

Received 9 November 2023 Accepted 21 November 2023

Edited by C. Massera, Università di Parma, Italy

Keywords: crystal structure; nickel; pyrazolate complex; octanuclear core.

CCDC references: 2309528; 2309527; 2309526

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

An octanuclear nickel(II) pyrazolate cluster with a cubic Ni₈ core and its methyl- and *n*-octyl-functionalized derivatives

Wisam A. Al Isawi,^a Matthias Zeller^b and Gellert Mezei^a*

^aWestern Michigan University, Department of Chemistry, 1903 W. Michigan Ave., Kalamazoo, MI 49008, USA, and ^bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907-2084, USA. *Correspondence e-mail: gellert.mezei@wmich.edu

The molecular and crystal structure of a discrete $[Ni_8(\mu_4-OH)_6(\mu-4-Rpz)_{12}]^{2-1}$ $(R = H; pz = pyrazolate anion, C_3H_3N_2^{-})$ cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and *n*-octyl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu_4N^+), whereas the crystal of the complex with the parent pyrazole ligand has one Me_4N^+ and one Bu_4N^+ counter-ion. The methyl derivative incorporates 1.2dichloroethane solvent molecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetrabutylazanium tetramethylazanium hexa- μ_4 -hydroxido-dodeca- μ_2 -pyrazolato-hexahedro-octanickel, (C₁₆H₃₆N)- $(C_4H_{12}N)[Ni_8(C_3H_3N_2)_{12}(OH)_6]$ or $(Bu_4N)(Me_4N)[Ni_8(\mu_4-OH)_6(\mu-pz)_{12}]$ (1), bis(tetrabutylazanium) hexa- μ_4 -hydroxido-dodeca- μ_2 -(4-methylpyrazolato)hexahedro-octanickel 1,2-dichloroethane 7.196-solvate, $(C_{16}H_{36}N)_2$ $[Ni_8(C_4H_5N_2)_{12}(OH)_6]$ ·7.196C₂H₄Cl₂ or $(Bu_4N)_2[Ni_8(\mu_4-OH)_6(\mu-4-Mepz)_{12}]$ ·-7.196(ClCH₂CH₂Cl) (2), and bis(tetrabutylazanium) hexa- μ_4 -hydroxidododeca- μ_2 -(4-octylpyrazolato)-*hexahedro*-octanickel, $(C_{16}H_{36}N)_{2}$ - $[Ni_8(C_{11}H_{19}N_2)_{12}(OH)_6]$ or $(Bu_4N)_2[Ni_8(\mu_4-OH)_6(\mu-4-^nOctpz)_{12}]$ (3). All counter-ions are disordered (with the exception of one Bu_4N^+ in 3). Some of the octyl chains of **3** (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known $[Ni_8(\mu_4-OH)_6(\mu-4-Rpz)_{12}]^{2-}$ complexes, including extended threedimensional metal-organic frameworks. In all three structures, the Ni₈ units are lined up in columns.

1. Chemical context

Polynuclear metal-organic complexes display interesting properties that allow for numerous applications in fields such as molecular magnetism (Milios & Winpenny, 2015; Papatriantafyllopoulou et al., 2016; Zheng et al., 2018; Li et al., 2022), luminescence (Yam & Lo, 1999; Balzani et al., 1996) and catalysis in organic synthesis (Nath et al., 2020; Singh et al., 2020; Wu et al., 2023). Discrete polynuclear clusters with their metal ions arranged in various different geometries have been reported, including grids (Ruben et al., 2004), macrocycles (Yang, 2018; Zaleski, 2022), and Platonic and Archimedean solids (Luo et al., 2023). Pyrazole (pzH) is a versatile ligand for the synthesis of polynuclear metal complexes (Halcrow, 2009; Viciano-Chumillas et al., 2010; Klingele et al., 2009). An intriguing class of large polynuclear complexes based on pyrazole, termed nanojars, incorporate up to 36 Cu^{II} ions and have the formula $[anion\{cis-Cu^{II}(\mu-OH)(\mu-pz)\}_n]^{m-}$ (anion = CO_3^{2-} , SO_4^{2-} , CI^- , *etc.*; n = 26-36; m = 1 or 2; Mezei *et al.*, 2004; Ahmed & Mezei, 2016; Al Isawi et al., 2023). Although

research communications

many coordination complexes can be obtained with various different metal ions, nanojars could only be obtained so far with Cu^{II} ions. Under identical reaction conditions, Ni^{II} (a metal ion with similar coordination geometries), produces $[Ni_8(\mu_4-OH)_6(\mu-pz)_{12}]^{2-}$ instead of nanojars (Al Isawi *et al.*, 2018). We originally reported a low-symmetry (monoclinic, $P2_1/c$) solvated crystal structure for this complex. Herein, we report a high-symmetry (tetragonal, I4/mmm), solvent-free structure, $(Me_4N)(Bu_4N)[Ni_8(\mu_4-OH)_6(\mu-pz)_{12}]$ (1). To expand solubility into non-polar solvents, its alkyl (methyl and *n*-octyl) derivatives have also been prepared, and the crystal structures of $(Bu_4N)_2[Ni_8(\mu_4-OH)_6(\mu-4-Mepz)_{12}]$. 7.196(ClCH₂CH₂Cl) (2) and $(Bu_4N)_2[Ni_8(\mu_4-OH)_6(\mu-4-Mepz)_{12}]$.

2: $(Bu_4N)_2[Ni_8(OH)_6(4-Mepz)_{12}]$ **3**: $(Bu_4N)_2[Ni_8(OH)_6(4-mepz)_{12}]$ **5**: $(Bu_4N)_2[Ni_8(OH)_6(4-mepz)_{12}]$

2. Structural commentary

The anionic cluster of 1 is located on an inversion center, around a C_4 rotation axis at the intersection of three orthogonal mirror planes (Fig. 1). One of its two counter-cations (Me_4N^+) is also positioned around the C_4 axis, whereas the other (Bu_4N^+) is located at the intersection of two mirror planes and two C_2 axes. Because their molecular structure is not compatible with these symmetry elements, the countercations are extensively disordered (see the Refinement section below). The eight Ni atoms have distorted octahedral coordination environments [fac-NiO₃N₃; O-Ni-N angles: 169.54 (15) and 169.89 $(11)^{\circ}$ and define a regular cube, with Ni···Ni distances of 2.9826 (8) Å (Table 1). Despite the perfectly cubic symmetry of the Ni8 core, the overall crystal symmetry lacks C_3 axes and additional C_4 axes. Consequently, the four pyrazolate rings collinear with the C_4 axis are not identical to the other eight pyrazolate rings that form 45°

Figure 1

Displacement ellipsoid plot (50% probability) of the crystal structure of $[Ni_8(\mu_4\text{-}OH)_6(\mu\text{-}pz)_{12}]^{2-}$ (1). Only atoms within the asymmetric unit are labeled; counter-ion disorder and H atoms are omitted for clarity.

angles with the C_4 axis, and have Ni—N bond lengths of 2.013 (3) and 2.027 (2) Å, respectively. Similarly, there are two different sets of μ_4 -OH groups that are centered above the Ni₄ faces of the cube, at distances of 0.515 (3) and 0.513 (3) Å from the Ni₄ mean planes, and with Ni—O bond lengths of 2.1710 (12) and 2.1742 (9) Å.

In **2** (orthorhombic, *Pmna*), the anionic cluster is located on an inversion center around a C_2 axis and a σ_h mirror plane

Figure 2

Displacement ellipsoid plot (50% probability) of the crystal structure of $[Ni_8(\mu_4\text{-}OH)_6(\mu\text{-}4\text{-}Mepz)_{12}]^{2-}$ (2). Only atoms within the asymmetric unit are labeled.

Table 1

Comparison of structural features (Å, °) determined by X-ray diffraction for various $[Ni_8(\mu_4-OH)_6(\mu-4-Rpz)_{12}]^{2-}$ species, as well as the $[Ni_8(\mu-OH)_6(\mu-3(5)-Ph-4-CNpz)_8(\mu-CI)_4]^{2-}$ analog.

Refcodes are shown for previously published compounds (CSD version 2023.2.0; last update November 2023; Groom *et al.*, 2016). Similarly to **3**, TAXKOV contains two crystallographically independent complexes in the asymmetric unit. Only symmetry elements that apply to the metal complex are shown. TPP = tetraphenylporphyrin; PMDI = pyromellitic diimide.

Ni ₈ complex	Space group	Symmetry elements	Ni-O	Ni-N	Ni…Ni	Ni-Ni-Ni	O-Ni-N	O…(Ni ₄ plane)
pz (1)	I4/mmn	$r C_4, C_2, 4 \perp C_2, S_4, \sigma_{\rm h}, 2\sigma_{\rm y}, 2\sigma_{\rm d}, i$	2.1710 (12), 2.1742 (9) ave: 2.173 (1)	2.013 (3), 2.027 (2) ave: 2.022 (2)	2.9826 (8)	90	169.54 (15), 169.89 (11) ave: 169.8 (2)	0.513 (3), 0.515 (3) ave: 0.514 (3)
4-Mepz (2)	Pmna	$C_2, \sigma_{\rm h}, i$	2.1735 (12)-2.181 (3) ave: 2.177 (3)	2.019 (4)–2.031 (4) ave: 2.026 (4)	2.9837 (12)–2.9988 (10) ave: 2.993 (1)	89.92 (3)–90.08 (3) ave: 90.00	168.91 (16)–169.78 (17) ave: 169.3 (2)	0.491 (4)–0.519 (4) ave: 0.509 (4)
4- ^{<i>n</i>} Octpz (3)	ΡĪ	i	2.153 (3)–2.197 (3) ave: 2.174 (3) 2.156 (3)–2.187 (3) ave: 2.175 (3)	2.013 (4)–2.042 (5) ave: 2.024 (5) 2.012 (4)–2.042 (4) ave: 2.026 (4)	2.975 (2)–3.0049 (17) ave: 2.987 (2) 2.986 (2)–3.0013 (16) ave: 2.990 (2)	89.23 (4)–90.62 (4) ave: 90.00 89.35 (3)–90.55 (3) ave: 90.00	169.23 (14)–170.33 (14) ave: 169.7 (2) 169.19 (13)–170.41 (14 ave: 169.7 (2)	0.512 (3)-0.518 (3) ave: 0.516 (3)) 0.498 (3)-0.527 (3) ave: 0.513 (3)
pz (TAXKOV)	P2 ₁ /c	i	2.1466 (7)–2.2031 (7) ave: 2.1724 (7) 2.1479 (7)–2.1919 (7 ave: 2.1730 (7)	2.0051 (9)-2.0355 (9) ave: 2.0244 (9)) 2.0126 (9)-2.0315 (9) ave: 2.0244 (9)	2.9628 (6)-3.0138 (6) ave: 2.9881 (6)) 2.9725 (7)-3.0043 (6) ave: 2.9890 (6)	88.59 (2)–91.36 (2) ave: 90.00 89.41 (2)–90.62 (2) ave: 90.00	167.50 (4)–169.47 (4) ave: 168.58 (4) 167.08 (4)–169.39 (4) ave: 168.64 (4)	0.4942 (6)-0.5123 (8) ave: 0.5053 (7) 0.4790 (6)-0.5210 (7) ave: 0.5044 (7)
pz (TOPGEL)	$P\overline{1}$	i	2.148 (3)–2.193 (4) ave: 2.172 (4)	2.009 (6)-2.041 (5) ave: 2.024 (6)	2.9576 (11)-3.0017 (11) ave: 2.986 (1)	88.77 (3)–91.43 (3) ave: 90.00	167.81 (16)–171.0 (2) ave: 169.3 (2)	0.506 (4)-0.513 (3) ave: 0.509 (4)
4-Clpz (ELUPUY)	P4/mnc	$\begin{array}{c} C_4, C_2, 4 \bot C_2, \\ S_4, \sigma_{\mathrm{h}}, i \end{array}$	2.166 (3)–2.1842 (13) ave: 2.177 (3)	2.028 (3)–2.045 (3) ave: 2.034 (3)	2.9799 (11)-3.0006 (8) ave: 2.994 (1)	90.00	169.60 (14), 169.98 (15) ave: 169.7 (2)	0.506 (4), 0.519 (5) ave: 0.510 (5)
4-Brpz (ELUQAF)	Pbcn	<i>C</i> ₂	2.137 (8)–2.218 (9) ave: 2.165 (9)	1.987 (11)–2.043 (11) ave: 2.022 (11)	2.958 (3)–2.989 (3) ave: 2.977 (3)	88.85 (7)–91.27 (7) ave: 90.00	167.5 (4)–171.6 (4) ave: 169.4 (4)	0.485 (7)–0.527 (9) ave: 0.505 (9)
4-Ipz (ELUQEJ)	$P2_{1}/c$	i	2.104 (15)–2.234 (13) ave: 2.169 (15)	1.961 (19)–2.050 (19) ave: 2.017 (19)	2.953 (4)–3.005 (4) ave: 2.986 (4)	88.02 (10)–92.29 (11) ave: 90.00	165.6 (6)–171.2 (7) ave: 168.7 (7)	0.452 (12)-0.543 (18) ave: 0.493 (14)
TPP(pz) ₄ (BALNAG)	Pm 3 m	$3C_4, 4C_3, 6C_2, 4S_6$ $3S_4, 3\sigma_h, 6\sigma_d, i$,,2.20 (3)	2.07 (2)	2.798 (13)	90.00	174.1 (19)	0.97 (7)
(4-C≡Cpz) ₂ (HAFTOZ)	Fm 3 m	$3C_4, 4C_3, 6C_2, 4S_6$ $3S_4, 3\sigma_h, 6\sigma_d, i$,,2.239 (12)	2.074 (3)	2.825 (6)	90.00	173.8 (6)	1.01 (3)
$(4-C_6H_4pz)_2$ (OKERAY)	Fm 3 m	$3C_4, 4C_3, 6C_2, 4S_6$ $3S_4, 3\sigma_h, 6\sigma_d, i$,,2.155 (11)	2.093 (5)	2.921 (8)	90.00	174.8 (9)	0.62 (4)
PMDI(pz) ₂ (OKEREC)	Fm3m	$3C_{4}, 4C_{3}, 6C_{2}, 4S_{6}$ $3S_{4}, 3\sigma_{h}, 6\sigma_{d}, i$,2.082 (10)	2.006 (6)	2.885 (11)	90.00	169.6 (11)	0.41 (4)
3(5)-Ph-4-CNpz (VITHEP)	2.C2/c	<i>C</i> ₂	2.0723 (13)–2.224 (3) ave: 2.137 (3)	1.975 (5)–2.084 (5) ave: 2.025 (5)	2.8112 (10)–2.9878 (12) ave: 2.926 (1)	87.45 (3)–92.22 (3) ave: 90.00	168.82 (15)–170.70 (18) ave: 169.8 (2)	0.494 (5)–0.553 (4) ave: 0.531 (5)

(Fig. 2). The two Bu_4N^+ cations exhibit twofold rotational symmetry and are disordered across a mirror plane (Fig. 3). Although not perfectly cubic, the Ni₈ core displays similar Ni…Ni distances of 2.984 (1)–2.999 (1) Å [average: 2.993 (1) Å, slightly larger than with the parent pyrazole] and Ni—Ni—Ni angles very close to 90° [ranging from 89.92 (3) to 90.08 (3)°] (Table 1). The fold and twist angles between

Figure 3

Displacement ellipsoid plot (50% probability) of the Bu_4N^+ counter-ions and 1,2-dichloroethane solvent molecules in **2**. Only atoms within the asymmetric unit are labeled; disorder and H atoms are omitted for clarity.

pyrazolate rings on opposite sides of the $[Ni(4-Mepz)]_4$ faces range from 78.3 (4) to 90.3 (3)° and from 0.0 (6) to 5.9 (6)°, respectively, instead of having ideal values of 90° and 0° as observed in the case of **1** with a perfectly cubic Ni₈ core. Other structural features, such as the Ni–O and Ni–N bond lengths, O–Ni–N angles and distances between μ_4 -OH groups and Ni₄ faces are similar to the ones observed for the parent pyrazolate (Table 1). The structure also contains four disordered 1,2-dichloroethane solvent molecules (two with partial occupancy).

The crystal structure of 3 (triclinic, $P\overline{1}$) contains two crystallographically independent Ni₈ complexes, both located around inversion centers (Figs. 4 and 5). Six and four of the twelve *n*-octyl chains of the two different units are disordered over two positions. The Bu₄N⁺ cations are disordered around inversion centers, and one of them has additional disorder (Fig. 6). The Ni_8 cube has an even lower symmetry than in 1 and 2, with Ni···Ni distances of 2.975 (2)-3.005 (2) Å [average: 2.989 (2) Å] and Ni-Ni-Ni angles ranging between 89.23 (4) and 90.62 (4)° (Table 1). Pyrazolate rings on opposite sides of [Ni(4-"Octpz)]₄ faces are also less symmetrically arranged, with corresponding fold and twist angles ranging from 60.3 (15) to $105.9 (2)^{\circ}$ and from 1.7 (3) to 11.9 (4)°, respectively. The Ni-O and Ni-N bond lengths, O-Ni-N angles and distances between μ_4 -OH groups and Ni_4 faces are again similar to the ones observed in 1 and 2 (Table 1).

Figure 4

Displacement ellipsoid plot (50% probability) of the crystal structure of one $[Ni_8(\mu_4\text{-}OH)_6(\mu-4\text{-}^nOctpz)_{12}]^{2-}$ unit of **3**. Only atoms within the asymmetric unit are labeled.

Figure 5

Displacement ellipsoid plot (50% probability) of the crystal structure of the other $[Ni_8(\mu_4-OH)_6(\mu-4-^nOctpz)_{12}]^{2-}$ unit of **3**. Only atoms within the asymmetric unit are labeled.

Figure 6 Displacement ellipsoid plot (50% probability) of the Bu_4N^+ counter-ions in 3. Disorder and H atoms are omitted for clarity.

3. Supramolecular features

In 1, the Ni₈ units are lined up in columns along the z axis with $Ni_8 \cdots Ni_8$ centroid-centroid distances of 12.4112 (4) Å (*i.e.*, the *z*-axis length), alternating with the disordered Me_4N^+ ions (Fig. 7). This packing pattern creates channels along the z axis, which are filled with the disordered Bu_4N^+ ions. In 2, the Ni₈ units are also lined up parallel to the z axis with $Ni_8 \cdots Ni_8$ centroid-centroid distances of 14.5141 (9) Å (z axis), alternating with one of the two disordered Bu_4N^+ ions (Fig. 8). The Ni_8 units are similarly lined up parallel to the y axis with $Ni_8 \cdots Ni_8$ centroid–centroid distances of 14.5762 (9) Å (y axis), alternating with the other disordered Bu₄N⁺ ion. The remaining interstitial spaces are filled with 1,2-dichloroethane solvent molecules. In 3, the two crystallographically unique Ni₈ units are each lined up parallel to the x axis with Ni₈ \cdots Ni₈ centroid-centroid distances of 13.973 (8) Å (x axis), alternating with disordered Bu_4N^+ ions (Fig. 9). The interstitial

Figure 7

Packing diagram of 1. Color scheme: green – Ni; red – O; blue – N; orange – C (pyrazolate ligand); black – C (counter-ions); white – H.

Figure 8

Packing diagram of **2**. Color scheme: green – Ni; red – O; blue – N; orange – C (pyrazolate ligand); black – C (counter-ions); neon-green – Cl; white – H.

spaces are filled with the non-disordered Bu_4N^+ ions. In all three structures, the Ni₈ units are sufficiently spaced out by the counter-ions (and solvent molecules in the case of **2**) to prevent any aromatic interactions.

4. Database survey

Two crystal structures containing the $[Ni_8(\mu_4-OH)_6(\mu-pz)_{12}]^{2-}$ unit have been published previously (Al Isawi *et al.*, 2018; Xu *et al.*, 2008). Both have much lower symmetry (inversion center only, in $P2_1/c$ and $P\overline{1}$ lattices, respectively) than in **1** (I4/mmn), and have either two Bu_4N^+ or an $[Ni(bma)(H_2O)_3]^{2+}$ [bma = bis(2-benzimidazolylmethyl)-amine] complex as counter-ions. The presence of one Me_4N^+ counter-ion in **1**, which is extensively disordered to accommodate the various symmetry elements it is located on (one crystallographically unique methyl group in sixteen symmetry-

Figure 9 Packing diagram of 3 (disorder omitted). Color scheme: green – Ni; red – O; blue – N; orange – C (pyrazolate ligand); black – C (counter-ions); white – H.

equivalent positions), might account for achieving such high symmetry. Indeed, none of the other known discrete $[Ni_8(\mu_4-OH)_6(\mu-4-Rpz)_{12}]^{2-}$ (R = Me, ⁿOct, Cl, Br, I) complexes display a perfectly cubic Ni₈ core in their crystal lattice (Wang *et al.*, 2016), let alone a perfectly cubic $[Ni_8(\mu_4-OH)_6(\mu-4-Rpz)_{12}]^{2-}$ unit (Table 1). Apparently, it is only in threedimensional metal–organic frameworks, where the individual $[Ni_8(\mu_4-OH)_6(\mu-4-Rpz)_{12}]^{2-}$ units are fully interconnected, that full cubic symmetry of the complex can be achieved (Lv *et al.*, 2017; Quartapelle Procopio *et al.*, 2011; Masciocchi *et al.*, 2010). In these cubic lattices ($Pm\overline{3}m$ or $Fm\overline{3}m$), all crystallographic symmetry elements are imposed onto the metal complex.

A related low-symmetry structure of $[Ni_8(\mu_4\text{-}OH)_6(\mu\text{-}3(5)-Ph-4-CNpz)_8(\mu\text{-}Cl)_4]^{2-}$ is also known (C_2 axis only, considering the metal complex alone) (Kromer *et al.*, 2023). The presence of a bulky phenyl substituent at the pyrazole 3(5)-position apparently prevents all Ni₄ faces from accommodating four pyrazolate ligands. Therefore, one chloride replaces a pyrazolate ligand on the four faces collinear with the C_2 axis, and two chlorides replace two pyrazolates on the two faces centered on the C_2 axis.

research communications

Table 2

Experimental details.

	(1)	(2)	(3)
Crystal data			
Chemical formula	$(C_{16}H_{36}N)(C_4H_{12}N)-$ [Ni ₈ (C ₃ H ₃ N ₂) ₁₂ (OH) ₆]	(C ₁₆ H ₃₆ N) ₂ [Ni ₈ (C ₄ H ₅ N ₂) ₁₂ - (OH) ₆]·7.196C ₂ H ₄ Cl ₂	$(C_{16}H_{36}N)_2[Ni_8(C_{11}H_{19}N_2)_{12}-(OH)_6]$
$M_{\rm r}$	1693.21	2739.84	3208.01
Crystal system, space group	Tetragonal, I4/mmm	Orthorhombic, Pmna	Triclinic, $P\overline{1}$
Temperature (K)	150	150	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.6921 (4), 16.6921 (4), 12.4112 (4)	30.3900 (18), 14.5762 (9), 14.5141 (9)	13.973 (8), 20.765 (10), 31.873 (14)
α, β, γ (°)	90, 90, 90	90, 90, 90	99.896 (17), 94.798 (17), 99.10 (2)
$V(Å^3)$	3458.09 (18)	6429.3 (7)	8938 (8)
Z	2	2	2
Radiation type	Cu Ka	Cu Ka	Cu Ka
$\mu \text{ (mm}^{-1})$	2.86	4.44	1.33
Crystal size (mm)	$0.25 \times 0.23 \times 0.19$	$0.36 \times 0.33 \times 0.26$	$0.22 \times 0.08 \times 0.03$
Data collection			
Diffractometer	Bruker AXS D8 Quest with PhotonIII_C14 charge- integrating and photon counting pixel array detector	Bruker AXS D8 Quest with PhotonIII_C14 charge- integrating and photon counting pixel array detector	Bruker AXS D8 Quest with PhotonIII_C14 charge- integrating and photon counting pixel array detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (<i>TWINABS</i> ; Sheldrick, 2012)
T_{\min}, T_{\max}	0.597, 0.754	0.624, 0.754	0.594, 0.753
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10921, 1094, 1052	73571, 7078, 6512	110848, 52094, 37936
R _{int}	0.052	0.045	0.071
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.638	0.638	0.612
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.113, 1.12	0.081, 0.254, 1.10	0.066, 0.185, 1.05
No. of reflections	1094	7078	52094
No. of parameters	109	517	2507
No. of restraints	4	271	5486
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.56, -0.40	1.14, -0.89	0.73, -0.52

Computer programs: APEX4 (Bruker, 2021), APEX3 and SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), and CrystalMaker (Palmer, 2007).

5. Synthesis and crystallization

Compounds 1–3 were synthesized as their tetra-*n*-butylammonium salts by self-assembly in tetrahydrofuran at room temperature using Ni(NO₃)₂·6H₂O, pyrazole ligand [4-*R*pzH; R = H (1), methyl (2) or *n*-octyl (3)] and Bu₄NOH (55% in water) in an 8:12:18 molar ratio, according to the published procedure (Al Isawi *et al.*, 2018). Single-crystals were grown by slow evaporation of a tetrahydrofuran solution containing a small amount of Me₄NOH (1), from toluene/1,2-dichloroethane (2), or toluene/*n*-butanol (3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

1: A Bu_4N^+ cation is extensively disordered by symmetry. The nitrogen atom is located at the intersection of two mirror planes and twofold axes. The C atoms of the single unique butyl chain are located in general positions and are disordered over two alternative sets for each cation. Overlap of the butyl chain with its counterpart from a neighboring cation further reduces the occupancy by one quarter (the entire cation site is half-occupied). The C–C bonds of C6–C7 and C7–C8 were restrained to target values [1.53 (2) and 1.55 (2) Å]. An Me_4N^+ ion is disordered over four alternative orientations, with the single unique methyl group being located in sixteen symmetry-equivalent positions. Hydroxyl H-atom positions within the anion were refined and O–H distances were restrained to 0.84 (2) Å.

