CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 January 2024
Accepted 16 January 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; benzylideneaniline; Schiff base; Hirshfeld surface analysis; energy framework.

CCDC reference: 2325829

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$
Published under a CC BY 4.0 licence

(E)-N,N-Diethyl-4-\{[(4-methoxyphenyl)imino]methyl\}aniline: crystal structure, Hirshfeld surface analysis and energy framework

A. Subashini, ${ }^{\text {a* }}$ R. Kumaravel, ${ }^{\text {b }}$ B. Tharmalingam, ${ }^{\text {c }}$ K. Ramamurthi, ${ }^{\text {d }}$ Aurélien Crochet ${ }^{\mathrm{e}}$ and Helen Stoeckli-Evans ${ }^{{ }^{f} \text { * }}$

Abstract

${ }^{\text {a }}$ PG and Research Department of Physics, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620005, Tamilnadu, India, ${ }^{\text {b }}$ Department of Physics, Annapoorana Engineering College (Autonomous), Salem 636308, Tamilnadu, India, ${ }^{\text {c }}$ Department of Chemistry, Bharathiyar University, Coimbatore 600 046, Tamilnadu, India, ${ }^{\text {d Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, }}$ Tiruchirappalli 620024, Tamilnadu, India, ${ }^{\text {e}}$ Chemistry Department, University of Fribourg, Chemin du Musee 9, CH-1700 Fribourg, Switzerland, and ${ }^{\mathfrak{f}}$ Institute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: viji.suba@gmail.com, helen.stoeckli-evans@unine.ch

In the title benzylideneaniline Schiff base, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$, the aromatic rings are inclined to each other by $46.01(6)^{\circ}$, while the $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}=\mathrm{C}-\mathrm{C}_{\mathrm{ar}}$ torsion angle is 176.9 (1) ${ }^{\circ}$. In the crystal, the only identifiable directional interaction is a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bond, which generates inversion dimers that stack along the a-axis direction.

1. Chemical context

Schiff bases are known for their distinctive azomethine group $(-\mathrm{N}=\mathrm{CH}-)$ and ease of synthesis, often by a simple condensation reaction. Brodowska \& Łodyga-Chruścińska (2014, and references therein) have reviewed Schiff bases, covering their biological, antibacterial, antitfungal, biocidal, antimalarial and anticancer activities, together with their uses in technology, synthesis and chemical analysis. The $-\mathrm{N}=\mathrm{CH}-$ group plays an important role in forming stable metal complexes (Iqbal et al., 1995), and recently Boulechfar et al. (2023) have reviewed the history, synthesis and applications of Schiff bases and their metal complexes.

II (SOLRIV)

In the solid state, benzylideneanilines adopt a nonplanar conformation, disrupting the π-electron conjugation within

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots C g 1^{\mathrm{i}}$	0.94	2.98	$3.659(1)$	130

Symmetry code: (i) $-x+1,-y+1,-z$.
the molecule (Bürgi \& Dunitz, 1970). Beyond their chemical properties, benzylideneanilines find practical uses in various applications, such as plaque imaging, as anti-inflammatory agents, and in opto-electronic devices (Lee et al., 2009; Weszka et al., 2008; Rodrigues et al., 2003), and as antioxidants (Sunil et al., 2021).

Herein, we describe the synthesis and crystal structure of the title benzylideneaniline Schiff base (E)-N,N-diethyl-4-\{[(4methoxyphenyl)imino]methyl\}aniline (I) and compare its structure and Hirshfeld surface to those of related compounds.

2. Structural commentary

The title compound crystallizes in the triclinic space group $P \overline{1}$ with one molecule in the asymmetric unit (Fig. 1). The aromatic rings $(\mathrm{A}=\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{B}=\mathrm{C} 8-\mathrm{C} 13)$ are inclined to each other by $46.01(6)^{\circ}$, while the $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ torsion angle is $176.9(1)^{\circ}$. The configuration about the $\mathrm{N} 1=\mathrm{C} 7$ bond is E and its bond length is 1.2754 (15) \AA. The major twist in the molecule occurs about the $\mathrm{C} 4-\mathrm{N} 1$ bond, as indicated by the $\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 7$ torsion angle of $-41.89(16)^{\circ}$. Atom C14 of the methoxy group lies almost in the plane of its attached ring [deviation $=-0.012(1) \AA$]. The $\mathrm{N} 2 / \mathrm{C} 15 / \mathrm{C} 17$ moiety is twisted by $12.85(12)^{\circ}$ from its attached ring and the C atom of the C 16 methyl group is displaced from the C8-C13 ring by 1.329 (2) \AA and C18 is displaced in the opposite sense, by -0.893 (2) \AA, which we term a trans arrangement (see Database survey section).

