

Received 2 October 2023 Accepted 29 December 2023

Edited by G. Ferrence, Illinois State University, USA

Keywords: crystal structure; hydrogen bonds; ring motifs; π – π stacking interactions; Hirshfeld surface analysis.

CCDC reference: 2322557

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of (*E*)-2-[2-(2-amino-1-cyano-2-oxoethylidene)hydrazin-1-yl]benzoic acid *N*,*N*-dimethylformamide monosolvate

Sevinc R. Hajiyeva,^a Fatali E. Huseynov,^a Zeliha Atioğlu,^b Mehmet Akkurt^c* and Ajaya Bhattarai^d*

^aDepartment of Ecology and Soil Sciences, Baku State University, Z. Xalilov Str. 33, Az 1148 Baku, Azerbaijan, ^bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and ^dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{10}H_8N_4O_3\cdot C_3H_7NO$, the asymmetric unit contains two crystallographically independent molecules *A* and *B*, each of which has one DMF solvate molecule. Molecules *A* and *B* both feature intramolecular $N-H\cdots O$ hydrogen bonds, forming *S*(6) ring motifs and consolidating the molecular configuration. In the crystal, $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds connect molecules *A* and *B*, forming $R_2^2(8)$ ring motifs. Weak $C-H\cdots O$ interactions link the molecules, forming layers parallel to the ($\overline{2}12$) plane. The DMF solvent molecules are also connected to the main molecules (*A* and *B*) by $N-H\cdots O$ hydrogen bonds. $\pi-\pi$ stacking interactions [centroid-to-centroid distance = 3.8702(17) Å] between the layers also increase the stability of the molecular structure in the third dimension. According to the Hirshfeld surface study, $O\cdots H/H\cdots O$ interactions are the most significant contributors to the crystal packing (27.5% for molecule *A* and 25.1% for molecule *B*).

1. Chemical context

Arylhydrazones have been used extensively as substrates or ligands in the synthesis of organic or coordination compounds (Gurbanov et al., 2022a,b; Khalilov et al., 2021a,b; Kopylovich et al., 2011). Depending on the position and nature of the substituent at the Ar-NH-N=synthon, and on the metal ion, different types of coordination compounds can be isolated, which have applications in catalysis, molecular recognition, crystal growth and design, etc. (Afkhami et al., 2019; Ma et al., 2017, 2021; Mahmoudi et al., 2017, 2021; Mahmudov et al., 2010, 2023). Not only the hydrogen-bond donor or acceptor ability of the hydrazone moiety, but also the participation of the attached functional groups in various sorts of intermolecular interactions improve their biological activities, catalytic performances, and reactivities (Martins et al., 2017; Gurbanov et al., 2017, 2020; Velásquez et al., 2019). We have found that an arylhydrazone ligand can be produced by the activation of one cyano group on an active methylene fragment of the parent molecule to produce the carboxy amide moiety of the title molecule, (E)-2-[2-(2-amino-1-cyano-2oxoethylidene)hydrazin-1-yl]benzoic acid N,N-dimethylformamide monosolvate, which participates in intermolecular hydrogen bonding in its crystal structure.

2. Structural commentary

The asymmetric unit of the title compound, Fig. 1, contains two crystallographically independent main residue molecules, A and B, and two dimethylformamide (DMF) solvate molecules. As shown in Fig. 2 (r.m.s. deviation = 0.108 Å), molecules A and B and their DMF solvent molecules overlap quite well. The overlay diagram suggests possibly slight differences and *PLATON* ADDSYM (Spek, 2020) did not find any indication of pseudosymmetry with a cell of that volume. All attempts with CELL_NOW to find a twinned cell with the volume failed. In both molecules A and B, intramolecular N-H···O hydrogen bonds (Table 1) form S(6) ring motifs (Bernstein *et al.*, 1995), consolidating the molecular configuration. The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the *Database survey* (Section 4).

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots N$ hydrogen bonds are shown as dashed lines.

Table 1		
Hydrogen-bond	geometry (Å	., °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1A…O6	0.85	1.73	2.580 (3)	175
$O4-H4B\cdots O3^{i}$	0.85	1.75	2.590 (3)	171
$N1 - H1N \cdot \cdot \cdot O2$	0.90	1.89	2.617 (3)	136
$N4-H4C\cdots O7^{ii}$	0.90	2.04	2.915 (3)	162
$N4-H4D\cdots O5^{iii}$	0.90	2.09	2.952 (3)	161
$N5-H5N\cdots O5$	0.90	1.93	2.640 (3)	134
$N8 - H8A \cdots O8$	0.90	2.01	2.889 (3)	164
$N8 - H8B \cdots O2$	0.90	2.14	2.990 (3)	158
$C2-H2A\cdots O7^{ii}$	0.93	2.60	3.505 (4)	165
$C4-H4A\cdots O6^{iv}$	0.93	2.52	3.372 (3)	153
$C12 - H12A \cdots O8$	0.93	2.39	3.311 (4)	171
$C24-H24A\cdots N3$	0.93	2.62	3.498 (4)	158

Symmetry codes: (i) x - 1, y, z + 1; (ii) x + 1, y, z; (iii) x + 1, y, z - 1; (iv) -x + 1, -y + 2, -z + 1.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, N-H···O and O-H···O hydrogen bonds (Table 1, Fig. 3*a*,*b*) connect molecules *A* and *B*, forming $R_2^2(8)$ ring motifs (Bernstein *et al.*, 1995). Weak C-H···O interactions link the molecules, forming layers parallel to the ($\overline{2}12$) plane (Table 1, Fig. 3*a*,*b*). The DMF solvent molecules are also connected to the main molecules (*A* and *B*) by N-H···O hydrogen bonds. π - π stacking interactions [Cg1···Cg2(1 - x, 1 - y, 1 - z) = 3.8702 (17) Å; Cg1 and Cg2 are the centroids of the (C1-C6) and (C11-C16) benzene rings of molecules *A* and *B*, respectively] between the layers also increase the stability of the molecular structure in the third dimension (Fig. 4).

