

Edited by W. T. A. Harrison, University of

Keywords: synthesis; coordination compound;

cobalt thiocyanate; 4-methylpyridine N-oxide;

CCDC references: 2325197; 2325196

Supporting information: this article has

supporting information at journals.iucr.org/e

Received 10 January 2024

Accepted 12 January 2024

Aberdeen, United Kingdom

crystal structure.

Synthesis and crystal structure of diisothiocyanatotetrakis(4-methylpyridine *N*-oxide)cobalt(II) and diisothiocyanatotris(4-methylpyridine *N*-oxide)cobalt(II) showing two different metal coordination polyhedra

Christian Näther* and Inke Jess

Institut für Anorganische Chemie, Universität Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The reaction of $Co(NCS)_2$ with 4-methylpyridine N-oxide (C_6H_7NO) leads to the formation of two compounds, namely, tetrakis(4-methylpyridine N-oxide- κO)bis(thiocyanato- κN)cobalt(II), [Co(NCS)₂(C₆H₇NO)₄] (1), and tris(4methylpyridine N-oxide- κO)bis(thiocyanato- κN)cobalt(II), [Co(NCS)₂(C₆H₇- NO_{3} (2). The asymmetric unit of 1 consists of one Co^{II} cation located on a centre of inversion, as well as one thiocyanate anion and two 4-methylpyridine N-oxide coligands in general positions. The Co^{II} cations are octahedrally coordinated by two terminal N-bonding thiocyanate anions in trans positions and four 4-methylpyridine N-oxide ligands. In the extended structure, these complexes are linked by $C-H \cdots O$ and $C-H \cdots S$ interactions. In compound 2, two crystallographically independent complexes are present, which occupy general positions. In each of these complexes, the Co^{II} cations are coordinated in a trigonal-bipyramidal manner by two terminal N-bonding thiocyanate anions in axial positions and by three 4-methylpyridine N-oxide ligands in equatorial positions. In the crystal, these complex molecules are linked by C-H···S interactions. For compound 2, a nonmerohedral twin refinement was performed. Powder X-ray diffraction (PXRD) reveals that 2 was nearly obtained as a pure phase, which is not possible for compound 1. Differential thermoanalysis and thermogravimetry data (DTA-TG) show that compound 2 start to decompose at about 518 K.

Published under a CC BY 4.0 licence

1. Chemical context

Complexes based on transition-metal thiocyanates are an important class of compounds in coordination chemistry. Because of their versatile coordination behaviour they show a variety of coordination modes and a large structural variability, which can lead to networks of different dimensionality (Buckingham, 1994; Kabešová et al., 1995; Barnett et al., 2002; Werner et al., 2014; Neumann et al., 2018). In this context, compounds based on paramagnetic metal cations are of special interest, because they show very versatile magnetic behaviour. We have been interested in the structural, thermal and magnetic behaviour of thiocyanate compounds with 3dmetal cations for several years. In terms of magnetic properties, compounds based on Co^{II}, in which the cations are linked into chains, are of special interest, because they show a variety of magnetic properties, including ferro- or single-chain magnetism (Mautner et al., 2018b; Rams et al., 2017, 2020, 2023; Wöhlert et al., 2013).

Concerning the coordination behaviour of cobalt thiocyanates, in the majority of compounds the Co^{II} cations are sixfold coordinated within a slightly distorted octahedral geometry and more than 1000 such structures can be found in the Cambridge Structural Database (CSD; Version 5.43, last update March 2023; Groom et al., 2016). Depending on the nature of the coligand, in some cases, the Co^{II} cations are tetrahedrally coordinated and about 280 of such structures are reported in the CSD. In very rare cases, a compound with an octahedral coordination and another compound with a tetrahedral coordination were obtained in a synthesis using the same coligand (Mautner et al., 2018b). In contrast, Co(NCS)₂ compounds with a fivefold coordination are uncommon and only about 60 structures have been reported. In this context, it is noted that we have reported the first Co^{II} chain compound, in which the Co^{II} cations shows an alternating five- and sixfold coordination (Böhme et al., 2022).

In our recent work, however, we exclusively used N-donor coligands, such as pyridine derivatives, for the synthesis of new thiocvanate coordination polymers, but in the course of our systematic work we started to use also O- or S-donor coligands (Jochim et al., 2020). For O-donor coligands, pyridine N-oxide derivatives might be suitable, for which only 11 compounds with cobalt are reported in the CSD (see Database survey section). In this context, it is noted that we recently reported on new compounds with the composition Co(NCS)₂(2methylpyridine N-oxide) and $Co(NCS)_2(3-cyanopyridine)$ N-oxide)₄. In the first compound, the cations are octahedrally coordinated by two O-bonding 2-methylpyridine N-oxide ligands, as well as by two thiocyanate anions, and are connected by μ -1,3(N,S)-bridging thiocyanate anions into chains that are further linked into layers by pairs of μ -1,1(O,O) bridging coligands (Näther & Jess, 2024). In contrast, the second compound consists of discrete octahedral complexes (Näther & Jess, 2023). In continuation of this work, we tried to prepare similar compounds with 4-methylpyridine N-oxide (C_6H_7NO) , for which only one compound with the composition $Co(NCS)_2(C_6H_7NO)$ (methanol) is reported, in which the Co^{II} cations are also sixfold coordinated by two O atoms of the coligand, one methanol molecule, as well as by one terminal and two bridging thiocyanate anions, and linked into chains by alternating pairs of thiocyanate anions and 4-methylpyridine N-oxide coligands (CSD refcode REKBUF; Shi et al., 2006a). Within our synthetic work, crystals of two different crystalline phases were obtained. Single-crystal structure analysis shows that discrete complexes had formed, in which the Co^{II} cations shows either a sixfold or a fivefold coordination. We note that some transition-metal thiocyanate compounds with pyridine *N*-oxide derivatives are reported in the literature that also form discrete complexes, but in none of them are the cations fivefold coordinated (see *Database survey* section).

2. Structural commentary

The reactions of different molar ratios of Co(NCS)₂ and 4-methylpyridine N-oxide leads to the formation of crystals of two compounds with the compositions $Co(NCS)_2(C_6H_7NO)_4$ (1) and $Co(NCS)_2(C_6H_7NO)_3$ (2). Compound 2 can be prepared in larger amounts, whereas a few crystals of compound 1 were accidently obtained in only one batch (see Synthesis and crystallization section). The asymmetric unit of compound **1** consists of one Co^{II} cation located on a crystallographic centre of inversion, as well as one thiocyanate anion and two 4-methylpyridine N-oxide coligands in general positions (Fig. 1). The cations are sixfold coordinated by two terminal N-bonded thiocyanate anions in trans positions and by four O atoms of the 4-methylpyridine N-oxide coligands. From the bond lengths and angles it is apparent that the *trans*- CoN_2O_4 octahedra are slightly distorted (Table 1). It is noted that numerous similar complexes with a distorted octahedral coordination are reported in the literature.

In compound **2**, all the atoms are in general positions and two crystallographically independent discrete complexes are present (Fig. 2). In each of them, the Co^{II} cations are fivefold coordinated by two terminal *N*-bonded thiocyanate anions and three 4-methylpyridine *N*-oxide coligands, and the coor-

Crystal structure of compound 1, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x + 1, -y, -z + 1.]

research communications

Table 1Selected geometric	c parameters (Å,	°) for (1).	
Co1-N1 Co1-O11	2.0910 (14) 2.1005 (12)	Co1-O21	2.1266 (11)
N1 ⁱ -Co1-O11 ⁱ N1-Co1-O11 ⁱ	92.39 (5) 87.61 (5)	011^{i} -Co1-O21 ⁱ 011^{i} -Co1-O21	87.15 (5) 92.85 (5)
$N1-Co1-O21^{i}$ $N1^{i}-Co1-O21^{i}$	87.56 (5) 92.44 (5)	Co1-N1-C1	165.56 (14)

Symmetry code: (i) -x + 1, -y, -z + 1.

dination polyhedra around the Co centres can be described as slightly distorted trigonal pyramids with the anionic ligands in the axial and the coligands in the equatorial positions (Fig. 2 and Table 2). Within each complex, two of the coligands point 'up' (roughly parallel to the axis of the Co–NCS grouping) and one points 'down'. Bond lengths and angles are comparable in both complexes (Table 2). As mentioned above, Co(NCS)₂ complexes with a fivefold coordination are relatively rare and, therefore, it is surprising that compound **2** can be prepared easily, which is not the case for **1** with an octahedral coordination (see *Synthesis and crystallization* section).