3. Supramolecular features

In the crystal of \mathbf{I}, the shortest contact involves a pair of very weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1). They link inversionrelated molecules to form dimers that stack along the a-axis direction (Fig. 2).

Figure 1
A view of the molecular structure of \mathbf{I}, with the atom labelling. The displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, last update September 2023; Groom et al., 2016) revealed the presence of two benzylideneaniline Schiff bases similar to I, namely, (E)-4-\{[(4-methoxyphenyl)imino]methyl\}N, N-dimethylaniline (II) (CSD refcode SOLRIV; Sundararaman et al., 2009) and (E)-4-\{[(4-ethoxyphenyl)imino]-methyl\}- N, N-dimethylaniline (III) (SITFIL; Wang \& Wang, 2008).

Compound (II) crystallizes in the space group $P 2_{1} / n$ with two independent molecules in the asymmetric unit. Here, the dihedral angles A / B and $\mathrm{A}^{\prime} / \mathrm{B}^{\prime}$ are significantly different to each other and to that in compound \mathbf{I}, viz. 8.20 (5) and $12.52(6)^{\circ}$, compared to $46.01(6)^{\circ}$ in \mathbf{I}. The $\mathrm{N}=\mathrm{C}$ bond lengths are 1.2758 (15) and 1.2731 (16) \AA, similar to the value observed for \mathbf{I}. The $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}=\mathrm{C}-\mathrm{C}_{\mathrm{ar}}$ torsion angles are -177.6 (1) and $-179.3(1)^{\circ}$, compared to $176.9(1)^{\circ}$ in I. In III, the aromatic rings are inclined to each other by $61.94(15)^{\circ}$, while the torsion angle $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}=\mathrm{C}-\mathrm{C}_{\mathrm{ar}}$ is 179.3 (3) ${ }^{\circ}$ and its bond length is 1.269 (4) \AA.

A full search of the CSD for p-substituted benzylideneanilines gave 229 hits for entries that fitted the following criteria: three-dimensional coordinates available, $R \leq 0.075$, no disorder, no errors, no polymers, no ions, organics only and only single crystal analyses. An analysis using Mercury (Macrae et al., 2020) of the dihedral angle A/B indicated that it can vary from 0.9° for $(E)-4-\{4-[(4$-chlorobenzylidene)amino]-benzyl\}oxazolidin-2-one (FORYIX; Kumari et al., 2019) to 73.4° for $4-[(E)-(\{4-[(4-$ aminophenyl $)$ sulfonyl $]$ phenyl $\}$ imino $)$ methyl]phenol ethanol solvate (PAWMUX; Afzal et al., 2012). There are two small clusters grouped around ca 6.3 and 51.6°. Compound II fits into the first cluster, whereas compounds I and III clearly fit into the second cluster.

The analysis of the $\mathrm{N}=\mathrm{C}$ bond length indicates that it varies from $1.216 \AA$ for 4 -\{[4-(di- p-tolylamino)benzylidene]amino\}benzonitrile (JIDRAT; Sun et al., 2023) to $1.315 \AA$ for

Figure 2
A view along the b axis of the crystal packing of \mathbf{I}. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are indicated by blue arrows (see Table 1). Only the H atoms involved in these interactions have been included.

Figure 3
Scatter plot of the $\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ torsion angles in diethylaminobenzene derivatives, and the structures of $N, N, N^{\prime}, N^{\prime}$-tetraethyl- 2,6 -bis-(phenylethynyl)thieno[2,3-f][1]benzothiophene-4,8-diamine (JOQZIA; Wen et al., 2015) and 2-diethylaminophenyl)diphenylmethanol (ERONDO; AlMasri et al., 2004).
(E)-4-[4-(diethylamino)benzylideneammonio]benzenesulfonate (XAYSOH; Ruanwas et al., 2012), with a mean value of $1.269 \AA$ [mean deviation of $0.013 \AA$, skewness -0.162 ; Mercury (Macrae et al., 2020)]. The $\mathrm{C}=\mathrm{N}$ bond lengths in I, II and III all fall within the limits indicated from the analysis in Mercury.

Another structural feature of compound \mathbf{I} is the arrangement of the ethyl groups of the $-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ moiety. Here, they have a trans arrangement with one CH_{3} group directed above the plane of the $-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}$ - unit and the other below (Fig. 1). A search of the CSD for benzylideneanilines with an N, N-diethylaniline group gave 12 hits. In nine of these struc-
(I)
(II)

(III)

Figure 4
The Hirshfeld surfaces of compounds $(a) \mathbf{I},(b) \mathbf{I I}$ and (c) III, mapped over $d_{\text {norm }}$ in the colour ranges of 0.00 to $1.41,-0.08$ to 1.26 and -0.02 to 1.22 a. ., respectively.