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis was carried out using *CrystalExplorer 17.5* (Spackman *et al.*, 2021).

Figure 2

Image of the two independent molecules A and B and the two solvent molecules overlapping themselves in the asymmetric unit of the title compound. Color code: carbon (gray), hydrogen (white), nitrogen (blue) and oxygen (red).

research communications

Figure 3 Partial packing diagrams, viewed down (*a*) the *b*-axis and (*b*) the *c*-axis. $O-H\cdots O$, $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.

In the Hirshfeld surface plotted over d_{norm} (Fig. 5), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii (Venkatesan et al., 2016). The bright-red spots indicate their roles as respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the Hirshfeld surface is a tool to visualize π - π stacking interactions by the presence of adjacent red and blue triangles (Fig. 7).

Figure 4

A partial packing diagram viewed down the *b*-axis. π - π stacking interactions are shown as dashed lines. H atoms have been omitted for clarity.

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d_{norm} for A, (c) front and (d) back sides for B.

The overall two-dimensional fingerprint plots for molecules A and B are shown in (Fig. 8*a*) and those delineated into $O \cdots H/H \cdots O$, $H \cdots H$, $C \cdots H/H \cdots C$ and $N \cdots H/H \cdots N$ contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 8*b*-*e*,

Figure 6

Views of the three-dimensional Hirshfeld surfaces of the four components in the asymmetric unit of the title compound plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u., using the STO-3 G basis set at the Hartree–Fock level of theory: (*a*) molecule *A*, (*b*) molecule *B*, (*c*) DMF solvent molecule (with O7), (*d*) DMF solvent molecule (with O8).

Table 2 Interatomic contacts (\AA) for the title compound.

Contact	Distance	Symmetry operation
$H1A \cdots O6$	1.73	<i>x</i> , <i>y</i> , <i>z</i>
$H5A \cdots O1$	2.74	1-x, 2-y, 1-z
$O3 \cdot \cdot \cdot H4B$	1.75	1 + x, y, -1 + z
N3···C20	3.23	1-x, 1-y, 1-z+
$N3 \cdot \cdot \cdot H24A$	2.62	<i>x</i> , <i>y</i> , <i>z</i>
$H4C \cdot \cdot \cdot O7$	2.04	1 + x, y, z
$H4A \cdots O6$	2.52	1 - x, 2 - y, 1 - z
$O4 \cdot \cdot \cdot C21$	3.21	-x, 1-y, 1-z
$C20 \cdot \cdot \cdot N3$	3.23	1 - x, 1 - y, 1 - z
$H8A \cdots O8$	2.01	<i>x</i> , <i>y</i> , <i>z</i>

respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is $H \cdots O/$ $O \cdots H$ (Table 2), contributing 27.5% (for A) and 25.1% (for B) to the overall crystal packing; this is shown in Fig. 8b where the pairs of spikes have tips at $d_e + d_i = 1.55$ Å (for A and B). The H \cdots H contacts contribute 27.3% for A and 24.3% for B to the Hirshfeld surface and are shown in Fig. 8c as widely scattered points of high density due to the large hydrogen content of the molecule with the tips at $d_e = d_i = 2.50 \text{ Å}$ (for A) and 2.25 Å (for *B*). The high contribution of these interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015). In the absence of $C-H \cdot \cdot \pi$ interactions, the pairs of distorted spikes in the fingerprint plots delineated into $H \cdots C/C \cdots H$ contacts (Fig. 8d; 15.4% for A and 15.3% for B) have the tips at $d_e + d_i$ = 2.90 Å for A and 3.00 Å for B. The pair of distorted wings in the fingerprint plot delineated into N···H/H···N contacts (Fig. 8e; 13.3% contributions for A and 14.0% for B) have the tips at $d_e + d_i = 2.40$ Å for A and 2.70 Å for B. The surroundings of molecules A and B are very similar, as can be observed from a comparison of the supplied data.

The nearest neighbour coordination environment of a molecule can be determined from the color patches on the Hirshfeld surface based on how close to other molecules they are. The Hirshfeld surface representations with the function d_{norm} plotted onto the surface are shown for the O···H/H···O, H···H, C···H/H···C and N···H/H···N interactions in Fig. 9 a-d, respectively.

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the molecules

Figure 7

Hirshfeld surface of the title compound plotted over shape-index (a) for molecule A and (b) for molecule B.