3. Supramolecular features

In the extended structure of **1**, the discrete complex molecules are arranged into columns that proceed along the *a*-axis direction (Fig. 3). Between the complexes, weak intermolecular $C-H\cdots O$ and $C-H\cdots S$ interactions are observed (Table 3). In compound **2**, numerous $C-H\cdots O$, $C-H\cdots N$ and $C-H\cdots S$ interactions are observed, but in most of them,

Table 2	
Selected geometric parameters (Å, $^{\circ}$) for (2).	

Co1-N1	2.0767 (16)	Co2-N3	2.0804 (16)
Co1-N2	2.0895 (15)	Co2-N4	2.0844 (16)
Co1-O11	1.9949 (13)	Co2-O41	1.9999 (13)
Co1-O21	1.9989 (14)	Co2-O51	1.9880 (14)
Co1-O31	2.0045 (14)	Co2-O61	1.9941 (14)
N1-Co1-N2	179.11 (7)	O41 - Co2 - N3	93.31 (6)
O11-Co1-N1	93.86 (6)	O41-Co2-N4	88.08 (6)
O11-Co1-N2	86.87 (6)	O51-Co2-N3	86.15 (6)
O11-Co1-O21	122.93 (6)	O51-Co2-N4	92.14 (6)
O11-Co1-O31	121.98 (6)	O51-Co2-O41	122.04 (6)
O21-Co1-N1	87.05 (6)	O51-Co2-O61	115.95 (6)
O21-Co1-N2	92.13 (6)	O61-Co2-N3	87.50 (6)
O21-Co1-O31	115.07 (6)	O61-Co2-N4	92.75 (6)
O31-Co1-N1	87.43 (6)	O61-Co2-O41	121.94 (6)
O31-Co1-N2	92.62 (6)	Co2-N3-Co3	168.81 (15)
Co1-N1-Co	167.85 (16)		. ,

the $X \cdots H$ distances are long and the angles vary far from linearity, indicating that these are very weak interactions (Table 4). Some C-H···S contacts seems to be stronger, and if they are considered, the discrete complexes are linked into chains (Fig. 4).

4. Database survey

A CSD search for cobalt thiocyanate compounds with pyridine N-oxide derivatives revealed that only a few structures have been reported. These include discrete complexes with the composition Co(NCS)₂(pyridine N-oxide)₂(H₂O)₂ (FONBIU; Shi *et al.*, 2005*b*) and Co(NCS)₂(3-hydroxypyridine N-oxide)₂-

Figure 2

Crystal structure of the two crystallographically independent complexes molecules in compound 2, with displacement ellipsoids drawn at the 50% probability level.

Table 3	
Hydrogen-bond geometry (Å, °) for (1	l).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C14-H14\cdots S1^{ii}$	0.95	2.83	3.7271 (17)	157
$C15-H15\cdots O21^{iii}$	0.95	2.40	3.295 (2)	157
$C21-H21\cdots O21^{iii}$	0.95	2.62	3.520 (2)	158
$C24-H24\cdots S1^{iv}$	0.95	2.87	3.7591 (18)	156
$C25-H25\cdots O11^{i}$	0.95	2.25	3.090 (2)	147

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z; (iii) -x, -y, -z + 1; (iv) -x + 1, -y, -z.

(H₂O)₂ (IDOYEG; Shi *et al.*, 2006*e*), in which the Co cations are octahedrally coordinated by two thiocyanate anions, two water molecules and two terminal 3-hydroxypyridine *N*-oxide ligands. Discrete dinuclear complexes are observed in Co(NCS)₂(2-pyridinecarboxaldehyde-1-oxido 2'-pyridinylhydrazone), in which the thiocyanate anions are only terminally *N*-bonded and two Co^{II} cations are linked by two μ -1,1bridging O atoms of the coligands (VAZDAB; Craig *et al.*, 1989).

In $Co(NCS)_2[N,N'$ -ethane-1,2-diylbis(pyridine-4-carboxamide) 1,1-dioxide](H₂O)₂ dihydrate (FATJAN; Cao *et al.*, 2012) and in $Co(NCS)_2[N,N'$ -hexane-1,6-diylbis(pyridine-4carboxamide) 1,1'-dioxide](H₂O)₂ (FATJER; Cao *et al.*, 2012), the Co cations are also octahedrally coordinated but linked into chains by the pyridine *N*-oxide coligands.

In Co(NCS)₂(4-nitropyridine *N*-oxide)₂, the Co^{II} cations are octahedrally coordinated by four bridging thiocyanate anions and two terminal *O*-bonded 4-nitropyridine *N*-oxide coligands and linked by pairs of thiocyanate anions into chains (TILHIG; Shi *et al.*, 2007). Chains are also observed in Co(NCS)₂(4-methylpyridine *N*-oxide)(methanol) (REKBUF; Shi *et al.*, 2006*a*).

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for (2).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11 \cdots S4^{i}$	0.95	2.88	3.8088 (19)	166
$C21 - H21 \cdots S2^{ii}$	0.95	2.87	3.739 (2)	153
C24−H24···S1 ⁱⁱⁱ	0.95	2.90	3.841 (2)	169
$C25 - H25 \cdots O31^{iii}$	0.95	2.63	3.259 (2)	124
$C31 - H31 \cdots O21^{iii}$	0.95	2.44	3.277 (2)	146
C34-H34···S3	0.95	2.99	3.754 (2)	138
$C41 - H41 \cdots S3^{iv}$	0.95	2.97	3.6966 (19)	134
$C45 - H45 \cdots S2$	0.95	2.89	3.6082 (19)	133
$C55 - H55 \cdots O61^{v}$	0.95	2.46	3.184 (2)	133
$C61 - H61 \cdots O51^{v}$	0.95	2.48	3.233 (2)	136
$C62 - H62 \cdot \cdot \cdot S3^{v}$	0.95	2.98	3.900 (2)	162
$C64 - H64 \cdots N4^{vi}$	0.95	2.64	3.484 (2)	148
$C65 - H65 \cdots S4^{vi}$	0.95	3.00	3.870 (2)	154

Symmetry codes: (i) x + 1, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 2, -y + 1, -z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y, -z + 1; (vi) -x, -y, -z + 1.

A layered structure is observed in Co(NCS)₂(4-methoxypyridine)₂ (TERRAK; Zhang et al., 2006a). In this structure, the Co^{II} cations are octahedrally coordinated by four bridging anionic ligands and two coligands. As in Co(NCS)₂(2methylpyridine N-oxide)(methanol), the cations are connected into chains by alternating pairs of thiocyanate anions and 2-methylpyridine N-oxide coligands, and the chains are are further linked into layers by additional pairs of thiocvanate anions. A further layered structure is found in $Co(NCS)_2$ (4-methylpyridine N-oxide), in which the Co^{II} cations are octahedrally coordinated by two N- and two Sbonding thiocyanate anions, and two bridging 4-methylpyridine N-oxide coligand (MEQKOJ; Zhang et al., 2006b). The cations are connected by pairs of bridging thiocyanate anions into corrugated chains, that are further linked into layers by bridging 4-methylpyridine N-oxide coligands.

Figure 3

Crystal structure of compound 1, viewed along the crystallographic a axis. Intermolecular $C - H \cdots S$ and $C - H \cdots O$ contacts are shown as dashed lines.

In Co(NCS)₂(1,3-bis(4-pyridyl)propane N,N'-dioxide)-(H₂O)₂, each two Co^{II} cations are further linked by μ -1,1bridging atoms of the *N*-oxide ligands into dinuclear units that are futher connected into layers by the 1,3-bis(4-pyridyl) propane N,N'-dioxide coligands (UMAVAF; Zhang *et al.*, 2003). Layers are also observed in Co(NCS)₂(1,3-bis(4pyridyl)propane

N,N'-dioxide)₂, in which the Co^{II} cations are also linked by the *N*-oxide coligands (UMAVUZ; Zhang *et al.*, 2003).