Table 2
Relative percentage contributions of close contacts to the Hirshfeld surfaces of compounds I, II and III.

II \boldsymbol{a} and III \boldsymbol{b} refer to the two independent molecules of compound II.

Contact	I	II	II \boldsymbol{a}	II \boldsymbol{b}	III
$\mathrm{H} \cdots \mathrm{H}$	62.5	58.1	53.9	55.2	59.5
$\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$	26.6	29.4	34.3	32.0	29.8
$\mathrm{~N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$	5.1	6.3	5.6	6.5	5.9
$\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$	5.4	6.0	6.0	6.2	4.6

tures the arrangement of this group was the same as that of compound \mathbf{I}, but for three hits an alternative arrangement was found, viz. a cis arrangement with both CH_{3} groups directed to the same side of the plane of the $-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}-$ unit. For example, in 4-chloro- N-[4-(diethylamino)benzylidene]aniline (DUNNAC; Zhang, 2010), which crystallizes with two independent molecules in the asymmetric unit, both molecules have the cis arrangement [Fig. $\mathrm{S} 1(a)$ of the supporting information]. In the 4-bromo derivative, 4-bromo- N-[4-(diethylamino)benzylidene]aniline (SABPOC; Li, 2010), which also crystallizes with two independent molecules in the asymmetric unit, both arrangements are observed; i.e. one trans and the other cis [Fig. S1 (b) of the supporting information]. For 4-\{[4(diethylamino)benzylidene]amino\}benzoic acid, two triclinic polymorphs have been reported, with both structures having two independent molecules in the asymmetric unit. In the first (PUSMUN; Han et al., 2016), both molecules have a cis
arrangement, while in the second polymorph (PUSMUN01; Xochicale-Santana et al., 2021), both molecules have a trans arrangement.

A more extensive search for diethylaminobenzene derivatives gave over 300 hits for structures with the same search criteria as above. An analysis of the two $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}$ torsion angles is shown in a scatter plot (Fig. 3). It can be seen that the majority of compounds have either the cis $(-/+$ or $+/-)$ or the trans $(+/+$ or $-/-)$ arrangement. Some of the outliers indicate an intermediate state with one large torsion angle and the other quite small, for example, (2-diethylaminophenyl)diphenylmethanol (ERONDO; Al-Masri et al., 2004), whose structure is illustrated in Fig. 3. Finally, in one compound, viz. $N, N, N^{\prime}, N^{\prime}$-tetraethyl-2,6-bis(phenylethynyl)-thieno[2,3-f][1]benzothiophene-4,8-diamine (JOQZIA; Wen et al., 2015), a unique arrangement was observed with both ethyl groups having an extended conformation (see Fig. 3).

5. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface (HS) analyses and the associated twodimensional fingerprint plots were performed with CrystalExplorer17 (Spackman et al., 2021) following the protocol of Tan et al. (2019). The Hirshfeld surfaces for compounds I, II and III are compared in Fig. 4. The absence of promient red spots indicate that short contacts are not particularly signifi-
(I)

C...H/H...C
26

O...H/H...O

(III)

Figure 5
The full two-dimensional fingerprint plots for compounds $(a) \mathbf{I}$, (b) II and (c) III, and those delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts.
cant in the packing of the three compounds. The short contacts in the crystals of the three compounds are compared in Table S1 of the supporting information. It is not surprising that for II, with a total of seven $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the crystal (Sundararaman et al., 2009), that there are a large number of C. . H contacts.

The full two-dimensional fingerprint plots for I, II and III are given in Fig. 5. The contributions of the various interatomic contacts to the Hirshfeld surfaces for the three compounds are compared in Table 2. In all three compounds, the $\mathrm{H} \cdots \mathrm{H}$ contacts have a major contribution, i.e. 62.5% for \mathbf{I}, 58.1% for the two independent molecule of II and 59.5% for III. The second most significant contributions are from the C $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts, 26.6, 29.4 and 29.8%, respectively, reflecting the presence of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present in all three crystal structures. The other interatomic contacts, such as the $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts, contribute from 5.1 to 6.3%, and the $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts contribute from 4.6 to 6.0%. The $\mathrm{C} \cdots \mathrm{C}$ or $\mathrm{O} \cdots \mathrm{O}$ contacts contribute less than 1%.

6. Energy frameworks

A comparison of the energy frameworks calculated for \mathbf{I}, showing the electrostatic potential forces $\left(E_{\text {ele }}\right)$, the dispersion forces $\left(E_{\text {dis }}\right)$ and the total energy diagrams $\left(E_{\text {tot }}\right)$, are shown in Fig. 6. Those for compounds II and III are given, respectively, in Figs. S3 and S4 of the supporting information. The energies were obtained by using wave functions at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Spackman et al., 2021; Tan et al., 2019). They have been adjusted to the same scale factor of 90 with a cut-off value of $6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ within a radius of $3.8 \AA$ of a central reference molecule.