2: The two Bu_4N^+ cations exhibit twofold rotational symmetry and are disordered across a crystallographic mirror plane. Equivalent bonds in all cation moieties were restrained to be similar in length (SADI restraints). The two crystallographically independent half cations were also restrained to have similar geometries (SAME restraint). U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Some evidence for additional disorder is apparent for the cation of N13, but is not well enough resolved for unambiguous refinement.

Four 1,2-dichloroethane molecules are present in the asymmetric unit. All were refined to be disordered across twofold rotational axes. All disordered moieties were restrained to have similar geometries (SAME restraint) and one of the C–C bonds (C31–C32) was restrained to a target value of 1.55 (2) Å. U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Two sites were refined to be partially occupied (of Cl3/Cl4 and Cl5/Cl6). Subject to the above conditions the occupancy rates refined to two times 0.369 (6) and two times 0.430 (5), respectively.

3: The crystal under investigation was found to be a nonmerohedric twin. The orientation matrices for the two components were identified using the program *CELL_NOW* (Sheldrick, 2008), with the two components being related by a 180° rotation around the reciprocal *b*-axis. The two components were integrated using *SAINT* and corrected for absorption using *TWINABS* (Sheldrick, 2012), resulting in the following statistics:

27457 data (13708 unique) involve domain 1 only, mean I/σ 8.9

27508 data (13715 unique) involve domain 2 only, mean I/σ 8.1

57229 data (24936 unique) involve 2 domains, mean I/σ 11.4 1 data (1 unique) involve 3 domains, mean I/σ 2.7

The exact twin matrix identified by the integration program was found to be:

 $-0.99999 \ 0.00004 \ -0.00000$

0.51610 1.00001 0.24406

-0.00001 - 0.00019 - 1.00002

The structure was solved using dual-space methods using all non-overlapping reflections of both components. The structure was refined using HKLF 5 format data, with all reflections of both components (including overlapping reflections), resulting in a BASF value of 0.4564 (7). The R_{int} value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (*TWINABS*).

Some of the alkyl chains were refined as twofold disordered. The geometries of all fully occupied and major moiety pyrazolate ligands were restrained to be similar to each other, and disordered major and minor moieties were restrained to have similar geometries. U_{ii} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.713 (8)/0.287 (8) (C5-C11 residue 3), 0.507 (8)/0.493 (8) (C5-C11 residue 4), 0.518 (9)/0.482 (9) (C5-C11 residue 5), 0.450 (13)/0.550 (13) (C6-C11 residue 7), and 0.524 (11)/ 0.476 (11) (C5–C11 residue 10). Two Bu_4N^+ cations are disordered around inversion centers (residues 14 and 15). One of them is additionally disordered (residue 15). The geometries of all partially occupied Bu₄N⁺ cations were restrained to be similar to that of the single non-disordered cation (residue 13). All N-C bond lengths in all cations were restrained to be similar to each other. U_{ii} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio for the additionally split cation refined to two times 0.257 (5) and two times 0.243 (5). Hydroxyl H atom positions were refined and O-H distances were restrained to 0.84 (2) Å. All hydroxyl

H–O–Ni angles were restrained (*via* the H···Ni distances) to be similar to each other.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1808554 to Western Michigan University for Gellert Mezei; award No. CHE-1625543 to Purdue University for the single-crystal X-ray diffractometer).

References

- Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. 55, 7717-7728.
- Al Isawi, W. A., Ahmed, B. M., Hartman, C. K., Seybold, A. N. & Mezei, G. (2018). *Inorg. Chim. Acta*, 475, 65–72.
- Al Isawi, W. A., Hartman, C. K., Singh, P., Zeller, M. & Mezei, G. (2023). *Inorg. Chem.* 62, 5716–5728.
- Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759–834.
- Bruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kromer, J. R., Oberley, A. J., Kadel, L. R., Vonarx, D., McNeil, J., Haskin, J., Steinert, R. M., Mitchell-Koch, K. R., Moore, C. E. & Eichhorn, D. M. (2023). *Polyhedron*, **243**, 116546.
- Li, X.-Z., Tian, C.-B. & Sun, Q.-F. (2022). Chem. Rev. 122, 6374–6458.
- Luo, X.-M., Li, Y.-K., Dong, X.-Y. & Zang, S.-Q. (2023). Chem. Soc. Rev. 52, 383–444.
- Lv, X.-L., Wang, K., Wang, B., Su, J., Zou, X., Xie, Y., Li, J.-R. & Zhou, H.-C. (2017). J. Am. Chem. Soc. 139, 211–217.
- Masciocchi, N., Galli, S., Colombo, V., Maspero, A., Palmisano, G., Seyyedi, B., Lamberti, C. & Bordiga, S. (2010). J. Am. Chem. Soc. 132, 7902–7904.
- Mezei, G., Baran, P. & Raptis, R. G. (2004). Angew. Chem. Int. Ed. 43, 574–577.
- Milios, C. J. & Winpenny, R. E. P. (2015). Struct. Bond. 164, 1-110.
- Nath, B. D., Takaishi, K. & Ema, T. (2020). *Catal. Sci. Technol.* **10**, 12–34.
- Palmer, D. (2007). *CrystalMaker*. CrystalMaker Software, Bicester, England.
- Papatriantafyllopoulou, C., Moushi, E. E., Christou, G. & Tasiopoulos, A. J. (2016). Chem. Soc. Rev. 45, 1597–1628.
- Quartapelle Procopio, E., Rojas, S., Padial, N. M., Galli, S., Masciocchi, N., Linares, F., Miguel, D., Oltra, J. E., Navarro, J. A. R. & Barea, E. (2011). *Chem. Commun.* 47, 11751–11753.
- Ruben, M., Rojo, J., Romero–Salguero, F. J., Uppadine, L. H. & Lehn, J.-M. (2004). Angew. Chem. Int. Ed. 43, 3644–3662.
- Sheldrick, G. M. (2008). CELL_NOW. University of Göttingen, Germany.
- Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Singh, D., Buratto, W. R., Torres, J. F. & Murray, L. J. (2020). *Chem. Rev.* **120**, 5517–5581.
- Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. 2010, 3403–3418.
- Wang, Z., Jagličić, Z., Han, L.-L., Zhuang, G.-L., Luo, G.-G., Zeng, S.-Y., Tung, C.-H. & Sun, D. (2016). *CrystEngComm*, 18, 3462–3471.
- Wu, L.-J., Lee, W., Kumar Ganta, P., Chang, Y.-L., Chang, Y.-C. & Chen, H.-Y. (2023). Coord. Chem. Rev. 475, 214847.
- Xu, J.-Y., Qiao, X., Song, H.-B., Yan, S.-P., Liao, D.-Z., Gao, S., Journaux, Y. & Cano, J. (2008). *Chem. Commun.* pp. 6414–6416.
- Yam, V. W.-W. & Lo, K. K.-W. (1999). Chem. Soc. Rev. 28, 323–334.
- Yang, H.-B. (2018). Editor. *Metallomacrocycles: From Structures to Applications*. Monographs in Supramolecular Chemistry, Vol. 27. London: Royal Society of Chemistry.
- Zaleski, C. M. (2022). Editor. Advances in Metallacrown Chemistry. Berlin: Springer.
- Zheng, X.-Y., Kong, X.-J., Zheng, Z., Long, L.-S. & Zheng, L.-S. (2018). Acc. Chem. Res. 51, 517–525.

Acta Cryst. (2023). E79, 1199-1206 [https://doi.org/10.1107/S2056989023010101]

An octanuclear nickel(II) pyrazolate cluster with a cubic Ni₈ core and its methyl- and *n*-octyl-functionalized derivatives

Wisam A. Al Isawi, Matthias Zeller and Gellert Mezei

Computing details

Tetrabutylazanium tetramethylazanium hexa- μ_4 -hydroxido-dodeca- μ_2 -pyrazolato-hexahedro-octanickel (1)

Crystal data

 $\begin{array}{l} (C_{16}H_{36}N)(C_{4}H_{12}N)[Ni_{8}(C_{3}H_{3}N_{2})_{12}(OH)_{6}]\\ M_{r} = 1693.21\\ \text{Tetragonal, }I4/mmm\\ a = 16.6921 \ (4) \ \text{\AA}\\ c = 12.4112 \ (4) \ \text{\AA}\\ V = 3458.09 \ (18) \ \text{\AA}^{3}\\ Z = 2\\ F(000) = 1760 \end{array}$

Data collection

Bruker AXS D8 Quest diffractometer with PhotonIII_C14 chargeintegrating and photon counting pixel array detector
Radiation source: I-mu-S microsource X-ray tube
Laterally graded multilayer (Goebel) mirror monochromator
Detector resolution: 7.4074 pixels mm⁻¹ ω and phi scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.113$ S = 1.121094 reflections 109 parameters 4 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed $D_x = 1.626 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8487 reflections $\theta = 6.9-79.5^{\circ}$ $\mu = 2.86 \text{ mm}^{-1}$ T = 150 KBlock, blue $0.25 \times 0.23 \times 0.19 \text{ mm}$

Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{min} = 0.597$, $T_{max} = 0.754$ 10921 measured reflections 1094 independent reflections 1052 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 79.6^{\circ}$, $\theta_{min} = 6.9^{\circ}$ $h = -21 \rightarrow 21$ $k = -19 \rightarrow 15$ $l = -15 \rightarrow 15$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0406P)^2 + 14.3393P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.56 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2018/3* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00094 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A Bu_4N^+ cation is extensively disordered by symmetry. The nitrogen atom is located at the intersection of two mirror planes and two-fold axes. The C atoms of the single unique butyl chain are located in general positions and are disordered over two alternative sets for each cation. Overlap of the butyl chain with is counterpart from a neighboring cation further reduces the occupancy by one quarter (the entire cation site is half-occupied). The C–C bonds of C6–C7 and C7–C8 were restrained to target values (1.53 (2) and 1.55 (2) Å). A Me₄N⁺ ion is disordered over four alternative orientations, with the single unique methyl group being located in sixteen symmetry-equivalent positions. Hydroxyl H atom positions within the anion were refined and O–H distances were restrained to 0.84 (2) Å.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.41066 (2)	0.41066 (2)	0.12052 (4)	0.0213 (3)	
O1	0.500000	0.3798 (2)	0.000000	0.0209 (7)	
H1	0.500000	0.3298 (12)	0.000000	0.031*	
O2	0.500000	0.500000	0.1620 (4)	0.0181 (9)	
H2	0.500000	0.500000	0.2297 (17)	0.027*	
N1	0.33287 (13)	0.33287 (13)	0.0541 (2)	0.0353 (8)	
N2	0.45968 (14)	0.33272 (13)	0.22698 (17)	0.0299 (5)	
C1	0.27880 (19)	0.27880 (19)	0.0875 (4)	0.0668 (19)	
H1A	0.266967	0.266967	0.160683	0.080*	
C2	0.2431 (3)	0.2431 (3)	0.000000	0.094 (4)	
H2A	0.202853	0.202853	0.000000	0.113*	
C3	0.4349 (2)	0.2795 (2)	0.3003 (3)	0.0540 (9)	
Н3	0.380575	0.267830	0.316641	0.065*	
C4	0.500000	0.2442 (4)	0.3482 (5)	0.079 (2)	
H4	0.500001	0.204215	0.402647	0.095*	
N3	0.500000	0.000000	0.250000	0.031 (3)	0.5
C5	0.4783 (6)	0.0721 (7)	0.1826 (9)	0.036 (3)	0.25
H5A	0.468859	0.117955	0.231542	0.043*	0.25
H5B	0.427289	0.060735	0.144993	0.043*	0.25
C6	0.5403 (9)	0.0970 (8)	0.0990 (12)	0.049 (3)	0.25
H6A	0.552850	0.050796	0.051982	0.058*	0.25
H6B	0.590225	0.113460	0.135851	0.058*	0.25
C7	0.509 (2)	0.1665 (8)	0.0300 (11)	0.051 (6)	0.25
H7A	0.554558	0.188280	-0.012533	0.062*	0.25
H7B	0.490304	0.209624	0.078433	0.062*	0.25
C8	0.4406 (15)	0.1440 (12)	-0.0483 (16)	0.092 (7)	0.25
H8A	0.428498	0.189868	-0.094870	0.137*	0.25
H8B	0.392763	0.129637	-0.006811	0.137*	0.25
H8C	0.457069	0.098365	-0.092701	0.137*	0.25
N4	0.500000	0.500000	0.500000	0.087 (5)	
C9	0.4686 (14)	0.5660 (12)	0.4394 (18)	0.127 (13)	0.25
H9A	0.482964	0.616355	0.474958	0.191*	0.25
H9B	0.410149	0.561458	0.435149	0.191*	0.25

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H9C	0.491223	0.565	160	0.366504	0.191*	0.25		
Atomic displacement parameters ($Å^2$)								
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}		
Ni1	0.0237 (3)	0.0237 (3)	0.0164 (4)	-0.0053 (2)	0.00026 (15)	0.00026 (15)		
01	0.0300 (18)	0.0152 (15)	0.0174 (15)	0.000	0.000	0.000		
O2	0.0188 (13)	0.0188 (13)	0.017 (2)	0.000	0.000	0.000		
N1	0.0427 (12)	0.0427 (12)	0.0204 (16)	-0.0218 (16)	-0.0004 (9)	-0.0004 (9)		
N2	0.0372 (12)	0.0268 (11)	0.0257 (11)	-0.0035 (9)	0.0009 (9)	0.0067 (9)		
C1	0.087 (3)	0.087 (3)	0.026 (2)	-0.068 (4)	0.0009 (13)	0.0009 (13)		
C2	0.126 (7)	0.126 (7)	0.030 (3)	-0.107 (7)	0.000	0.000		
C3	0.054 (2)	0.057 (2)	0.0513 (19)	-0.0084 (17)	0.0072 (17)	0.0307 (17)		
C4	0.076 (4)	0.085 (5)	0.076 (4)	0.000	0.000	0.059 (4)		
N3	0.032 (4)	0.032 (4)	0.029 (6)	0.000	0.000	0.000		
C5	0.042 (8)	0.035 (5)	0.031 (5)	-0.001 (4)	-0.005 (4)	0.001 (4)		
C6	0.056 (8)	0.034 (7)	0.055 (8)	-0.007 (6)	-0.003 (7)	0.006 (6)		
C7	0.076 (18)	0.034 (5)	0.044 (7)	0.000 (11)	0.018 (15)	0.011 (4)		
C8	0.14 (2)	0.054 (12)	0.080 (13)	-0.004 (13)	-0.021 (15)	0.031 (11)		
N4	0.090 (8)	0.090 (8)	0.081 (12)	0.000	0.000	0.000		
С9	0.13 (3)	0.080 (14)	0.18 (2)	-0.004 (14)	-0.005 (16)	0.050 (16)		

Geometric parameters (Å, °)

Nil—N1	2.013 (3)	С3—Н3	0.9500
Ni1—N2	2.027 (2)	C4—H4	0.9500
Ni1-N2 ⁱ	2.027 (2)	N3—C5	1.509 (11)
Nil—O2	2.1710 (12)	C5—C6	1.523 (18)
Nil—O1 ⁱⁱ	2.1742 (9)	С5—Н5А	0.9900
Nil—O1	2.1742 (9)	С5—Н5В	0.9900
Ni1—Ni1 ⁱⁱⁱ	2.9826 (8)	C6—C7	1.531 (15)
Ni1—Ni1 ^{iv}	2.9826 (8)	C6—H6A	0.9900
Ni1—Ni1 ^v	2.9916 (11)	C6—H6B	0.9900
01—H1	0.83 (2)	С7—С8	1.55 (2)
O2—H2	0.84 (2)	С7—Н7А	0.9900
N1-C1	1.342 (5)	С7—Н7В	0.9900
N1—N1 ^v	1.343 (6)	C8—H8A	0.9800
N2-C3	1.337 (4)	C8—H8B	0.9800
N2-N2 ^{vi}	1.346 (5)	C8—H8C	0.9800
C1—C2	1.375 (6)	N4—C9	1.433 (19)
C1—H1A	0.9500	С9—Н9А	0.9800
C2—H2A	0.9500	С9—Н9В	0.9800
C3—C4	1.371 (5)	С9—Н9С	0.9800
N1—Ni1—N2	96.51 (9)	Ni1 ^{viii} —O2—H2	103.72 (12)
N1—Ni1—N2 ⁱ	96.51 (9)	Ni1 ^{iv} —O2—H2	103.72 (12)
N2-Ni1-N2 ⁱ	95.35 (13)	Ni1 ⁱⁱⁱ —O2—H2	103.72 (12)
N1—Ni1—O2	169.54 (15)	Ni1—O2—H2	103.72 (12)

N2—Ni1—O2	90.51 (10)	C1—N1—N1 ^v	108.0 (2)
N2 ⁱ —Ni1—O2	90.51 (10)	C1—N1—Ni1	137.8 (3)
N1—Ni1—O1 ⁱⁱ	90.44 (9)	N1 ^v —N1—Ni1	114.18 (9)
N2—Ni1—O1 ⁱⁱ	169.90 (11)	C3—N2—N2 ^{vi}	108.0 (2)
N2 ⁱ —Ni1—O1 ⁱⁱ	91.11 (8)	C3—N2—Ni1	138.2 (2)
O2—Ni1—O1 ⁱⁱ	81.65 (11)	N2 ^{vi} —N2—Ni1	113.81 (6)
N1—Ni1—O1	90.44 (9)	N1—C1—C2	109.8 (4)
N2—Ni1—O1	91.11 (8)	N1—C1—H1A	125.1
N2 ⁱ —Ni1—O1	169.90 (11)	C2—C1—H1A	125.1
O2—Ni1—O1	81.65 (11)	C1 ^v —C2—C1	104.4 (6)
01 ⁱⁱ —Ni1—01	81.48 (13)	C1 ^v —C2—H2A	127.8
N1—Ni1—Ni1 ⁱⁱⁱ	130.17 (3)	C1—C2—H2A	127.8
N2—Ni1—Ni1 ⁱⁱⁱ	66.19 (6)	N2-C3-C4	109.6 (3)
$N2^{i}$ Ni1 Ni1 ⁱⁱⁱ	129 93 (6)	N2-C3-H3	125.2
Ω^2 —Ni1—Ni1 ⁱⁱⁱ	46.61 (3)	C4—C3—H3	125.2
01^{ii} Ni1 Ni1 ⁱⁱⁱ	10371(9)	C_3^{vi} C_4 C_3	123.2 104 8 (5)
01 Ni1 Ni1 ⁱⁱⁱ	46 69 (2)	$C3^{vi}$ $C4$ $H4$	127.6
N1_Ni1_Ni1 ^{iv}	13017(3)	$C_3 - C_4 - H_4$	127.0
$\frac{1}{1} \frac{1}{1} \frac{1}$	130.17(3) 120.03(6)	N3 C5 C6	127.0 1157(0)
N2i Ni1 Ni1iv	129.93 (0) 66.10 (6)	$N_{3} = C_{5} = C_{0}$	108.4
$\frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$	46.61(3)	C_{6} C_{5} H_{5}	108.4
O_2 N_1 N_1 N_1 N_2	40.01(3)	N2 C5 H5D	108.4
O1 Ni1 Ni1iv	40.09(2) 103 71(0)	N3-C3-D3B C6 C5 U5D	108.4
NI-III NII NIII	105.71 (9)		108.4
	90.0	HJA—CJ—HJB	107.4
NI-NII-NII'	05.82(9)	$C_{2} = C_{0} = C_{1}$	111.1 (15)
$N_2 = N_1 = N_1 $	130.68 (6)	C_{2} C_{0} H_{0} H_{0}	109.4
$N2^{-}$ $N11^{-}$ $N11^{+}$	130.69 (6)	С/—С6—Н6А	109.4
02—N11—N11 ^v	103.72 (12)	С5—С6—Н6В	109.4
OI^{μ} N1 N1 N1	46.53 (2)	С/—С6—Н6В	109.4
OI—N1I—N1I ^v	46.53 (2)	Н6А—С6—Н6В	108.0
$N11^{m}$ $N11$ $N11^{v}$	90.0	C6—C7—C8	114.6 (15)
$N11^{iv}$ $N11$ $N11^{v}$	90.0	С6—С7—Н7А	108.6
Ni1 ^m —O1—Ni1 ^v	152.57 (17)	С8—С7—Н7А	108.6
Ni1 ^m —O1—Ni1 ^{vn}	86.94 (5)	С6—С7—Н7В	108.6
Ni1 ^v —O1—Ni1 ^{vn}	86.61 (5)	С8—С7—Н7В	108.6
Ni1 ⁱⁱⁱ —O1—Ni1	86.61 (5)	H7A—C7—H7B	107.6
Ni1 ^v —O1—Ni1	86.94 (5)	С7—С8—Н8А	109.5
Ni1 ^{vii} —O1—Ni1	152.57 (17)	C7—C8—H8B	109.5
Ni1 ⁱⁱⁱ —O1—H1	103.72 (9)	H8A—C8—H8B	109.5
Nil ^v —O1—H1	103.72 (8)	С7—С8—Н8С	109.5
Ni1 ^{vii} —O1—H1	103.72 (9)	H8A—C8—H8C	109.5
Nil—Ol—Hl	103.71 (8)	H8B—C8—H8C	109.5
Ni1 ^{viii} —O2—Ni1 ^{iv}	86.77 (5)	N4—C9—H9A	109.5
Ni1 ^{viii} —O2—Ni1 ⁱⁱⁱ	86.77 (5)	N4—C9—H9B	109.5
Ni1 ^{iv} —O2—Ni1 ⁱⁱⁱ	152.6 (2)	H9A—C9—H9B	109.5
Ni1 ^{viii} —O2—Ni1	152.6 (2)	N4—C9—H9C	109.5
Ni1 ^{iv} —O2—Ni1	86.78 (5)	Н9А—С9—Н9С	109.5
Ni1 ⁱⁱⁱ —O2—Ni1	86.78 (5)	Н9В—С9—Н9С	109.5

N1 ^v —N1—C1—C2	0.000(1)	Ni1—N2—C3—C4	-179.9 (4)
Ni1—N1—C1—C2	180.000 (1)	N2-C3-C4-C3 ^{vi}	0.3 (8)
$N1 - C1 - C2 - C1^{v}$	0.000 (1)	N3—C5—C6—C7	175.7 (11)
N2 ^{vi} —N2—C3—C4	-0.2 (5)	C5—C6—C7—C8	-70 (2)

Symmetry codes: (i) *y*, *x*, *z*; (ii) *y*, *-x*+1, *-z*; (iii) *-y*+1, *x*, *z*; (iv) *y*, *-x*+1, *z*; (v) *x*, *y*, *-z*; (vi) *-x*+1, *y*, *z*; (vii) *-y*+1, *x*, *-z*; (viii) *-x*+1, *-y*+1, *z*.