Finally we note that some compounds with 4-methylpyridine *N*-oxide and other transition-metal cations are reported in the CSD. These include discrete octahedral complexes with the composition $M(NCS)_2(4-methylpyridine$ *N* $-oxide)_2(H_2O)_2$, with M = Mn (KESSEJ; Mautner *et al.*, 2018*a*) and Ni (GAMDOO; Shi *et al.*, 2005*a*). These also include Ni(NCS)_2(4-methylpyridine *N*-oxide) [PEDSUN (Shi *et al.*, 2006*c*) and PETSUN01 (Marsh, 2009)]. There is also one Cu compound with the composition Cu(NCS)2(4-methylpyridine) (TEBTAW; Shi *et al.*, 2006*d*) and one Cd compound with the composition Cd(NCS)_2(4-methylpyridine) (TEQKAC; Shi *et al.*, 2006*b*), in which the cations are linked into chains.

5. Additional investigations

Based on the single-crystal data, a powder pattern was calculated and compared with the experimental pattern, which revealed that compound 2 was nearly obtained as a pure phase (Fig. S1 in the supporting information). There are a few additional reflections of very low intensity that cannot be assigned to a known phase.

The thermal behaviour of compound **2** was investigated by thermogravimetry and differential thermoanalysis (TG–DTA) measurements. Upon heating at a rate of 8 K min⁻¹, one mass loss is observed, accompanied by an exothermic event in the DTA curve (Fig. S2). The experimental mass loss of 68.1% is

Figure 4

Crystal structure of compound **2**, viewed along the crystallographic *a* axis. Intermolecular $C-H\cdots$ S contacts are shown as dashed lines.

in reasonable agreement with that calculated for the removal of all three 4-methylpyridine *N*-oxide coligands of 65.2%. The exothermic signal, however, indicates that the coligand decompose as already observed for compounds with other pyridine *N*-oxide derivatives (Näther & Jess, 2023). There is one endothermic signal at 438 K, where the sample mass does not change, which might originate from a melting of the complex before decomposition is observed.

6. Synthesis and crystallization

 $Co(NCS)_2$ (99%) was purchased from Sigma–Aldrich and 4-methylpyridine *N*-oxide (98%) from Fisher Chemical. Single crystals of compound **2** were obtained by the reaction of $Co(SCN)_2$ (0.500 mmol, 87.5 mg) and 4-methylpyridine *N*-oxide (1.500 mmol, 163.7 mg) in methanol (1 ml). Within 2 d, crystals suitable for structure analysis were obtained. If the same reaction conditions are used and the batch is stirred for 1 d, a microcrystalline powder of **2** is obtained.

For compound 1, a few crystals were obtained accidentally in a mixture with 2, using the same conditions as described above. It is noted that 2 is also obtained if $Co(NCS)_2$ is reacted with 4-methylpyridine *N*-oxide in a 1:4 ratio. We also used larger ratios and other solvents, *e.g.* ethanol or *n*-butanol, but in none of these batches was compound 1 obtained as a pure phase. It seems that compound 2, with a fivefold coordination, is more stable. Finally, it is noted that in some batches where methanol and ethanol was used as solvent, powder X-ray diffraction (PXRD) measurements prove that additional and unknown crystalline phases were obtained.

The PXRD data were collected using an XtaLAB Synergy, Dualflex, Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed under a dynamic nitrogen atmosphere in Al_2O_3 crucibles using an STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

The H atoms were positioned with idealized geometry (C–H = 0.95–0.98 Å) and were refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm methyl C})$.

The crystal of **2** chosen for data collection was found to be twinned. Both components were indexed separately (Fig. S3) and afterwards a twin-refinement with data in HKLF-5 format using the twin matrix -0.9998 0.0004 -0.0001/-0.0006 -1.0001 -0.0006/0.2122 0.2564 1.0002 was performed. Therefore, no internal *R* value is reported. The ratio between domains refined to 0.8273 (7):0.1727 (7). Crystal data, data collection and structure refinement details are summarized in Table 5.

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

Table 5

Experimental details.

	1	2
Crystal data		
Chemical formula	$[Co(NCS)_2(C_6H_7NO)_4]$	$[Co(NCS)_2(C_6H_7NO)_3]$
$M_{ m r}$	611.59	502.47
a, b, c (Å)	7.0709 (3), 9.6651 (5), 11.0401 (4)	11.70330 (8), 12.55284 (9), 17.5256 (2)
α, β, γ (°)	90.609 (3), 96.346 (3), 108.090 (4)	93.5044 (8), 91.8625 (8), 115.0705 (7)
$V(\text{\AA}^3)$	712.00 (6)	2322.89 (4)
Ζ	1	4
$\mu \text{ (mm}^{-1})$	6.45	7.74
Crystal size (mm)	$0.12 \times 0.08 \times 0.04$	$0.2 \times 0.18 \times 0.1$
Data collection		
T_{\min}, T_{\max}	0.859, 1.000	0.024, 0.116
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7433, 2950, 2935	11225, 11225, 10980
R _{int}	0.017	See Refinement section
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.639	0.639
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.081, 1.11	0.029, 0.081, 1.07
No. of reflections	2950	11225
No. of parameters	181	566
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.34, -0.48	0.33, -0.25

For both structures: triclinic, $P\overline{1}$. Experiments were carried out at 100 K with Cu K α radiation using a Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector. Absorption was corrected for by multi-scan methods, (*CrysAlis PRO*; Rigaku OD, 2021). H-atom parameters were constrained.

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014 (Sheldrick, 2015b), SHELXL2016 (Sheldrick, 2015a), DIAMOND (Brandenburg & Putz, 1999) and publCIF (Westrip, 2010).

References

- Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640–1641.
- Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). *Inorg. Chem.* 61, 16841–16855.
- Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Buckingham, D. A. C. (1994). Coord. Chem. Rev. 135-136, 587-621.
- Cao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19–22.
- Craig, D. C., Phillips, D. J. & Kaifi, F. M. Z. (1989). Inorg. Chim. Acta, 161, 247–251.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). *Inorg. Chem.* 59, 8971– 8982.
- Kabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115–135.
- Marsh, R. E. (2009). Acta Cryst. B65, 782-783.
- Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018*a*). *Polyhedron*, **141**, 17–24.
- Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436–442.
- Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.
- Näther, C. & Jess, I. (2024). Acta Cryst. E80, 67-71.
- Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). *Inorg. Chem.* 57, 3305– 3314.
- Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). *Phys. Chem. Chem. Phys.* **19**, 24534–24544.
- Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). *Chem. Eur. J.* 26, 2837–2851.

Rams, M., Lohmiller, T., Böhme, M., Jochim, A., Foltyn, M., Schnegg, A., Plass, W. & Näther, C. (2023). *Inorg. Chem.* 62, 10420–10430.

- Rigaku OD (2021). *CrysAlis PRO*. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005a). Acta Cryst. E61, m1133-m1134.
- Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005b). Acta Cryst. E61, m871–m872.
- Shi, J. M., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. **325**, 237–242.
- Shi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006b). J. Coord. Chem. 59, 1883–1889.
- Shi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 1637–1644.
- Shi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006c). Chem. Phys. Lett. 418, 84–89.
- Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. pp. 376–380.
- Shi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577– m1578.
- Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). *Dalton Trans.* **43**, 17333–17342.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). *Inorg. Chem.* **52**, 12947–12957.
- Zhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). *Chem. Commun.* pp. 2830–2831.
- Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398– m3400.
- Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506– m3608.

Acta Cryst. (2024). E80, 174-179 [https://doi.org/10.1107/S2056989024000471]

Synthesis and crystal structure of diisothiocyanatotetrakis(4-methylpyridine *N*-oxide)cobalt(II) and diisothiocyanatotris(4-methylpyridine *N*-oxide)cobalt(II) showing two different metal coordination polyhedra

Christian Näther and Inke Jess

Computing details

Tetrakis(4-methylpyridine *N*-oxide-*κO*)bis(thiocyanato-*κN*)cobalt(II) (1)

Crystal data

 $[Co(NCS)_{2}(C_{6}H_{7}NO)_{4}]$ $M_{r} = 611.59$ Triclinic, $P\overline{1}$ a = 7.0709 (3) Å b = 9.6651 (5) Å c = 11.0401 (4) Å a = 90.609 (3)° $\beta = 96.346$ (3)° $\gamma = 108.090$ (4)° V = 712.00 (6) Å³

Data collection

Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
Radiation source: micro-focus sealed X-ray
tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.081$ S = 1.112950 reflections 181 parameters 0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites Z = 1 F(000) = 317 $D_x = 1.426 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 5312 reflections $\theta = 4.0-78.4^{\circ}$ $\mu = 6.45 \text{ mm}^{-1}$ T = 100 KBlock, violet $0.12 \times 0.08 \times 0.04 \text{ mm}$