For all three compounds, the major contribution to the intermolecular interactions is from dispersion forces $\left(E_{\text {dis }}\right)$, reflecting the absence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in the crystals. The colour-coded interaction mappings within a radius of $3.8 \AA$ of a central reference molecule and the various contributions to the total energy (E_{tot}) for compounds I, II and III are given in Figs. S5, S6 and S7, respectively, of the supporting information.

7. Synthesis and crystallization

Compound I was synthesized by condensing p-diethylaminobenzaldehyde and p-methoxyaniline (1:1) dissolved in methanol. The reaction mixture was heated under reflux for 6 h at $\sim 363 \mathrm{~K}$ and then cooled to room temperature. The precipitated product was dissolved in methanol. Yellow prismatic single crystals of \mathbf{I} were obtained by slow evaporation of the solvent at room temperature over a period of ca 15 d .

A Shimadzu IR Affinity-1 Fourier transform infrared (FTIR) spectrometer was used to record the FT-IR spectrum of I using the KBr pellet technique in the range $400-4000 \mathrm{~cm}^{-1}$ (Fig. S8 of the supporting information). The absorption band at $1603 \mathrm{~cm}^{-1}$ confirms the formation of the $\mathrm{C}=\mathrm{N}$ groups. The aromatic ring $\mathrm{C}=\mathrm{C}$ stretching vibrations are observed in the range $1468-1585 \mathrm{~cm}^{-1}$. The aromatic $\mathrm{C}-\mathrm{H}$ in-plane bending modes are observed in the region $1005-1292 \mathrm{~cm}^{-1}$, whereas the out-of-plane bending modes are observed in the range $762-973 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra of compound \mathbf{I} (Fig. S9 of the supporting information) were recorded using a Bruker Advance Neo 400 MHz NMR spectrometer. Deuterated chloroform $\left(\mathrm{CDCl}_{3}-d\right)$ was employed as the solvent, with tetramethylsilane (TMS) serving as the internal standard. In the ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{I}, the singlet peak at 8.30 ppm is attributed to the azomethine $(-\mathrm{N}=\mathrm{CH}-)$ proton, while signals observed at $7.73,7.18,7.16$ and 6.89 ppm are attributed to the aromatic protons. Additionally, there are sharp singlet peaks at 3.80 ppm , corresponding to the methoxy protons $\left(\mathrm{O}-\mathrm{CH}_{3}\right)$. The protons of the diethylamino group were detected at 1.19 ppm as a triplet $\left(\mathrm{CH}_{3}\right)$ and at 3.41 ppm as a quartet $\left(\mathrm{CH}_{2}\right)$. In the ${ }^{13} \mathrm{C}$ NMR spectrum of \mathbf{I}, the resonance at 158.70 ppm signifies the presence of the azomethine $(-\mathrm{N}=\mathrm{CH}-)$ unit, 55.51 ppm is associated with the $\mathrm{CH}_{3}-\mathrm{O}$ group, 44.51 ppm is related to the methylene C atoms of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}-\mathrm{N}$ group and 12.62 ppm corresponds to the methyl C atoms of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}-\mathrm{N}$ group.

An SDT Q600 V20.9 Build 20 TA instrument were used to measure the thermogravimetric analysis (TGA) and the differential thermal analysis (DTA) in the temperature range $303-723 \mathrm{~K}$ (Fig. S10 of the supporting information) with a

Figure 6
The energy frameworks calculated for \mathbf{I}, viewed along the b-axis direction, showing the electrostatic potential forces $\left(E_{\text {ele }}\right)$, the dispersion forces ($E_{\text {dis }}$) and the total energy diagrams ($E_{\text {tot }}$).

Table 3
Experimental details.
Crystal data

Crystal data	
Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
M_{r}	282.37
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	250
$a, b, c(\AA)$	$8.3830(7), 9.2872(7), 11.2981(9)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$78.991(6), 71.009(6), 74.174(6)$
$V\left(\AA^{3}\right)$	$795.14(12)$
Z	2
Radiation type	$\mathrm{Mo} K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.07
Crystal size (mm)	$0.68 \times 0.47 \times 0.28$

Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
282.37

Triclinic, $P \overline{1}$
250
(7), 9.2872 (7), 11.2981 (9)
795.14 (12)

2
0.07
$0.68 \times 0.47 \times 0.28$

STOE IPDS II
Multi-scan $[X-R E D 32$ (Stoe \& Cie, 2018) and X-AREA LANA (Stoe \& Cie, 2018)]
0.697, 0.989