Bis(tetrabutylazanium) hexa- μ_4 -hydroxido-dodeca- μ_2 -(4-methylpyrazolato)-hexahedro-octanickel 1,2dichloroethane 7.196-solvate (2)

Crystal data

$(C_{16}H_{36}N)_{2}[Ni_{8}(C_{4}H_{5}N_{2})_{12}(OH)_{6}]\cdot7.196C_{2}H_{4}Cl_{2}$ $M_{r} = 2739.84$ Orthorhombic, <i>Pmna</i> a = 30.3900 (18) Å b = 14.5762 (9) Å c = 14.5141 (9) Å $V = 6429.3 (7) Å^{3}$ Z = 2 F(000) = 2860	$D_x = 1.415 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9416 reflections $\theta = 3.0-79.2^{\circ}$ $\mu = 4.44 \text{ mm}^{-1}$ T = 150 K Block, blue $0.36 \times 0.33 \times 0.26 \text{ mm}$
Data collection	
 Bruker AXS D8 Quest diffractometer with PhotonIII_C14 charge- integrating and photon counting pixel array detector Radiation source: I-mu-S microsource X-ray tube Laterally graded multilayer (Goebel) mirror monochromator Detector resolution: 7.4074 pixels mm⁻¹ <i>ω</i> and phi scans 	Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{min} = 0.624$, $T_{max} = 0.754$ 73571 measured reflections 7078 independent reflections 6512 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 79.7^{\circ}$, $\theta_{min} = 5.2^{\circ}$ $h = -30 \rightarrow 38$ $k = -18 \rightarrow 18$ $l = -18 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.081$ $wR(F^2) = 0.254$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent
S = 1.10 7078 reflections 517 parameters 271 restraints	and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1127P)^2 + 18.8031P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 1.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.89 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The two Bu_4N^+ cations exhibit twofold rotational symmetry and are disordered across a crystallographic mirror plane. Equivalent bonds in all cation moieties were restrained to be similar in length (SADI restraints). The two crystallographically independent half cations were also restrained to have similar geometries (SAME restraint). U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Some evidence for additional disorder is apparent for the cation of N13, but is not well enough resolved for unambiguous refinement. Four 1,2-dichloroethane molecules are present in the asymmetric unit. All were refined to be disordered atoms closer to each other similar geometries (SAME restraint) and one of the C–C bonds (C31–C32) was restrained to a target value of 1.55 (2) Å. U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were refined to be partially occupied (of Cl3/Cl4 and Cl5/Cl6). Subject to the above conditions the occupancy rates refined to two times 0.369 (6) and two times 0.430 (5), respectively.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.54913 (2)	0.60933 (5)	0.90395 (5)	0.0392 (2)	
Ni2	0.54909 (2)	0.59595 (5)	1.10979 (5)	0.0395 (2)	
01	0.500000	0.6382 (3)	1.0090 (3)	0.0365 (8)	
H1O	0.500000	0.694 (2)	1.025 (5)	0.055*	
O2	0.56528 (13)	0.500000	1.000000	0.0365 (8)	
H2O	0.5929 (7)	0.500000	1.000000	0.055*	
O3	0.500000	0.4912 (3)	1.1385 (3)	0.0377 (8)	
H3O	0.500000	0.481 (5)	1.1961 (17)	0.057*	
N1	0.52200 (13)	0.7036 (3)	0.8182 (3)	0.0490 (9)	
N2	0.59131 (13)	0.6965 (3)	0.9663 (3)	0.0535 (10)	
N3	0.59201 (13)	0.6892 (3)	1.0584 (3)	0.0500 (9)	
N4	0.52186 (14)	0.6789 (3)	1.2059 (3)	0.0515 (9)	
N5	0.59369 (14)	0.5578 (3)	0.8134 (3)	0.0517 (9)	
N6	0.59282 (14)	0.4667 (3)	0.8058 (3)	0.0539 (10)	
C1	0.5358 (2)	0.7678 (4)	0.7590 (4)	0.0609 (13)	
H1	0.565706	0.780895	0.745405	0.073*	
C2	0.500000	0.8126 (5)	0.7202 (5)	0.0587 (18)	
C3	0.500000	0.8891 (6)	0.6506 (6)	0.079 (3)	
H3A	0.518668	0.872145	0.598226	0.118*	0.5
H3B	0.511448	0.945162	0.679167	0.118*	0.5
H3C	0.469884	0.899900	0.628993	0.118*	0.5
C4	0.62233 (19)	0.7576 (4)	0.9404 (5)	0.0657 (14)	
H4	0.628685	0.774661	0.878628	0.079*	
C5	0.6437 (2)	0.7921 (4)	1.0187 (5)	0.0703 (16)	
C6	0.62351 (18)	0.7461 (4)	1.0898 (5)	0.0652 (14)	
H6	0.630845	0.753535	1.152979	0.078*	
C7	0.6816 (3)	0.8593 (5)	1.0213 (7)	0.101 (3)	
H7A	0.683008	0.892650	0.962700	0.151*	
H7B	0.709188	0.825921	1.030975	0.151*	
H7C	0.677125	0.902956	1.071780	0.151*	
C8	0.5352 (2)	0.7387 (4)	1.2703 (4)	0.0666 (15)	
H8	0.565145	0.752606	1.283057	0.080*	
C9	0.500000	0.7775 (5)	1.3156 (5)	0.064 (2)	
C10	0.500000	0.8480 (6)	1.3918 (6)	0.086 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10A	0.490217	0.907187	1.367269	0.129*	0.5
H10B	0.529821	0.854159	1.416715	0.129*	0.5
H10C	0.479962	0.828269	1.440855	0.129*	0.5
C11	0.6266 (2)	0.5890 (4)	0.7610 (4)	0.0692 (16)	
H11	0.634535	0.651797	0.754985	0.083*	
C12	0.6477 (2)	0.5164 (5)	0.7165 (5)	0.0735 (17)	
C13	0.6252 (2)	0.4411 (4)	0.7477 (4)	0.0703 (16)	
H13	0.631512	0.379548	0.730789	0.084*	
C14	0.6864 (3)	0.5184 (7)	0.6512 (7)	0.121 (4)	
H14A	0.710561	0.482164	0.677086	0.181*	
H14B	0.696028	0 581884	0 642415	0.181*	
H14C	0.677558	0 492285	0 591770	0.181*	
N13	0.4815(5)	0.000000	1 000000	0.101(4)	0.5
C15	0.4537(5)	-0.0397(11)	0.9222(11)	0.090(3)	0.5
H15A	0.473817	-0.075332	0.882295	0.109*	0.5
H15R	0.433185	-0.084241	0.950553	0.109*	0.5
C16	0.4280(7)	0.001211	0.8628 (14)	0.109	0.5
H16A	0.4286 (7)	0.055337	0.825940	0.107*	0.5
H16R	0.411012	0.060362	0.902100	0.107*	0.5
C17	0.3975 (6)	-0.0255(11)	0.702100 0.7995 (13)	0.107	0.5
H17A	0.377538	-0.065837	0.835037	0.113*	0.5
H17R	0.377336	-0.064764	0.756454	0.113*	0.5
C18	0.414340 0.3708 (8)	0.004704 0.0388 (14)	0.736434	0.115	0.5
U18A	0.3708(8)	0.0533 (14)	0.7430(10)	0.123 (0)	0.5
	0.356366	0.072313	0.702048	0.188*	0.5
	0.330300	0.082298	0.787231	0.188*	0.5
П10С С10	0.546490	0.004/34	0.710934	0.100°	0.5
U10A	0.3107(3)	0.0733 (13)	0.9390 (11)	0.120(3) 0.144*	0.5
П19А 1110D	0.492023	0.127130	0.943372	0.144*	0.5
П19D С20	0.551609	0.092410 0.0507(10)	1.007810	0.144°	0.5
	0.5550 (0)	0.0307 (19)	0.8774(13)	0.157(5)	0.5
H20A	0.518928	0.001007	0.840555	0.105*	0.5
H20B	0.533222	0.104983	0.836/20	0.165*	0.5
C21	0.5809 (8)	0.023 (3)	0.8740(17)	0.135 (6)	0.5
H2IA	0.583240	-0.041386	0.894383	0.162*	0.5
H21B	0.59/919	0.061308	0.91/90/	0.162*	0.5
C22	0.6008 (7)	0.0319 (18)	0.7816(13)	0.124 (6)	0.5
H22A	0.579926	0.010047	0.735044	0.186*	0.5
H22B	0.62//3/	-0.004991	0.778724	0.186*	0.5
H22C	0.60/966	0.096364	0.769627	0.186*	0.5
N14	0.4764 (7)	0.500000	0.500000	0.126 (5)	0.5
C23	0.4479 (6)	0.5758 (13)	0.4587 (14)	0.119 (4)	0.5
H23A	0.466686	0.6108/8	0.415569	0.143*	0.5
H23B	0.424930	0.545448	0.420988	0.143*	0.5
C24	0.4258 (8)	0.6419 (16)	0.5169 (16)	0.126 (5)	0.5
H24A	0.448155	0.683712	0.543148	0.151*	0.5
H24B	0.411954	0.608600	0.568878	0.151*	0.5
C25	0.3920 (8)	0.6972 (18)	0.4715 (15)	0.128 (6)	0.5
H25	0.387774	0.696225	0.406695	0.154*	0.5

C26	0.3652 (9)	0.7541 (18)	0.5326 (17)	0.151 (7)	0.5
H26A	0.353377	0.806238	0.497887	0.226*	0.5
H26B	0.383368	0.776639	0.583504	0.226*	0.5
H26C	0.340833	0.717454	0.557193	0.226*	0.5
C27	0.5046 (9)	0.4566 (12)	0.4254 (13)	0.139 (5)	0.5
H27A	0.484816	0.434219	0.376207	0.167*	0.5
H27B	0.523235	0.505332	0.398239	0.167*	0.5
C28	0.5333 (6)	0.3812 (14)	0.452 (2)	0.153 (5)	0.5
H28A	0.521661	0.359587	0.512091	0.184*	0.5
H28B	0.526958	0.331581	0.407474	0.184*	0.5
C29	0 5802 (8)	0 3813 (16)	0.463(3)	0.153 (6)	0.5
H29A	0.587533	0.418759	0.517371	0.184*	0.5
H29B	0 593039	0.412736	0 408333	0.184*	0.5
C30	0.6023 (9)	0.2919(14)	0.472(2)	0.145 (8)	0.5
H30A	0.618222	0.277503	0.415558	0.217*	0.5
H30B	0.580198	0.244295	0.484161	0.217*	0.5
H30C	0.622993	0.294464	0.524036	0.217*	0.5
Cll	0.022555 0.7285(4)	0.6122 (8)	1 0070 (9)	0.217 0.138 (4)	0.5
Cl2	0.7205(4) 0.7325(2)	0.0122(0) 0.3853(3)	0.9903(3)	0.150(4)	0.5
C31	0.7525(2) 0.6877(5)	0.5609(15)	0.9903(3)	0.0507(10)	0.5
H31A	0.660627	0.579996	0.994674	0.127*	0.5
H31R	0.686838	0.558738	0.997605	0.127*	0.5
C32	0.6835 (5)	0.4558 (14)	0.9872 (16)	0.127 0.096 (5)	0.5
H32A	0.663778	0.430247	0.939307	0.115*	0.5
H32R	0.668218	0.448365	1.047057	0.115*	0.5
C13	0.000210 0.4068 (3)	0.9999(18)	0.4979(15)	0.113 0.141 (3)	0.369 (6)
C13	0.4000(3)	0.9972(15)	0.4377(15)	0.168 (6)	0.369 (6)
C33	0.2730(2) 0.3578(7)	0.9972(13)	0.3343(9)	0.174(8)	0.369 (6)
Н334	0.357513	0.902 (2)	0.461575	0.209*	0.369 (6)
H33R	0.350960	0.944358	0.562913	0.209*	0.369(6)
C34	0.3224(8)	1.018(3)	0.302713	0.209	0.369 (6)
H34A	0.316350	1.010 (3)	0.401455	0.21/*	0.369 (6)
H3/R	0.330723	1.004010	0.401455	0.214	0.369(0)
C15	0.330723	0.8437(14)	0.7485(15)	0.214	0.309(0)
C15	0.3010(7) 0.1016(5)	0.8437(14) 0.8177(11)	0.7405(13) 0.7806(12)	0.220(9) 0.101(7)	0.430(5)
C10 C35	0.1910(3)	0.3177(11) 0.780(2)	0.7800(12)	0.191(7)	0.430(5)
UJJ H35A	0.2003 (9)	0.789 (2)	0.643004	0.189(8)	0.430(5)
1135A 1125B	0.233110	0.034039	0.640016	0.220	0.430(5)
C36	0.282308 0.2312(8)	0.744430 0.7416 (16)	0.049010 0.730(2)	0.220°	0.430(5)
U36A	0.2312(0) 0.243427	0.7410(10)	0.730 (2)	0.177 (8)	0.430(5)
1130A 1126D	0.243427	0.701378	0.779210	0.213*	0.430(5)
C17	0.210299	0.701941 0.2257 (11)	0.084710 0.8150(0)	0.213° 0.131 (4)	0.430 (3)
C17	0.2010(4)	0.2237(11) 0.2270(11)	0.6139(9)	0.131(4) 0.148(4)	0.5
C10 C37	0.3112(3) 0.2346(6)	0.2379(11) 0.2772(15)	0.0331(10) 0.7457(10)	0.146(4) 0.144(6)	0.5
U27A	0.2340 (0)	0.2772(13) 0.204617	0.7437 (19)	0.144(0) 0.172*	0.5
H37P	0.210105	0.30401/	0.073555	0.172° 0.172*	0.5
C38	0.251215	0.320100 0.2042(17)	0.777019 0.7132(10)	0.172	0.5
U20 A	0.2043 (8)	0.2042(17) 0.162422	0.7133 (19)	0.130 (0)	0.5
1130A	0.24/103	0.102423	0.0/3214	0.190	0.5

(\vec{F}) U ³ U ³ U ³ U ³ U ³ U ³ N1 0.0413 (4) 0.0356 (4) 0.0398 (4) -0.0013 (3) 0.0037 (3) 0.0032 (3) N12 0.0425 (4) 0.0356 (4) 0.0000 0.0000 -0.0004 (15) 02 0.0345 (19) 0.035 (2) 0.000 0.000 -0.0006 (15) 03 0.046 (2) 0.045 (2) 0.000 (18) 0.000 0.0006 (15) 03 0.046 (2) 0.045 (2) 0.0041 (17) 0.0026 (16) 0.0008 (16) N2 0.046 (2) 0.046 (2) 0.045 (2) 0.0008 (16) -0.0037 (17) N4 0.61 (2) 0.046 (2) 0.048 (2) -0.0005 (16) -0.0037 (17) N4 0.61 (2) 0.056 (2) 0.055 (2) 0.0022 (18) 0.0143 (18) -0.0013 (17) N5 0.056 (2) 0.055 (2) 0.0022 (18) 0.0143 (18) -0.0013 (17) C1 0.071 (3) 0.056 (3) 0.056 (3) 0.0000 0.0012 (2) <	H38B	0.273892	0.168	8232	0.767563	0.190*	0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Atomic of	displacement part	ameters (Ų)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni1	0.0413 (4)	0.0365 (4)	0.0398 (4)	-0.0013 (3)	0.0037 (3)	0.0032 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni2	0.0425 (4)	0.0364 (4)	0.0396 (4)	-0.0022(3)	-0.0036 (3)	-0.0042(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.039 (2)	0.0316 (19)	0.039 (2)	0.000	0.000	-0.0004 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.0345 (19)	0.0354 (19)	0.040 (2)	0.000	0.000	0.0006 (15)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03	0.046 (2)	0.038 (2)	0.0300 (18)	0.000	0.000	-0.0005 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	0.057 (2)	0.045 (2)	0.045 (2)	-0.0017 (17)	0.0026 (16)	0.0108 (16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0.046 (2)	0.046 (2)	0.069 (3)	-0.0084(17)	0.0004 (19)	0.0035 (19)
N4 $0.061(2)$ $0.045(2)$ $0.048(2)$ $-0.0003(17)$ $-0.0066(17)$ $-0.0133(17)$ N5 $0.055(2)$ $0.052(2)$ $0.049(2)$ $0.0013(18)$ $0.0140(17)$ $0.0082(18)$ N6 $0.051(2)$ $0.056(2)$ $0.055(2)$ $0.0022(18)$ $0.0143(18)$ $-0.0051(19)$ C1 $0.071(3)$ $0.056(3)$ $0.056(3)$ $-0.006(2)$ $0.005(2)$ $0.019(2)$ C2 $0.087(5)$ $0.046(4)$ $0.043(3)$ 0.000 0.000 $0.004(3)$ C3 $0.130(8)$ $0.055(5)$ $0.051(4)$ 0.000 0.000 $0.001(3)$ C4 $0.061(3)$ $0.055(3)$ $0.081(4)$ $-0.016(2)$ $0.005(3)$ $0.012(3)$ C5 $0.059(3)$ $0.049(3)$ $0.102(5)$ $-0.015(3)$ $-0.000(3)$ $-0.001(3)$ C6 $0.058(3)$ $0.054(3)$ $0.084(4)$ $-0.014(2)$ $-0.009(3)$ $-0.015(3)$ C7 $0.077(5)$ $0.066(4)$ $0.158(8)$ $-0.032(4)$ $-0.014(5)$ $0.013(5)$ C8 $0.080(4)$ $0.059(3)$ $0.061(3)$ -0.000 0.000 $-0.008(3)$ C10 $0.146(10)$ $0.067(3)$ $0.071(4)$ $0.001(3)$ $0.028(3)$ $0.014(3)$ C11 $0.066(3)$ $0.077(3)$ $0.071(4)$ 0.000 0.000 $-0.003(3)$ C12 $0.069(4)$ $0.081(4)$ $0.071(4)$ $0.005(3)$ $0.022(6)$ C13 $0.077(3)$ $0.077(7)$ $0.095(7)$ $0.005(6)$ $-0.006(5)$ $-0.033(7)$ C14 $0.102(6$	N3	0.048 (2)	0.042 (2)	0.060 (2)	-0.0068 (16)	-0.0039 (18)	-0.0075 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4	0.061 (2)	0.045 (2)	0.048 (2)	-0.0003 (17)	-0.0066 (17)	-0.0133 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5	0.055 (2)	0.052 (2)	0.049 (2)	0.0013 (18)	0.0140 (17)	0.0082 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6	0.051 (2)	0.056 (2)	0.055 (2)	0.0022 (18)	0.0143 (18)	-0.0051 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.071 (3)	0.056 (3)	0.056 (3)	-0.006(2)	0.005 (2)	0.019 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.087 (5)	0.046 (4)	0.043 (3)	0.000	0.000	0.004 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.130 (8)	0.056 (5)	0.051 (4)	0.000	0.000	0.012 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.061 (3)	0.055 (3)	0.081 (4)	-0.016 (2)	0.005 (3)	0.012 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.059 (3)	0.049 (3)	0.102 (5)	-0.015 (3)	-0.006(3)	-0.001(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.058 (3)	0.054 (3)	0.084 (4)	-0.014(2)	-0.009(3)	-0.015 (3)
C8 0.080 (d) 0.059 (3) 0.061 (3) -0.003 (3) -0.012 (3) -0.027 (3)C9 0.096 (6) 0.045 (4) 0.050 (4) 0.000 0.000 -0.008 (3)C10 0.146 (10) 0.060 (5) 0.052 (5) 0.000 0.000 -0.019 (4)C11 0.066 (3) 0.067 (3) 0.074 (4) -0.001 (3) 0.028 (3) 0.016 (3)C12 0.069 (4) 0.081 (4) 0.071 (4) 0.005 (3) 0.029 (3) 0.004 (3)C13 0.073 (4) 0.067 (3) 0.071 (4) 0.005 (3) 0.030 (3) -0.007 (3)C14 0.102 (6) 0.135 (8) 0.125 (7) 0.016 (5) 0.073 (6) 0.002 (6)N13 0.080 (7) 0.122 (9) 0.097 (8) 0.000 0.000 -0.033 (7)C15 0.079 (6) 0.097 (7) 0.095 (7) 0.005 (6) -0.006 (5) -0.033 (6)C16 0.89 (8) 0.82 (7) 0.097 (8) 0.002 (6) -0.019 (7) -0.031 (6)C17 0.104 (9) 0.079 (7) 0.099 (9) 0.003 (7) -0.018 (8) -0.028 (8)C20 0.112 (9) 0.187 (11) 0.112 (9) -0.017 (9) 0.009 (8) -0.026 (9)C21 0.111 (11) 0.187 (11) 0.112 (9) -0.016 (10) 0.023 (9) -0.027 (10)C22 0.107 (12) 0.187 (11) 0.112 (10) 0.000 0.000 0.036 (8)C23 0.127 (10) 0.104 (9) 0.125 (10	C7	0.077 (5)	0.066 (4)	0.158 (8)	-0.032(4)	-0.014(5)	0.013 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.080 (4)	0.059 (3)	0.061 (3)	-0.003(3)	-0.012(3)	-0.027(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.096 (6)	0.045 (4)	0.050 (4)	0.000	0.000	-0.008(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.146 (10)	0.060 (5)	0.052 (5)	0.000	0.000	-0.019(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.066 (3)	0.067 (3)	0.074 (4)	-0.001(3)	0.028 (3)	0.016 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.069 (4)	0.081 (4)	0.071 (4)	0.005 (3)	0.029 (3)	0.004 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.073 (4)	0.067 (3)	0.071 (3)	0.005 (3)	0.030 (3)	-0.007(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.102 (6)	0.135 (8)	0.125(7)	0.010(5)	0.073 (6)	0.022 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N13	0.080(7)	0.122 (9)	0.097 (8)	0.000	0.000	-0.033(7)
C16 $0.089(8)$ $0.082(7)$ $0.097(8)$ $0.002(6)$ $-0.019(7)$ $-0.031(6)$ C17 $0.104(9)$ $0.079(7)$ $0.099(9)$ $0.003(7)$ $-0.018(8)$ $-0.031(7)$ C18 $0.137(14)$ $0.107(12)$ $0.133(14)$ $0.004(11)$ $-0.027(12)$ $-0.017(11)$ C19 $0.092(9)$ $0.164(10)$ $0.105(8)$ $-0.006(7)$ $0.004(6)$ $-0.028(8)$ C20 $0.112(9)$ $0.187(11)$ $0.112(9)$ $-0.017(9)$ $0.009(8)$ $-0.026(9)$ C21 $0.111(11)$ $0.188(13)$ $0.107(10)$ $-0.016(10)$ $0.023(9)$ $-0.027(10)$ C22 $0.107(12)$ $0.177(16)$ $0.088(11)$ $-0.046(13)$ $0.033(10)$ $-0.019(13)$ N14 $0.122(10)$ $0.104(9)$ $0.125(10)$ $0.015(7)$ $0.012(7)$ $0.044(8)$ C24 $0.146(11)$ $0.114(10)$ $0.117(10)$ $0.028(8)$ $0.008(8)$ $0.048(8)$ C25 $0.157(12)$ $0.118(11)$ $0.109(10)$ $0.033(10)$ $0.007(10)$ $0.043(9)$ C26 $0.180(17)$ $0.135(15)$ $0.138(15)$ $0.044(14)$ $0.005(14)$ $0.005(13)$ C27 $0.129(10)$ $0.106(8)$ $0.184(11)$ $0.006(8)$ $0.013(9)$ $0.035(8)$ C28 $0.138(10)$ $0.111(9)$ $0.209(13)$ $0.017(9)$ $0.029(10)$ $0.030(9)$ C29 $0.139(11)$ $0.105(10)$ $0.216(14)$ $0.033(11)$ $0.063(15)$ $0.021(14)$	C15	0.079 (6)	0.097 (7)	0.095 (7)	0.005 (6)	-0.006(5)	-0.033(6)
C170.104 (9)0.079 (7)0.099 (9)0.003 (7) $-0.018 (8)$ $-0.031 (7)$ C180.137 (14)0.107 (12)0.133 (14)0.004 (11) $-0.027 (12)$ $-0.017 (11)$ C190.092 (9)0.164 (10)0.105 (8) $-0.006 (7)$ 0.004 (6) $-0.028 (8)$ C200.112 (9)0.187 (11)0.112 (9) $-0.017 (9)$ 0.009 (8) $-0.026 (9)$ C210.111 (11)0.188 (13)0.107 (10) $-0.016 (10)$ 0.023 (9) $-0.027 (10)$ C220.107 (12)0.177 (16)0.088 (11) $-0.046 (13)$ 0.033 (10) $-0.019 (13)$ N140.122 (10)0.104 (9)0.153 (11)0.0000.0000.036 (8)C230.127 (10)0.104 (9)0.125 (10)0.015 (7)0.012 (7)0.044 (8)C240.146 (11)0.114 (10)0.117 (10)0.028 (8)0.008 (8)0.048 (8)C250.157 (12)0.118 (11)0.109 (10)0.033 (10)0.007 (10)0.043 (9)C260.180 (17)0.135 (15)0.138 (15)0.044 (14)0.005 (14)0.005 (13)C270.129 (10)0.106 (8)0.184 (11)0.006 (8)0.013 (9)0.035 (8)C280.138 (10)0.111 (9)0.209 (13)0.017 (9)0.029 (10)0.039 (11)C300.144 (15)0.074 (10)0.216 (14)0.030 (10)0.046 (12)0.039 (11)	C16	0.089 (8)	0.082 (7)	0.097 (8)	0.002 (6)	-0.019(7)	-0.031(6)
C18 $0.137 (14)$ $0.107 (12)$ $0.133 (14)$ $0.004 (11)$ $-0.027 (12)$ $-0.017 (11)$ C19 $0.092 (9)$ $0.164 (10)$ $0.105 (8)$ $-0.006 (7)$ $0.004 (6)$ $-0.028 (8)$ C20 $0.112 (9)$ $0.187 (11)$ $0.112 (9)$ $-0.017 (9)$ $0.009 (8)$ $-0.026 (9)$ C21 $0.111 (11)$ $0.188 (13)$ $0.107 (10)$ $-0.016 (10)$ $0.023 (9)$ $-0.027 (10)$ C22 $0.107 (12)$ $0.177 (16)$ $0.088 (11)$ $-0.046 (13)$ $0.033 (10)$ $-0.019 (13)$ N14 $0.122 (10)$ $0.104 (9)$ $0.125 (10)$ $0.015 (7)$ $0.012 (7)$ $0.044 (8)$ C24 $0.146 (11)$ $0.114 (10)$ $0.117 (10)$ $0.028 (8)$ $0.008 (8)$ $0.048 (8)$ C25 $0.157 (12)$ $0.118 (11)$ $0.109 (10)$ $0.033 (10)$ $0.007 (10)$ $0.043 (9)$ C26 $0.180 (17)$ $0.135 (15)$ $0.138 (15)$ $0.044 (14)$ $0.005 (14)$ $0.005 (13)$ C27 $0.129 (10)$ $0.106 (8)$ $0.184 (11)$ $0.006 (8)$ $0.013 (9)$ $0.035 (8)$ C28 $0.138 (10)$ $0.111 (9)$ $0.209 (13)$ $0.017 (9)$ $0.029 (10)$ $0.039 (11)$ C30 $0.144 (15)$ $0.074 (10)$ $0.216 (19)$ $0.033 (11)$ $0.063 (15)$ $0.021 (14)$	C17	0.104 (9)	0.079(7)	0.099 (9)	0.003(7)	-0.018(8)	-0.031(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.137 (14)	0.107 (12)	0.133 (14)	0.004 (11)	-0.027(12)	-0.017(11)
C20 $0.112 (9)$ $0.187 (11)$ $0.112 (9)$ $-0.017 (9)$ $0.009 (8)$ $-0.026 (9)$ C21 $0.111 (11)$ $0.188 (13)$ $0.107 (10)$ $-0.016 (10)$ $0.023 (9)$ $-0.027 (10)$ C22 $0.107 (12)$ $0.177 (16)$ $0.088 (11)$ $-0.046 (13)$ $0.033 (10)$ $-0.019 (13)$ N14 $0.122 (10)$ $0.104 (9)$ $0.153 (11)$ 0.000 0.000 $0.036 (8)$ C23 $0.127 (10)$ $0.104 (9)$ $0.125 (10)$ $0.015 (7)$ $0.012 (7)$ $0.044 (8)$ C24 $0.146 (11)$ $0.114 (10)$ $0.117 (10)$ $0.028 (8)$ $0.008 (8)$ $0.048 (8)$ C25 $0.157 (12)$ $0.118 (11)$ $0.109 (10)$ $0.033 (10)$ $0.007 (10)$ $0.043 (9)$ C26 $0.180 (17)$ $0.135 (15)$ $0.138 (15)$ $0.044 (14)$ $0.005 (14)$ $0.005 (13)$ C27 $0.129 (10)$ $0.106 (8)$ $0.184 (11)$ $0.006 (8)$ $0.013 (9)$ $0.035 (8)$ C28 $0.138 (10)$ $0.111 (9)$ $0.209 (13)$ $0.017 (9)$ $0.029 (10)$ $0.030 (9)$ C29 $0.139 (11)$ $0.105 (10)$ $0.216 (14)$ $0.030 (10)$ $0.046 (12)$ $0.039 (11)$ C30 $0.144 (15)$ $0.074 (10)$ $0.216 (19)$ $0.033 (11)$ $0.063 (15)$ $0.021 (14)$	C19	0.092 (9)	0.164 (10)	0.105 (8)	-0.006(7)	0.004 (6)	-0.028(8)
C21 $0.111 (11)$ $0.188 (13)$ $0.107 (10)$ $-0.016 (10)$ $0.023 (9)$ $-0.027 (10)$ C22 $0.107 (12)$ $0.177 (16)$ $0.088 (11)$ $-0.046 (13)$ $0.033 (10)$ $-0.019 (13)$ N14 $0.122 (10)$ $0.104 (9)$ $0.153 (11)$ 0.000 0.000 $0.036 (8)$ C23 $0.127 (10)$ $0.104 (9)$ $0.125 (10)$ $0.015 (7)$ $0.012 (7)$ $0.044 (8)$ C24 $0.146 (11)$ $0.114 (10)$ $0.117 (10)$ $0.028 (8)$ $0.008 (8)$ $0.048 (8)$ C25 $0.157 (12)$ $0.118 (11)$ $0.109 (10)$ $0.033 (10)$ $0.007 (10)$ $0.043 (9)$ C26 $0.180 (17)$ $0.135 (15)$ $0.138 (15)$ $0.044 (14)$ $0.005 (14)$ $0.005 (13)$ C27 $0.129 (10)$ $0.106 (8)$ $0.184 (11)$ $0.006 (8)$ $0.013 (9)$ $0.035 (8)$ C28 $0.138 (10)$ $0.111 (9)$ $0.209 (13)$ $0.017 (9)$ $0.029 (10)$ $0.030 (9)$ C29 $0.139 (11)$ $0.105 (10)$ $0.216 (14)$ $0.033 (11)$ $0.063 (15)$ $0.021 (14)$	C20	0.112 (9)	0.187 (11)	0.112 (9)	-0.017(9)	0.009 (8)	-0.026(9)
C11 $0.117 (11)$ $0.100 (10)$ $0.101 (10)$ $0.010 (10)$ $0.012 (0)$ $0.012 (0)$ C22 $0.107 (12)$ $0.177 (16)$ $0.088 (11)$ $-0.046 (13)$ $0.033 (10)$ $-0.019 (13)$ N14 $0.122 (10)$ $0.104 (9)$ $0.153 (11)$ 0.000 0.000 $0.036 (8)$ C23 $0.127 (10)$ $0.104 (9)$ $0.125 (10)$ $0.015 (7)$ $0.012 (7)$ $0.044 (8)$ C24 $0.146 (11)$ $0.114 (10)$ $0.117 (10)$ $0.028 (8)$ $0.008 (8)$ $0.048 (8)$ C25 $0.157 (12)$ $0.118 (11)$ $0.109 (10)$ $0.033 (10)$ $0.007 (10)$ $0.043 (9)$ C26 $0.180 (17)$ $0.135 (15)$ $0.138 (15)$ $0.044 (14)$ $0.005 (14)$ $0.005 (13)$ C27 $0.129 (10)$ $0.106 (8)$ $0.184 (11)$ $0.006 (8)$ $0.013 (9)$ $0.035 (8)$ C28 $0.138 (10)$ $0.111 (9)$ $0.209 (13)$ $0.017 (9)$ $0.029 (10)$ $0.030 (9)$ C29 $0.139 (11)$ $0.105 (10)$ $0.216 (14)$ $0.030 (10)$ $0.046 (12)$ $0.039 (11)$ C30 $0.144 (15)$ $0.074 (10)$ $0.216 (19)$ $0.033 (11)$ $0.063 (15)$ $0.021 (14)$	C21	0.111 (11)	0.188 (13)	0.107(10)	-0.016(10)	0.023 (9)	-0.027(10)
N14 $0.122 (10)$ $0.104 (9)$ $0.153 (11)$ 0.000 0.000 $0.036 (8)$ C23 $0.127 (10)$ $0.104 (9)$ $0.125 (10)$ $0.015 (7)$ $0.012 (7)$ $0.044 (8)$ C24 $0.146 (11)$ $0.114 (10)$ $0.117 (10)$ $0.028 (8)$ $0.008 (8)$ $0.048 (8)$ C25 $0.157 (12)$ $0.118 (11)$ $0.109 (10)$ $0.033 (10)$ $0.007 (10)$ $0.043 (9)$ C26 $0.180 (17)$ $0.135 (15)$ $0.138 (15)$ $0.044 (14)$ $0.005 (14)$ $0.005 (13)$ C27 $0.129 (10)$ $0.106 (8)$ $0.184 (11)$ $0.006 (8)$ $0.013 (9)$ $0.035 (8)$ C28 $0.138 (10)$ $0.111 (9)$ $0.209 (13)$ $0.017 (9)$ $0.029 (10)$ $0.030 (9)$ C29 $0.139 (11)$ $0.105 (10)$ $0.216 (14)$ $0.030 (10)$ $0.046 (12)$ $0.039 (11)$ C30 $0.144 (15)$ $0.074 (10)$ $0.216 (19)$ $0.033 (11)$ $0.063 (15)$ $0.021 (14)$	C22	0.107(12)	0.177 (16)	0.088(11)	-0.046(13)	0.033(10)	-0.019(13)
C23 $0.127 (10)$ $0.104 (9)$ $0.125 (10)$ $0.015 (7)$ $0.012 (7)$ $0.044 (8)$ $C24$ $0.146 (11)$ $0.114 (10)$ $0.117 (10)$ $0.028 (8)$ $0.008 (8)$ $0.048 (8)$ $C25$ $0.157 (12)$ $0.118 (11)$ $0.109 (10)$ $0.033 (10)$ $0.007 (10)$ $0.043 (9)$ $C26$ $0.180 (17)$ $0.135 (15)$ $0.138 (15)$ $0.044 (14)$ $0.005 (14)$ $0.005 (13)$ $C27$ $0.129 (10)$ $0.106 (8)$ $0.184 (11)$ $0.006 (8)$ $0.013 (9)$ $0.035 (8)$ $C28$ $0.138 (10)$ $0.111 (9)$ $0.209 (13)$ $0.017 (9)$ $0.029 (10)$ $0.030 (9)$ $C29$ $0.139 (11)$ $0.105 (10)$ $0.216 (14)$ $0.030 (10)$ $0.046 (12)$ $0.039 (11)$ $C30$ $0.144 (15)$ $0.074 (10)$ $0.216 (19)$ $0.033 (11)$ $0.063 (15)$ $0.021 (14)$	N14	0.122 (10)	0.104 (9)	0.153 (11)	0.000	0.000	0.036 (8)
C24 0.146 (11) 0.114 (10) 0.117 (10) 0.028 (8) 0.008 (8) 0.048 (8) C25 0.157 (12) 0.118 (11) 0.109 (10) 0.033 (10) 0.007 (10) 0.043 (9) C26 0.180 (17) 0.135 (15) 0.138 (15) 0.044 (14) 0.005 (14) 0.005 (13) C27 0.129 (10) 0.106 (8) 0.184 (11) 0.006 (8) 0.013 (9) 0.035 (8) C28 0.138 (10) 0.111 (9) 0.209 (13) 0.017 (9) 0.029 (10) 0.030 (9) C29 0.139 (11) 0.105 (10) 0.216 (14) 0.030 (10) 0.046 (12) 0.039 (11) C30 0.144 (15) 0.074 (10) 0.216 (19) 0.033 (11) 0.063 (15) 0.021 (14)	C23	0.127(10)	0.104 (9)	0.125 (10)	0.015 (7)	0.012 (7)	0.044 (8)
C25 0.157 (12) 0.118 (11) 0.109 (10) 0.033 (10) 0.007 (10) 0.043 (9) C26 0.180 (17) 0.135 (15) 0.138 (15) 0.044 (14) 0.005 (14) 0.005 (13) C27 0.129 (10) 0.106 (8) 0.184 (11) 0.006 (8) 0.013 (9) 0.035 (8) C28 0.138 (10) 0.111 (9) 0.209 (13) 0.017 (9) 0.029 (10) 0.030 (9) C29 0.139 (11) 0.105 (10) 0.216 (14) 0.030 (10) 0.046 (12) 0.039 (11) C30 0.144 (15) 0.074 (10) 0.216 (19) 0.033 (11) 0.063 (15) 0.021 (14)	C24	0.146 (11)	0.114 (10)	0.117 (10)	0.028 (8)	0.008 (8)	0.048 (8)
C26 0.180 (17) 0.135 (15) 0.138 (15) 0.044 (14) 0.005 (16) 0.045 (9) C27 0.129 (10) 0.106 (8) 0.184 (11) 0.006 (8) 0.013 (9) 0.035 (8) C28 0.138 (10) 0.111 (9) 0.209 (13) 0.017 (9) 0.029 (10) 0.030 (9) C29 0.139 (11) 0.105 (10) 0.216 (14) 0.030 (10) 0.046 (12) 0.039 (11) C30 0.144 (15) 0.074 (10) 0.216 (19) 0.033 (11) 0.063 (15) 0.021 (14)	C25	0.157(12)	0.118 (11)	0.109(10)	0.033(10)	0.007(10)	0.043 (9)
C27 0.129 (10) 0.106 (12) 0.106 (12) 0.006 (11) 0.000 (15) C28 0.138 (10) 0.111 (9) 0.209 (13) 0.017 (9) 0.029 (10) 0.030 (9) C29 0.139 (11) 0.105 (10) 0.216 (14) 0.030 (10) 0.046 (12) 0.039 (11) C30 0.144 (15) 0.074 (10) 0.216 (19) 0.033 (11) 0.063 (15) 0.021 (14)	C26	0.180(17)	0.135 (15)	0.138 (15)	0.044 (14)	0.005(14)	0.005(13)
C28 0.138 (10) 0.111 (9) 0.209 (13) 0.017 (9) 0.029 (10) 0.030 (9) C29 0.139 (11) 0.105 (10) 0.216 (14) 0.030 (10) 0.046 (12) 0.039 (11) C30 0.144 (15) 0.074 (10) 0.216 (19) 0.033 (11) 0.063 (15) 0.021 (14)	C27	0.129 (10)	0.106 (8)	0.184(11)	0.006 (8)	0.013 (9)	0.035 (8)
C29 0.139 (11) 0.105 (10) 0.216 (14) 0.030 (10) 0.046 (12) 0.039 (11) C30 0.144 (15) 0.074 (10) 0.216 (19) 0.033 (11) 0.063 (15) 0.021 (14)	C28	0.138(10)	0.111 (9)	0.209(13)	0.017(9)	0.029(10)	0.030 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.139 (11)	0.105(10)	0.216(14)	0.030(10)	0.046(12)	0.039(11)
	C30	0.144 (15)	0.074 (10)	0.216 (19)	0.033 (11)	0.063(15)	0.021 (14)

