4—H4	120.4
O4—Pr2—O3	50.80 (8)	C5—C4—C3	119.2 (3)
O4—Pr2—O11 ^{iv}	74.77 (9)	C3—C4—H4	120.4
$O4$ — $Pr2$ — $C23^{iv}$	75.56 (9)	C10-C11-H11	120.0
$O4$ — $Pr2$ — $C16^{v}$	94.37 (10)	C10—C11—C12	120.0 (4)
O10 ^v —Pr2—O12 ^{iv}	89.35 (8)	C12—C11—H11	120.0
O10 ^v —Pr2—O9 ^v	49.64 (8)	C2—C3—C4	119.0 (3)
O10 ^v —Pr2—O4	72.22 (9)	С2—С3—Н3	120.5
O10 ^v —Pr2—O3	72.59 (9)	С4—С3—Н3	120.5
$O10^{v}$ —Pr2—O11 ^{iv}	132.78 (8)	C11—C10—H10	119.7
$O10^{v}$ —Pr2—C23 ^{iv}	111.90 (10)	C11—C10—C9	120.5 (4)
$O10^{v}$ —Pr2—C16 ^v	24.37 (8)	C9—C10—H10	119.7
$O_3 - Pr_2 - O_9^v$	116.93 (9)	C14—C9—C8	121.8 (3)
$O3$ — $Pr2$ — $C23^{iv}$	122.92 (10)	C10-C9-C8	1186(3)
O_{3} —Pr2—C16 ^v	94 34 (10)	C10-C9-C14	119.5(3)
$O14W$ — $Pr2$ — $O12^{iv}$	143.58 (9)	C14—C13—H13	119.2
$014W$ —Pr2— 09^{v}	69 69 (8)	C14-C13-C12	121.5 (4)
014W—Pr2—09	77 46 (8)	C12—C13—H13	119.2
014W—Pr2—04	130 24 (8)	C11—C12—H12	120.4
$O14W$ — $Pr2$ — $O10^{v}$	82.48 (9)	C13-C12-C11	119.3 (3)
014W—Pr2—03	81 23 (9)	C13—C12—H12	120.4
$O14W$ — $Pr2$ — $O11^{iv}$	144 54 (9)	C18 - C19 - H19	120.1
$O14W$ — $Pr2$ — $C23^{iv}$	154.13 (9)	C_{20} C_{19} C_{18}	119.6 (4)
014W—Pr2—C16 ^v	74 59 (9)	C20-C19-H19	120.2
011^{iv} Pr2-09 ^v	126.43 (8)	C_{21} C_{20} H_{20}	120.0
011^{iv} Pr2 03	109.85 (9)	C19 - C20 - C21	120.0(4)
$O11^{iv}$ $Pr2$ $C23^{iv}$	25.69 (10)	C19—C20—H20	120.0
$O11^{iv}$ $Pr2$ $C16^{v}$	134.86 (9)		12010
Pr1 ⁱⁱ —O7—C15—O8	10.0 (3)	N1—C2—C1—O1	-3.9(5)
Pr1 ⁱⁱ —O7—C15—C14	-163.8(2)	N1—C2—C3—C4	-2.2(6)
Pr1 ^{iv} —O2—C1—O1	46.5 (5)	C15—C14—C9—C8	11.8 (6)
Pr1 ^{iv} —O2—C1—C2	-131.6 (3)	C15—C14—C9—C10	-172.9(4)
Pr1 ⁱ —O5—C8—O6	3.6 (6)	C15—C14—C13—C12	173.7 (4)
Pr1 ⁱ —O5—C8—C9	179.2 (2)	C22—C17—C16—O9	-88.4(4)
Pr1 ⁱⁱⁱ —O8—C15—Pr1 ⁱⁱ	-115.2(3)	C22-C17-C16-O10	96.6 (4)
Pr1 ⁱⁱⁱ —O8—C15—O7	-124.5 (4)	C22—C17—C18—C19	-0.3(6)
Pr1 ⁱⁱ —08—C15—O7	-9.3 (3)	C22—C21—C20—C19	-0.9(8)
Pr1 ⁱⁱ —08—C15—C14	164.4 (3)	C17 - C22 - C23 - O12	-15.5(5)
$Pr1^{iii} - O8 - C15 - C14$	49.2 (5)	C17 - C22 - C23 - O11	164.4 (4)
Pr1-06-C8-05	-21.5(6)	C17 - C22 - C21 - C20	-0.5(6)
Pr1	162.9 (2)	C17—C18—C19—C20	-1.1(7)
Pr1	174.8 (3)	C23—C22—C17—C16	5.7 (6)
Pr1-01-C1-C2	-7.1 (5)	C23—C22—C17—C18	-177.2 (4)
Pr1-N1-C6-C5	173.0 (3)	C_{23} C_{22} C_{21} C_{20}	177.9 (4)
	1,0,0 (0)		

Pr1—N1—C2—C1	11.0 (4)	C6—N1—C2—C1	-175.6 (3)
Pr1—N1—C2—C3	-171.3 (3)	C6—N1—C2—C3	2.1 (6)