11520, 3183, 2453
0.030
0.622

Computer programs: X-AREA, X-RED32 and X-AREA LANA (Stoe \& Cie, 2018), SHELXT2014 (Sheldrick, 2015a), PLATON (Spek, 2020), Mercury (Macrae et al., 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).
heating rate of $20 \mathrm{~K} \mathrm{~min}^{-1}$. A small peak observed at $\sim 377 \mathrm{~K}$ (Fig. S10) in the DTA curve corresponds to the melting point of the material. The material is stable up to 483 K , after which it starts to decompose.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C -bound H atoms were included in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.94-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Acknowledgements

The authors thank the School of Advanced Sciences, Vellore Institute of Technology, Vellore, for the use of their instrumentation facilities, such as FT-IR and thermal analyses. HSE is grateful to the University of Neuchâtel for their support over the years.

References

Afzal, S., Akhter, Z. \& Tahir, M. N. (2012). Acta Cryst. E68, o1789.
Al-Masri, H. T., Sieler, J., Lönnecke, P., Blaurock, S., Domasevitch, K. \& Hey-Hawkins, E. (2004). Tetrahedron, 60, 333-339.
Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A., Lemaoui, T., Verma, R. \& Benguerba, Y. (2023). Inorg. Chem. Commun. 150, 110451.

Brodowska, K. \& Łodyga-Chruścińska, E. (2014). CHEMIK, 68, 132134.

Bürgi, H. B. \& Dunitz, J. D. (1970). Helv. Chim. Acta, 53, 1747-1764.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Han, T., Wei, W., Yuan, J., Duan, Y., Li, Y., Hu, L. \& Dong, Y. (2016). Talanta, 150, 104-112.
Iqbal, M. Z., Farooq, H. M., Zaman, M. Q., Gulzar, A. \& Shah, H. U. (1995). J. Anal. Appl. Pyrolysis, 35, 109-120.

Kumari, R., Seera, R., De, A., Ranjan, R. \& Guru Row, T. N. (2019). Cryst. Growth Des. 19, 5934-5944.
Lee, H.-J., Jeong, J.-M., Rai, G., Lee, Y.-S., Chang, Y.-S., Kim, Y.-J., Kim, H.-W., Lee, D.-S., Chung, J.-K., Mook-Jung, I. \& Lee, M.-C. (2009). Nucl. Med. Biol. 36, 107-116.

Li, X.-F. (2010). Acta Cryst. E66, o2417.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Rodrigues, J. J. Jr, Misoguti, L., Nunes, F. D. C. R., Mendonça, C. R. \& Zilio, S. C. (2003). Opt. Mater. 22, 235-240.
Ruanwas, P., Chantrapromma, S. \& Fun, H.-K. (2012). Acta Cryst. E68, o2155-o2156.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Stoe \& Cie (2018). X-AREA, X-RED32 and X-AREA LANA. Stoe \& Cie GmbH, Damstadt, Germany.
Sun, H., Chen, S., Jin, J., Sun, R., Sun, J., Liu, D., Liu, Z., Zeng, J., Zhu, Y., Niu, J. \& Lu, S. (2023). J. Photochem. Photobiol. Chem. 441, 114730-114745.
Sundararaman, L., Ramu, H., Kandaswamy, R. \& Stoeckli-Evans, H. (2009). Acta Cryst. E65, o477.

Sunil, K., Kumara, T. P. P., Kumar, B. A. \& Patel, S. B. (2021). Pharm. Chem. J. 55, 46-53.
Tan, S. L., Jotani, M. M. \& Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.
Wang, Q. \& Wang, D.-Q. (2008). Acta Cryst. E64, o51.
Wen, S., Liu, J., Qiu, M., Li, Y., Zhu, D., Gu, C., Han, L. \& Yang, R. (2015). RSC Adv. 5, 5875-5878.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Weszka, J., Domanski, M., Jarzabek, B., Jurusik, J., Cisowski, J. \& Burian, A. (2008). Thin Solid Films, 516, 3098-3104.
Xochicale-Santana, L., López-Espejel, M., Jiménez-Pérez, V. M., Lara-Cerón, J., Gómez-Treviño, A., Waksman, N., Dias, H. V. R. \& Muñoz-Flores, B. M. (2021). New J. Chem. 45, 17183-17189.
Zhang, F.-G. (2010). Acta Cryst. E66, o382.

supporting information

(E)-N,N-Diethyl-4-\{[(4-methoxyphenyl)imino]methyl\}aniline: crystal structure, Hirshfeld surface analysis and energy framework