C11	0.063 (4)	0.123 (7)	0.230 (10)	-0.008 (4)	0.002 (4)	-0.014 (6)
Cl2	0.040 (2)	0.051 (2)	0.079 (2)	0.0002 (15)	-0.0026 (15)	-0.0017 (17)
C31	0.058 (6)	0.091 (7)	0.169 (14)	0.011 (8)	-0.018 (8)	-0.003 (10)
C32	0.051 (6)	0.075 (6)	0.162 (13)	0.007 (6)	-0.026 (7)	-0.001 (10)
Cl3	0.166 (7)	0.133 (5)	0.123 (5)	0.028 (11)	0.057 (9)	0.001 (4)
Cl4	0.082 (4)	0.158 (7)	0.263 (19)	0.004 (5)	0.008 (6)	0.004 (14)
C33	0.159 (14)	0.154 (14)	0.208 (16)	0.022 (12)	0.017 (14)	0.020 (14)
C34	0.150 (14)	0.162 (14)	0.223 (17)	0.013 (12)	0.010 (13)	0.026 (15)
C15	0.223 (15)	0.230 (15)	0.205 (13)	-0.046 (11)	-0.042 (11)	0.016 (10)
Cl6	0.150 (7)	0.205 (12)	0.217 (13)	-0.052 (8)	-0.034 (8)	-0.106 (10)
C35	0.166 (14)	0.205 (16)	0.196 (16)	-0.040 (13)	-0.033 (13)	-0.059 (13)
C36	0.147 (13)	0.200 (16)	0.185 (15)	-0.034 (12)	-0.024 (13)	-0.076 (13)
Cl7	0.100 (5)	0.166 (9)	0.128 (7)	-0.008 (5)	-0.007 (4)	0.052 (6)
C18	0.157 (10)	0.128 (5)	0.158 (10)	-0.024 (6)	-0.034 (6)	-0.031 (6)
C37	0.139 (13)	0.146 (12)	0.146 (12)	-0.025 (9)	-0.009 (12)	0.015 (11)
C38	0.150 (13)	0.162 (12)	0.163 (13)	-0.033 (10)	-0.009 (11)	-0.002 (11)

Geometric parameters (Å, °)

Ni1—N2	2.019 (4)	C17—C18	1.464 (19)
Ni1—N1	2.028 (4)	C17—H17A	0.9900
Ni1—N5	2.031 (4)	C17—H17B	0.9900
Ni1-02	2.1735 (12)	C18—H18A	0.9800
Nil—O1	2.175 (3)	C18—H18B	0.9800
Ni1-O3 ⁱ	2.181 (3)	C18—H18C	0.9800
Ni1—Ni1 ⁱⁱ	2.9859 (14)	C19—C20	1.451 (15)
Ni1—Ni2	2.9939 (10)	C19—H19A	0.9900
Ni1—Ni2 ⁱⁱⁱ	2.9988 (10)	C19—H19B	0.9900
Ni2—N4	2.023 (4)	C20—C21	1.436 (17)
Ni2—N6 ⁱⁱⁱ	2.025 (4)	C20—H20A	0.9900
Ni2—N3	2.027 (4)	C20—H20B	0.9900
Ni2—O3	2.175 (3)	C21—C22	1.48 (2)
Ni2—O2	2.1766 (12)	C21—H21A	0.9900
Ni2-01	2.178 (3)	C21—H21B	0.9900
Ni2—Ni2 ⁱⁱ	2.9835 (14)	C22—H22A	0.9800
01—H10	0.85 (2)	C22—H22B	0.9800
O2—H2O	0.84 (2)	C22—H22C	0.9800
O3—H3O	0.85 (2)	N14—C27	1.519 (13)
N1—N1 ⁱⁱ	1.337 (8)	N14—C23	1.527 (13)
N1—C1	1.339 (6)	C23—C24	1.447 (17)
N2—N3	1.341 (6)	C23—H23A	0.9900
N2-C4	1.350 (6)	C23—H23B	0.9900
N3—C6	1.346 (6)	C24—C25	1.462 (17)
N4—N4 ⁱⁱ	1.329 (8)	C24—H24A	0.9900
N4—C8	1.341 (6)	C24—H24B	0.9900
N5—N6	1.333 (6)	C25—C26	1.46 (2)
N5-C11	1.336 (6)	C25—H25	0.9500
N6-C13	1.349 (6)	C26—H26A	0.9800

C1—C2	1.387 (7)	C26—H26B	0.9800
C1—H1	0.9500	C26—H26C	0.9800
C2—C3	1.506 (10)	C27—C28	1.454 (16)
С3—НЗА	0.9800	С27—Н27А	0.9900
С3—Н3В	0.9800	С27—Н27В	0.9900
С3—НЗС	0.9800	C28—C29	1.436 (17)
C3—H3A ⁱⁱ	0.98 (8)	C28—H28A	0.9900
С3—Н3Віі	0.98 (6)	C28—H28B	0.9900
С3—НЗСіі	0.98 (2)	C29—C30	1.472 (19)
C4—C5	1.402 (9)	С29—Н29А	0.9900
C4—H4	0.9500	С29—Н29В	0.9900
C5—C6	1.375 (9)	C30—H30A	0.9800
С5—С7	1.512 (8)	С30—Н30В	0.9800
С6—Н6	0.9500	С30—Н30С	0.9800
C7—H7A	0.9800	Cl1—C31	1.619 (18)
С7—Н7В	0.9800	Cl2—C32	1.811 (15)
C7—H7C	0.9800	C31—C32	1.414 (13)
C8—C9	1.377 (8)	C31—H31A	0.9900
C8—H8	0.9500	C31—H31B	0.9900
C9—C10	1.509 (10)	С32—Н32А	0.9900
С10—Н10А	0.9800	С32—Н32В	0.9900
C10—H10B	0.9800	Cl3—C33	1.59 (2)
C10—H10C	0.9800	C14—C34	1.801 (19)
C10—H10A ⁱⁱ	0.98 (6)	C33—C34	1.42 (2)
C10—H10B ⁱⁱ	0.98 (4)	С33—Н33А	0.9900
C10—H10C ⁱⁱ	0.98 (10)	С33—Н33В	0.9900
C11—C12	1.397 (9)	C34—H34A	0.9900
C11—H11	0.9500	C34—H34B	0.9900
C12—C13	1.370 (9)	C15—C35	1.60 (2)
C12—C14	1.508 (9)	C16—C36	1.791 (19)
C13—H13	0.9500	C35—C36	1.43 (2)
C14—H14A	0.9800	С35—Н35А	0.9900
C14—H14B	0.9800	С35—Н35В	0.9900
C14—H14C	0.9800	С36—Н36А	0.9900
N13—N13 ^{iv}	1.12 (3)	С36—Н36В	0.9900
N13—C19	1.507 (13)	C17—C37	1.615 (19)
N13—C15	1.524 (12)	C18—C38	1.741 (17)
C15—C16	1.432 (16)	С37—С38	1.474 (19)
C15—H15A	0.9900	С37—Н37А	0.9900
C15—H15B	0.9900	С37—Н37В	0.9900
C16—C17	1.450 (16)	C38—H38A	0.9900
C16—H16A	0.9900	C38—H38B	0.9900
C16—H16B	0.9900		
N2—Ni1—N1	96.13 (17)	H10A-C10-H10A ⁱⁱ	35.3
N2—Ni1—N5	95.70 (18)	H10B-C10-H10A ⁱⁱ	76.8
N1—Ni1—N5	97.14 (16)	H10C-C10-H10A ⁱⁱ	135.3
N2—Ni1—O2	91.76 (14)	С9—С10—Н10Віі	109.5 (8)

N1—Ni1—O2	169.03 (16)	H10A—C10—H10B ⁱⁱ	76.8
N5—Ni1—O2	89.63 (14)	H10B-C10-H10B ⁱⁱ	135.3
N2—Ni1—O1	89.99 (15)	H10C-C10-H10B ⁱⁱ	35.3
N1—Ni1—O1	91.17 (15)	H10A ⁱⁱ —C10—H10B ⁱⁱ	109.5
N5—Ni1—O1	169.36 (16)	C9—C10—H10C ⁱⁱ	109 (2)
O2—Ni1—O1	81.20 (13)	H10A-C10-H10C ⁱⁱ	135.3
N2—Ni1—O3 ⁱ	169.78 (17)	H10B-C10-H10C ⁱⁱ	35.3
N1—Ni1—O3 ⁱ	90.20 (15)	H10C-C10-H10C ⁱⁱ	76.8
N5—Ni1—O3 ⁱ	91.45 (15)	H10A ⁱⁱ —C10—H10C ⁱⁱ	109.5
O2—Ni1—O3 ⁱ	80.97 (13)	H10B ⁱⁱ —C10—H10C ⁱⁱ	109.5
O1—Ni1—O3 ⁱ	81.84 (12)	N5—C11—C12	110.4 (5)
N2—Ni1—Ni1 ⁱⁱ	129.41 (12)	N5—C11—H11	124.8
N1—Ni1—Ni1 ⁱⁱ	66.02 (11)	C12—C11—H11	124.8
N5—Ni1—Ni1 ⁱⁱ	131.82 (13)	C13—C12—C11	102.9 (5)
O2—Ni1—Ni1 ⁱⁱ	103.06 (11)	C13—C12—C14	127.7 (7)
O1—Ni1—Ni1 ⁱⁱ	46.66 (7)	C11—C12—C14	129.3 (7)
O3 ⁱ —Ni1—Ni1 ⁱⁱ	46.80 (7)	N6—C13—C12	110.5 (5)
N2—Ni1—Ni2	66.05 (13)	N6—C13—H13	124.8
N1—Ni1—Ni2	131.00 (12)	C12—C13—H13	124.8
N5—Ni1—Ni2	128.46 (12)	C12—C14—H14A	109.5
02—Ni1—Ni2	46.55 (3)	C12—C14—H14B	109.5
01—Ni1—Ni2	46.58 (8)	H14A—C14—H14B	109.5
$O3^{i}$ Ni1 Ni2	103.75 (11)	C12—C14—H14C	109.5
Ni1 ⁱⁱ —Ni1—Ni2	89.976 (18)	H14A - C14 - H14C	109.5
N2—Ni1—Ni2 ⁱⁱⁱ	131.15 (13)	H14B—C14—H14C	109.5
N1—Ni1—Ni2 ⁱⁱⁱ	129.39 (12)	$N13^{iv}$ — $N13$ — $C19$	54.0 (9)
N5—Ni1—Ni2 ⁱⁱⁱ	65.70 (12)	N13 ^{iv} —N13—C15	123.7 (8)
O2—Ni1—Ni2 ⁱⁱⁱ	46.46 (3)	C19—N13—C15	107.9 (9)
O1—Ni1—Ni2 ⁱⁱⁱ	103.83 (11)	C16—C15—N13	121.8 (13)
O3 ⁱ —Ni1—Ni2 ⁱⁱⁱ	46.40 (8)	C16—C15—H15A	106.9
Ni1 ⁱⁱ —Ni1—Ni2 ⁱⁱⁱ	89.975 (18)	N13—C15—H15A	106.9
Ni2—Ni1—Ni2 ⁱⁱⁱ	90.08 (3)	C16—C15—H15B	106.9
N4—Ni2—N6 ⁱⁱⁱ	96.94 (17)	N13—C15—H15B	106.9
N4—Ni2—N3	96.66 (17)	H15A—C15—H15B	106.7
N6 ⁱⁱⁱ —Ni2—N3	95.90 (18)	C15—C16—C17	118.5 (16)
N4—Ni2—O3	90.40 (15)	C15—C16—H16A	107.7
N6 ⁱⁱⁱ —Ni2—O3	91.01 (15)	C17—C16—H16A	107.7
N3—Ni2—O3	169.43 (16)	C15—C16—H16B	107.7
N4—Ni2—O2	168.93 (16)	C17—C16—H16B	107.7
N6 ⁱⁱⁱ —Ni2—O2	90.27 (14)	H16A—C16—H16B	107.1
N3—Ni2—O2	90.92 (14)	C16—C17—C18	114.5 (16)
O3—Ni2—O2	81.04 (13)	С16—С17—Н17А	108.6
N4—Ni2—O1	90.80 (15)	С18—С17—Н17А	108.6
N6 ⁱⁱⁱ —Ni2—O1	169.48 (17)	С16—С17—Н17В	108.6
N3—Ni2—O1	90.24 (14)	C18—C17—H17B	108.6
O3—Ni2—O1	81.79 (12)	H17A—C17—H17B	107.6
O2—Ni2—O1	81.08 (13)	C17—C18—H18A	109.5
N4—Ni2—Ni2 ⁱⁱ	65.86 (11)	C17—C18—H18B	109.5
		,	