Figure 8

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $O \cdots H/H \cdots H$, (c) $H \cdots H$, (d) $C \cdots H/H \cdots C$ and (e) $N \cdots H/H \cdots N$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.

are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner *et al.*, 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the

research communications

(d) N...H/H...N

Figure 9

Hirshfeld surface representations with the function d_{norm} plotted onto the surface for (a) O···H/H···O, (b) H···H, (c) C···H/H···C and (d) N···H/H···N interactions.

enclosed volume. The volume of the crystal voids (Fig. 10a,b) and the percentage of free space in the unit cell are calculated as 178.70 Å³ and 11.93%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom *et al.*, 2016) for the (2E)-2-cyano-2-hydrazinylideneacetamide unit yielded five compounds related to the title compound, *viz.* (E,E)-1-(2-hydroxyimino-1-phenylethylidene)semicarbazide mono-hydrate (CSD refcode VORMEV; Öztürk *et al.*, 2009), 2-[(4,7-dimethylquinolin-2-yl)methylidene]hydrazine-1-carboxamide

Figure 10 Graphical views of voids in the crystal packing of the title compound (*a*) along the *a*-axis direction and (*b*) along the *b*-axis direction.

dihydrate (MIQPIO; Aydemir *et al.*, 2018), 2-(but-2-en-1-ylidene)hydrazinecarboxamide (WOTRII; Arfan & Rukiah, 2015), 2-(pyridin-4-ylmethylene)hydrazinecarboxamide hemihydrate (GUHXOY; Inoue *et al.*, 2015) and (*E*)-1-(4methoxybenzylidene)semicarbazide (YIFTOX; Liang *et al.*, 2007).

In the crystal of VORMEV, intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds link the molecules, and $R_2^2(8)$ ring motifs are apparent. In the crystal of MIQPIO, the molecules are linked by $O-H\cdots O$, $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds, forming a two-dimensional network parallel to (101). In the crystal of WOTRII, intermolecular $N-H\cdots O$ hydrogen bonds link the molecules into layers parallel to the *bc* plane. In the crystal of GUHXOY, molecules are linked into an infinite three-dimensional network by classical $N-H\cdots O_s$ (s = semicarbazone) and $O_w-H\cdots N$ (w = water) hydrogen bonds. In the crystal of YIFTOX, the almost planar molecules interact by way of $N-H\cdots O$ hydrogen bonds.

5. Synthesis and crystallization

214 mg (1 mmol) of 2-[2-(dicyanomethylene)hydrazinyl] benzoic acid was dissolved in 15 mL of acetone and 0.1 mL of water were added, then stirred at 353 K for 1 h. Then, the solvent was evacuated by a rotary evaporator, and the obtained yellow powder was crystallized in a mixture of acetone and dimethylformamide (20/1; v/v). Yield, 83%, yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for $C_{13}H_{15}N_5O_4$ ($M_r = 305.29$): C 51.15, H 4.95, N 22.94; found: C 51.13, H 4.91, N 22.92%. IR (KBr): 3211 v(OH), 2948 and 2876 v(NH), 2216 v(CN), 1667 v(C=O) and 1610 v(C=N) cm^{-1. 1}H NMR (300.130 MHz) in DMSO d_6 , internal TMS, δ (ppm): 2.66 and 2.83 (6H, 2CH₃), 4.31 (1H, OH), 7.86 (2H, NH₂), 8.18-8.56 (4H, Ar), 8.70 (1H, CH of DMF) and 14.46 (1H, N-H). ¹³C{¹H} NMR (75.468 MHz, DMSO-d₆). \delta: 35.0 and 36.9 (2CH₃), 109.8 (CN), 112.2 C-COOH, 115.5 (CH, Ar), 123.9 (CH, Ar), 128.5 (CH, Ar), 132.0 (CH, Ar), 133.4 (C=O), 143.5 (C-NH), 161.2 (COOH), 163.9 (C=O of DMF), 165.0 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed in geometrically calculated positions (C-H = 0.93 and 0.96 Å) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic groups and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups. N- and O-bound hydrogen atoms were located in difference-Fourier maps, but their positional parameters were fixed and their isotropic displacement parameters were refined with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(N,O)$. Two reflections, (010) and (202), affected by the beam stop, were omitted in the final cycles of refinement.

Acknowledgements

The authors' contributions are as follows. Conceptualization, SRH, MA and AB; synthesis, FEH; X-ray analysis, ZA and MA; writing (review and editing of the manuscript) FEH, MA and AB; funding acquisition, SRH and FEH; supervision, SRH, MA and AB.

Funding information

Funding for this research was provided by: Baku State University.

References

- Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). *Eur. J. Inorg. Chem.* **2019**, 262–270.
- Arfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168-172.
- Aydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674–1677.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). *Dalton Trans.* 51, 1019–1031.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). *Chem. A Eur. J.* 26, 14833–14837.
- Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.
- Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). *Dyes Pigments*, **138**, 107– 111.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Inoue, M. H., Back, D. F., Burrow, R. A. & Nunes, F. S. (2015). Acta Cryst. E71, 0317–0318.
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). *TONTO-A System for Computational Chemistry*. Available at: http://hirshfeldsurface.net/.
- Khalilov, A. N. (2021a). Rev. Roum. Chim. 66, 719–723.

Tab	le 3		
_			

1	zxperimenta	l details.