A. Subashini, R. Kumaravel, B. Tharmalingam, K. Ramamurthi, Aurélien Crochet and Helen Stoeckli-Evans

Computing details

(E)-N,N-Diethyl-4-\{[(4-methoxyphenyl)imino]methyl\}aniline

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=282.37$
Triclinic, $P \overline{1}$
$a=8.3830$ (7) \AA
$b=9.2872$ (7) \AA
$c=11.2981$ (9) \AA
$\alpha=78.991$ (6) ${ }^{\circ}$
$\beta=71.009$ (6) ${ }^{\circ}$
$\gamma=74.174$ (6) ${ }^{\circ}$
$V=795.14$ (12) \AA^{3}

Data collection

STOE IPDS II diffractometer
Radiation source: sealed X-ray tube, 12×0.4 mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm^{-1}
rotation method, ω scans
Absorption correction: multi-scan
[X-RED32 (Stoe \& Cie, 2018) and X-AREA
LANA (Stoe \& Cie, 2018)]

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.100$
$S=1.04$
3183 reflections
194 parameters
0 restraints
Primary atom site location: dual

$$
Z=2
$$

$F(000)=304$
$D_{\mathrm{x}}=1.179 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8317 reflections
$\theta=1.9-26.6^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=250 \mathrm{~K}$
Prism, yellow
$0.68 \times 0.47 \times 0.28 \mathrm{~mm}$
$T_{\text {min }}=0.697, T_{\text {max }}=0.989$
11520 measured reflections
3183 independent reflections
2453 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=26.2^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 14$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0477 P)^{2}+0.076 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.11 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.10$ e \AA^{-3}

supporting information

Extinction correction: (SHELXL2018;
Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.06 (1)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	0.90654 (10)	0.86089 (9)	0.06035 (8)	0.0546 (2)
N1	0.34566 (12)	0.58694 (11)	0.23619 (9)	0.0508 (3)
N2	-0.20580 (13)	0.16536 (11)	0.38486 (9)	0.0527 (3)
C1	0.77767 (14)	0.78348 (12)	0.10357 (10)	0.0454 (3)
C2	0.61011 (15)	0.87089 (12)	0.12118 (11)	0.0502 (3)
H2	0.591811	0.976243	0.103921	0.060*
C3	0.47095 (15)	0.80443 (13)	0.16366 (11)	0.0513 (3)
H3	0.358218	0.865153	0.176449	0.062*
C4	0.49434 (14)	0.64815 (12)	0.18812 (10)	0.0462 (3)
C5	0.66201 (14)	0.56221 (12)	0.17208 (11)	0.0490 (3)
H5	0.680241	0.456927	0.190073	0.059*
C6	0.80332 (14)	0.62806 (12)	0.13011 (11)	0.0486 (3)
H6	0.915970	0.567772	0.119672	0.058*
C7	0.34757 (14)	0.46457 (13)	0.19969 (10)	0.0491 (3)
H7	0.446601	0.421105	0.138215	0.059*
C8	0.20522 (14)	0.38883 (12)	0.24788 (10)	0.0459 (3)
C9	0.05732 (14)	0.43984 (12)	0.34505 (10)	0.0470 (3)
H9	0.049892	0.525924	0.380601	0.056*
C10	-0.07673 (14)	0.36818 (12)	0.38981 (11)	0.0474 (3)
H10	-0.173924	0.406192	0.455066	0.057*
C11	-0.07201 (14)	0.23796 (12)	0.33985 (10)	0.0445 (3)
C12	0.07565 (15)	0.18844 (13)	0.24069 (11)	0.0519 (3)
H12	0.083149	0.103674	0.203407	0.062*
C13	0.20913 (15)	0.26207 (13)	0.19749 (11)	0.0520 (3)
H13	0.306292	0.225458	0.131648	0.062*
C14	1.07994 (16)	0.77581 (15)	0.04265 (14)	0.0675 (4)
H14A	1.106339	0.705115	-0.017850	0.101*
H14B	1.093169	0.721030	0.122330	0.101*
H14C	1.158592	0.843244	0.011381	0.101*
C15	-0.20452 (17)	0.03482 (13)	0.33003 (12)	0.0570 (3)
H15A	-0.153911	0.050389	0.238532	0.068*
H15B	-0.324234	0.027042	0.346349	0.068*
C16	-0.1037 (2)	-0.11202 (15)	0.38128 (16)	0.0778 (4)
H16A	-0.152434	-0.128065	0.471944	0.117*
H16B	0.016571	-0.107421	0.361391	0.117*