N6 ⁱⁱⁱ —Ni2—Ni2 ⁱⁱ	131.01 (13)	H18A—C18—H18B	109.5
N3—Ni2—Ni2 ⁱⁱ	130.07 (12)	C17—C18—H18C	109.5
O3—Ni2—Ni2 ⁱⁱ	46.69 (7)	H18A—C18—H18C	109.5
O2—Ni2—Ni2 ⁱⁱ	103.07 (11)	H18B—C18—H18C	109.5
O1—Ni2—Ni2 ⁱⁱ	46.76 (7)	C20-C19-N13	117.8 (16)
N4—Ni2—Ni1	130.48 (12)	С20—С19—Н19А	107.9
N6 ⁱⁱⁱ —Ni2—Ni1	129.25 (13)	N13—C19—H19A	107.9
N3—Ni2—Ni1	65.71 (12)	С20—С19—Н19В	107.9
O3—Ni2—Ni1	103.72 (11)	N13—C19—H19B	107.9
O2—Ni2—Ni1	46.47 (3)	H19A—C19—H19B	107.2
O1—Ni2—Ni1	46.51 (8)	C21—C20—C19	126.3 (18)
Ni2 ⁱⁱ —Ni2—Ni1	90.024 (18)	C21—C20—H20A	105.7
N4—Ni2—Ni1 ⁱⁱⁱ	129.98 (13)	C19—C20—H20A	105.7
$N6^{iii}$ —Ni2—Ni1 ⁱⁱⁱ	65.79 (12)	C21—C20—H20B	105.7
N3—Ni2—Ni1 ⁱⁱⁱ	130.14 (12)	C19—C20—H20B	105.7
03—Ni2—Ni1 ⁱⁱⁱ	46.57 (8)	H20A—C20—H20B	106.2
Ω^2 —Ni2—Ni1 ⁱⁱⁱ	46 38 (3)	C_{20} C_{21} C_{22}	114 (2)
01—Ni2—Ni1 ⁱⁱⁱ	103.75(11)	C_{20} C_{21} H_{21A}	108.9
Ni2"—Ni2—Ni1"	90.023 (18)	$C_{22} = C_{21} = H_{21A}$	108.9
Ni1—Ni2—Ni1 ⁱⁱⁱ	89.93 (3)	C_{20} C_{21} H_{21B}	108.9
Ni1 ⁱⁱ —O1—Ni1	86 68 (15)	$C_{22} = C_{21} = H_{21B}$	108.9
Ni1 ⁱⁱ —O1—Ni2	152 4 (2)	$H_{21}A - C_{21} - H_{21}B$	107.7
Ni1-01-Ni2	86 91 (6)	C_{21} C_{22} H_{22A}	109.5
$Ni1^{ii}$ 01 $Ni2^{ii}$	86.91 (6)	$C_{21} = C_{22} = H_{22R}$	109.5
$Ni1 - O1 - Ni2^{ii}$	1524(2)	$H_{22} = C_{22} = H_{22} B$	109.5
$Ni2 - 01 - Ni2^{ii}$	86.47 (15)	1122A - C22 - 1122B C21 - C22 - H22C	109.5
$N_{11}^{ii} - 01 - H_{10}^{ii}$	112(4)	$H_{22} = H_{22} = H$	109.5
Ni1_01_H10	112 (4)	$H_{22}R_{-C_{22}}H_{22}C$	109.5
Ni2 01 H10	112(4)	1122D - C22 - 1122C	109.5
Ni2 = 01 = H10	95 (4) 95 (4)	$C_{27} = N_{14} = C_{23}$	110.0(10) 1210(15)
$N_{12} = 01 = 110$	55(4)	$C_{24} = C_{23} = N_{14}$	121.0(13)
Ni1 = 02 = Ni1	133.9 (2) 87.16 (5)	N14 C23 H23A	107.1
N11 - 02 - N12	87.10 (5) 86.08 (5)	N14 - C23 - H23A	107.1
$\frac{1}{10000000000000000000000000000000000$	86.08 (5)	N14 C22 H22D	107.1
NI1 - O2 - NI2	80.98 (<i>J</i>) 87.16 (<i>S</i>)	N14 - C23 - H23D	107.1
N12 = 02 = N2	07.10(3)	$H_{23}A - C_{23} - H_{23}B$	100.8
$\frac{1}{12} - \frac{1}{12} - \frac{1}{12}$	133.9(2) 102.06(11)	$C_{23} = C_{24} = C_{23}$	113.4 (19)
NII = 02 = H20	103.00(11) 102.06(11)	$C_{25} = C_{24} = H_{24A}$	108.4
$N11^{}O2-H2O$	103.00(11) 102.07(11)	C_{23} C_{24} H_{24} H_{24} C_{23} C_{24} H_{24} H_{24} H_{24}	108.4
Ni2	103.07(11) 102.07(11)	С25—С24—Н24В	108.4
N12 - O2 - H2O	103.07(11)	C25—C24—H24B	108.4
$N12 - O3 - N12^{\circ}$	80.02(15)	$H_24A - C_24 - H_24B$	107.5
N12-03-N11	152.5 (2)	$C_{26} = C_{25} = C_{24}$	115.6 (19)
$N12^{}U3^{}N11^{+}$	87.02 (5)	$C_{20} - C_{23} - H_{23}$	122.2
N12	δ/.U2 (5) 152 5 (2)	$C_{24} = C_{25} = H_{25}$	122.2
$N12^{}U3^{}N11^{}$	152.5 (2)	C_{25} — C_{26} — $H_{26}A$	109.5
N11'	80.41 (15)	$U_{20} - U_{20} - H_{20}B$	109.5
N12—O3—H3O	108 (4)	H26A—C26—H26B	109.5
N12 ⁿ —O3—H3O	108 (4)	C25—C26—H26C	109.5

$\begin{split} & \text{Ni} \mathbb{I}^{\text{m}} = \text{O3} = \text{H3O} & 100 (4) & \text{H26B} = \text{C26} = \text{H26C} & 109.5 \\ & \text{Ni}^{\text{m}} = \text{Ni} = \text{O1} & 108.2 (3) & \text{C28} = \text{C27} = \text{Ni}4 & 17.6 (17) \\ & \text{Ni}^{\text{m}} = \text{Ni} = \text{Ni} & 137.8 (4) & \text{Ni} = \text{C27} = \text{H27A} & 107.9 \\ & \text{C1} = \text{Ni} = \text{Ni} & 137.8 (4) & \text{Ni} = \text{C27} = \text{H27A} & 107.9 \\ & \text{N3} = \text{N2} = \text{O1} & 108.6 (4) & \text{C28} = \text{C27} = \text{H27B} & 107.9 \\ & \text{N3} = \text{N2} = \text{Ni} & 144.0 (3) & \text{Ni} = \text{C27} = \text{H27B} & 107.2 \\ & \text{N3} = \text{N2} = \text{Ni} & 137.2 (4) & \text{H27A} = \text{C27} = \text{H27B} & 107.2 \\ & \text{N2} = \text{N3} = \text{O2} & 114.2 (3) & \text{C29} = \text{C28} = \text{H28A} & 105.2 \\ & \text{C6} = \text{N3} = \text{Ni} & 107.6 (3) & \text{C29} = \text{C28} = \text{H28A} & 105.2 \\ & \text{C6} = \text{N3} = \text{Ni} & 107.6 (3) & \text{C29} = \text{C28} = \text{H28B} & 105.2 \\ & \text{N4} = \text{N4} = \text{Ni} & 107.6 (3) & \text{C29} = \text{C28} = \text{H28B} & 105.2 \\ & \text{N4} = \text{N4} = \text{Ni} & 107.6 (3) & \text{C29} = \text{C28} = \text{H28B} & 105.2 \\ & \text{N4} = \text{N4} = \text{Ni} & 107.6 (3) & \text{C29} = \text{C28} = \text{H28B} & 105.2 \\ & \text{N4} = \text{N4} = \text{Ni} & 107.9 (4) & \text{C28} = \text{C29} = \text{H28B} & 105.9 \\ & \text{N6} = \text{N5} = \text{C11} & 107.9 (4) & \text{C28} = \text{C29} = \text{H28B} & 107.9 \\ & \text{C1} = \text{N5} = \text{Ni} & 114.4 (3) & \text{C30} = \text{C29} = \text{H29B} & 107.9 \\ & \text{N5} = \text{N6} = \text{Ni}^{2} & 114.4 (3) & \text{C30} = \text{C29} = \text{H29B} & 107.9 \\ & \text{N5} = \text{N6} = \text{Ni}^{2} & 137.1 (4) & \text{H29A} = \text{C29} = \text{H29B} & 107.9 \\ & \text{N1} = \text{C1} = \text{C2} & 110.1 (5) & \text{C29} = \text{C30} = \text{H30B} & 109.5 \\ & \text{C1} = \text{C2} = \text{C1} = \text{H3} & 109.5 & \text{C3} = \text{C30} = \text{H30B} & 109.5 \\ & \text{C1} = \text{C2} = \text{C1} = \text{H3} & 109.5 & \text{C3} = \text{C30} = \text{H30B} & 109.5 \\ & \text{C1} = \text{C2} = \text{C1} = 10.3 3.6 (6) & \text{C29} = \text{C30} = \text{H30B} & 109.5 \\ & \text{C1} = \text{C2} = \text{C3} = 133.6 & 109.5 & \text{C3} = \text{C3} = \text{C1} = 19.5 \\ & \text{C2} = \text{C3} = \text{H3A} & 109.5 & \text{C3} = \text{C3} = \text{H31A} & 106.4 \\ & \text{H3A} = \text{C3} = \text{H3A} & 109.5 & \text{C3} = \text{C3} = \text{H31B} & 106.5 \\ & \text{C2} = \text{C3} = \text{H3B} & 109.5 & \text{C3} = \text{C3} = \text{H31A} & 106.5 \\ & \text{C3} = \text{C3} = \text{H3A} & 109.5 & \text{C3} = \text{C3} = \text{H31B} & 106.5 \\ & \text{C3} = \text{C3} = $	Ni1 ⁱ —O3—H3O	100 (4)	H26A—C26—H26C	109.5
$\begin{split} & NI^{\texttt{H}} = NI - C1 & 1082 (3) & C28 - C27 - N14 & 117,6 (17) \\ & NI^{\texttt{H}} = NI - NI & 11398 (11) & C28 - C27 - H27A & 107,9 \\ & N3 - N2 - C4 & 108,6 (4) & C28 - C27 - H27B & 107,9 \\ & N3 - N2 - C4 & 108,6 (4) & C28 - C27 - H27B & 107,9 \\ & N3 - N2 - N11 & 114,0 (3) & N14 - C27 - H27B & 107,2 \\ & N2 - N3 - C6 & 107,5 (4) & C29 - C28 - C27 & 128 (2) \\ & N2 - N3 - N2 & C13 & C23 & C29 - C28 - H28A & 105,2 \\ & C6 - N3 - N12 & 114,2 (3) & C29 - C28 - H28A & 105,2 \\ & C6 - N3 - N12 & 114,14 (11) & C27 - C28 - H28B & 105,2 \\ & C4 - N4 - N4 - C8 & 107,6 (3) & C29 - C28 - H28B & 105,2 \\ & N4 - N4 - N4 - N12 & 114,14 (11) & C28 - C29 - C28 & H28A & 105,9 \\ & N6 - N5 - C11 & 107,9 (4) & C28 - C29 - H23B & 107,9 \\ & C11 - N5 - N11 & 114,14 (3) & C28 - C29 - H29A & 107,9 \\ & C11 - N5 - N11 & 114,14 (3) & C29 - C29 - H29B & 107,9 \\ & N5 - N6 - C13 & 108,2 (4) & C28 - C29 - H29B & 107,9 \\ & C13 - N6 - N12^{m} & 114,4 (3) & C30 - C29 - H29B & 107,9 \\ & C1 - C2 & 110,1 (5) & C29 - C30 - H30A & 109,5 \\ & C2 - C1 - H1 & 124,9 & C29 - C30 - H30A & 109,5 \\ & C1 - C2 - C1^{m} & 103,3 (6) & C29 - C30 - H30B & 109,5 \\ & C1 - C2 - C3 & 128,4 (3) & H30A - C30 - H30B & 109,5 \\ & C1 - C2 - C3 & 128,4 (3) & H30A - C30 - H30B & 109,5 \\ & C1 - C2 - C3 & 128,4 (3) & H30A - C30 - H30B & 109,5 \\ & C1 - C2 - C3 & 128,4 (3) & H30B - C30 - H30C & 109,5 \\ & C1 - C2 - C3 & H31A & 105,4 \\ & C2 - C3 - H33B & 109,5 & C31 - C32 - H32B & 107,5 \\ & C2$	Ni1 ⁱⁱⁱ —O3—H3O	100 (4)	H26B—C26—H26C	109.5
$\begin{split} & \text{NI}^{\pm}-\text{N1}-\text{Ni}1 & 13.98(11) & \text{C28}-\text{C27}-\text{H27A} & 107.9 \\ & \text{C1}-\text{N1}-\text{Ni}1 & 137.8(4) & \text{N14}-\text{C27}-\text{H27B} & 107.9 \\ & \text{N3}-\text{N2}-\text{C4} & 108.6(4) & \text{C28}-\text{C27}-\text{H27B} & 107.9 \\ & \text{N3}-\text{N2}-\text{Ni}1 & 114.0(3) & \text{N14}-\text{C27}-\text{H27B} & 107.9 \\ & \text{N3}-\text{N2}-\text{Ni}1 & 137.2(4) & \text{H27A}-\text{C27}-\text{H27B} & 107.9 \\ & \text{N2}-\text{N3}-\text{C6} & 107.5(4) & \text{C29}-\text{C28}-\text{C27} & 128(2) \\ & \text{N2}-\text{N3}-\text{C6} & 107.5(4) & \text{C29}-\text{C28}-\text{H28A} & 105.2 \\ & \text{C4}-\text{N3}-\text{Ni2} & 114.2(3) & \text{C29}-\text{C28}-\text{H28B} & 105.2 \\ & \text{C6}-\text{N3}-\text{Ni2} & 138.3(4) & \text{C27}-\text{C28}-\text{H28B} & 105.2 \\ & \text{N4}^{\pm}-\text{N4}-\text{C8} & 107.6(3) & \text{C29}-\text{C28}-\text{H28B} & 105.2 \\ & \text{N4}^{\pm}-\text{N4}-\text{N2} & 114.14(11) & \text{C27}-\text{C28}-\text{H28B} & 105.2 \\ & \text{C8}-\text{N4}-\text{Ni2} & 138.2(4) & \text{H28A}-\text{C28}-\text{H28B} & 105.2 \\ & \text{C8}-\text{N4}-\text{Ni2} & 138.2(4) & \text{C28}-\text{C29}-\text{C30} & 117(2) \\ & \text{N6}-\text{N5}-\text{N11} & 177.9(4) & \text{C28}-\text{C29}-\text{H29B} & 107.9 \\ & \text{N5}-\text{N6}-\text{C13} & 108.2(4) & \text{C28}-\text{C29}-\text{H29B} & 107.9 \\ & \text{N5}-\text{N6}-\text{C13} & 108.2(4) & \text{C28}-\text{C29}-\text{H29B} & 107.9 \\ & \text{N5}-\text{N6}-\text{N12}^{\text{in}} & 114.4(3) & \text{C30}-\text{C29}-\text{H29B} & 107.9 \\ & \text{N1}-\text{C1}-\text{C2} & 110.1(5) & \text{C29}-\text{C30}-\text{H30A} & 109.5 \\ & \text{N1}-\text{C1}-\text{C2} & 110.1(5) & \text{C29}-\text{C30}-\text{H30B} & 109.5 \\ & \text{N1}-\text{C1}-\text{C2} & 10.1(5) & \text{C29}-\text{C30}-\text{H30B} & 109.5 \\ & \text{C1}-\text{C2}-\text{C1}^{\text{in}} & 133.16(6) & \text{C29}-\text{C30}-\text{H30B} & 109.5 \\ & \text{C1}-\text{C2}-\text{C1}^{\text{in}} & 133.16(6) & \text{C29}-\text{C30}-\text{H30B} & 109.5 \\ & \text{C1}-\text{C2}-\text{C1}^{\text{in}} & 103.3(6) & \text{C29}-\text{C30}-\text{H30B} & 109.5 \\ & \text{C1}-\text{C2}-\text{C3} & 128.4(3) & \text{H30A}-\text{C30}-\text{H30C} & 109.5 \\ & \text{C1}-\text{C2}-\text{C3} & 128.4(3) & \text{H30A}-\text{C30}-\text{H30C} & 109.5 \\ & \text{C1}-\text{C2}-\text{C1}^{\text{in}} & 109.5 & \text{C1}-\text{C1}-\text{H1} & 123.6(15) \\ & \text{C2}-\text{C3}-\text{H3A} & 109.5 & \text{C1}-\text{C3}-\text{H31A} & 106.4 \\ & \text{H3A}-\text{C3}-\text{H3B} & 109.5 & \text{C1}-\text{C3}-\text{H31A} & 106.4 \\ & \text{H3A}-\text{C3}-\text{H3B} & 109.5 & \text{C1}-\text{C3}-\text{H31A} & 106.4 \\ & \text{H3A}-\text{C3}-\text{H3B} & 109.5 & \text{C3}-\text{C3}-\text{H33A} & 107.5 \\ & \text{H3A}$	N1 ⁱⁱ —N1—C1	108.2 (3)	C28—C27—N14	117.6 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱⁱ —N1—Ni1	113.98 (11)	С28—С27—Н27А	107.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1—N1—Ni1	137.8 (4)	N14—C27—H27A	107.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N3—N2—C4	108.6 (4)	С28—С27—Н27В	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—N2—Ni1	114.0 (3)	N14—C27—H27B	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N2—Ni1	137.2 (4)	H27A—C27—H27B	107.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N3—C6	107.5 (4)	C29—C28—C27	128 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N3—Ni2	114.2 (3)	C29—C28—H28A	105.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C6—N3—Ni2	138.3 (4)	C27—C28—H28A	105.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4 ⁱⁱ —N4—C8	107.6 (3)	C29—C28—H28B	105.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4 ⁱⁱ —N4—Ni2	114.14 (11)	C27—C28—H28B	105.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N4—Ni2	138.2 (4)	H28A—C28—H28B	105.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—N5—C11	107.9 (4)	C28—C29—C30	117 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6—N5—Ni1	114.1 (3)	C28—C29—H29A	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—N5—Ni1	137.9 (4)	С30—С29—Н29А	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5—N6—C13	108.2 (4)	C28—C29—H29B	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5—N6—Ni2 ⁱⁱⁱ	114.4 (3)	C30—C29—H29B	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C13 - N6 - Ni2^{iii}$	137.1 (4)	H29A—C29—H29B	107.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C1-C2	110.1 (5)	C29—C30—H30A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—H1	124.9	C29—C30—H30B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—H1	124.9	H30A—C30—H30B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C1 ⁱⁱ	103.3 (6)	С29—С30—Н30С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	128.4 (3)	H30A—C30—H30C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C1^{ii}$ — $C2$ — $C3$	128.4 (3)	H30B—C30—H30C	109.5
C2—C3—H3B109.5C32—C31—H31A106.4H3A—C3—H3B109.5C11—C31—H31A106.4C2—C3—H3C109.5C32—C31—H31B106.4H3A—C3—H3C109.5C11—C31—H31B106.4H3B—C3—H3C109.5H31A—C31—H31B106.5C2—C3—H3A ⁱⁱ 109.5(17)C31—C32—C12119.1 (15)H3A—C3—H3A ⁱⁱ 109.5 (17)C31—C32—H32A107.5H3B—C3—H3A ⁱⁱ 138.1C12—C32—H32A107.5H3C—C3—H3A ⁱⁱ 109.5 (13)C12—C32—H32B107.5H3C—C3—H3B ⁱⁱ 109.5 (13)C12—C32—H32B107.0H3B—C3—H3B ⁱⁱ 138.1H32A—C32—H32B107.0H3B—C3—H3B ⁱⁱ 109.5C13—C33—H33A107.2H3A ⁱⁱ _C3—H3B ⁱⁱ 109.5C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5C33—C34—H34B106.8H3C—C3—H3C ⁱⁱ 109.5C33—C34—H34A109.5H3A ⁱⁱ _C3—H3C ⁱⁱ 109.5C33—C34—H34B109.5N2—C4—C5109.5 (5)C33—C34—H34B109.5	С2—С3—НЗА	109.5	C32—C31—C11	123.6 (15)
H3A—C3—H3B109.5Cl1—C31—H31A106.4C2—C3—H3C109.5C32—C31—H31B106.4H3A—C3—H3C109.5Cl1—C31—H31B106.4H3B—C3—H3C109.5H31A—C31—H31B106.5C2—C3—H3A ⁱⁱ 109.5 (17)C31—C32—Cl2119.1 (15)H3A—C3—H3A ⁱⁱ 70.8C31—C32—H32A107.5H3B—C3—H3A ⁱⁱ 138.1Cl2—C32—H32A107.5H3C—C3—H3A ⁱⁱ 109.5 (13)Cl2—C32—H32B107.5C2—C3—H3B ⁱⁱ 109.5 (13)Cl2—C32—H32B107.0H3B—C3—H3B ⁱⁱ 138.1H32A—C32—H32B107.0H3B—C3—H3B ⁱⁱ 109.5 (13)Cl2—C32—H32B107.0H3B—C3—H3B ⁱⁱ 109.5 (5)C34—C33—H33A107.2H3A ⁱⁱ —C3—H3B ⁱⁱ 109.5Cl3—C33—H33A107.2H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B106.8H3C—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B106.8H3C—C3—H3C ⁱⁱ 109.5 (5)C33—C34—H34A109.5H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5C33—C34—H34A109.5H3B ⁱⁱ —C3—H3C ⁱⁱ 109.5C14—C34—H34A109.5H3B ⁱⁱ —C3—H3C ⁱⁱ 109.5 (5)C33—C34—H34B109.5	С2—С3—Н3В	109.5	С32—С31—Н31А	106.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	НЗА—СЗ—НЗВ	109.5	Cl1—C31—H31A	106.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3С	109.5	C32—C31—H31B	106.4
H3B—C3—H3C109.5H31A—C31—H31B106.5C2—C3—H3A ⁱⁱ 109.5 (17)C31—C32—Cl2119.1 (15)H3A—C3—H3A ⁱⁱ 70.8C31—C32—H32A107.5H3B—C3—H3A ⁱⁱ 138.1Cl2—C32—H32A107.5H3C—C3—H3A ⁱⁱ 41.6C31—C32—H32B107.5C2—C3—H3B ⁱⁱ 109.5 (13)Cl2—C32—H32B107.5H3A—C3—H3B ⁱⁱ 138.1H32A—C32—H32B107.0H3B—C3—H3B ⁱⁱ 138.1H32A—C33—Cl3121 (2)H3C—C3—H3B ⁱⁱ 70.8C34—C33—H33A107.2H3A ⁱⁱ —C3—H3B ⁱⁱ 109.5 (5)C34—C33—H33A107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B106.8H3C—C3—H3C ⁱⁱ 109.5 (5)C33—C34—Cl4110.6 (18)H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5C13—C34—H34A109.5H3B—C3—H3C ⁱⁱ 109.5C33—C34—H34A109.5H3B—C3—H3C ⁱⁱ 109.5C33—C34—H34A109.5	НЗА—СЗ—НЗС	109.5	Cl1—C31—H31B	106.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	НЗВ—СЗ—НЗС	109.5	H31A—C31—H31B	106.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—H3A ⁱⁱ	109.5 (17)	C31—C32—Cl2	119.1 (15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H3A—C3—H3A ⁱⁱ	70.8	С31—С32—Н32А	107.5
H3C—C3—H3A ⁱⁱ 41.6C31—C32—H32B107.5C2—C3—H3B ⁱⁱ 109.5 (13)Cl2—C32—H32B107.0H3A—C3—H3B ⁱⁱ 138.1H32A—C32—H32B107.0H3B—C3—H3B ⁱⁱ 41.6C34—C33—Cl3121 (2)H3C—C3—H3B ⁱⁱ 70.8C34—C33—H33A107.2C2—C3—H3B ⁱⁱ 109.5Cl3—C33—H33A107.2H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3A—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2H3B—C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B106.8H3C—C3—H3C ⁱⁱ 138.1C33—C34—Cl4110.6 (18)H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5Cl3—C34—H34A109.5H3B ⁱⁱ —C3—H3C ⁱⁱ 109.5Cl4—C34—H34A109.5N2—C4—C5109.5 (5)C33—C34—H34B109.5	H3B—C3—H3A ⁱⁱ	138.1	Cl2—C32—H32A	107.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3C—C3—H3A ⁱⁱ	41.6	C31—C32—H32B	107.5
H3A-C3-H3B ⁱⁱ 138.1H32A-C32-H32B107.0H3B-C3-H3B ⁱⁱ 41.6 $C34-C33-Cl3$ 121 (2)H3C-C3-H3B ⁱⁱ 70.8 $C34-C33-H33A$ 107.2H3A ⁱⁱ -C3-H3B ⁱⁱ 109.5 $Cl3-C33-H33A$ 107.2C2-C3-H3C ⁱⁱ 109.5 (5) $C34-C33-H33B$ 107.2H3A-C3-H3C ⁱⁱ 109.5 (5) $C34-C33-H33B$ 107.2H3B-C3-H3C ⁱⁱ 109.5 (5) $C34-C33-H33B$ 107.2H3B-C3-H3C ⁱⁱ 70.7H33A-C33-H33B106.8H3C-C3-H3C ⁱⁱ 138.1 $C33-C34-Cl4$ 110.6 (18)H3A ⁱⁱ -C3-H3C ⁱⁱ 109.5 $C33-C34-H34A$ 109.5H3B ⁱⁱ -C3-H3C ⁱⁱ 109.5 $Cl4-C34-H34A$ 109.5N2-C4-C5109.5 (5) $C33-C34-H34B$ 109.5	С2—С3—Н3Віі	109.5 (13)	Cl2—C32—H32B	107.5
H3B-C3-H3B ⁱⁱ 41.6C34-C33-Cl3121 (2)H3C-C3-H3B ⁱⁱ 70.8C34-C33-H33A107.2H3A ⁱⁱ -C3-H3B ⁱⁱ 109.5Cl3-C33-H33A107.2C2-C3-H3C ⁱⁱ 109.5 (5)C34-C33-H33B107.2H3A-C3-H3C ⁱⁱ 41.6Cl3-C33-H33B107.2H3B-C3-H3C ⁱⁱ 70.7H33A-C3-H33B106.8H3C-C3-H3C ⁱⁱ 109.5C34-C34-C14110.6 (18)H3A ⁱⁱ -C3-H3C ⁱⁱ 109.5C33-C34-C14109.5H3B ⁱⁱ -C3-H3C ⁱⁱ 109.5C14-C34-H34A109.5N2-C4-C5109.5 (5)C33-C34-H34B109.5	H3A—C3—H3B ⁱⁱ	138.1	H32A—C32—H32B	107.0
H3C-C3-H3B ⁱⁱ 70.8C34-C33-H33A107.2H3A ⁱⁱ -C3-H3B ⁱⁱ 109.5Cl3-C33-H33A107.2C2-C3-H3C ⁱⁱ 109.5 (5)C34-C33-H33B107.2H3A-C3-H3C ⁱⁱ 41.6Cl3-C33-H33B107.2H3B-C3-H3C ⁱⁱ 70.7H33A-C33-H33B106.8H3C-C3-H3C ⁱⁱ 109.5C34-C14110.6 (18)H3A ⁱⁱ -C3-H3C ⁱⁱ 109.5C33-C34-H34A109.5H3B ⁱⁱ -C3-H3C ⁱⁱ 109.5C14-C34-H34A109.5N2-C4-C5109.5 (5)C33-C34-H34B109.5	H3B—C3—H3B ⁱⁱ	41.6	C34—C33—Cl3	121 (2)
$H3A^{ii}$ —C3—H3B ⁱⁱ 109.5Cl3—C33—H33A107.2 $C2$ —C3—H3C ⁱⁱ 109.5 (5)C34—C33—H33B107.2 $H3A$ —C3—H3C ⁱⁱ 41.6Cl3—C33—H33B107.2 $H3B$ —C3—H3C ⁱⁱ 70.7H33A—C33—H33B106.8 $H3C$ —C3—H3C ⁱⁱ 138.1C33—C34—Cl4110.6 (18) $H3A^{ii}$ —C3—H3C ⁱⁱ 109.5C33—C34—H34A109.5 $H3B^{ii}$ —C3—H3C ⁱⁱ 109.5Cl4—C34—H34A109.5 $N2$ —C4—C5109.5 (5)C33—C34—H34B109.5	Н3С—С3—Н3Віі	70.8	С34—С33—Н33А	107.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3A ⁱⁱ —C3—H3B ⁱⁱ	109.5	Cl3—C33—H33A	107.2
H3A-C3-H3C ⁱⁱ 41.6Cl3-C33-H33B107.2H3B-C3-H3C ⁱⁱ 70.7H33A-C33-H33B106.8H3C-C3-H3C ⁱⁱ 138.1C33-C34-Cl4110.6 (18)H3A ⁱⁱ -C3-H3C ⁱⁱ 109.5C33-C34-H34A109.5H3B ⁱⁱ -C3-H3C ⁱⁱ 109.5Cl4-C34-H34A109.5N2-C4-C5109.5 (5)C33-C34-H34B109.5	C2—C3—H3C ⁱⁱ	109.5 (5)	С34—С33—Н33В	107.2
H3B-C3-H3C ⁱⁱ 70.7H33A-C33-H33B106.8H3C-C3-H3C ⁱⁱ 138.1C33-C34-Cl4110.6 (18)H3A ⁱⁱ -C3-H3C ⁱⁱ 109.5C33-C34-H34A109.5H3B ⁱⁱ -C3-H3C ⁱⁱ 109.5Cl4-C34-H34A109.5N2-C4-C5109.5 (5)C33-C34-H34B109.5	H3A—C3—H3C ⁱⁱ	41.6	Cl3—C33—H33B	107.2
H3C—C3—H3C ⁱⁱ 138.1C33—C34—Cl4110.6 (18)H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5C33—C34—H34A109.5H3B ⁱⁱ —C3—H3C ⁱⁱ 109.5Cl4—C34—H34A109.5N2—C4—C5109.5 (5)C33—C34—H34B109.5	H3B—C3—H3C ⁱⁱ	70.7	H33A—C33—H33B	106.8
H3A ⁱⁱ —C3—H3C ⁱⁱ 109.5 C33—C34—H34A 109.5 H3B ⁱⁱ —C3—H3C ⁱⁱ 109.5 Cl4—C34—H34A 109.5 N2—C4—C5 109.5 (5) C33—C34—H34B 109.5	H3C—C3—H3C ⁱⁱ	138.1	C33—C34—Cl4	110.6 (18)
H3B ⁱⁱ —C3—H3C ⁱⁱ 109.5 Cl4—C34—H34A 109.5 N2—C4—C5 109.5 (5) C33—C34—H34B 109.5	H3A ⁱⁱ —C3—H3C ⁱⁱ	109.5	C33—C34—H34A	109.5
N2—C4—C5 109.5 (5) C33—C34—H34B 109.5	H3B ⁱⁱ —C3—H3C ⁱⁱ	109.5	Cl4—C34—H34A	109.5
	N2—C4—C5	109.5 (5)	С33—С34—Н34В	109.5