 $T_{\min} = 0.859, T_{\max} = 1.000$ 7433 measured reflections
2950 independent reflections
2935 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$ $\theta_{\text{max}} = 79.9^{\circ}, \theta_{\text{min}} = 4.0^{\circ}$ $h = -8 \rightarrow 6$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 14$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.3098P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.47 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2016 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0030 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Co1	0.500000	0.000000	0.500000	0.01633 (12)
N1	0.4838 (2)	-0.09719 (16)	0.32743 (12)	0.0207 (3)
C1	0.4728 (2)	-0.17698 (19)	0.24550 (14)	0.0205 (3)
S1	0.45856 (6)	-0.29171 (5)	0.13159 (4)	0.02849 (13)
O11	0.29908 (17)	-0.18891 (13)	0.55992 (10)	0.0207 (2)
N11	0.1767 (2)	-0.28091 (15)	0.47249 (12)	0.0177 (3)
C11	0.2312 (3)	-0.39113 (19)	0.42796 (16)	0.0232 (3)
H11	0.354482	-0.404151	0.460193	0.028*
C12	0.1101 (3)	-0.48501 (19)	0.33621 (16)	0.0252 (4)
H12	0.149798	-0.562764	0.305869	0.030*
C13	-0.0708 (3)	-0.46695 (19)	0.28735 (15)	0.0231 (3)
C14	-0.1231 (2)	-0.35312 (19)	0.33727 (15)	0.0216 (3)
H14	-0.246404	-0.338563	0.307292	0.026*
C15	0.0012 (2)	-0.26130 (18)	0.42952 (15)	0.0193 (3)
H15	-0.036625	-0.184181	0.462878	0.023*
C16	-0.2018 (3)	-0.5642 (2)	0.18404 (18)	0.0328 (4)
H16A	-0.130107	-0.552506	0.111847	0.049*
H16B	-0.324611	-0.537857	0.165466	0.049*
H16C	-0.236267	-0.665831	0.207245	0.049*
O21	0.24737 (17)	0.07014 (13)	0.44699 (10)	0.0207 (2)
N21	0.1883 (2)	0.09747 (15)	0.33301 (12)	0.0186 (3)
C21	-0.0100 (2)	0.06152 (18)	0.29449 (15)	0.0202 (3)
H21	-0.104965	0.014060	0.347311	0.024*
C22	-0.0750 (2)	0.09351 (19)	0.17864 (15)	0.0217 (3)
H22	-0.214644	0.067556	0.152642	0.026*
C23	0.0608 (3)	0.16314 (19)	0.09945 (15)	0.0226 (3)
C24	0.2635 (3)	0.1974 (2)	0.14277 (16)	0.0258 (4)
H24	0.360977	0.244184	0.091201	0.031*
C25	0.3255 (2)	0.1652 (2)	0.25860 (16)	0.0236 (4)
H25	0.464495	0.190292	0.286400	0.028*
C26	-0.0054 (3)	0.2016 (2)	-0.02611 (16)	0.0284 (4)
H26A	-0.131570	0.128174	-0.058861	0.043*
H26B	0.097434	0.204362	-0.079528	0.043*
H26C	-0.025290	0.297392	-0.021875	0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

```
Atomic displacement parameters (Å^2)
```

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.01222 (18)	0.0232 (2)	0.01451 (18)	0.00671 (14)	0.00198 (12)	0.00032 (13)

N1	0.0185 (7)	0.0275 (7)	0.0160 (6)	0.0071 (5)	0.0021 (5)	-0.0012 (5)
C1	0.0131 (7)	0.0322 (9)	0.0179 (7)	0.0095 (6)	0.0013 (6)	0.0045 (6)
S1	0.0247 (2)	0.0448 (3)	0.0193 (2)	0.01733 (19)	-0.00083 (15)	-0.00852 (17)
011	0.0159 (5)	0.0261 (6)	0.0171 (5)	0.0032 (4)	-0.0003 (4)	0.0014 (4)
N11	0.0152 (6)	0.0216 (7)	0.0152 (6)	0.0042 (5)	0.0022 (5)	0.0016 (5)
C11	0.0197 (8)	0.0276 (9)	0.0261 (8)	0.0118 (7)	0.0054 (6)	0.0047 (7)
C12	0.0284 (9)	0.0233 (8)	0.0269 (8)	0.0107 (7)	0.0085 (7)	0.0015 (7)
C13	0.0263 (9)	0.0223 (8)	0.0193 (8)	0.0050 (7)	0.0039 (6)	0.0026 (6)
C14	0.0190 (8)	0.0250 (8)	0.0206 (8)	0.0076 (6)	-0.0004 (6)	0.0026 (6)
C15	0.0178 (7)	0.0227 (8)	0.0187 (7)	0.0080 (6)	0.0026 (6)	0.0012 (6)
C16	0.0377 (11)	0.0256 (9)	0.0305 (9)	0.0055 (8)	-0.0017 (8)	-0.0054 (7)
O21	0.0191 (5)	0.0319 (6)	0.0146 (5)	0.0127 (5)	0.0026 (4)	0.0039 (4)
N21	0.0172 (6)	0.0250 (7)	0.0160 (6)	0.0101 (5)	0.0011 (5)	0.0017 (5)
C21	0.0145 (7)	0.0241 (8)	0.0240 (8)	0.0085 (6)	0.0040 (6)	-0.0004 (6)
C22	0.0174 (8)	0.0263 (8)	0.0236 (8)	0.0115 (6)	-0.0006 (6)	-0.0008 (6)
C23	0.0224 (8)	0.0269 (9)	0.0222 (8)	0.0133 (7)	0.0016 (6)	0.0014 (6)
C24	0.0197 (8)	0.0359 (10)	0.0229 (8)	0.0096 (7)	0.0052 (6)	0.0060 (7)
C25	0.0148 (7)	0.0334 (9)	0.0233 (8)	0.0081 (7)	0.0036 (6)	0.0063 (7)
C26	0.0269 (9)	0.0390 (10)	0.0228 (8)	0.0157 (8)	0.0008 (7)	0.0055 (7)

Geometric parameters (Å, °)

Col—N1	2.0910 (14)	C15—H15	0.9500
Co1—N1 ⁱ	2.0910 (14)	C16—H16A	0.9800
Co1-011	2.1005 (12)	C16—H16B	0.9800
Co1-O11 ⁱ	2.1005 (12)	C16—H16C	0.9800
Co1-O21 ⁱ	2.1266 (11)	O21—N21	1.3369 (17)
Co1-021	2.1266 (11)	N21—C21	1.352 (2)
N1-C1	1.163 (2)	N21—C25	1.356 (2)
C1—S1	1.6414 (18)	C21—H21	0.9500
011—N11	1.3381 (17)	C21—C22	1.382 (2)
N11—C11	1.346 (2)	C22—H22	0.9500
N11—C15	1.348 (2)	C22—C23	1.391 (2)
С11—Н11	0.9500	C23—C24	1.393 (2)
C11—C12	1.374 (3)	C23—C26	1.501 (2)
C12—H12	0.9500	C24—H24	0.9500
C12—C13	1.394 (3)	C24—C25	1.376 (2)
C13—C14	1.392 (3)	C25—H25	0.9500
C13—C16	1.498 (2)	C26—H26A	0.9800
C14—H14	0.9500	C26—H26B	0.9800
C14—C15	1.377 (2)	C26—H26C	0.9800
N1—Co1—N1 ⁱ	180.00 (8)	N11—C15—H15	120.0
N1 ⁱ —Co1—O11 ⁱ	92.39 (5)	C14—C15—H15	120.0
N1-Co1-011 ⁱ	87.61 (5)	C13—C16—H16A	109.5
N1 ⁱ —Co1—O11	87.61 (5)	C13—C16—H16B	109.5
N1-Co1-011	92.39 (5)	C13—C16—H16C	109.5
N1—Co1—O21 ⁱ	87.56 (5)	H16A—C16—H16B	109.5