H16C	-0.110656	-0.194522	0.343312	0.117^{*}
C17	$-0.34025(16)$	$0.19415(14)$	$0.50416(11)$	$0.0563(3)$
H17A	-0.297730	0.241588	0.554642	0.068^{*}
H17B	-0.362182	0.097789	0.551020	0.068^{*}
C18	$-0.50769(18)$	$0.29363(18)$	$0.48748(15)$	$0.0770(4)$
H18A	-0.551352	0.247013	0.438293	0.115^{*}
H18B	-0.488023	0.390729	0.443997	0.115^{*}
H18C	-0.591789	0.307371	0.569374	0.115^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0506(5)$	$0.0498(5)$	$0.0639(5)$	$-0.0138(4)$	$-0.0168(4)$	$-0.0036(4)$
N1	$0.0456(6)$	$0.0515(6)$	$0.0536(6)$	$-0.0091(4)$	$-0.0137(4)$	$-0.0055(4)$
N2	$0.0531(6)$	$0.0540(6)$	$0.0532(6)$	$-0.0159(5)$	$-0.0113(4)$	$-0.0133(4)$
C1	$0.0484(6)$	$0.0478(6)$	$0.0415(6)$	$-0.0113(5)$	$-0.0146(5)$	$-0.0054(5)$
C2	$0.0542(7)$	$0.0418(6)$	$0.0536(7)$	$-0.0063(5)$	$-0.0176(5)$	$-0.0057(5)$
C3	$0.0449(6)$	$0.0499(6)$	$0.0549(7)$	$-0.0006(5)$	$-0.0156(5)$	$-0.0090(5)$
C4	$0.0447(6)$	$0.0500(6)$	$0.0429(6)$	$-0.0086(5)$	$-0.0125(5)$	$-0.0063(5)$
C5	$0.0498(7)$	$0.0429(6)$	$0.0522(6)$	$-0.0072(5)$	$-0.0151(5)$	$-0.0045(5)$
C6	$0.0433(6)$	$0.0478(6)$	$0.0514(6)$	$-0.0039(5)$	$-0.0150(5)$	$-0.0053(5)$
C7	$0.0447(6)$	$0.0547(7)$	$0.0457(6)$	$-0.0067(5)$	$-0.0133(5)$	$-0.0065(5)$
C8	$0.0458(6)$	$0.0494(6)$	$0.0424(6)$	$-0.0074(5)$	$-0.0154(5)$	$-0.0052(5)$
C9	$0.0508(7)$	$0.0436(6)$	$0.0475(6)$	$-0.0077(5)$	$-0.0152(5)$	$-0.0099(5)$
C10	$0.0463(6)$	$0.0469(6)$	$0.0457(6)$	$-0.0054(5)$	$-0.0099(5)$	$-0.0110(5)$
C11	$0.0463(6)$	$0.0452(6)$	$0.0435(6)$	$-0.0077(5)$	$-0.0172(5)$	$-0.0052(5)$
C12	$0.0559(7)$	$0.0516(6)$	$0.0503(6)$	$-0.0089(5)$	$-0.0146(5)$	$-0.0169(5)$
C13	$0.0473(6)$	$0.0591(7)$	$0.0466(6)$	$-0.0063(5)$	$-0.0090(5)$	$-0.0155(5)$
C14	$0.0482(7)$	$0.0648(8)$	$0.0862(10)$	$-0.0149(6)$	$-0.0186(7)$	$0.0009(7)$
C15	$0.0620(8)$	$0.0554(7)$	$0.0608(7)$	$-0.0179(6)$	$-0.0205(6)$	$-0.0118(6)$
C16	$0.0840(10)$	$0.0547(8)$	$0.0908(11)$	$-0.0109(7)$	$-0.0250(8)$	$-0.0068(7)$
C17	$0.0576(7)$	$0.0601(7)$	$0.0518(7)$	$-0.0212(6)$	$-0.0100(5)$	$-0.0065(6)$
C18	$0.0587(8)$	$0.0865(10)$	$0.0785(10)$	$-0.0084(7)$	$-0.0123(7)$	$-0.0176(8)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	$1.3669(13)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9400
$\mathrm{O} 1-\mathrm{C} 14$	$1.4220(14)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.4153(15)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.2754(15)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9400
$\mathrm{~N} 1-\mathrm{C} 4$	$1.4140(14)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.4081(16)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.3716(14)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.3756(16)$
$\mathrm{N} 2-\mathrm{C} 15$	$1.4592(14)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9400
$\mathrm{~N} 2-\mathrm{C} 17$	$1.4639(15)$	$\mathrm{C} 13-\mathrm{H} 13$	0.9400
$\mathrm{C} 1-\mathrm{C} 6$	$1.3882(16)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.3891(15)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.3739(16)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2$	0.9400	$\mathrm{C} 15-\mathrm{C} 16$	$1.5158(19)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3958(16)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9800