N2—C4—H4	125.2	Cl4—C34—H34B	109.5
С5—С4—Н4	125.2	H34A—C34—H34B	108.1
C6—C5—C4	103.1 (5)	C36—C35—C15	119 (2)
C6—C5—C7	129.6 (7)	С36—С35—Н35А	107.6
C4—C5—C7	127.2 (7)	Cl5—C35—H35A	107.6
N3—C6—C5	111.3 (6)	C36—C35—H35B	107.6
N3—C6—H6	124.3	C15—C35—H35B	107.6
С5—С6—Н6	124.3	H35A—C35—H35B	107.0
С5—С7—Н7А	109.5	C35—C36—C16	112.5 (19)
C5—C7—H7B	109.5	С35—С36—Н36А	109.1
H7A - C7 - H7B	109.5	C16—C36—H36A	109.1
C5-C7-H7C	109.5	C35—C36—H36B	109.1
H7A - C7 - H7C	109.5	C16—C36—H36B	109.1
H7B-C7-H7C	109.5	H36A-C36-H36B	107.8
N4 - C8 - C9	111 4 (5)	$C_{38} = C_{37} = C_{17}$	107.0 104.2(14)
N4-C8-H8	124.3	$C_{38} = C_{37} = H_{37A}$	110.9
C9 C8 H8	124.3	C_{17} C_{37} H_{37A}	110.9
$C_{8}^{8} = C_{9}^{8} = C_{8}^{11}$	124.5 102.0(7)	$C_{17} = C_{37} = H_{37}R$	110.9
C_{8} C_{9} C_{10}	102.0(7) 120.0(3)	$C_{38} - C_{37} - H_{37B}$	110.9
C^{8ii} C0 C10	129.0(3) 120.0(2)	C1/-C3/-I15/D	10.9
$C_{0} = C_{0} = C_{10}$	129.0 (5)	$H_{3}/A - C_{3}/-H_{3}/B$	100.9 117.2(15)
C_{9} C_{10} H_{10} C_{10} H_{10} C_{10} C_{10} H_{10} H_{10} C_{10} H_{10} H_{10} C_{10} H_{10} $H_$	109.5	$C_{37} = C_{30} = C_{10}$	117.3 (13)
	109.5	$C_{3} = C_{38} = H_{38A}$	108.0
HI0A - CI0 - HI0B	109.5	C18 - C38 - H38A	108.0
	109.5	C37—C38—H38B	108.0
HI0A—CI0—HI0C	109.5	CI8—C38—H38B	108.0
HI0B—CI0—HI0C	109.5	H38A—C38—H38B	107.2
C9—C10—H10A ⁿ	109.5 (13)		
C4 N2 N2 C6	0.1.(6)	N51 N5 C11 C12	175 0 (5)
$V_4 = N_2 = N_3 = C_0$	0.1(0) 175.7(2)	NII - NJ - CII - CI2 N5 C11 C12 C12	1/3.9(3)
$\frac{1}{10000000000000000000000000000000000$	173.7(3)	$N_{5} = C_{11} = C_{12} = C_{13}$	-0.9(8)
C4— $N2$ — $N3$ — $N12$	-1/.0(4)	$N_{5} = C_{11} = C_{12} = C_{14}$	-1/9.9(8)
N11 - N2 - N3 - N12	-2.0(4)	$N_{0} = N_{0} = C_{10} = C_{12}$	0.0(7)
C11—N5—N6— $C13$	-0.5(6)	$N12^{m}$ $N6$ $C13$ $C12$	-1/2.7(5)
N11 - N5 - N6 - C13	-1/6.9(4)	C11 - C12 - C13 - N6	0.5 (8)
C11—N5—N6—N12 ^{III}	1/4.0 (4)	C14—C12—C13—N6	1/9.6 (8)
$N11 - N5 - N6 - N12^{m}$	-2.3(4)	$N13^{10}$ $-N13$ $-C15$ $-C16$	-110.9 (16)
NI ^{II} —NI—CI—C2	1.2 (6)	C19—N13—C15—C16	-53 (2)
$N_1 - N_1 - C_1 - C_2$	-179.3 (4)	N13—C15—C16—C17	-171.0 (18)
$N1$ — $C1$ — $C2$ — $C1^n$	-1.8 (9)	C15—C16—C17—C18	176 (2)
N1—C1—C2—C3	180.0 (7)	N13 ^{1v} —N13—C19—C20	69.8 (16)
N3—N2—C4—C5	-0.6 (6)	C15—N13—C19—C20	-49 (2)
Ni1—N2—C4—C5	-174.7 (4)	N13—C19—C20—C21	-98 (3)
N2—C4—C5—C6	0.9 (7)	C19—C20—C21—C22	-162 (3)
N2—C4—C5—C7	177.6 (7)	C27—N14—C23—C24	-165 (2)
N2—N3—C6—C5	0.5 (6)	N14—C23—C24—C25	-167 (2)
Ni2—N3—C6—C5	177.3 (4)	C23—C24—C25—C26	171 (2)
C4—C5—C6—N3	-0.8 (7)	C23—N14—C27—C28	-179 (2)
C7—C5—C6—N3	-177.4 (7)	N14—C27—C28—C29	-107 (4)

N4 ⁱⁱ —N4—C8—C9	16(6)	C27 - C28 - C29 - C30	-168(3)	
Ni2—N4—C8—C9	1.0(0) 178 7 (5)	$C_{11} = C_{31} = C_{32} = C_{12}$	-35(3)	
$N4-C8-C9-C8^{ii}$	-24(9)	C_{13} C_{33} C_{34} C_{14}	-144(3)	
N4 - C8 - C9 - C10	-179.6(8)	C15 - C35 - C36 - C16	70 (3)	
N6—N5—C11—C12	0.9 (7)	Cl7—C37—C38—Cl8	-168(2)	

Z = 2

F(000) = 3488 $D_{\rm x} = 1.192 \text{ Mg m}^{-3}$

 $\theta = 3.9-70.0^{\circ}$ $\mu = 1.33 \text{ mm}^{-1}$ T = 150 K

Flat needle, light blue $0.22 \times 0.08 \times 0.03$ mm

Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å Cell parameters from 9844 reflections

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+1, *y*, *z*; (iii) *x*, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*, -*z*+2.

Bis(tetrabutylazanium) hexa- μ_4 -hydroxido-dodeca- μ_2 -(4-octylpyrazolato)-hexahedro-octanickel (3)

Crystal data

$(C_{16}H_{36}N)_2[Ni_8(C_{11}H_{19}N_2)_{12}(OH)_6]$
$M_r = 3208.01$
Triclinic, $P\overline{1}$
a = 13.973 (8) Å
b = 20.765 (10) Å
c = 31.873 (14) Å
$\alpha = 99.896 \ (17)^{\circ}$
$\beta = 94.798 \ (17)^{\circ}$
$\gamma = 99.10 \ (2)^{\circ}$
$V = 8938 (8) \text{ Å}^3$

Data collection

Bruker AXS D8 Quest	Absorption correction: multi-scan
diffractometer with PhotonIII_C14 charge-	(TWINABS; Sheldrick, 2012)
integrating and photon counting pixel array	$T_{\rm min} = 0.594, \ T_{\rm max} = 0.753$
detector	110848 measured reflections
Radiation source: I-mu-S microsource X-ray	52094 independent reflections
tube	37936 reflections with $I > 2\sigma(I)$
Laterally graded multilayer (Goebel) mirror	$R_{\rm int} = 0.071$
monochromator	$\theta_{\rm max} = 70.6^\circ, \ \theta_{\rm min} = 2.4^\circ$
Detector resolution: 7.4074 pixels mm ⁻¹	$h = -16 \rightarrow 16$
ω and phi scans	$k = -25 \rightarrow 25$
-	$l = 0 \rightarrow 38$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourie		
Least-squares matrix: full	map		
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: mixed		
$wR(F^2) = 0.185$	H atoms treated by a mixture of independent		
<i>S</i> = 1.05	and constrained refinement		
52094 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0741P)^2 + 9.544P]$		
2507 parameters	where $P = (F_o^2 + 2F_c^2)/3$		
5486 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$		
Primary atom site location: dual	$\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$		
	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$		

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 180° rotation around the reciprocal *b*-axis. The two components were integrated using SAINT and corrected for absorption using TWINABS, resulting in the following statistics:

27457 data (13708 unique) involve domain 1 only, mean $I/\sigma 8.9 27508$ data (13715 unique) involve domain 2 only, mean $I/\sigma 8.1 57229$ data (24936 unique) involve 2 domains, mean $I/\sigma 11.4$ 1 data (1 unique) involve 3 domains, mean $I/\sigma 2.7$ The exact twin matrix identified by the integration program was found to be:

 $-0.99999\ 0.00004\ -0.00000\ 0.51610\ 1.00001\ 0.24406\ -0.00001\ -0.00019\ -1.00002$

The structure was solved using dual methods using all non-overlapping reflections of both components. The structure was refined using the HKLF 5 routine with all reflections of both components (including overlapping reflections), resulting in a BASF value of 0.4564 (7). The R_{int} value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2012)).

Some of the alkyl chains were refined as two-fold disordered. The geometries of all fully occupied and major moiety pyrazolate ligands were restrained to be similar to each other, and disordered major and minor moieties were restrained to have similar geometries. U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.713 (8)/0.287 (8) (C5–C11 residue 3), 0.507 (8)/0.493 (8) (C5–C11 residue 4), 0.518 (9)/0.482 (9) (C5–C11 residue 5), 0.450 (13)/0.550 (13) (C6–C11 residue 7), and 0.524 (11)/0.476 (11) (C5–C11 residue 10). Two Bu₄N⁺ cations are disordered around inversion centers (residues 14 and 15). One of them is additionally disordered (residue 15). The geometries of all partially occupied Bu₄N⁺ cations were restrained to be similar to each other. U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar to that of the single non-disordered cation (residue 13). All N–C bond lengths in all cations were restrained to be similar. Subject to these conditions the occupancy ratio for the additionally split cation refined to two times 0.257 (5) and two times 0.243 (5). Hydroxyl H atom positions were refined and O–H distances were restrained to 0.84 (2) Å. All hydroxyl H–O–Ni angles were restrained (via the H···Ni distances) to be similar to each other.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1_16	0.40937 (6)	0.59193 (4)	0.48006 (3)	0.03648 (19)	
Ni2_16	0.62348 (6)	0.59550 (4)	0.48257 (3)	0.03650 (19)	
Ni3_16	0.58936 (6)	0.45370 (4)	0.43611 (2)	0.03420 (18)	
Ni4_16	0.37488 (6)	0.45100 (4)	0.43373 (3)	0.03607 (19)	
Ni5_16	0.43942 (5)	0.59817 (3)	0.04516 (2)	0.02700 (16)	
Ni6_16	0.39490 (5)	0.45647 (3)	0.05544 (2)	0.02920 (17)	
Ni7_16	0.60458 (5)	0.44538 (3)	0.05024 (2)	0.02798 (17)	
Ni8_16	0.64844 (5)	0.58690 (3)	0.03919 (2)	0.02761 (16)	
O1_16	0.4992 (2)	0.53022 (14)	0.44333 (10)	0.0337 (7)	
H1 16	0.4985 (11)	0.5435 (7)	0.4204 (5)	0.051*	
O2_16	0.3559 (2)	0.49862 (15)	0.49881 (10)	0.0342 (7)	
H2 16	0.2962 (12)	0.4961 (7)	0.4975 (5)	0.051*	
O3_16	0.4755 (2)	0.40496 (14)	0.46917 (10)	0.0340 (7)	
H3_16	0.4664 (11)	0.3661 (8)	0.4562 (5)	0.051*	
O4_16	0.5298 (2)	0.52864 (13)	0.06389 (9)	0.0266 (6)	
H4_16	0.5409 (11)	0.5412 (7)	0.0902 (5)	0.040*	
O5_16	0.6415 (2)	0.49218 (13)	-0.00380 (9)	0.0278 (6)	
H5_16	0.6980 (12)	0.4885 (7)	-0.0056 (5)	0.042*	
O6_16	0.5290 (2)	0.59454 (13)	-0.00681 (9)	0.0271 (6)	
H6_16	0.5414 (11)	0.6339 (8)	-0.0100 (5)	0.041*	
N1_1	0.3355 (4)	0.6415 (2)	0.52270 (14)	0.0482 (11)	
N2_1	0.3333 (3)	0.6212 (2)	0.56053 (13)	0.0419 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C1 1	0.2992 (5)	0.6977 (3)	0.52614 (18)	0.0596 (17)
H1 1	0.292173	0.721841	0.503659	0.072*
C2_1	0.2733 (4)	0.7158 (3)	0.56662 (18)	0.0525 (14)
C3_1	0.2959 (4)	0.6659 (3)	0.58680 (17)	0.0511 (14)
H3 1	0.286378	0.663445	0.615681	0.061*
C4_1	0.2344 (6)	0.7783 (3)	0.5840(2)	0.075(2)
H4A 1	0.166334	0.765448	0.590001	0.091*
H4B_1	0.273590	0.800325	0.611517	0.091*
C5 1	0.2366 (6)	0.8268 (3)	0.5544 (3)	0.079 (2)
H5A 1	0.195607	0.804672	0.527316	0.095*
H5B 1	0 304323	0.837521	0 547431	0.095*
C6 1	0 2025 (7)	0.8914 (3)	0.5703 (3)	0.099(2)
H6A 1	0.247361	0.916420	0 595545	0.106*
H6B_1	0.136824	0.881369	0.579603	0.106*
C7 1	0 1984 (8)	0.001307 0.9344(4)	0.5364(3)	0.100
H7A 1	0.263929	0.943314	0.526809	0.129*
H7B_1	0.153073	0.909111	0.511370	0.129*
$C_{8,1}$	0.1664 (8)	0.9995 (4)	0.5507 (3)	0.123(4)
H8A 1	0.1004 (8)	1 026397	0.574277	0.123(4) 0.147*
H8B 1	0.102955	0.990948	0.562290	0.147*
C9.1	0.102933 0.1559 (10)	1 0387 (5)	0.502290 0.5158(4)	0.147 0.146 (5)
U ² 1	0.110/00	1.0307 (3)	0.0158 (4)	0.175*
HOR 1	0.110499	1.010301	0.491347	0.175*
C_{10}	0.220144 0.1183 (12)	1.049300	0.505249	0.179 (6)
	0.1103(12)	1.1031 (3)	0.5298 (4)	0.179(0) 0.214*
HIOA_I	0.054818	1.093049	0.553225	0.214°
	0.104004	1.132036	0.333223	0.214°
	0.1008 (13)	1.13/4 (/)	0.4947 (0)	0.231 (9)
IIIA_I	0.009239	1.100404	0.409900	0.340*
	0.1/109/	1.134/38	0.46/123	0.340
HIIC_I	0.072042	1.1/4100	0.303080	0.340°
NI_2	0.5805 (5)	0.07081(19)	0.46577(14)	0.04/3(11)
N2_2	0.4820 (3)	0.6/45(2)	0.46344 (14)	0.0469 (11)
CI_2	0.6204 (5)	0.7344 (3)	0.4559 (2)	0.0618 (17)
H1_2	0.6882/1	0.748048	0.455119	0.074*
C2_2	0.5498 (5)	0.7712 (3)	0.4469 (2)	0.072(2)
C3_2	0.4640 (5)	0.7318(3)	0.4520 (2)	0.0602 (17)
H3_2	0.401017	0./431/3	0.448101	0.0/2*
C4_2	0.5667 (7)	0.8370 (3)	0.4327 (4)	0.119 (4)
H4A_2	0.631893	0.861008	0.446148	0.143*
H4B_2	0.569207	0.828283	0.401348	0.143*
C5_2	0.4963 (5)	0.8818 (3)	0.4419 (2)	0.0641 (17)
H5A_2	0.495333	0.892628	0.4/336/	0.07/*
H5B_2	0.430419	0.858018	0.429232	0.077*
C6_2	0.5167 (7)	0.9455 (3)	0.4255 (3)	0.087 (3)
H6A_2	0.585337	0.966026	0.435900	0.104*
H6B_2	0.512606	0.933683	0.393833	0.104*
C7_2	0.4567 (6)	0.9974 (3)	0.4356 (2)	0.077 (2)
H7A_2	0.461310	1.010325	0.467136	0.093*

H7B 2	0.387822	0.977487	0.425204	0.093*	
C8 2	0.4811 (6)	1.0590 (3)	0.4177 (3)	0.076 (2)	
H8A 2	0.551330	1.076608	0.426470	0.091*	
H8B ²	0.472960	1.045668	0.386048	0.091*	
$C9\overline{2}$	0.4285 (7)	1.1142 (3)	0.4283 (2)	0.085 (2)	
H9A 2	0.437649	1.128611	0.459828	0.103*	
H9B 2	0.358070	1.096928	0.419814	0.103*	
C10_2	0 4551 (6)	1 1738 (3)	0.4089(2)	0.077(2)	
H10A 2	0.526518	1.188504	0.415568	0.093*	
H10B 2	0 441738	1 159339	0 377397	0.093*	
C11 2	0.4101 (9)	1 2315 (4)	0.4203(3)	0.114(4)	
H11A 2	0.436262	1 266056	0 404903	0.172*	
H11B 2	0.424188	1 248246	0 451289	0.172*	
H11C_2	0 339388	1 219202	0.412621	0.172*	
N1 3	0.6896 (3)	0.51459(19)	0.41226 (13)	0.0392(9)	
N2 3	0.0090(3) 0.7044(3)	0.57861(19)	0.43335(13)	0.0392(9)	
C1_3	0.7387(4)	0.5132 (3)	0.37773 (16)	0.0449(13)	
U1_5 H1_3	0.739761	0.5152 (5)	0.357126	0.054*	
C^{2}	0.7875(4)	0.5759 (3)	0.37635 (18)	0.057 (14)	
$C2_3$	0.7628 (4)	0.5757(3)	0.41210 (18)	0.0525(11) 0.0504(14)	
US_5 Н3 3	0 784440	0.661751	0.420338	0.061*	
$C4_3$	0.8515 (5)	0.5958 (3)	0.3430(2)	0.001 0.0705 (17)	0 713 (8)
H4A 3	0.912889	0.578360	0.346918	0.085*	0.713(8)
H4B 3	0.818012	0.574175	0.314297	0.085*	0.713(8)
C5 3	0.8765 (7)	0.6686 (4)	0.3440(3)	0.002	0.713(8)
US_S	0.924423	0.676065	0.323332	0.002 (2)	0.713(0) 0.713(8)
H5B 3	0.908638	0.690469	0.372883	0.075*	0.713(8)
C6 3	0.7900 (8)	0.7024 (5)	0.3333 (4)	0.075 0.074 (2)	0.713(8)
H6A 3	0.757364	0.678987	0.304730	0.089*	0.713(8)
H6B 3	0 743048	0.694700	0.354226	0.089*	0.713(0) 0.713(8)
C7 3	0 8067 (9)	0.7722(5)	0.3325 (4)	0.087(3)	0.713 (8)
H7A 3	0.854185	0 779931	0.311754	0.104*	0.713(8)
H7B 3	0.838921	0 795607	0.361127	0.104*	0.713(0) 0.713(8)
$C_{8,3}$	0.0000021 0.7230 (10)	0.8056 (5)	0.3218(5)	0.107(3)	0.713(8)
H8A 3	0.672304	0.795778	0.340831	0.128*	0.713(8)
H8B 3	0.694202	0.786358	0.291950	0.128*	0.713(8)
C9 3	0.051202 0.7502 (11)	0.8814 (6)	0.3261 (4)	0.120 0.108 (3)	0.713(8)
H9A 3	0.776850	0.901598	0.356114	0.129*	0.713(8)
H9B 3	0.801148	0.892071	0.307374	0.129*	0.713(8)
$C10_3$	0.6600 (12)	0.9101 (8)	0.307571 0.3135(4)	0.122 (4)	0.713(8)
H10A 3	0.603479	0.887930	0.325563	0.122 (4)	0.713(8)
H10R 3	0.671072	0.007/00	0.326389	0.147*	0.713(8)
C11_3	0.6364(14)	0.9021 (10)	0.2667 (5)	0.147 0.132 (6)	0.713(8)
U11_5 H11A_3	0.604826	0.9021 (10)	0.2007 (3)	0.152 (0)	0.713(8) 0.713(8)
H11R 3	0.594620	0.010040	0.254040	0.199	0.713(0) 0.713(0)
H11C 3	0.565002	0.927472	0.200021	0.199	0.713(0) 0.713(0)
C/B 3	0.8515 (5)	0.5058 (3)	0.237390 0.3430 (2)	0.199	0.713(0) 0.287(8)
$U+D_J$	0.0313(3)	0.3730 (3)	0.3430 (2)	0.0703 (17)	0.207 (0)
п4ВА_3	0.920291	0.002377	0.555054	0.085*	0.287 (8)