N1 ⁱ —Co1—O21 ⁱ	92.44 (5)	H16A—C16—H16C	109.5
N1 ⁱ —Co1—O21	87.56 (5)	H16B—C16—H16C	109.5
N1—Co1—O21	92.44 (5)	N21—O21—Co1	125.03 (9)
O11-Co1-O11 ⁱ	180.00 (5)	O21—N21—C21	119.16 (13)
O11 ⁱ —Co1—O21 ⁱ	87.15 (5)	O21—N21—C25	120.30 (13)
O11—Co1—O21	87.15 (5)	C21—N21—C25	120.50 (14)
O11 ⁱ —Co1—O21	92.85 (5)	N21—C21—H21	119.9
O11—Co1—O21 ⁱ	92.85 (5)	N21—C21—C22	120.29 (15)
O21 ⁱ —Co1—O21	180.0	C22—C21—H21	119.9
Co1—N1—C1	165.56 (14)	C21—C22—H22	119.5
N1—C1—S1	178.94 (16)	C21—C22—C23	121.07 (15)
N11—O11—Co1	115.97 (9)	С23—С22—Н22	119.5
O11—N11—C11	119.50 (14)	C22—C23—C24	116.66 (15)
O11—N11—C15	119.60 (14)	C22—C23—C26	122.24 (16)
C11—N11—C15	120.90 (14)	C24—C23—C26	121.09 (16)
N11—C11—H11	119.7	C23—C24—H24	119.3
N11—C11—C12	120.53 (16)	C25—C24—C23	121.49 (16)
C12—C11—H11	119.7	C25—C24—H24	119.3
C11—C12—H12	119.8	N21—C25—C24	119.99 (15)
C11—C12—C13	120.48 (16)	N21—C25—H25	120.0
C13—C12—H12	119.8	С24—С25—Н25	120.0
C12—C13—C16	121.54 (17)	С23—С26—Н26А	109.5
C14—C13—C12	117.17 (16)	С23—С26—Н26В	109.5
C14—C13—C16	121.28 (16)	С23—С26—Н26С	109.5
C13—C14—H14	119.5	H26A—C26—H26B	109.5
C15—C14—C13	120.93 (16)	H26A—C26—H26C	109.5
C15—C14—H14	119.5	H26B—C26—H26C	109.5
N11-C15-C14	119.97 (15)		

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D^{\dots}A$	D—H··· A
C14—H14…S1 ⁱⁱ	0.95	2.83	3.7271 (17)	157
C15—H15…O21 ⁱⁱⁱ	0.95	2.40	3.295 (2)	157
C21—H21···O21 ⁱⁱⁱ	0.95	2.62	3.520(2)	158
C24— $H24$ ···S1 ^{iv}	0.95	2.87	3.7591 (18)	156
C25—H25…O11 ⁱ	0.95	2.25	3.090 (2)	147

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*.

Tris(4-methylpyridine *N*-oxide-κO)bis(thiocyanato-κN)cobalt(II) (2)

Crystal data	
$[Co(NCS)_2(C_6H_7NO)_3]$	c = 17.5256 (2) Å
$M_r = 502.47$	$\alpha = 93.5044 \ (8)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 91.8625 \ (8)^{\circ}$
a = 11.70330 (8) Å	$\gamma = 115.0705 (7)^{\circ}$
b = 12.55284 (9) Å	V = 2322.89 (4) Å ³

Z = 4 F(000) = 1036 $D_x = 1.437 \text{ Mg m}^{-3}$ Cu Ka radiation $\lambda = 1.54184 \text{ Å}$	$\theta = 3.9-79.4^{\circ}$ $\mu = 7.74 \text{ mm}^{-1}$ T = 100 K Block, violet
Cell parameters from 22375 reflections	$0.2 \times 0.18 \times 0.1 \text{ mm}$
Data collection	
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2021)	$T_{\min} = 0.024, T_{\max} = 0.116$ 11225 measured reflections 11225 independent reflections 10980 reflections with $I > 2\sigma(I)$ $\theta_{\max} = 80.3^\circ, \theta_{\min} = 2.5^\circ$ $h = -14 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -22 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.081$	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(E^2) + (0.045P)^2 + 0.8076P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$

S = 1.0711225 reflections 566 parameters 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.87727 (3)	0.63471 (2)	0.08404 (2)	0.03107 (7)	
N1	1.05248 (15)	0.77002 (14)	0.06799 (10)	0.0364 (3)	
C1	1.14327 (17)	0.85769 (17)	0.06745 (11)	0.0340 (4)	
S1	1.27208 (4)	0.98014 (4)	0.06637 (3)	0.04113 (11)	
N2	0.70108 (14)	0.49727 (14)	0.09855 (9)	0.0336 (3)	
C2	0.61353 (17)	0.40560 (16)	0.09628 (10)	0.0332 (4)	
S2	0.49072 (4)	0.27783 (4)	0.09380 (3)	0.03765 (10)	
011	0.81378 (12)	0.74195 (11)	0.13747 (8)	0.0370 (3)	
N11	0.89135 (14)	0.85821 (13)	0.14616 (9)	0.0333 (3)	
C11	0.97058 (18)	0.90240 (17)	0.20938 (11)	0.0359 (4)	
H11	0.970160	0.851990	0.247757	0.043*	
C12	1.05192 (18)	1.02021 (17)	0.21838 (11)	0.0367 (4)	
H12	1.107390	1.050856	0.263117	0.044*	
C13	1.05383 (18)	1.09533 (17)	0.16239 (11)	0.0346 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C14	0.96919 (18)	1.04603 (17)	0.09893 (11)	0.0350 (4)
H14	0.966689	1.094846	0.060173	0.042*
C15	0.88907 (18)	0.92801 (17)	0.09118 (11)	0.0354 (4)
H15	0.832126	0.895551	0.047195	0.042*
C16	1.1468 (2)	1.22268 (18)	0.16920(13)	0.0432 (4)
H16A	1.160465	1.253518	0.223087	0.065*
H16B	1.113463	1.267842	0.139177	0.065*
H16C	1.227112	1.229938	0.149776	0.065*
021	0.85790(12)	0 59878 (11)	-0.02960(8)	0.032
N21	0.05790(12) 0.75725(15)	0 49966 (14)	-0.05742(9)	0.0345(3)
C21	0.64766 (19)	0.50453 (18)	-0.07788(11)	0.0310(3)
H21	0.642351	0.578101	-0.074644	0.0366 (1)
C22	0.54344(19)	0.370101 0.40278(18)	-0.10347(12)	0.0393(4)
С22 H22	0.466736	0.406627	-0.118740	0.0373 (4)
C23	0.400750	0.400027 0.20452(18)	-0.10714(11)	0.047 0.0380 (4)
C23	0.54900(18) 0.66481(18)	0.29432(18) 0.20383(17)	-0.08511(12)	0.0380(4) 0.0373(4)
U24	0.00481 (18)	0.29383 (17)	-0.08511(12)	0.0373 (4)
П24 С25	0.072089	0.221195	-0.080344	0.043
C25	0.76740(18)	0.39000 (17)	-0.06148 (11)	0.0305 (4)
H25	0.846042	0.393408	-0.04/894	0.044^{*}
C26	0.4372(2)	0.1817 (2)	-0.13225 (15)	0.0506 (5)
H26A	0.414610	0.130513	-0.089887	0.076*
H26B	0.457444	0.14169/	-0.1/5943	0.076*
H26C	0.365747	0.198853	-0.147350	0.076*
031	0.96976 (12)	0.55822 (12)	0.14100 (9)	0.0401 (3)
N31	0.89880 (15)	0.45128 (14)	0.16484 (10)	0.0355 (3)
C31	0.88804 (18)	0.35399 (18)	0.12180 (12)	0.0383 (4)
H31	0.935574	0.361629	0.077893	0.046*
C32	0.8084 (2)	0.24428 (18)	0.14168 (12)	0.0404 (4)
H32	0.800278	0.176188	0.110891	0.048*
C33	0.73886 (19)	0.23121 (17)	0.20659 (12)	0.0387 (4)
C34	0.75831 (19)	0.33383 (18)	0.25114 (12)	0.0393 (4)
H34	0.715986	0.328356	0.297091	0.047*
C35	0.83775 (19)	0.44285 (17)	0.22969 (11)	0.0376 (4)
H35	0.849641	0.512152	0.260476	0.045*
C36	0.6449 (2)	0.1123 (2)	0.22542 (14)	0.0521 (5)
H36A	0.576176	0.079770	0.185175	0.078*
H36B	0.610313	0.119739	0.274605	0.078*
H36C	0.686615	0.059380	0.228816	0.078*
Co2	0.35615 (3)	0.11924 (2)	0.41874 (2)	0.03115 (7)
N3	0.53440 (15)	0.25825 (14)	0.44106 (10)	0.0361 (3)
C3	0.62725 (17)	0.34432 (16)	0.44440 (10)	0.0333 (4)
S3	0.75865 (4)	0.46580 (4)	0.44927 (3)	0.03878 (10)
N4	0.18025 (14)	-0.02361 (14)	0.39579 (9)	0.0343 (3)
C4	0.09849 (17)	-0.11823 (16)	0.39280 (10)	0.0330 (4)
S4	-0.01714 (5)	-0.25075 (4)	0.38844 (3)	0.04076 (11)
O41	0.28977 (12)	0.21590 (11)	0.36094 (8)	0.0358 (3)
N41	0.37181 (14)	0.32772 (14)	0.35101 (9)	0.0330 (3)
C41	0.38679 (18)	0.41538 (17)	0.40442 (11)	0.0350 (4)