Crystal data	
Chemical formula	C ₁₀ H ₈ N ₄ O ₃ ·C ₃ H ₇ NO
Mr	305.30
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	7.9481 (7), 12.8523 (13), 14.8737 (15)
α, β, γ (°)	96.651 (4), 96.960 (3), 90.548 (3)
$V(Å^3)$	1497.6 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.35 \times 0.23 \times 0.15$
Data collection	
Diffractometer	Bruker D8 Quest PHOTON 100 detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.956, 0.975
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	51380, 6106, 4113
R _{int}	0.083
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.627
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.186, 1.12
No. of reflections	6106
No. of parameters	401
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.28, -0.24

Computer programs: *APEX4* and *SAINT* (Bruker, 2018), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021b). J. Mol. Liq. 344, 117761.
- Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). *Cryst. Growth Des.* 11, 4247–4252.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). *Mol. Catal.* 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). *Coord. Chem. Rev.* 437, 213859.
- Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). *Crys*tEngComm, **19**, 3322–3330.
- Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). *Inorg. Chim. Acta*, **519**, 120279.
- Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). *Anal. Lett.* 43, 2923– 2938.
- Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J. 29, e202203861.
- Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). *New J. Chem.* **41**, 4076–4086.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Öztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059–o1060.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst-EngComm, 10, 377–388.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

- Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.
- Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). *CrystEngComm*, **21**, 6018–6025.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625– 636.

supporting information

Acta Cryst. (2024). E80, 110-116 [https://doi.org/10.1107/S2056989023011118]

Crystal structure and Hirshfeld surface analysis of (*E*)-2-[2-(2-amino-1-cyano-2-oxoethylidene)hydrazin-1-yl]benzoic acid *N*,*N*-dimethylformamide monosolvate

Sevinc R. Hajiyeva, Fatali E. Huseynov, Zeliha Atioğlu, Mehmet Akkurt and Ajaya Bhattarai

Computing details

(E)-2-[2-(2-Amino-1-cyano-2-oxoethylidene)hydrazin-1-yl]benzoic acid N,N-dimethylformamide monosolvate

 $h = -9 \rightarrow 9$

 $k = -16 \rightarrow 16$ $l = -18 \rightarrow 18$

Crystal data Z = 4 $C_{10}H_8N_4O_3 \cdot C_3H_7NO$ F(000) = 640 $M_r = 305.30$ Triclinic, P1 $D_{\rm x} = 1.354 {\rm Mg m^{-3}}$ a = 7.9481 (7) ÅMo *K* α radiation, $\lambda = 0.71073$ Å b = 12.8523 (13) ÅCell parameters from 9961 reflections *c* = 14.8737 (15) Å $\theta = 2.2 - 26.3^{\circ}$ $\alpha = 96.651 (4)^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ $\beta = 96.960 (3)^{\circ}$ T = 296 K $\gamma = 90.548 (3)^{\circ}$ Plate, yellow V = 1497.6 (3) Å³ $0.35 \times 0.23 \times 0.15 \text{ mm}$ Data collection Bruker D8 Quest PHOTON 100 detector 6106 independent reflections diffractometer 4113 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.083$ Absorption correction: multi-scan $\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