H4BB_3	0.841669	0.558045	0.318583	0.085*	0.287 (8)
C5B_3	0.837 (2)	0.6557 (9)	0.3259 (7)	0.074 (3)	0.287 (8)
H5BA_3	0.778433	0.642021	0.304792	0.089*	0.287 (8)
H5BB_3	0.892921	0.665307	0.309250	0.089*	0.287 (8)
C6B 3	0.827 (2)	0.7203 (9)	0.3514 (9)	0.075 (4)	0.287 (8)
H6BA 3	0.756640	0.716878	0.354232	0.090*	0.287 (8)
H6BB_3	0.859399	0.721263	0.380418	0.090*	0.287 (8)
С7В 3	0.858 (2)	0.7869 (10)	0.3425 (10)	0.090 (4)	0.287 (8)
H7BA 3	0.871564	0.782113	0.312184	0.109*	0.287 (8)
H7BB ₃	0.920555	0.806690	0.360469	0.109*	0.287 (8)
C8B 3	0.789 (2)	0.8354 (12)	0.3497 (8)	0.094 (4)	0.287 (8)
H8BA 3	0.825987	0.879728	0.363325	0.112*	0.287 (8)
H8BB 3	0.742421	0.820905	0.369532	0.112*	0.287 (8)
C9B 3	0.732 (2)	0.8403 (19)	0.3076 (9)	0.112 (4)	0.287 (8)
H9BA 3	0.775296	0.868645	0.292492	0.134*	0.287 (8)
H9BB 3	0.716389	0.795403	0.289516	0.134*	0.287 (8)
C10B 3	0.638 (2)	0.8675 (19)	0.3105 (10)	0.118 (4)	0.287 (8)
H10C 3	0.587723	0.834128	0.318699	0.142*	0.287 (8)
H10D 3	0.648890	0.907768	0.333222	0.142*	0.287 (8)
C11B 3	0.601 (3)	0.885 (3)	0.2696 (14)	0.134 (9)	0.287 (8)
H11D 3	0.649341	0.880245	0.249281	0.201*	0.287(8)
H11E 3	0 588925	0.930333	0 274873	0.201*	0.287(8)
H11F 3	0.539853	0.854286	0.257704	0.201*	0.287(8)
N1 4	0.5134 (3)	0.4094(2)	0 37865 (13)	0.0420(10)	0.207 (0)
N2_4	0.5151(3) 0.4148(3)	0.4026(2)	0.37910 (12)	0.0405(9)	
$C1_4$	0.1110(3) 0.5300(4)	0.1020(2) 0.3687(2)	0.34324 (16)	0.0477(13)	
H1 4	0.592838	0.363979	0.335249	0.057*	
C^{2} 4	0.4431(4)	0.3347(2)	0.32010 (16)	0.057	
C_2^{-1}	0.1131(1) 0.3728(4)	0.3578(2)	0.32010 (10)	0.0310(11) 0.0479(13)	
H3 4	0.304368	0.343931	0.337026	0.057*	
C4 4	0.4266 (5)	0.2824(3)	0 27963 (19)	0.0637(15)	0 507 (8)
H_{4A} A	0.468412	0.2024 (3)	0.258464	0.076*	0.507 (8)
H4R 4	0.357731	0.276088	0.267103	0.076*	0.507 (8)
C5.4	0.4499 (13)	0.2160 (8)	0.2885 (11)	0.066 (3)	0.507 (8)
H5A 4	0.406684	0.202135	0.309629	0.079*	0.507 (8)
H5R 4	0.420001	0.183074	0.261568	0.079*	0.507(0)
C6 4	0.429991 0.5526 (10)	0.2092 (8)	0.3046 (5)	0.079	0.507 (8)
Ч64 4	0.551446	0.163542	0.310092	0.084*	0.507 (8)
H6R 4	0.573280	0.240251	0.332307	0.084*	0.507 (8)
C7 4	0.6280 (9)	0.240231 0.2230 (7)	0.332307 0.2738(4)	0.004	0.507 (8)
U7_4	0.0200 ())	0.103713	0.2758 (4)	0.070 (5)	0.507(0)
H7B 4	0.631000	0.269384	0.249709	0.091*	0.507(8)
11/D_4 C8_4	0.031000 0.7308 (10)	0.209304 0.2132 (7)	0.209070	0.091	0.507(8)
U0_4 H8A /	0.7508 (10)	0.2132 (7)	0.2074 (3)	0.002 (3)	0.507 (0)
HSB /	0.7753092	0.230094	0.20/494	0.099	0.507 (0)
$C0 \Lambda$	0.733092 0.7378 (12)	0.237751	0.310427 0.2877 (7)	0.099	0.507(0)
	0.7578(12)	0.1717 (0)	0.2677 (7)	0.090 (4)	0.507(0)
117A_4	0.704400	0.113713	0.200434	0.115*	0.507(8)
п9В_4	0./03039	0.12/213	0.3113/9	0.115*	0.507 (8)

C10_4	0.8430 (13)	0.1309 (9)	0.2933 (9)	0.106 (4)	0.507 (8)
H10A_4	0.877486	0.146700	0.270124	0.127*	0.507 (8)
H10B 4	0.875601	0.157833	0.320940	0.127*	0.507 (8)
C11 4	0.852 (2)	0.0587 (10)	0.2925 (9)	0.129 (6)	0.507 (8)
H11A 4	0.814436	0.031050	0.266410	0.194*	0.507 (8)
H11B 4	0.825695	0.044395	0.317695	0.194*	0.507 (8)
H11C_4	0.920386	0.053989	0.292894	0.194*	0.507 (8)
C4B $\overline{4}$	0.4266 (5)	0.2824 (3)	0.27963 (19)	0.0637 (15)	0.493 (8)
H4BA 4	0.467967	0.299040	0.258675	0.076*	0.493 (8)
H4BB 4	0.357774	0.277299	0.267316	0.076*	0.493 (8)
C5B 4	0.4473 (14)	0.2145 (9)	0.2843 (12)	0.067 (3)	0.493 (8)
H5BA 4	0.414575	0.180550	0.259451	0.080*	0.493 (8)
H5BB 4	0.423536	0.202137	0.310758	0.080*	0.493 (8)
C6B 4	0.5573(12)	0.2193(7)	0.2866 (6)	0.073(3)	0.493 (8)
H6BA 4	0 580484	0.237395	0.261755	0.087*	0 493 (8)
H6BB 4	0 588169	0.250716	0.312968	0.087*	0.493 (8)
$C7B_4$	0.5893 (10)	0.1537 (6)	0.2867 (5)	0.007 (3)	0.493 (8)
H7BA 4	0.557340	0.121803	0.2607(9)	0.097*	0.493(8)
H7BR 4	0.557540	0.121003	0.312030	0.092*	0.493(8)
	0.508247 0.6070 (11)	0.150147	0.312030	0.092	0.493(0)
	0.0979(11) 0.730380	0.1333 (8)	0.2877 (0)	0.080 (3)	0.493(8)
LINDA_4	0.730380	0.170060	0.311402	0.103*	0.493(0)
$10DD_4$	0.710230 0.7205(12)	0.170909	0.200430	0.103°	0.495(0)
$C9D_4$	0.7293(12) 0.701051	0.0944 (8)	0.2938 (0)	0.100 (4)	0.493(0)
H9BA_4	0.701051	0.079799	0.318/4/	0.120*	0.493 (8)
H9BB_4	0.704080	0.059807	0.268134	0.120*	0.493 (8)
CI0B_4	0.8400 (13)	0.1014 (11)	0.3010 (9)	0.110 (4)	0.493 (8)
H10C_4	0.868193	0.113847	0.275412	0.132*	0.493 (8)
HI0D_4	0.865705	0.137583	0.325758	0.132*	0.493 (8)
C11B_4	0.872 (2)	0.0380 (11)	0.3093 (10)	0.133 (7)	0.493 (8)
H11D_4	0.943265	0.044746	0.313901	0.199*	0.493 (8)
H11E_4	0.848080	0.002251	0.284523	0.199*	0.493 (8)
H11F_4	0.844926	0.025771	0.334831	0.199*	0.493 (8)
N1_5	0.2610 (3)	0.3797 (2)	0.43639 (14)	0.0485 (11)	
N2_5	0.2660 (3)	0.3543 (2)	0.47286 (14)	0.0474 (11)	
C1_5	0.1861 (4)	0.3415 (3)	0.40947 (19)	0.0625 (17)	
H1_5	0.166750	0.348623	0.381586	0.075*	
C2_5	0.1415 (5)	0.2909 (3)	0.4276 (2)	0.0687 (19)	
C3_5	0.1951 (4)	0.3009 (3)	0.46796 (19)	0.0617 (17)	
H3_5	0.183117	0.273931	0.488836	0.074*	
C4_5	0.0595 (6)	0.2341 (4)	0.4079 (2)	0.097 (2)	0.518 (9)
H4A_5	0.035976	0.211243	0.430844	0.116*	0.518 (9)
H4B_5	0.004618	0.252673	0.395726	0.116*	0.518 (9)
C5_5	0.0871 (15)	0.1842 (8)	0.3735 (4)	0.103 (3)	0.518 (9)
H5A_5	0.033725	0.145180	0.366462	0.124*	0.518 (9)
H5B_5	0.145991	0.168969	0.384850	0.124*	0.518 (9)
C6_5	0.1073 (17)	0.2087 (9)	0.3327 (5)	0.118 (4)	0.518 (9)
H6A_5	0.049567	0.224679	0.320876	0.142*	0.518 (9)
H6B_5	0.163159	0.246004	0.338610	0.142*	0.518 (9)

C7 5	0.1302 (16)	0.1526 (9)	0.3009 (5)	0.132 (4)	0.518 (9)
H7A 5	0.182612	0.133904	0.314941	0.158*	0.518 (9)
H7B_5	0.071624	0.117289	0.294200	0.158*	0.518 (9)
C8 5	0.1610 (16)	0.1683 (14)	0.2600(5)	0.150(5)	0.518 (9)
H8A 5	0.210545	0.209421	0.267799	0.180*	0.518 (9)
H8B 5	0 196136	0.132603	0.248280	0.180*	0.518(9)
C9.5	0.0977(18)	0.172003 0.1777(13)	0.2246 (6)	0.168(5)	0.518(9)
H9A 5	0.091481	0.225106	0 228348	0.202*	0.518(9)
H9R 5	0.032025	0.151589	0.224796	0.202*	0.518(9)
$C_{10} 5$	0.032023 0.135(2)	0.15150) 0.1558(12)	0.1788 (6)	0.170 (6)	0.518(9)
H104 5	0.198466	0.1350 (12)	0.182154	0.204*	0.518(9)
H10R_5	0.087105	0.120238	0.160062	0.204	0.518(9)
C_{11}	0.087103 0.147(2)	0.120238 0.2181(14)	0.160002	0.204 0.172 (0)	0.518(9)
U11A 5	0.147(2) 0.165417	0.2181(14) 0.200180	0.1012(7) 0.122087	0.172 (9)	0.518(9)
IIIA_J	0.103417	0.209180	0.132087	0.258*	0.518(9)
HIIB_5	0.197038	0.231647	0.1/94/0	0.258*	0.518(9)
HIIC_5	0.084455	0.234400	0.100340	0.258*	0.518(9)
C4B_5	0.0595 (6)	0.2341 (4)	0.4079 (2)	0.097 (2)	0.482 (9)
H4BA_5	0.022857	0.246506	0.383393	0.116*	0.482 (9)
H4BB_5	0.013883	0.226570	0.429414	0.116*	0.482 (9)
C5B_5	0.0974 (15)	0.1688 (8)	0.3921 (6)	0.112 (4)	0.482 (9)
H5BA_5	0.134039	0.157105	0.416819	0.134*	0.482 (9)
H5BB_5	0.040436	0.132871	0.382108	0.134*	0.482 (9)
C6B_5	0.1622 (13)	0.1703 (10)	0.3565 (5)	0.121 (4)	0.482 (9)
H6BA_5	0.223066	0.202852	0.366535	0.146*	0.482 (9)
H6BB_5	0.179536	0.126036	0.347442	0.146*	0.482 (9)
C7B_5	0.1062 (16)	0.1901 (11)	0.3197 (5)	0.121 (4)	0.482 (9)
H7BA_5	0.039853	0.163150	0.312943	0.145*	0.482 (9)
H7BB_5	0.100890	0.237679	0.326237	0.145*	0.482 (9)
C8B_5	0.1656 (17)	0.1766 (13)	0.2836 (6)	0.138 (4)	0.482 (9)
H8BA_5	0.232054	0.203154	0.291222	0.166*	0.482 (9)
H8BB_5	0.171258	0.129021	0.277969	0.166*	0.482 (9)
C9B_5	0.1189 (17)	0.1939 (13)	0.2448 (6)	0.143 (5)	0.482 (9)
H9BA 5	0.125759	0.242639	0.247046	0.172*	0.482 (9)
H9BB 5	0.048871	0.173763	0.239090	0.172*	0.482 (9)
C10B 5	0.1784 (19)	0.1631 (13)	0.2094 (7)	0.159 (5)	0.482 (9)
H10C_5	0.244398	0.159238	0.221582	0.191*	0.482 (9)
H10D_5	0.143994	0.118948	0.193916	0.191*	0.482 (9)
C11B_5	0.182(3)	0.2141 (15)	0.1813 (9)	0.181 (9)	0.482 (9)
H11D 5	0.198851	0.195071	0.153117	0.272*	0.482 (9)
H11E 5	0.232022	0.252718	0.194411	0.272*	0.482 (9)
H11F 5	0.118566	0 227834	0 178121	0.272*	0.482(9)
N1 6	0.2965(3)	0.5097(2)	0.40595(14)	0.0445(10)	(3)
N2 6	0.2903(3)	0.5709(2)	0.42987(13)	0.0437(10)	
C1_6	0.2331(4)	0.5753(2)	0.37117(18)	0.0538(15)	
U1_0	0.215142	0.267180	0.349018	0.065*	
$C^{2} 6$	0.213142 0.1977 (4)	0 5637 (3)	0 37204 (18)	0.0586 (15)	
$C_{2_{0}}^{-0}$	0.1277(7) 0.2433(4)	0.5037(3)	0.37207(10) 0.40087(17)	0.0500(15)	
UJ_0 H3_6	0.232660	0.607272	0.70207 (17)	0.0517 (14)	
115 0	0.233009	0.04/3/2	0.420240	0.002	

C4 6	0.1244 (5)	0.5794 (4)	0.3395 (2)	0.077 (2)	
H4A 6	0.077805	0.603469	0.354623	0.092*	
H4B_6	0.087065	0.537322	0.322220	0.092*	
$C5\overline{6}$	0.1720 (6)	0.6210 (5)	0.3098 (2)	0.103 (3)	
H5A 6	0.122142	0.622212	0.286051	0.124*	
H5B_6	0.223019	0.598566	0.297032	0.124*	
C6 6	0.2184 (6)	0.6927 (5)	0.3301 (3)	0.096 (3)	
H6A 6	0.258688	0.691941	0.357060	0.115*	
H6B_6	0.262933	0.710159	0.310549	0.115*	
C7 6	0.1499 (7)	0.7400 (5)	0.3401 (3)	0.107 (3)	
H7A 6	0.104784	0.722415	0.359458	0.129*	
H7B_6	0.110306	0.741465	0.313178	0.129*	
C8 6	0.1969 (8)	0.8096 (5)	0.3606 (4)	0.130 (4)	
H8A 6	0.249322	0.825108	0.343744	0.156*	
H8B 6	0.227410	0.809518	0.389760	0.156*	
C9 6	0.1254 (11)	0.8586 (7)	0.3638 (5)	0.174 (6)	
H9A 6	0.093985	0.857150	0.334597	0.209*	
H9B 6	0.073604	0.842597	0.380840	0.209*	
C10 6	0.1651 (13)	0.9280 (7)	0.3828 (5)	0.204 (8)	
H10A 6	0.221996	0.942943	0.368107	0.245*	
H10B 6	0.188939	0.930682	0.413278	0.245*	
C11 6	0.0931 (15)	0.9758 (8)	0.3803 (6)	0.250 (11)	
H11A 6	0.064923	0.971121	0.350513	0.375*	
H11B_6	0.127251	1.021522	0.390732	0.375*	
H11C 6	0.040976	0.965475	0.398111	0.375*	
N1 7	0.6303 (3)	0.67132 (17)	0.07720 (12)	0.0333 (8)	
N2 7	0.5344 (3)	0.67596 (16)	0.08026 (12)	0.0318 (8)	
C1 7	0.6843 (4)	0.7266 (2)	0.10116 (16)	0.0367 (11)	
H1 7	0.753538	0.736145	0.104473	0.044*	
C2 ⁷	0.6251 (4)	0.7680 (2)	0.12049 (15)	0.0402 (11)	
C3 7	0.5320 (4)	0.7340 (2)	0.10592 (15)	0.0367 (11)	
H3_7	0.473990	0.749628	0.113074	0.044*	
C4_7	0.6534 (4)	0.8355 (2)	0.14860 (18)	0.0531 (14)	
H4A 7	0.716887	0.837618	0.165584	0.064*	
$H4B^{-}7$	0.604343	0.841272	0.168961	0.064*	
C5 7	0.6618 (5)	0.8924 (2)	0.1244 (2)	0.0647 (16)	0.450 (13)
H5A 7	0.598144	0.891808	0.108024	0.078*	0.450 (13)
H5B_7	0.710373	0.887029	0.103685	0.078*	0.450 (13)
C6 7	0.693 (4)	0.9593 (8)	0.1556 (8)	0.072 (3)	0.450 (13)
H6A 7	0.639185	0.967788	0.172753	0.087*	0.450 (13)
$H6B^{-}7$	0.749855	0.956278	0.175542	0.087*	0.450 (13)
C7 7	0.7203 (19)	1.0168 (8)	0.1334 (8)	0.081 (4)	0.450 (13)
H7A 7	0.663461	1.019200	0.113312	0.097*	0.450 (13)
H7B 7	0.773889	1.007640	0.116030	0.097*	0.450 (13)
C8 7	0.752 (2)	1.0837 (8)	0.1624 (8)	0.092 (4)	0.450 (13)
H8A 7	0.810177	1.082204	0.181891	0.110*	0.450 (13)
H8B ⁷	0.699136	1.092867	0.180274	0.110*	0.450 (13)
C9 7	0.775 (2)	1.1398 (8)	0.1381 (7)	0.101 (4)	0.450 (13)
<u> </u>					()

H9A 7	0.830284	1.131728	0.121315	0.122*	0.450 (13)
H9B ⁷	0.718173	1.140129	0.117767	0.122*	0.450 (13)
C10 7	0.803 (3)	1.2068 (9)	0.1676 (7)	0.116 (5)	0.450 (13)
H10A 7	0.745968	1.217337	0.182323	0.139*	0.450 (13)
H10B_7	0.856422	1.205724	0.189634	0.139*	0.450 (13)
C11 7	0.834 (2)	1.2594 (10)	0.1422 (8)	0.135 (7)	0.450 (13)
H11A 7	0.884208	1.294218	0.159899	0.202*	0.450 (13)
H11B ⁷	0.778113	1.278755	0.133402	0.202*	0.450 (13)
H11C ⁷	0.861582	1.239578	0.116684	0.202*	0.450 (13)
C5B 7	0.6618 (5)	0.8924 (2)	0.1244 (2)	0.0647 (16)	0.550 (13)
H5BA 7	0.598083	0.890067	0.107566	0.078*	0.550 (13)
H5BB_7	0.710102	0.885827	0.103689	0.078*	0.550 (13)
C6B 7	0.692 (4)	0.9622 (6)	0.1515 (7)	0.074 (3)	0.550 (13)
H6BA 7	0.648425	0.967454	0.174483	0.089*	0.550 (13)
H6BB ⁷	0.759170	0.967059	0.165398	0.089*	0.550 (13)
С7В 7	0.6867 (16)	1.0168 (7)	0.1261 (7)	0.081 (3)	0.550 (13)
H7BA 7	0.618408	1.013243	0.113520	0.097*	0.550 (13)
H7BB ⁷	0.726820	1.009763	0.102041	0.097*	0.550 (13)
C8B 7	0.7212 (18)	1.0863 (7)	0.1516 (7)	0.094 (4)	0.550 (13)
H8BA 7	0.678534	1.093993	0.174599	0.113*	0.550 (13)
H8BB ⁷	0.787993	1.088728	0.165662	0.113*	0.550 (13)
C9B 7	0.7226 (16)	1.1416 (7)	0.1264 (6)	0.104 (4)	0.550 (13)
H9BA 7	0.655064	1.140645	0.113868	0.125*	0.550 (13)
H9BB ⁷	0.761819	1.132161	0.102356	0.125*	0.550 (13)
C10B 7	0.7627 (14)	1.2116 (7)	0.1509 (7)	0.114 (4)	0.550 (13)
H10C_7	0.754010	1.243734	0.131854	0.137*	0.550 (13)
H10D_7	0.725006	1.221632	0.175469	0.137*	0.550 (13)
C11B_7	0.8695 (13)	1.2203 (9)	0.1673 (7)	0.117 (6)	0.550 (13)
H11D 7	0.880023	1.184137	0.182286	0.176*	0.550 (13)
H11E ⁷	0.889246	1.262934	0.187089	0.176*	0.550 (13)
H11F ⁷	0.908449	1.219392	0.143077	0.176*	0.550 (13)
N1 8	0.3572 (3)	0.58370 (17)	0.09385 (11)	0.0291 (8)	
N2 8	0.3400 (3)	0.51946 (17)	0.09862 (12)	0.0343 (9)	
C1 8	0.3212 (3)	0.6196 (2)	0.12571 (15)	0.0356 (10)	
H1 ⁸	0.323800	0.666297	0.129562	0.043*	
C2_8	0.2794 (3)	0.5797 (2)	0.15246 (14)	0.0356 (10)	
C3 8	0.2937 (4)	0.5172 (2)	0.13372 (15)	0.0392 (11)	
H3 8	0.273330	0.477787	0.144324	0.047*	
C4_8	0.2285 (4)	0.5966 (3)	0.19177 (17)	0.0468 (13)	
H4A 8	0.270839	0.591462	0.217065	0.056*	
H4B ⁸	0.167719	0.563681	0.189179	0.056*	
C5 8	0.2027 (4)	0.6655 (2)	0.20021 (17)	0.0476 (13)	
H5A 8	0.172492	0.674077	0.172949	0.057*	
H5B ⁸	0.152622	0.665730	0.220445	0.057*	
C6 8	0.2854 (4)	0.7222 (3)	0.21812 (19)	0.0548 (14)	
H6A 8	0.330949	0.726876	0.196203	0.066*	
H6B 8	0.321704	0.711353	0.243282	0.066*	
C7 8	0.2516 (5)	0.7879 (3)	0.2315 (2)	0.0630 (16)	
<u> </u>	· · · · · ·	··· 、 、 * /		···· \ - ~ /	