H41	0.338588	0.398404	0.448341	0.042*
C42	0.47149 (18)	0.52902 (17)	0.39546 (11)	0.0362 (4)
H42	0.482020	0.590067	0.433658	0.043*
C43	0.54250 (18)	0.55631 (17)	0.33101 (11)	0.0353 (4)
C44	0.52331 (18)	0.46289 (17)	0.27734 (11)	0.0361 (4)
H44	0.569378	0.477614	0.232525	0.043*
C45	0.43865 (18)	0.34961 (17)	0.28823 (11)	0.0351 (4)
H45	0.427369	0.286708	0.251345	0.042*
C46	0.6381 (2)	0.67946 (18)	0.32134 (14)	0.0467 (5)
H46A	0.604421	0.735722	0.338290	0.070*
H46B	0.656353	0.687183	0.267249	0.070*
H46C	0.716030	0.695957	0.352149	0.070*
051	0.44472 (13)	0.03239 (12)	0.36803 (9)	0.0428 (3)
N51	0.37995 (15)	-0.08235 (14)	0.34244 (10)	0.0372 (3)
C51	0.30902 (19)	-0.11292 (18)	0.27584 (11)	0.0380 (4)
H51	0.304767	-0.053571	0.246299	0.046*
C52	0.24278 (19)	-0.22988(18)	0.25057 (11)	0.0382 (4)
H52	0.192085	-0.251061	0.203803	0.046*
C53	0.24931 (18)	-0.31784 (17)	0.29300 (11)	0.0375 (4)
C54	0.32194 (19)	-0.28153 (18)	0.36173 (12)	0.0400 (4)
H54	0.326632	-0.339102	0.392848	0.048*
C55	0.38710(19)	-0.16438 (18)	0.38572 (12)	0.0407 (4)
Н55	0.437167	-0.141148	0.432762	0.049*
C56	0.1801 (2)	-0.44603 (19)	0.26705 (14)	0.0520 (5)
H56A	0.101210	-0.480407	0.293084	0.078*
H56B	0.232895	-0.486601	0.279491	0.078*
H56C	0.160765	-0.455140	0.211550	0.078*
061	0.34565 (13)	0.11125 (12)	0.53174 (8)	0.0410 (3)
N61	0.25378 (15)	0.01407 (14)	0.55669 (9)	0.0355 (3)
C61	0.27566 (18)	-0.08185 (18)	0.56382 (11)	0.0386 (4)
H61	0.356316	-0.078782	0.554042	0.046*
C62	0.18226 (18)	-0.18381 (18)	0.58510(12)	0.0391 (4)
H62	0.198213	-0.251449	0.589358	0.047*
C63	0.06403 (18)	-0.18932(18)	0.60056 (11)	0.0375 (4)
C64	0.04626 (18)	-0.08750 (18)	0.59427 (11)	0.0386 (4)
H64	-0.032499	-0.087445	0.605725	0.046*
C65	0.14146 (19)	0.01333 (18)	0.57162 (11)	0.0380 (4)
H65	0.127867	0.082073	0.566563	0.046*
C66	-0.0390 (2)	-0.3012 (2)	0.62263 (15)	0.0505 (5)
H66A	-0.068265	-0.359616	0.578254	0.076*
H66B	-0.109516	-0.285417	0.639936	0.076*
H66C	-0.006565	-0.331754	0.664154	0.076*
			· · · · · ·	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02863 (14)	0.02864 (14)	0.03621 (15)	0.01222 (11)	0.00333 (11)	0.00390 (11)
N1	0.0305 (8)	0.0337 (8)	0.0446 (9)	0.0128 (6)	0.0041 (6)	0.0059 (6)

C1	0.0335 (9)	0.0349 (9)	0.0376 (9)	0.0181 (8)	0.0016 (7)	0.0061 (7)
S1	0.0309 (2)	0.0339 (2)	0.0544 (3)	0.00922 (18)	0.00113 (19)	0.0089 (2)
N2	0.0308 (7)	0.0336 (8)	0.0355 (8)	0.0128 (6)	0.0040 (6)	0.0033 (6)
C2	0.0351 (9)	0.0358 (9)	0.0326 (9)	0.0186 (8)	0.0055(7)	0.0031 (7)
S2	0.0334 (2)	0.0321 (2)	0.0426 (2)	0.00919 (17)	0.00627 (18)	0.00218 (18)
O11	0.0343 (6)	0.0293 (6)	0.0458 (7)	0.0120 (5)	0.0058 (5)	0.0012 (5)
N11	0.0318 (7)	0.0315 (7)	0.0372 (8)	0.0143 (6)	0.0035 (6)	0.0018 (6)
C11	0.0391 (9)	0.0367 (9)	0.0347 (9)	0.0184 (8)	0.0023 (7)	0.0063 (7)
C12	0.0365 (9)	0.0401 (10)	0.0336 (9)	0.0167 (8)	0.0000 (7)	0.0021 (7)
C13	0.0341 (9)	0.0349 (9)	0.0370 (9)	0.0166 (7)	0.0054 (7)	0.0037 (7)
C14	0.0370 (9)	0.0380 (9)	0.0351 (9)	0.0202 (8)	0.0042 (7)	0.0076 (7)
C15	0.0354 (9)	0.0408 (10)	0.0335 (9)	0.0198 (8)	0.0011 (7)	0.0030(7)
C16	0.0413 (10)	0.0371 (10)	0.0482 (11)	0.0134 (8)	0.0023 (8)	0.0073 (8)
O21	0.0351 (7)	0.0347 (7)	0.0387 (7)	0.0074 (5)	0.0061 (5)	0.0018 (5)
N21	0.0335 (8)	0.0355 (8)	0.0328 (7)	0.0131 (6)	0.0049 (6)	0.0022 (6)
C21	0.0405 (10)	0.0393 (10)	0.0389 (10)	0.0211 (8)	0.0056 (8)	0.0062 (8)
C22	0.0350 (9)	0.0451 (11)	0.0418 (10)	0.0209 (8)	0.0027 (8)	0.0040 (8)
C23	0.0348 (9)	0.0402 (10)	0.0399 (10)	0.0172 (8)	0.0033 (7)	0.0012 (8)
C24	0.0372 (9)	0.0375 (9)	0.0405 (10)	0.0190 (8)	0.0054 (8)	0.0029 (8)
C25	0.0324 (9)	0.0406 (10)	0.0396 (10)	0.0184 (8)	0.0034 (7)	0.0038 (8)
C26	0.0358 (10)	0.0445 (11)	0.0670 (15)	0.0142 (9)	-0.0017(10)	-0.0034(10)
031	0.0314 (6)	0.0334 (7)	0.0546 (8)	0.0116 (5)	0.0033 (6)	0.0134 (6)
N31	0.0310 (7)	0.0346 (8)	0.0424 (8)	0.0147 (6)	0.0029 (6)	0.0089 (6)
C31	0.0381 (10)	0.0429 (10)	0.0399(10)	0.0222 (8)	0.0087 (8)	0.0069 (8)
C32	0.0448 (11)	0.0369 (10)	0.0430 (10)	0.0206 (8)	0.0061 (8)	0.0038 (8)
C33	0.0380 (10)	0.0375 (10)	0.0411 (10)	0.0158 (8)	0.0036 (8)	0.0077 (8)
C34	0.0407 (10)	0.0436 (10)	0.0368 (9)	0.0203 (8)	0.0061 (8)	0.0067 (8)
C35	0.0403 (10)	0.0386 (9)	0.0377 (9)	0.0207 (8)	0.0015 (8)	0.0019 (7)
C36	0.0555 (13)	0.0411 (11)	0.0532 (13)	0.0131 (10)	0.0079 (10)	0.0102 (9)
Co2	0.02840 (14)	0.03116 (15)	0.03437 (15)	0.01296 (12)	0.00080 (11)	0.00492 (11)
N3	0.0315 (8)	0.0350 (8)	0.0408 (8)	0.0132 (7)	-0.0009(6)	0.0040 (6)
C3	0.0341 (9)	0.0363 (9)	0.0330 (9)	0.0186 (8)	0.0012 (7)	0.0021 (7)
S3	0.0320 (2)	0.0347 (2)	0.0445 (2)	0.00978 (17)	0.00310 (18)	-0.00029(18)
N4	0.0303 (7)	0.0372 (8)	0.0359 (8)	0.0149 (6)	0.0018 (6)	0.0033 (6)
C4	0.0320 (9)	0.0371 (9)	0.0327 (9)	0.0171 (8)	0.0017 (7)	0.0049 (7)
S4	0.0360 (2)	0.0351 (2)	0.0443 (2)	0.00832 (18)	0.00144 (19)	0.00562 (19)
O41	0.0312 (6)	0.0328 (6)	0.0418 (7)	0.0119 (5)	0.0004 (5)	0.0077 (5)
N41	0.0310(7)	0.0338 (8)	0.0358 (8)	0.0151 (6)	0.0001 (6)	0.0055 (6)
C41	0.0352 (9)	0.0416 (10)	0.0340 (9)	0.0219 (8)	0.0018 (7)	0.0038 (7)
C42	0.0381 (9)	0.0379 (9)	0.0368 (9)	0.0209 (8)	-0.0022 (7)	-0.0005 (7)
C43	0.0335 (9)	0.0359 (9)	0.0381 (9)	0.0164 (7)	-0.0017(7)	0.0037 (7)
C44	0.0355 (9)	0.0382 (10)	0.0350 (9)	0.0160 (8)	0.0034 (7)	0.0040 (7)
C45	0.0376 (9)	0.0371 (9)	0.0327 (9)	0.0184 (8)	0.0014 (7)	0.0009 (7)
C46	0.0456 (11)	0.0375 (10)	0.0518 (12)	0.0129 (9)	0.0024 (9)	0.0023 (9)
051	0.0306 (6)	0.0349 (7)	0.0607 (9)	0.0129 (5)	0.0022 (6)	-0.0025 (6)
N51	0.0306 (8)	0.0367 (8)	0.0462 (9)	0.0164 (6)	0.0036 (6)	0.0006 (7)
C51	0.0393 (10)	0.0420 (10)	0.0380 (10)	0.0219 (8)	0.0055 (8)	0.0071 (8)
C52	0.0406 (10)	0.0448 (10)	0.0332 (9)	0.0222 (8)	0.0004 (7)	0.0023 (8)
			<u> </u>	(-)	X 9	- (*)