(SADABS; Krause *et al.*, 2015) $T_{\min} = 0.956$, $T_{\max} = 0.975$ 51380 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.186$ S = 1.126106 reflections 401 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0525P)^2 + 1.4706P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.5077 (3)	0.83808 (16)	0.46961 (15)	0.0606 (6)
H1A	0.461271	0.798067	0.501619	0.091*
O2	0.5136 (3)	0.69907 (15)	0.36569 (14)	0.0526 (5)
03	0.7061 (3)	0.44678 (15)	-0.00144 (14)	0.0566 (6)
O4	-0.2192 (3)	0.33799 (16)	0.85161 (15)	0.0617 (6)
H4B	-0.240599	0.379454	0.897420	0.093*
05	-0.0804 (3)	0.47622 (16)	0.81769 (15)	0.0609 (6)
06	0.3548 (3)	0.72532 (15)	0.56897 (14)	0.0541 (5)
07	-0.0481 (4)	0.8179 (2)	0.0095 (2)	0.0812 (8)
08	0.2197 (4)	0.35888 (19)	0.40513 (18)	0.0809 (8)
N1	0.6435 (3)	0.72330 (17)	0.21577 (15)	0.0425 (5)
H1N	0.599503	0.681439	0.251926	0.051*
N2	0.6978 (3)	0.68585 (17)	0.13792 (15)	0.0413 (5)
N3	0.5278 (4)	0.4699 (2)	0.2074 (2)	0.0715 (8)
N4	0.8120 (4)	0.6045 (2)	-0.02242 (18)	0.0626 (8)
H4C	0.834937	0.673399	-0.006946	0.075*
H4D	0.847177	0.579809	-0.075956	0.075*
N5	0.0657 (3)	0.45672 (17)	0.66661 (16)	0.0452 (5)
H5N	0.039820	0.498241	0.715773	0.054*
N6	0.1512 (3)	0.49363 (17)	0.60548 (15)	0.0415 (5)
N7	0.1432 (4)	0.7136 (2)	0.7607 (2)	0.0749 (9)
N8	0.3283 (3)	0.57007 (18)	0.47862 (17)	0.0509 (6)
H8A	0.292853	0.502581	0.467258	0.061*
H8B	0.393353	0.591571	0.438508	0.061*
N9	0.2321 (4)	0.8553 (2)	0.0099 (2)	0.0683 (8)
N10	0.2728 (3)	0.2365 (2)	0.29056 (19)	0.0576 (7)
C1	0.6661 (3)	0.82926 (19)	0.24815 (18)	0.0397 (6)
C2	0.7397 (4)	0.8984 (2)	0.1980 (2)	0.0491 (7)
H2A	0.775447	0.874291	0.142162	0.059*
C3	0.7590 (4)	1.0028 (2)	0.2316 (2)	0.0579 (8)
H3A	0.806985	1.049024	0.197694	0.069*
C4	0.7085 (5)	1.0401 (2)	0.3146 (2)	0.0636 (9)
H4A	0.722721	1.110754	0.336468	0.076*
C5	0.6365 (4)	0.9715 (2)	0.3652 (2)	0.0536 (7)
H5A	0.602677	0.996593	0.421230	0.064*
C6	0.6139 (3)	0.8654 (2)	0.33319 (19)	0.0420 (6)
C7	0.6755 (3)	0.5866 (2)	0.10982 (18)	0.0397 (6)
C8	0.7337 (4)	0.5420 (2)	0.02367 (19)	0.0461 (6)
C9	0.5411 (4)	0.7930(2)	0.38984 (19)	0.0453 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.5941 (4)	0.5167 (2)	0.1609 (2)	0.0485 (7)
C11	0.0087 (3)	0.3522 (2)	0.65460 (18)	0.0398 (6)
C12	0.0409 (4)	0.2854 (2)	0.5782 (2)	0.0478 (7)
H12A	0.100522	0.310240	0.534674	0.057*
C13	-0.0153 (4)	0.1830 (2)	0.5672 (2)	0.0577 (8)
H13A	0.005908	0.138834	0.515929	0.069*
C14	-0.1030 (5)	0.1447 (2)	0.6314 (2)	0.0624 (9)
H14A	-0.138944	0.074782	0.623994	0.075*
C15	-0.1371 (4)	0.2102 (2)	0.7063 (2)	0.0528 (7)
H15A	-0.197101	0.183987	0.749065	0.063*
C16	-0.0837 (3)	0.3151 (2)	0.71983 (19)	0.0419 (6)
C17	0.2032 (3)	0.5910(2)	0.61849 (18)	0.0395 (6)
C18	0.3021 (3)	0.6324 (2)	0.55211 (18)	0.0409 (6)
C19	-0.1254 (4)	0.3835 (2)	0.8002 (2)	0.0465 (6)
C20	0.1723 (4)	0.6620(2)	0.6966 (2)	0.0484 (7)
C21	0.0905 (5)	0.7971 (3)	-0.0140 (2)	0.0663 (9)
H21A	0.098251	0.735057	-0.052137	0.080*
C23	0.2309 (7)	0.9502 (4)	0.0710 (4)	0.1176 (19)
H23A	0.126554	0.953456	0.097600	0.176*
H23B	0.240655	1.009384	0.037917	0.176*
H23C	0.324543	0.951311	0.118398	0.176*
C22	0.3904 (6)	0.8209 (4)	-0.0208 (4)	0.1016 (15)
H22A	0.371200	0.756777	-0.061050	0.152*
H22B	0.470003	0.809503	0.030799	0.152*
H22C	0.435242	0.873648	-0.052721	0.152*
C24	0.2762 (4)	0.3327 (2)	0.3335 (2)	0.0605 (8)
H24A	0.326115	0.384986	0.306639	0.073*
C25	0.3442 (7)	0.2137 (3)	0.2058 (3)	0.0922 (13)
H25A	0.389979	0.277101	0.189053	0.138*
H25B	0.257282	0.184864	0.158807	0.138*
H25C	0.432807	0.164055	0.213278	0.138*
C26	0.2027 (6)	0.1503 (3)	0.3292 (3)	0.0849 (12)
H26A	0.160269	0.176165	0.385159	0.127*
H26B	0.289377	0.100539	0.341305	0.127*
H26C	0.111800	0.117008	0.287035	0.127*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0856 (16)	0.0436 (11)	0.0549 (13)	-0.0106 (10)	0.0279 (11)	-0.0039 (9)
O2	0.0690 (13)	0.0373 (10)	0.0534 (12)	-0.0072 (9)	0.0216 (10)	-0.0006 (9)
O3	0.0758 (15)	0.0416 (11)	0.0537 (12)	-0.0098 (10)	0.0228 (11)	-0.0031 (9)
O4	0.0814 (16)	0.0479 (12)	0.0592 (13)	-0.0111 (11)	0.0265 (11)	0.0033 (10)
05	0.0795 (15)	0.0445 (12)	0.0611 (13)	-0.0106 (10)	0.0271 (11)	-0.0018 (10)
06	0.0711 (14)	0.0408 (11)	0.0515 (12)	-0.0104 (9)	0.0188 (10)	-0.0006 (9)
07	0.0848 (19)	0.0619 (15)	0.099 (2)	-0.0123 (13)	0.0337 (16)	-0.0017 (14)
08	0.108 (2)	0.0609 (15)	0.0751 (17)	-0.0173 (14)	0.0416 (15)	-0.0157 (13)
N1	0.0473 (13)	0.0356 (12)	0.0453 (13)	-0.0052 (9)	0.0113 (10)	0.0018 (9)