Pr1 ⁱⁱ —C15—C14—C9	161.5 (9)	C6—C5—C7—O4	-165.8 (4)
Pr1 ⁱⁱ —C15—C14—C13	-13.1 (13)	C6—C5—C7—O3	13.7 (6)
Pr2 ⁱⁱⁱ —O12—C23—O11	-0.1 (4)	C6—C5—C4—C3	2.2 (6)
Pr2 ⁱⁱⁱ —O12—C23—C22	179.8 (3)	C16—C17—C18—C19	176.9 (4)
$Pr2-O9-C16-Pr2^{v}$	-176.4 (6)	C2—N1—C6—C5	0.2 (6)
Pr2 ^v O9C16O10	1.1 (3)	C5—C4—C3—C2	0.0 (6)
Pr2-09-C16-010	-175.3 (4)	C1—C2—C3—C4	175.3 (4)
Pr2-09-C16-C17	9.8 (8)	C14—C13—C12—C11	0.7 (7)
Pr2 ^v	-173.8 (3)	C7—C5—C4—C3	-175.8 (4)
Pr2-04-C7-03	-4.0 (4)	C18—C17—C16—O9	94.5 (4)
Pr2—O4—C7—C5	175.5 (3)	C18—C17—C16—O10	-80.5 (5)
Pr2 ^v —O10—C16—O9	-1.2 (4)	C18—C19—C20—C21	1.8 (8)
Pr2 ^v —O10—C16—C17	173.8 (3)	C21—C22—C17—C16	-175.8 (4)
Pr2—O3—C7—O4	3.9 (4)	C21—C22—C17—C18	1.2 (6)
Pr2—O3—C7—C5	-175.5 (3)	C21—C22—C23—O12	166.1 (4)
Pr2 ⁱⁱⁱ —O11—C23—O12	0.1 (4)	C21—C22—C23—O11	-14.0 (6)
Pr2 ⁱⁱⁱ —O11—C23—C22	-179.8 (3)	C4—C5—C7—O4	12.2 (6)
O7—C15—C14—C9	-129.3 (4)	C4—C5—C7—O3	-168.4 (4)
O7—C15—C14—C13	56.1 (5)	C11—C10—C9—C8	173.9 (4)
O5—C8—C9—C14	39.7 (5)	C11—C10—C9—C14	-1.5 (6)
O5—C8—C9—C10	-135.6 (4)	C3—C2—C1—O2	-3.4 (6)
O8—C15—C14—C9	56.9 (5)	C3—C2—C1—O1	178.4 (4)
O8—C15—C14—C13	-117.7 (4)	C10-C11-C12-C13	-0.6 (7)
O6—C8—C9—C14	-144.3 (4)	C9—C14—C13—C12	-1.2 (6)
O6—C8—C9—C10	40.4 (5)	C13—C14—C9—C8	-173.7 (4)
N1—C6—C5—C7	175.6 (4)	C13-C14-C9-C10	1.6 (6)
N1—C6—C5—C4	-2.4 (6)	C12—C11—C10—C9	1.0 (7)
N1—C2—C1—O2	174.4 (3)		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) x, y-1, z; (v) -x+3/2, -y+3/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
013 <i>W</i> —H13 <i>A</i> ···O11 ^{vi}	0.85	2.57	3.003 (5)	113
O13 <i>W</i> —H13 <i>A</i> ···O16 <i>W</i> ^{vi}	0.85	2.26	2.881 (5)	130
O13 <i>W</i> —H13 <i>B</i> ····O2 ⁱⁱⁱ	0.86	2.52	2.820 (4)	102
O14 <i>W</i> —H14 <i>A</i> ···O12 ^{vii}	0.85	1.95	2.766 (4)	160
O14 <i>W</i> —H14 <i>B</i> ····O4 ⁱⁱⁱ	0.85	2.04	2.887 (4)	174
O14 <i>W</i> —H14 <i>B</i> ···O10 ^{vii}	0.85	2.58	2.912 (4)	104
O15W—H15A…O16W	0.85	1.75	2.595 (4)	170
O15 <i>W</i> —H15 <i>B</i> ····O4 ⁱⁱⁱ	0.85	1.92	2.725 (3)	158
O16 <i>W</i> —H16 <i>B</i> ····O7 ^{viii}	0.85	2.31	2.709 (4)	109
O16 <i>W</i> —H16 <i>B</i> ····O1 ^{ix}	0.85	2.13	2.938 (5)	158
C11—H11···O14W	0.93	2.51	3.375 (5)	156

Symmetry codes: (iii) x, y+1, z; (vi) -x+3/2, y-1, -z+1; (vii) -x+3/2, -y+5/2, -z+1/2; (viii) x+1/2, -y+2, z; (ix) -x+3/2, y+1, -z+1.