C53	0.0357 (9)	0.0384 (10)	0.0388 (10)	0.0165 (8)	0.0007 (7)	0.0017 (8)
C54	0.0395 (10)	0.0411 (10)	0.0425 (10)	0.0205 (8)	-0.0027 (8)	0.0046 (8)
C55	0.0373 (10)	0.0439 (11)	0.0432 (10)	0.0204 (8)	-0.0056 (8)	0.0002 (8)
C56	0.0575 (13)	0.0397 (11)	0.0535 (13)	0.0169 (10)	-0.0128 (10)	0.0027 (9)
O61	0.0366 (7)	0.0384 (7)	0.0380 (7)	0.0060 (6)	0.0000 (5)	0.0072 (6)
N61	0.0331 (8)	0.0383 (8)	0.0327 (7)	0.0127 (6)	0.0013 (6)	0.0054 (6)
C61	0.0314 (9)	0.0472 (11)	0.0416 (10)	0.0201 (8)	0.0037 (7)	0.0100 (8)
C62	0.0358 (10)	0.0427 (10)	0.0443 (10)	0.0209 (8)	0.0030 (8)	0.0104 (8)
C63	0.0331 (9)	0.0444 (10)	0.0359 (9)	0.0168 (8)	0.0028 (7)	0.0077 (8)
C64	0.0345 (9)	0.0484 (11)	0.0379 (10)	0.0221 (8)	0.0049 (7)	0.0043 (8)
C65	0.0388 (10)	0.0430 (10)	0.0360 (9)	0.0213 (8)	0.0016 (8)	0.0029 (8)
C66	0.0348 (10)	0.0507 (12)	0.0633 (14)	0.0140 (9)	0.0064 (9)	0.0161 (10)

Geometric parameters (Å, °)

Co1—N1	2.0767 (16)	Co2—N3	2.0804 (16)
Co1—N2	2.0895 (15)	Co2—N4	2.0844 (16)
Co1-011	1.9949 (13)	Co2—O41	1.9999 (13)
Co1-O21	1.9989 (14)	Co2—O51	1.9880 (14)
Co1-O31	2.0045 (14)	Co2—O61	1.9941 (14)
N1-C1	1.162 (2)	N3—C3	1.160 (2)
C1—S1	1.6362 (19)	C3—S3	1.6388 (19)
N2-C2	1.170 (2)	N4—C4	1.164 (2)
C2—S2	1.6352 (19)	C4—S4	1.6353 (19)
011—N11	1.348 (2)	O41—N41	1.3494 (19)
N11-C11	1.348 (2)	N41—C41	1.348 (2)
N11—C15	1.348 (2)	N41—C45	1.345 (2)
C11—H11	0.9500	C41—H41	0.9500
C11—C12	1.374 (3)	C41—C42	1.372 (3)
С12—Н12	0.9500	C42—H42	0.9500
C12—C13	1.396 (3)	C42—C43	1.397 (3)
C13—C14	1.388 (3)	C43—C44	1.392 (3)
C13—C16	1.499 (3)	C43—C46	1.500 (3)
C14—H14	0.9500	C44—H44	0.9500
C14—C15	1.372 (3)	C44—C45	1.375 (3)
С15—Н15	0.9500	C45—H45	0.9500
C16—H16A	0.9800	C46—H46A	0.9800
C16—H16B	0.9800	C46—H46B	0.9800
C16—H16C	0.9800	C46—H46C	0.9800
O21—N21	1.349 (2)	O51—N51	1.351 (2)
N21—C21	1.348 (2)	N51—C51	1.346 (3)
N21—C25	1.345 (3)	N51—C55	1.344 (3)
C21—H21	0.9500	C51—H51	0.9500
C21—C22	1.376 (3)	C51—C52	1.373 (3)
C22—H22	0.9500	С52—Н52	0.9500
C22—C23	1.389 (3)	C52—C53	1.395 (3)
C23—C24	1.394 (3)	C53—C54	1.385 (3)
C23—C26	1.496 (3)	C53—C56	1.495 (3)