supporting information

N2	0.0433 (12)	0.0364 (11)	0.0439 (12)	-0.0036 (9)	0.0074 (10)	0.0017 (9)
N3	0.086 (2)	0.0595 (17)	0.073 (2)	-0.0141 (15)	0.0230 (17)	0.0118 (15)
N4	0.087 (2)	0.0456 (14)	0.0581 (16)	-0.0191 (13)	0.0296 (14)	-0.0031 (12)
N5	0.0528 (14)	0.0381 (12)	0.0449 (13)	-0.0049 (10)	0.0123 (11)	0.0003 (10)
N6	0.0450 (12)	0.0378 (12)	0.0419 (12)	-0.0002 (9)	0.0071 (10)	0.0042 (9)
N7	0.097 (2)	0.0653 (19)	0.0621 (18)	-0.0025 (16)	0.0248 (17)	-0.0080 (15)
N8	0.0624 (16)	0.0403 (13)	0.0517 (14)	-0.0032 (11)	0.0197 (12)	-0.0004 (11)
N9	0.081 (2)	0.0551 (16)	0.0695 (19)	-0.0144 (15)	0.0131 (15)	0.0069 (14)
N10	0.0616 (16)	0.0492 (15)	0.0596 (16)	-0.0057 (12)	0.0086 (13)	-0.0047 (12)
C1	0.0392 (14)	0.0327 (13)	0.0453 (15)	0.0004 (10)	0.0019 (11)	0.0004 (11)
C2	0.0531 (17)	0.0408 (15)	0.0537 (17)	-0.0052 (12)	0.0101 (13)	0.0035 (13)
C3	0.068 (2)	0.0406 (16)	0.067 (2)	-0.0084 (14)	0.0140 (16)	0.0105 (14)
C4	0.082 (2)	0.0319 (15)	0.077 (2)	-0.0048 (15)	0.0198 (19)	-0.0015 (14)
C5	0.0617 (19)	0.0377 (15)	0.0612 (19)	-0.0010 (13)	0.0153 (15)	-0.0027 (13)
C6	0.0412 (14)	0.0347 (13)	0.0498 (16)	-0.0020 (11)	0.0063 (12)	0.0035 (11)
C7	0.0430 (14)	0.0354 (13)	0.0399 (14)	-0.0037 (11)	0.0056 (11)	0.0014 (11)
C8	0.0507 (16)	0.0415 (15)	0.0453 (15)	-0.0067 (12)	0.0077 (12)	0.0003 (12)
C9	0.0445 (15)	0.0421 (15)	0.0491 (16)	-0.0018 (12)	0.0105 (12)	-0.0010 (12)
C10	0.0520 (17)	0.0412 (15)	0.0508 (17)	-0.0084 (12)	0.0083 (13)	-0.0018 (13)
C11	0.0387 (14)	0.0357 (13)	0.0440 (15)	0.0014 (10)	0.0010 (11)	0.0053 (11)
C12	0.0528 (17)	0.0397 (15)	0.0516 (17)	0.0020 (12)	0.0085 (13)	0.0060 (12)
C13	0.070 (2)	0.0430 (16)	0.0576 (19)	0.0028 (14)	0.0082 (16)	-0.0044 (14)
C14	0.074 (2)	0.0357 (15)	0.076 (2)	-0.0067 (14)	0.0094 (18)	0.0021 (15)
C15	0.0549 (18)	0.0445 (16)	0.0602 (19)	-0.0029 (13)	0.0079 (14)	0.0108 (14)
C16	0.0411 (14)	0.0380 (14)	0.0462 (15)	0.0003 (11)	0.0016 (12)	0.0071 (11)
C17	0.0446 (15)	0.0344 (13)	0.0395 (14)	-0.0009 (11)	0.0058 (11)	0.0033 (11)
C18	0.0446 (15)	0.0363 (14)	0.0415 (14)	0.0028 (11)	0.0057 (11)	0.0027 (11)
C19	0.0475 (16)	0.0448 (16)	0.0484 (16)	-0.0010 (12)	0.0086 (12)	0.0080 (12)
C20	0.0548 (17)	0.0411 (15)	0.0496 (17)	-0.0029 (12)	0.0114 (13)	0.0021 (13)
C21	0.086 (3)	0.0492 (18)	0.065 (2)	-0.0128 (17)	0.0207 (19)	0.0022 (15)
C23	0.133 (4)	0.073 (3)	0.137 (5)	-0.029 (3)	0.019 (4)	-0.029 (3)
C22	0.079 (3)	0.109 (4)	0.116 (4)	-0.011 (3)	0.015 (3)	0.011 (3)
C24	0.066 (2)	0.0469 (17)	0.068 (2)	-0.0111 (15)	0.0156 (17)	-0.0022 (15)
C25	0.127 (4)	0.075 (3)	0.074 (3)	0.001 (2)	0.031 (3)	-0.013 (2)
C26	0.109 (3)	0.051 (2)	0.094 (3)	-0.014 (2)	0.018 (2)	-0.0004 (19)

Geometric parameters (Å, °)

01	1.317 (3)	C3—C4	1.379 (5)
O1—H1A	0.8502	С3—НЗА	0.9300
O2—C9	1.228 (3)	C4—C5	1.385 (4)
O3—C8	1.247 (3)	C4—H4A	0.9300
O4—C19	1.311 (3)	C5—C6	1.394 (4)
O4—H4B	0.8501	С5—Н5А	0.9300
O5—C19	1.230 (3)	C6—C9	1.483 (4)
O6—C18	1.249 (3)	C7—C10	1.438 (4)
O7—C21	1.219 (4)	C7—C8	1.471 (4)
O8—C24	1.219 (4)	C11—C12	1.394 (4)