C3-H3	0.9400
C4-C5	1.3868 (15)
C5-C6	1.3859 (15)
C5-H5	0.9400
C6-H6	0.9400
C7-C8	1.4505 (16)
C7-H7	0.9400
C8-C13	1.3907 (15)
C8-C9	1.3997 (15)
C9-C10	1.3678 (15)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 14$	117.48 (9)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 4$	119.31 (10)
C11-N2-C15	121.61 (9)
C11-N2-C17	122.15 (9)
C15-N2-C17	115.20 (9)
O1-C1-C6	124.99 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.67 (9)
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.35 (10)
C3-C2-C1	120.45 (10)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.8
C2-C3-C4	121.04 (10)
C2-C3-H3	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.5
C5-C4-C3	117.97 (10)
C5-C4-N1	123.58 (10)
C3-C4-N1	118.30 (10)
C6-C5-C4	121.49 (10)
C6-C5-H5	119.3
C4-C5-H5	119.3
C5-C6-C1	119.68 (10)
C5-C6-H6	120.2
C1-C6-H6	120.2
N1-C7-C8	123.56 (11)
N1-C7-H7	118.2
C8-C7-H7	118.2
C13-C8-C9	116.81 (10)
C13-C8-C7	120.93 (10)
C9-C8-C7	122.25 (10)
C10-C9-C8	121.97 (10)
C10-C9-H9	119.0
C8-C9-H9	119.0
C9-C10-C11	121.32 (10)
C9-C10-H10	119.3
C11-C10-H10	119.3
N2-C11-C12	121.94 (10)
N2-C11-C10	121.51 (10)

C15-H15B	0.9800
C16-H16A	0.9700
C16-H16B	0.9700
C16-H16C	0.9700
C17-C18	1.5025 (19)
C17-H17A	0.9800
C17-H17B	0.9800
C18-H18A	0.9700
C18-H18B	0.9700
C18-H18C	0.9700
C12-C11-C10	116.55 (10)
C13-C12-C11	121.08 (10)
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	119.5
C11-C12-H12	119.5
C12-C13-C8	122.25 (10)
C12-C13-H13	118.9
C8-C13-H13	118.9
$\mathrm{O} 1-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	109.5
O1-C14-H14B	109.5
H14A-C14-H14B	109.5
O1-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
N2-C15-C16	113.41 (11)
N2-C15-H15A	108.9
C16-C15-H15A	108.9
N2-C15-H15B	108.9
C16-C15-H15B	108.9
H15A-C15-H15B	107.7
C15-C16-H16A	109.5
C15-C16-H16B	109.5
H16A-C16-H16B	109.5
C15-C16-H16C	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
N2-C17-C18	113.31 (11)
N2-C17-H17A	108.9
C18-C17-H17A	108.9
N2-C17-H17B	108.9
C18-C17-H17B	108.9
H17A-C17-H17B	107.7
C17-C18-H18A	109.5
C17-C18-H18B	109.5
H18A-C18-H18B	109.5
C17-C18-H18C	109.5
H18A-C18-H18C	109.5
H18B-C18-H18C	109.5

C14-O1-C1-C6	-0.78 (16)	C7-C8-C9-C10	179.79 (10)
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	179.17 (10)	C8-C9-C10-C11	0.15 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.63 (10)	C15-N2-C11-C12	-1.67 (16)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.42 (16)	C17-N2-C11-C12	166.16 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.05 (17)	C15-N2-C11-C10	177.40 (10)
C2-C3-C4-C5	2.01 (17)	C17-N2-C11-C10	-14.76 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	177.64 (10)	C9-C10-C11-N2	179.70 (10)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	-41.89 (16)	C9-C10-C11-C12	-1.18 (16)
C7-N1-C4-C3	142.74 (11)	N2-C11-C12-C13	-179.49 (10)
C3-C4-C5-C6	-1.56 (17)	C10-C11-C12-C13	1.38 (17)
N1-C4-C5-C6	-176.95 (10)	C11-C12-C13-C8	-0.58 (18)
C4-C5-C6-C1	0.15 (17)	C9-C8-C13-C12	-0.49 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-179.19 (10)	C7-C8-C13-C12	-179.59 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	0.86 (16)	C11-N2-C15-C16	83.50 (15)
C4-N1-C7-C8	176.85 (10)	C17-N2-C15-C16	-85.13 (14)
N1-C7-C8-C13	174.93 (11)	C11-N2-C17-C18	102.52 (13)
N1-C7-C8-C9	-4.12 (17)	C15-N2-C17-C18	-88.92 (13)
C13-C8-C9-C10	0.70 (16)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ is the centroid of the C1-C6 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13 — \mathrm{H} 13 \cdots C g 1^{\mathrm{i}}$	0.94	2.98	$3.659(1)$	130

Symmetry code: (i) $-x+1,-y+1,-z$.