C24—H24	0.9500	C54—H54	0.9500
C24—C25	1.367 (3)	C54—C55	1.369 (3)
С25—Н25	0.9500	С55—Н55	0.9500
C26—H26A	0.9800	C56—H56A	0.9800
C26—H26B	0.9800	C56—H56B	0.9800
C26—H26C	0.9800	C56—H56C	0.9800
O31—N31	1.346 (2)	O61—N61	1.349 (2)
N31—C31	1.352 (3)	N61—C61	1.345 (3)
N31—C35	1.348 (3)	N61—C65	1.345 (2)
C31—H31	0.9500	C61—H61	0.9500
C31—C32	1.371 (3)	C61—C62	1.368 (3)
С32—Н32	0.9500	C62—H62	0.9500
C32—C33	1.397 (3)	C62—C63	1.392 (3)
C33—C34	1.392 (3)	C63—C64	1.389 (3)
C33—C36	1.497 (3)	C63—C66	1.495 (3)
C34—H34	0.9500	C64—H64	0.9500
C34—C35	1.373 (3)	C64—C65	1.377 (3)
C35—H35	0.9500	C65—H65	0.9500
C36—H36A	0.9800	C66—H66A	0.9800
C36—H36B	0.9800	C66—H66B	0.9800
C36—H36C	0.9800	C66—H66C	0.9800
030 11300	0.9000		0.9000
N1—Co1—N2	179.11 (7)	N3—Co2—N4	178.20 (6)
O11—Co1—N1	93.86 (6)	O41—Co2—N3	93.31 (6)
O11—Co1—N2	86.87 (6)	O41—Co2—N4	88.08 (6)
O11—Co1—O21	122.93 (6)	O51—Co2—N3	86.15 (6)
O11—Co1—O31	121.98 (6)	O51—Co2—N4	92.14 (6)
O21—Co1—N1	87.05 (6)	O51—Co2—O41	122.04 (6)
O21—Co1—N2	92.13 (6)	O51—Co2—O61	115.95 (6)
O21—Co1—O31	115.07 (6)	O61—Co2—N3	87.50 (6)
O31—Co1—N1	87.43 (6)	O61—Co2—N4	92.75 (6)
O31—Co1—N2	92.62 (6)	O61—Co2—O41	121.94 (6)
Co1—N1—Co	167.85 (16)	Co2—N3—Co3	168.81 (15)
N1—C1—S1	179.28 (19)	N3—C3—S3	179.8 (2)
C2-N2-Co1	164.31 (15)	C4—N4—Co2	161.93 (15)
N2-C2-S2	179.49 (19)	N4—C4—S4	179.57 (19)
N11-011-Co1	117.79 (10)	N41-041-Co2	117.09 (10)
C11—N11—O11	119 39 (15)	C41—N41—O41	119 69 (16)
$C_{11} - N_{11} - C_{15}$	121.18 (16)	C45—N41—O41	119.27 (15)
C_{15} N11 -0_{11}	119 44 (15)	C45-N41-C41	121.03 (16)
N11-C11-H11	120.0	N41-C41-H41	119.9
N11-C11-C12	120.0	N41-C41-C42	120 12 (18)
C12_C11_H11	120.10 (17)	C42 - C41 - H41	110.12 (10)
C11_C12_H12	119 7	C41 - C42 - H42	119.5
C11 - C12 - C13	120 61 (18)	C41 - C42 - C43	120.08 (18)
C13_C12_H12	119 7	C43 - C42 - C43	120.96 (18)
C12 - C12 - C12	121 34 (18)	C_{42} C_{42} C_{42} C_{43} C_{46}	117.5
C12 - C13 - C10	121.34(10) 117 12(17)	C_{42} C_{43} C_{40}	121.07 (10)
017 - 013 - 012	11/.13(1/)	UTT-UTJ-UT2	110.75 (10)

C14—C13—C16	121.49 (17)	C44—C43—C46	121.53 (18)
C13—C14—H14	119.4	C43—C44—H44	119.5
C15—C14—C13	121.15 (17)	C45—C44—C43	120.98 (18)
C15—C14—H14	119.4	C45—C44—H44	119.5
N11—C15—C14	119.83 (17)	N41—C45—C44	120.12 (17)
N11—C15—H15	120.1	N41—C45—H45	119.9
С14—С15—Н15	120.1	C44—C45—H45	119.9
C13—C16—H16A	109.5	C43—C46—H46A	109.5
C13—C16—H16B	109.5	C43—C46—H46B	109.5
C13-C16-H16C	109.5	C43 - C46 - H46C	109 5
H_{16A} $-C_{16}$ $-H_{16B}$	109.5	H46A—C46—H46B	109.5
H16A-C16-H16C	109.5	H46A - C46 - H46C	109.5
H_{16B} $-C_{16}$ $-H_{16C}$	109.5	H46B-C46-H46C	109.5
N21-O21-Co1	116 67 (10)	$N51 - 051 - Co^2$	109.5 120.20(11)
$C_{21} = N_{21} = O_{21}$	110.07 (10)	C_{51} N_{51} C_{52}	120.20(11) 120.45(17)
$C_{21} = N_{21} = O_{21}$	119.85 (16)	C_{55} N51 051	120.43(17) 118.22(17)
$C_{25} = N_{21} = C_{21}$	110.05(10) 121.27(17)	$C_{55} = N_{51} = C_{51}$	110.22(17) 121.32(17)
N21 C21 U21	121.27 (17)	N51 C51 U51	121.32(17)
$N_{21} = C_{21} = T_{21}$	120.0	N51 C51 C52	120.0
$N_{21} = C_{21} = C_{22}$	119.92 (18)	N51 - C51 - C52	120.03 (18)
C_{22} — C_{21} — H_{21}	120.0	C52—C51—H51	120.0
C21—C22—H22	119.8	C51-C52-H52	119.7
$C_{21} - C_{22} - C_{23}$	120.48 (18)	C51—C52—C53	120.55 (18)
C23—C22—H22	119.8	С53—С52—Н52	119.7
C22—C23—C24	117.52 (18)	C52—C53—C56	122.25 (18)
C22—C23—C26	121.97 (19)	C54—C53—C52	117.00 (18)
C24—C23—C26	120.49 (19)	C54—C53—C56	120.74 (18)
C23—C24—H24	119.7	C53—C54—H54	119.3
C25—C24—C23	120.64 (18)	C55—C54—C53	121.34 (19)
C25—C24—H24	119.7	C55—C54—H54	119.3
N21—C25—C24	120.14 (18)	N51—C55—C54	119.73 (18)
N21—C25—H25	119.9	N51—C55—H55	120.1
С24—С25—Н25	119.9	С54—С55—Н55	120.1
C23—C26—H26A	109.5	С53—С56—Н56А	109.5
С23—С26—Н26В	109.5	С53—С56—Н56В	109.5
С23—С26—Н26С	109.5	С53—С56—Н56С	109.5
H26A—C26—H26B	109.5	H56A—C56—H56B	109.5
H26A—C26—H26C	109.5	H56A—C56—H56C	109.5
H26B—C26—H26C	109.5	H56B—C56—H56C	109.5
N31—O31—Co1	116.49 (10)	N61—O61—Co2	117.27 (11)
O31—N31—C31	118.85 (16)	C61—N61—O61	118.81 (16)
O31—N31—C35	119.84 (16)	C61—N61—C65	121.31 (17)
C35—N31—C31	121.29 (17)	C65—N61—O61	119.85 (16)
N31—C31—H31	120.1	N61—C61—H61	119.9
N31—C31—C32	119.83 (18)	N61—C61—C62	120.28 (18)
C32—C31—H31	120.1	C62—C61—H61	119.9
C31—C32—H32	119.5	С61—С62—Н62	119.7
C31—C32—C33	120.92 (19)	C61—C62—C63	120.57 (18)
	= ()		,

C32—C33—C36	121.11 (19)	C62—C63—C66	120.74 (19)
C34—C33—C32	116.96 (18)	C64—C63—C62	117.33 (18)
C34—C33—C36	121.90 (19)	C64—C63—C66	121.93 (18)
С33—С34—Н34	119.5	С63—С64—Н64	119.6
C35—C34—C33	121.01 (19)	C65—C64—C63	120.77 (18)
С35—С34—Н34	119.5	С65—С64—Н64	119.6
N31—C35—C34	119.84 (18)	N61—C65—C64	119.70 (18)
N31—C35—H35	120.1	N61—C65—H65	120.1
С34—С35—Н35	120.1	С64—С65—Н65	120.1
С33—С36—Н36А	109.5	С63—С66—Н66А	109.5
С33—С36—Н36В	109.5	С63—С66—Н66В	109.5
С33—С36—Н36С	109.5	С63—С66—Н66С	109.5
H36A—C36—H36B	109.5	H66A—C66—H66B	109.5
H36A—C36—H36C	109.5	H66A—C66—H66C	109.5
H36B—C36—H36C	109.5	H66B—C66—H66C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
C11—H11…S4 ⁱ	0.95	2.88	3.8088 (19)	166
C21—H21····S2 ⁱⁱ	0.95	2.87	3.739 (2)	153
C24—H24…S1 ⁱⁱⁱ	0.95	2.90	3.841 (2)	169
C25—H25…O31 ⁱⁱⁱ	0.95	2.63	3.259 (2)	124
C31—H31…O21 ⁱⁱⁱ	0.95	2.44	3.277 (2)	146
C34—H34…S3	0.95	2.99	3.754 (2)	138
C41—H41…S3 ^{iv}	0.95	2.97	3.6966 (19)	134
C45—H45…S2	0.95	2.89	3.6082 (19)	133
C55—H55…O61 ^v	0.95	2.46	3.184 (2)	133
C61—H61···O51 ^v	0.95	2.48	3.233 (2)	136
C62—H62···S3 ^v	0.95	2.98	3.900 (2)	162
$C64$ — $H64$ ···· $N4^{vi}$	0.95	2.64	3.484 (2)	148
C65—H65…S4 ^{vi}	0.95	3.00	3.870 (2)	154

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+2, -*y*+1, -*z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*, -*z*+1; (vi) -*x*, -*y*, -*z*+1.