supporting information

N1—N2	1.325 (3)	C11—C16	1.407 (4)
N1-C1	1.393 (3)	C12—C13	1.371 (4)
N1—H1N	0.8999	C12—H12A	0.9300
N2—C7	1.299 (3)	C13—C14	1.380 (5)
N3—C10	1.138 (4)	C13—H13A	0.9300
N4—C8	1.313 (4)	C14—C15	1.372 (4)
N4—H4C	0.8999	C14—H14A	0.9300
N4—H4D	0.9000	C15—C16	1.395 (4)
N5—N6	1.325 (3)	C15—H15A	0.9300
N5-C11	1.398 (3)	C16—C19	1,473 (4)
N5—H5N	0.9000	C17—C20	1.439 (4)
N6-C17	1,300 (3)	C17 - C18	1.476 (4)
N7—C20	1 145 (4)	C21—H21A	0.9300
N8-C18	1 318(3)	C23—H23A	0.9600
N8—H8A	0.9000	C^{23} H ²³ B	0.9600
N8—H8B	0.9000	C23—H23C	0.9600
N9-C21	1 333 (5)	C22—H22A	0.9600
N9-C23	1.335(5) 1.435(5)	C^{22} H22R	0.9600
N9-C22	1.435(5)	C22_H22C	0.9600
N10-C24	1.110(3) 1.323(4)	C24—H24A	0.9300
N10-C24	1.323(4) 1.442(5)	C_{25} H25A	0.9600
N10-C25	1.442(5) 1 445(5)	C25—H25R	0.9600
C1 - C2	1 392 (4)	C25—H25C	0.9600
C1 - C6	1.392(4) 1.408(4)	C26—H26A	0.9600
$C_1 = C_0$	1.400(4) 1.377(4)	C26 H26R	0.9600
$C_2 = U_2 \Lambda$	0.0300	C26_H26C	0.9000
C2—112A	0.9500	620—11200	0.9000
C9—01—H1A	115.0	C13—C12—H12A	120.0
C19 - O4 - H4B	111.0	C11 - C12 - H12A	120.0
N2-N1-C1	120.3(2)	C12 - C13 - C14	120.0 120.7(3)
N2—N1—H1N	120.3 (2)	C12 $C13$ $H13A$	119.6
C1—N1—H1N	117.4	C12 $C13$ $H13A$	119.6
C7 - N2 - N1	117.4 118.8(2)	C_{15} C_{14} C_{13}	119.7 (3)
C8 - N4 - H4C	126.8	C15 - C14 - H14A	120.1
C8 N4 H4D	120.8	C13 - C14 - H14A	120.1
HAC NA HAD	112 0	C14 $C15$ $C16$	120.1 121.5(3)
N6 N5 C11	112.9 120.4(2)	C14 $C15$ $H15A$	121.3 (3)
N6 N5 H5N	120.4 (2)	$C_{14} = C_{15} = H_{15A}$	119.2
C11 N5 H5N	121.4	C15 C16 C11	119.2 118.0(3)
C17 N6 N5	110.1	C15 - C16 - C10	110.0(3)
C12 N0 H0A	119.1 (2)	$C_{13} = C_{16} = C_{19}$	119.9(3)
C10 - N0 - H0A	124.0	$N_{1} = C_{10} = C_{19}$	122.1(2) 122.2(2)
	120.7	$N_{0} - C_{1} - C_{2} 0$	123.2(2)
$\Pi OA - \Pi O - \Pi O D$	113.1	10 - 017 - 018	119.7(2) 117.1(2)
$C_{21} = N_{2} = C_{23}$	120.1(4) 120.7(2)	$C_{20} - C_{1} / - C_{10}$	11/.1(2) 124.0(2)
$C_{21} = N_{2} = C_{22}$	120.7(3)	06 C18 C17	124.0(3) 1176(3)
C_{23} N10 C_{24}	117.1(4)	10 - 10 - 17	11/.0(2)
C_{24} N10 C_{25}	120.5(3)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10}$	118.4(2)
C24—N10—C25	121.4 (3)	03-019-04	121.9 (3)

C26—N10—C25	118.1 (3)	O5—C19—C16	123.8 (3)
C2-C1-N1	120.9 (2)	O4—C19—C16	114.3 (2)
C2—C1—C6	120.4 (2)	N7—C20—C17	175.9 (3)
N1—C1—C6	118.7 (2)	O7—C21—N9	125.8 (3)
C3—C2—C1	119.4 (3)	O7—C21—H21A	117.1
C3—C2—H2A	120.3	N9—C21—H21A	117.1
C1—C2—H2A	120.3	N9—C23—H23A	109.5
C2—C3—C4	121.3 (3)	N9—C23—H23B	109.5
С2—С3—НЗА	119.4	H23A—C23—H23B	109.5
С4—С3—НЗА	119.4	N9—C23—H23C	109.5
$C_{3}-C_{4}-C_{5}$	119.6 (3)	H23A—C23—H23C	109.5
C3—C4—H4A	120.2	H23B—C23—H23C	109.5
C5-C4-H4A	120.2	N9—C22—H22A	109.5
C4-C5-C6	120.2	N9—C22—H22B	109.5
C4—C5—H5A	119.6	H22A_C22_H22B	109.5
C6-C5-H5A	119.6	N9-C22-H22C	109.5
C_{5} C_{6} C_{1}	118.5 (3)	$H_{22}A = C_{22} = H_{22}C$	109.5
C_{5} C_{6} C_{9}	110.9(3)	$H_{22}R_{-}C_{22} = H_{22}C_{-}$	109.5
$C_1 - C_6 - C_9$	117.5(3) 121.6(2)	$08-C^{24}-N10$	109.5
N_{2} C_{7} C_{10}	121.0(2) 121.8(2)	$08 - C^{24} - H^{24} \Delta$	123.0 (5)
$N_2 - C_7 - C_8$	121.0(2) 120.5(2)	N10_C24_H24A	117.1
C10-C7-C8	120.3(2) 117.7(2)	N10_C25_H25A	109.5
03_08_N4	117.7(2) 123.7(3)	N10-C25-H25B	109.5
$O_3 C_8 C_7$	125.7(3) 1181(2)	H25A C25 H25B	109.5
N4 C8 C7	118.1(2) 118.2(2)	$M_{23} = 0.000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000000$	109.5
$\Omega_{1}^{2} = 0$	118.3(2) 1221(3)	H_{25}^{-1125C}	109.5
02 - 03 - 01	122.1(3) 123.8(2)	$H_{25R} = C_{25} = H_{25C}$	109.5
02 - 05 - 00	123.0(2) 114.1(2)	N10 C26 H26A	109.5
$V_1 = C_2 = C_0$	114.1(2) 172.2(2)	N10 - C26 + H26P	109.5
$N_{3} = C_{10} = C_{7}$	1/5.2(3) 120 5 (2)	H_{26} C_{26} H_{26} H_{26}	109.5
C12 - C11 - N3	120.3(2)	$H_{20}A - C_{20} - H_{20}B$	109.5
C12 - C11 - C16	120.1(2)	N10 - C20 - H20C	109.5
$N_{3} = C_{11} = C_{10}$	119.4(2)	$H_{20}A - C_{20} - H_{20}C$	109.5
C13—C12—C11	120.0 (3)	H26B-C26-H26C	109.5
$C1_N1_N2_C7$	179.7(2)	N6-N5-C11-C16	-1792(2)
$C_{11} N_{5} N_{6} C_{17}$	-179.8(2)	N_{5} C_{11} C_{12} C_{13}	179.2(2)
$N_2 - N_1 - C_1 - C_2$	26(4)	C_{16} C_{11} C_{12} C_{13}	-0.9(4)
$N_2 = N_1 = C_1 = C_6$	-1771(2)	$C_{11} - C_{12} - C_{13} - C_{14}$	-0.4(5)
$N_1 - C_1 - C_2 - C_3$	179 5 (3)	C_{12} C_{13} C_{14} C_{15}	12(5)
$C_{1}^{-} C_{1}^{-} C_{2}^{-} C_{3}^{-}$	-0.9(4)	$C_{12} = C_{13} = C_{14} = C_{15} = C_{16}$	-0.6(5)
$C_1 = C_2 = C_3$	0.7(4)	C_{14} C_{15} C_{16} C_{11}	-0.7(4)
$C_1 = C_2 = C_3 = C_4$	-0.2(5)	C14 - C15 - C16 - C10	0.7(4)
$C_2 = C_3 = C_4 = C_5$	-0.2(5)	$C_{14} = C_{13} = C_{10} = C_{19}$	1/0.7(3)
$C_{4} = C_{5} = C_{6} = C_{1}$	0.2(3)	$V_{12} - V_{11} - V_{10} - V_{13}$	1.3(4) -170.2(2)
$C_{4} = C_{5} = C_{6} = C_{1}$	178.2(3)	113 - 011 - 010 - 013	1/7.3(2) -1781(2)
$C_{+} - C_{-} - C_{-$	1/0.2(3)	12 - 011 - 010 - 019	1/0.1(3)
12 - 01 - 00 - 03	-170.8(2)	N5 N6 C17 C20	-0.1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/9.0(3) 177.7(2)	10 - 10 - 017 - 020	0.1(4)
L2-L1-L0-L9	-1/1.1(3)	NJ-NO-U1/-U18	1/8.3 (2)

N1—C1—C6—C9	2.0 (4)	N6-C17-C18-O6	-177.4 (3)
N1—N2—C7—C10	-0.1 (4)	C20—C17—C18—O6	1.3 (4)
N1—N2—C7—C8	179.9 (2)	N6-C17-C18-N8	3.1 (4)
N2—C7—C8—O3	-178.4 (3)	C20-C17-C18-N8	-178.1 (3)
C10—C7—C8—O3	1.6 (4)	C15—C16—C19—O5	178.7 (3)
N2-C7-C8-N4	1.6 (4)	C11—C16—C19—O5	-1.7 (4)
C10-C7-C8-N4	-178.3 (3)	C15—C16—C19—O4	-2.9 (4)
C5—C6—C9—O2	178.2 (3)	C11—C16—C19—O4	176.7 (3)
C1—C6—C9—O2	-3.6 (4)	C23—N9—C21—O7	2.1 (6)
C5-C6-C9-O1	-1.8 (4)	C22—N9—C21—O7	178.5 (4)
C1—C6—C9—O1	176.4 (3)	C26—N10—C24—O8	-2.1 (6)
N6—N5—C11—C12	0.0 (4)	C25—N10—C24—O8	-179.8 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
01—H1A···O6	0.85	1.73	2.580 (3)	175
O4— $H4B$ ···O3 ⁱ	0.85	1.75	2.590 (3)	171
N1—H1 <i>N</i> ···O2	0.90	1.89	2.617 (3)	136
N4—H4C····O7 ⁱⁱ	0.90	2.04	2.915 (3)	162
N4—H4D····O5 ⁱⁱⁱ	0.90	2.09	2.952 (3)	161
N5—H5 <i>N</i> ···O5	0.90	1.93	2.640 (3)	134
N8—H8A…O8	0.90	2.01	2.889 (3)	164
N8—H8 <i>B</i> ···O2	0.90	2.14	2.990 (3)	158
C2—H2A····O7 ⁱⁱ	0.93	2.60	3.505 (4)	165
C4—H4 A ···O6 ^{iv}	0.93	2.52	3.372 (3)	153
C12—H12A···O8	0.93	2.39	3.311 (4)	171
C24—H24 <i>A</i> ···N3	0.93	2.62	3.498 (4)	158

Symmetry codes: (i) *x*-1, *y*, *z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*+1, *y*, *z*-1; (iv) -*x*+1, -*y*+2, -*z*+1.