H7A 8	0.218811	0.799613	0.205825	0.076*
H7B ⁸	0.202541	0.781874	0.251794	0.076*
C8 8	0.3303 (5)	0.8449 (3)	0.2520 (2)	0.0743 (19)
H8A 8	0.379933	0.850928	0.231955	0.089*
H8B ⁸	0.362477	0.833865	0.278065	0.089*
C9 8	0.2932 (6)	0.9099(3)	0.2643 (3)	0.090(2)
H9A 8	0.260191	0.920368	0.238199	0.108*
H9B 8	0.243879	0.903701	0.284460	0.108*
C10_8	0.3710(7)	0.9680 (3)	0.2845 (3)	0.108 (3)
H10A 8	0.421691	0.973493	0 264880	0.129*
H10B 8	0.402155	0.958684	0 311349	0.129*
C11 8	0.3311 (9)	1.0324(4)	0 2946 (4)	0.125 0.135 (4)
H11A 8	0.308605	1.0321(1)	0.267763	0.203*
H11B 8	0.382654	1.067481	0.310822	0.203*
H11C 8	0.276394	1 025848	0.311638	0.203*
N1 9	0.7461 (3)	0 56243 (17)	0.08225(12)	0.0330 (8)
N2 9	0.7401(3) 0.7235(3)	0.30243(17) 0.49931(17)	0.08223(12) 0.08887(12)	0.0311(8)
$\Gamma_{1,0}$	0.7235(3) 0.8205(3)	0.49931(17) 0.5943(2)	0.00007(12) 0.11106(15)	0.0311(0)
U1_9	0.8203 (3)	0.639375	0.113125	0.0362 (11)
C^{2} 9	0.8490 (3)	0.5525 (2)	0.113123 0.13773(14)	0.040
C_2	0.3490(3) 0.7850(4)	0.3323(2) 0.4935(2)	0.13775(14) 0.12216(15)	0.0374(10) 0.0388(11)
U3_9	0.784746	0.454101	0.133534	0.047*
C4 9	0.9262 (4)	0.5685 (3)	0.17575 (16)	0.047 0.0495 (13)
H4A 9	0.982443	0.599315	0.169426	0.059*
H4R 9	0.949191	0.527138	0.180032	0.059*
C5.9	0.8903 (4)	0.6002 (3)	0.21768 (18)	0.059
H5A 9	0.833789	0.569393	0.223838	0.070*
H5R 9	0.942860	0.605581	0.241493	0.070*
C6 9	0.8606 (4)	0.6669 (3)	0.2167(2)	0.0634(17)
H6A 9	0.814276	0.662488	0.190667	0.076*
H6B 9	0.825171	0.678336	0 241802	0.076*
C7.9	0.9423(5)	0.7239 (3)	0.2169(2)	0.0658 (18)
H7A 9	0.987821	0.729745	0.243371	0.079*
H7B 9	0.978920	0.712592	0.192179	0.079*
C8 9	0.9078(5)	0.7884(3)	0.2147(2)	0.0754 (19)
H8A 9	0.866116	0.797322	0.237947	0.090*
H8B 9	0.866803	0.783380	0.187121	0.090*
C9 9	0.9882 (5)	0.8480 (3)	0.2187 (3)	0.080 (2)
H9A 9	1.030117	0.839149	0.195578	0.096*
H9B 9	1.029104	0.853287	0.246414	0.096*
C10 9	0.9522 (7)	0.9124 (4)	0.2163 (3)	0.103 (3)
H10A 9	0.909676	0.906706	0.189002	0.123*
H10B 9	0.912202	0.922075	0.240022	0.123*
C11 9	1.0325 (8)	0.9704 (5)	0.2189 (4)	0.136 (4)
H11A 9	1.075662	0.959908	0.196894	0.204*
H11B 9	1.070040	0.980067	0.247281	0.204*
H11C 9	1.004484	1.009284	0.214083	0.204*
N1_10	0.4490 (3)	0.40508 (18)	0.09811 (12)	0.0363 (9)

N2 10	0.5447 (3)	0.40267 (18)	0.09690 (12)	0.0358 (9)	
C1_10	0.4139 (4)	0.3625 (2)	0.12268 (16)	0.0429 (12)	
H1 10	0.348011	0.354522	0.128618	0.052*	
C2_10	0.4866 (4)	0.3321 (2)	0.13813 (15)	0.0439 (12)	
C3_10	0.5678 (4)	0.3594 (2)	0.12111 (16)	0.0434 (12)	
H3_10	0.631153	0.348962	0.125901	0.052*	
C4_10	0.4777 (6)	0.2762 (2)	0.16318 (19)	0.0629 (16)	0.524 (11)
H4A 10	0.420095	0.277388	0.179229	0.075*	0.524 (11)
H4B 10	0.536198	0.282999	0.184281	0.075*	0.524 (11)
C5 10	0.4672 (18)	0.2082 (6)	0.1343 (7)	0.076 (3)	0.524 (11)
H5A 10	0.406532	0.200196	0.114314	0.092*	0.524 (11)
H5B 10	0.522800	0.207845	0.116933	0.092*	0.524 (11)
C6 10	0.4643 (18)	0.1526 (7)	0.1599 (8)	0.093(4)	0.524(11)
H6A 10	0.528567	0.157924	0.176929	0.112*	0.524(11)
H6B_10	0.415099	0.157595	0.180253	0.112*	0.524(11)
C7 10	0.4409 (18)	0.0839(7)	0.1337 (7)	0.112	0.524(11)
H7A 10	0.492003	0.077765	0.114387	0.132*	0.524(11)
H7B 10	0.378091	0.078953	0.115560	0.132*	0.524(11) 0.524(11)
$\frac{11}{D}_{10}$	0.378091 0.4338(19)	0.078933 0.0302(7)	0.115500	0.132 0.129 (4)	0.524(11) 0.524(11)
U8A 10	0.407271	0.0302 (7)	0.1000(7)	0.129 (4)	0.524(11)
118A_10	0.49/2/1	0.033379	0.177800	0.155*	0.324(11)
100_{10}	0.384028	-0.0361(8)	0.180545 0.1226(0)	0.155	0.324(11)
U0A 10	0.4009 (19)	-0.0301(8) -0.061520	0.1320 (9)	0.130 (3)	0.324(11)
П9А_10 ЦОР_10	0.438807	-0.001330	0.138872	0.100*	0.324(11)
H9B_10	0.409/68	-0.0293//	0.1026/4	0.188*	0.524 (11)
C10_10	0.30/1 (16)	-0.0821 (11)	0.1336 (11)	0.1/4 (6)	0.524 (11)
H10A_10	0.2/6300	-0.0/1505	0.160237	0.209*	0.524 (11)
H10B_10	0.259947	-0.08/103	0.107/81	0.209*	0.524 (11)
C11_10	0.367 (2)	-0.1386 (11)	0.1330 (11)	0.169 (8)	0.524 (11)
H11A_10	0.394225	-0.146500	0.105567	0.253*	0.524 (11)
H11B_10	0.324855	-0.179184	0.136591	0.253*	0.524 (11)
H11C_10	0.420457	-0.125871	0.156459	0.253*	0.524 (11)
C4B_10	0.4777 (6)	0.2762 (2)	0.16318 (19)	0.0629 (16)	0.476 (11)
H4BA_10	0.542577	0.275221	0.177854	0.075*	0.476 (11)
H4BB_10	0.433569	0.284901	0.185445	0.075*	0.476 (11)
C5B_10	0.4388 (19)	0.2093 (7)	0.1350 (7)	0.074 (3)	0.476 (11)
H5BA_10	0.483226	0.201305	0.112815	0.089*	0.476 (11)
H5BB_10	0.374464	0.211192	0.120109	0.089*	0.476 (11)
C6B_10	0.4270 (19)	0.1507 (8)	0.1578 (8)	0.091 (4)	0.476 (11)
H6BA_10	0.491637	0.146930	0.171420	0.109*	0.476 (11)
H6BB_10	0.384586	0.159061	0.180768	0.109*	0.476 (11)
C7B_10	0.384 (2)	0.0864 (8)	0.1285 (7)	0.111 (4)	0.476 (11)
H7BA_10	0.322406	0.091590	0.112755	0.133*	0.476 (11)
H7BB_10	0.429531	0.075951	0.107179	0.133*	0.476 (11)
C8B_10	0.363 (2)	0.0295 (8)	0.1513 (7)	0.133 (4)	0.476 (11)
H8BA_10	0.313631	0.038465	0.170769	0.160*	0.476 (11)
H8BB_10	0.423777	0.027164	0.169158	0.160*	0.476 (11)
C9B_10	0.329 (2)	-0.0366 (9)	0.1228 (8)	0.158 (5)	0.476 (11)
H9BA_10	0.356881	-0.038954	0.095240	0.190*	0.476 (11)
_					. /

H9BB 10	0.256515	-0.045841	0.116954	0.190*	0.476 (11)
C10B_10	0.367 (2)	-0.0882 (10)	0.1502 (10)	0.168 (6)	0.476 (11)
H10C_10	0.435990	-0.092195	0.147847	0.201*	0.476 (11)
H10D_10	0.353913	-0.080101	0.180503	0.201*	0.476 (11)
C11B_10	0.294 (2)	-0.1447 (12)	0.1216 (11)	0.179 (9)	0.476 (11)
H11D_10	0.318661	-0.156179	0.093826	0.268*	0.476 (11)
H11E_10	0.231084	-0.130490	0.117232	0.268*	0.476 (11)
H11F_10	0.286394	-0.183557	0.135409	0.268*	0.476 (11)
N1_11	0.2694 (3)	0.39052 (19)	0.03687 (13)	0.0376 (9)	
N2_11	0.2529 (3)	0.36822 (18)	-0.00618 (13)	0.0353 (9)	
C1_11	0.2012 (4)	0.3550 (2)	0.05483 (16)	0.0439 (12)	
H1_11	0.196300	0.360610	0.084744	0.053*	
C2_11	0.1392 (3)	0.3090 (2)	0.02399 (16)	0.0383 (11)	
C3_11	0.1756 (4)	0.3185 (2)	-0.01373 (16)	0.0429 (12)	
H3_11	0.149782	0.293435	-0.041269	0.051*	
C4_11	0.0572 (4)	0.2561 (2)	0.03096 (18)	0.0461 (12)	
H4A_11	0.006692	0.246267	0.005959	0.055*	
H4B_11	0.026911	0.273345	0.056568	0.055*	
C5_11	0.0919 (4)	0.1921 (2)	0.03707 (19)	0.0499 (13)	
H5A 11	0.115934	0.172527	0.010262	0.060*	
H5B_11	0.147406	0.202814	0.059996	0.060*	
C6_11	0.0139 (4)	0.1409 (2)	0.04864 (19)	0.0513 (13)	
H6A_11	-0.041080	0.129438	0.025460	0.062*	
H6B 11	-0.011017	0.160656	0.075178	0.062*	
C7 11	0.0499 (4)	0.0780 (3)	0.0554 (2)	0.0572 (15)	
H7A 11	0.072288	0.057408	0.028474	0.069*	
H7B_11	0.106840	0.089872	0.077680	0.069*	
C8_11	-0.0259 (5)	0.0275 (3)	0.0689 (2)	0.0616 (16)	
H8A_11	-0.082886	0.015958	0.046635	0.074*	
H8B_11	-0.048120	0.048241	0.095804	0.074*	
C9_11	0.0082 (5)	-0.0362 (3)	0.0757 (2)	0.0692 (18)	
H9A_11	0.031599	-0.056752	0.049018	0.083*	
H9B_11	0.064125	-0.025035	0.098498	0.083*	
C10_11	-0.0700 (6)	-0.0861 (3)	0.0882 (3)	0.085 (2)	
H10A_11	-0.092262	-0.065982	0.115310	0.103*	
H10B 11	-0.126550	-0.096533	0.065778	0.103*	
C11_11	-0.0362 (8)	-0.1496 (3)	0.0940 (3)	0.115 (4)	
H11A 11	-0.089003	-0.179084	0.103175	0.172*	
H11B_11	0.020512	-0.139658	0.115732	0.172*	
H11C 11	-0.018223	-0.171405	0.066705	0.172*	
N1 12	0.6660 (3)	0.36680 (18)	0.02623 (12)	0.0343 (9)	
N2 12	0.6426 (3)	0.34603 (17)	-0.01683 (12)	0.0328 (8)	
C1 12	0.7121 (4)	0.3212 (2)	0.04030 (15)	0.0385 (11)	
H1 12	0.736122	0.323672	0.069410	0.046*	
C2_12	0.7203 (3)	0.2704 (2)	0.00742 (15)	0.0353 (10)	
C3_12	0.6745 (3)	0.2886 (2)	-0.02785 (15)	0.0357 (10)	
H3 12	0.666704	0.263536	-0.056189	0.043*	
C4_12	0.7604 (3)	0.2078 (2)	0.00902 (16)	0.0375 (11)	
—		× /	× /		

H4A 12	0.804188	0.213991	0.036012	0.045*	
H4B_12	0.799880	0.199628	-0.015101	0.045*	
C5_12	0.6815 (4)	0.1471 (2)	0.00653 (19)	0.0443 (12)	
H5A_12	0.634906	0.142772	-0.019389	0.053*	
H5B 12	0.645064	0.153872	0.031811	0.053*	
C6 12	0.7220 (4)	0.0827 (2)	0.0050 (2)	0.0474 (13)	
H6A 12	0.758656	0.076038	-0.020248	0.057*	
H6B 12	0.768356	0.086965	0.030935	0.057*	
$C7 \ 12$	0.6431 (4)	0.0217 (2)	0.0023 (2)	0.0540 (14)	
H7A 12	0.608572	0.027249	0.028179	0.065*	
H7B_12	0.594986	0.018513	-0.022943	0.065*	
C8 12	0.6840 (4)	-0.0424(2)	-0.0014(2)	0.0545 (15)	
H8A 12	0.733411	-0.038294	0.023497	0.065*	
H8B 12	0.717833	-0.047781	-0.027540	0.065*	
C9 12	0.6091 (4)	-0.1049(2)	-0.0034(2)	0.0504 (14)	
H9A 12	0.577234	-0.100867	0.023320	0.061*	
H9B_12	0.558191	-0.108586	-0.027636	0.061*	
C10_12	0.6535 (4)	-0.1677(2)	-0.0089(2)	0.0518 (14)	
H10A 12	0.684604	-0.171451	-0.035742	0.062*	
H10B 12	0.705490	-0.162972	0.015098	0.062*	
C11 12	0.5830 (5)	-0.2313(2)	-0.0103(2)	0.0608 (16)	
H11A 12	0.532225	-0.237530	-0.034456	0.091*	
H11B 12	0.552874	-0.228893	0.016527	0.091*	
H11C 12	0.618160	-0.268804	-0.013737	0.091*	
N1 13	0.5182 (3)	0.5031 (2)	0.24963 (14)	0.0461 (10)	
C1 13	0.6147 (4)	0.4846 (3)	0.26588 (19)	0.0540 (14)	
H1A 13	0.665376	0.525111	0.271625	0.065*	
H1B_13	0.606894	0.469872	0.293533	0.065*	
$C2 \ 13$	0.6510 (5)	0.4319 (4)	0.2368 (2)	0.0701 (18)	
H2A 13	0.660955	0.446615	0.209328	0.084*	
H2B 13	0.600775	0.391134	0.230718	0.084*	
C3 13	0.7452 (6)	0.4158 (4)	0.2554 (2)	0.080(2)	
H3A 13	0.791519	0.457957	0.265673	0.096*	
H3B 13	0.732137	0.395393	0.280677	0.096*	
C4 13	0.7931 (8)	0.3715 (5)	0.2267 (3)	0.118 (4)	
H4A 13	0.750948	0.327883	0.218330	0.177*	
H4B_13	0.855225	0.366658	0.241486	0.177*	
H4C 13	0.805325	0.390245	0.201059	0.177*	
C5_13	0.4374 (4)	0.4457 (3)	0.2493 (2)	0.0579 (15)	
H5A 13	0.447294	0.428849	0.276332	0.069*	
H5B 13	0.442333	0.409516	0.225397	0.069*	
C6_13	0.3349 (4)	0.4616 (3)	0.2448 (2)	0.0619 (16)	
H6A 13	0.324644	0.491188	0.271326	0.074*	
H6B 13	0.327646	0.485478	0.220711	0.074*	
C7_13	0.2587 (5)	0.3994 (3)	0.2369 (3)	0.079 (2)	
H7A_13	0.271333	0.372918	0.259135	0.094*	
H7B_13	0.264478	0.372371	0.208714	0.094*	
C8_13	0.1561 (5)	0.4137 (4)	0.2374 (3)	0.096 (3)	
H8A 13	0.143455	0.440577	0.215735	0.143*	
-------------------	--------------------------	-----------------------	------------------------	-----------------	-----
H8B 13	0.148679	0.438100	0.265768	0.143*	
H8C 13	0.109474	0.371819	0.230946	0.143*	
C9 13	0.5051 (4)	0.5656 (3)	0.27943 (17)	0.0513 (13)	
H9A 13	0.558467	0.601715	0.276960	0.062*	
H9B_13	0.443088	0.578153	0.269109	0.062*	
C10 13	0.5035 (5)	0.5621 (3)	0.32650 (18)	0.0574 (15)	
H10A 13	0.463753	0.519613	0.329507	0.069*	
H10B_13	0.570637	0.564249	0.339971	0.069*	
C11 13	0.4611 (7)	0.6189 (4)	0.3484 (2)	0.085(2)	
H11A 13	0.389844	0.609383	0.339675	0.102*	
H11B 13	0.470887	0.619967	0.379656	0.102*	
C12 13	0.4985 (8)	0.6855 (4)	0.3409(3)	0.100 (3)	
H12A 13	0.486439	0.686515	0.310340	0.151*	
H12B 13	0.568809	0.696743	0.350086	0.151*	
H12C 13	0.465325	0.717924	0.357402	0.151*	
C13 13	0 5197 (4)	0.5182(3)	0.20401(17)	0.0524 (13)	
H13A 13	0.517048	0.475732	0.183903	0.063*	
H13B 13	0.459420	0.535285	0.196731	0.063*	
C14 13	0.6066 (4)	0.555205 0.5675(3)	0.19581 (18)	0.005	
H14A 13	0.647755	0.586253	0.223339	0.062*	
H14B 13	0.646411	0.543244	0.176549	0.062*	
$C_{15} 13$	0.5787 (5)	0.543244 0.6231(3)	0.17635 (18)	0.002	
H15A 13	0.525334	0.604638	0.152878	0.066*	
H15B 13	0.635263	0.643374	0.163447	0.066*	
$C_{16} 13$	0.5457 (6)	0.6774(3)	0.103+47 0.2071(2)	0.0663 (18)	
H16A 13	0.530511	0.712286	0.2071 (2)	0.100*	
H16B 13	0.597879	0.712280	0.191705	0.100*	
H16C 13	0.487312	0.658633	0.218022	0.100*	
N1 14	1.0384(11)	0.038033 0.5273(7)	0.213922 0.0132(4)	0.100	0.5
C1 14	1.0304(11) 1.0014(10)	0.5275(7)	0.0132(4) 0.0386(6)	0.047(2)	0.5
U_1^{-14}	0.054427	0.5850 (8)	0.0300 (0)	0.049(3)	0.5
HIA_14	0.934427	0.570286	0.019333	0.039*	0.5
$111D_14$	1.0817(0)	0.570280	0.001708 0.0583(4)	0.059°	0.5
U_2_{14}	1.0017 (9)	0.0433(0)	0.0383 (4)	0.032 (2)	0.5
$\Pi 2A_{14}$	1.150560	0.625662	0.071387	0.002*	0.5
$\Pi 2D_{14}$	1.103973	0.003003	0.033183	0.062°	0.5
C_{3}_{14}	1.0308 (9)	0.0939(3)	0.0918 (4)	0.030 (2)	0.5
ПЗА_14 112D_14	0.995144	0.709189	0.079291	0.060*	0.5
П3Б_14 С4_14	1.031190	0.072430	0.113914	0.060°	0.5
C4_14	1.1297 (8)	0.7529 (5)	0.1086 (4)	0.055 (5)	0.5
H4A_14	1.18/358	0.738121	0.120758	0.083*	0.5
H4B_14	1.106326	0.783313	0.130957	0.083*	0.5
H4C_14	1.146881	0.775948	0.085194	0.083*	0.5
C5_14	1.0991 (8)	0.4944 (5)	0.0422 (3)	0.048 (2)	0.5
H5A_14	1.110038	0.452299	0.024951	0.058*	0.5
H5B_14	1.163689	0.523434	0.050264	0.058*	0.5
C6_14	1.0613 (9)	0.4786 (6)	0.0829 (4)	0.052 (2)	0.5
H6A_14	1.037481	0.518169	0.097368	0.063*	0.5

H6B 14	1.117113	0.471952	0.101937	0.063*	0.5
C7 14	0.9811 (10)	0.4193 (6)	0.0791 (4)	0.053 (3)	0.5
H7A 14	0.990489	0.384614	0.055036	0.064*	0.5
H7B 14	0.917639	0.432711	0.072066	0.064*	0.5
C8 14	0.9772 (11)	0.3893 (7)	0.1201 (5)	0.060 (3)	0.5
H8A 14	0.917530	0 356249	0 117305	0.089*	0.5
H8B 14	0.977362	0.424674	0 144840	0.089*	0.5
$H8C_{14}$	1 034192	0.368072	0.124214	0.089*	0.5
C9 14	1 1002 (8)	0.5496 (5)	-0.0205(3)	0.009	0.5
HQA 14	1.161265	0.577758	-0.005323	0.058*	0.5
H0R 14	1 118388	0.509598	-0.037341	0.058*	0.5
$C_{10} 14$	1.110500	0.5867 (6)	-0.0511(4)	0.053	0.5
H10A 14	1.0578 (8)	0.5807 (0)	-0.062502	0.054 (2)	0.5
H10R 14	1.112042	0.610500	-0.034618	0.064*	0.5
$\frac{110D_{14}}{C11_{14}}$	1.024500	0.019399	-0.0880(4)	0.004	0.5
U11A 14	0.9870(10)	0.5490(7)	-0.070606	0.055 (5)	0.5
1111A_14	1.006441	0.540198	-0.00000	0.000	0.5
ПП <u>Б</u> 14	1.000441	0.505050	-0.099008	0.000°	0.5
U12_14	0.9829 (10)	0.580/(/)	-0.1201(4)	0.055(5)	0.5
H12A_14	0.944701	0.55/4//	-0.131409	0.080*	0.5
H12B_14	1.049188	0.601219	-0.132708	0.080*	0.5
H12C_14	0.952004	0.625567	-0.118019	0.080*	0.5
CI3_14	0.9478 (14)	0.4/81 (9)	-0.00/9(6)	0.048 (3)	0.5
HI3A_14	0.909353	0.500261	-0.026754	0.058*	0.5
HI3B_14	0.907297	0.466833	0.014751	0.058*	0.5
C14_14	0.9667 (9)	0.4129 (8)	-0.0347 (6)	0.052 (3)	0.5
H14A_14	1.013519	0.423392	-0.055240	0.062*	0.5
H14B_14	0.996039	0.386769	-0.015479	0.062*	0.5
C15_14	0.8752 (10)	0.3734 (6)	-0.0582(5)	0.062 (3)	0.5
H15A_14	0.848483	0.398581	-0.078807	0.074*	0.5
H15B_14	0.826861	0.366115	-0.037755	0.074*	0.5
C16_14	0.8901 (10)	0.3063 (6)	-0.0825 (4)	0.059 (3)	0.5
H16A_14	0.830687	0.284967	-0.101541	0.089*	0.5
H16B_14	0.904420	0.278007	-0.062029	0.089*	0.5
H16C_14	0.944761	0.312993	-0.099589	0.089*	0.5
N1_15	1.0001 (15)	0.5214 (9)	0.5011 (7)	0.083 (2)	0.257 (5)
C1_15	1.0672 (17)	0.5430 (16)	0.5431 (7)	0.083 (3)	0.257 (5)
H1A_15	1.085157	0.503076	0.552516	0.099*	0.257 (5)
H1B_15	1.127869	0.570761	0.537904	0.099*	0.257 (5)
C2_15	1.023 (2)	0.5818 (18)	0.5789 (7)	0.077 (3)	0.257 (5)
H2A_15	1.020558	0.626801	0.572869	0.093*	0.257 (5)
H2B 15	0.954758	0.559553	0.579182	0.093*	0.257 (5)
C3_15	1.077 (2)	0.5879 (18)	0.6216 (8)	0.079 (3)	0.257 (5)
H3A 15	1.143688	0.612215	0.621225	0.094*	0.257 (5)
H3B 15	1.082919	0.542725	0.626202	0.094*	0.257 (5)
C4 15	1.034 (3)	0.622 (2)	0.6597 (10)	0.080 (4)	0.257 (5)
H4A 15	1.075868	0.665463	0.671408	0.119*	0.257 (5)
H4B_15	1.030986	0.594843	0.681719	0.119*	0.257 (5)
H4C_15	0.968604	0.629283	0.650455	0.119*	0.257 (5)
—					× /

C5 15	0.9636 (18)	0.5776 (11)	0.4841 (10)	0.083 (3)	0.257 (5)
H5A 15	0.909903	0.590103	0.500340	0.099*	0.257 (5)
H5B 15	0.935921	0.561210	0.453784	0.099*	0.257 (5)
C6 15	1.039 (2)	0.6397 (15)	0.4862 (15)	0.080(3)	0.257 (5)
H6A 15	1.064859	0.658052	0.516533	0.096*	0.257 (5)
H6B_15	1.094342	0.627649	0.470782	0.096*	0.257 (5)
C7 15	0.998 (2)	0.6923 (16)	0.4669 (15)	0.078 (4)	0.257 (5)
H7A 15	0.951526	0.670109	0.441502	0.094*	0.257 (5)
H7B 15	0.960774	0.715307	0.488038	0.094*	0.257 (5)
C8 15	1.071 (2)	0.7429 (14)	0.4537 (10)	0.078 (4)	0.257 (5)
H8A 15	1.088385	0.725307	0.425379	0.117*	0.257(5)
H8B 15	1.129560	0.753572	0.474583	0.117*	0.257(5)
H8C 15	1.043312	0.783107	0 452569	0.117*	0.257(5)
C9 15	0.9126 (16)	0 4711 (11)	0.5071 (10)	0.083(3)	0.257(5)
H9A 15	0.893888	0 486440	0.535909	0.099*	0.257(5)
H9R_15	0.858187	0.474877	0.486155	0.099*	0.257(5)
C10, 15	0.030107	0.3995(12)	0.5033(10)	0.099	0.257(5)
H10A 15	0.937244	0.384152	0.475107	0.100*	0.257(5)
H10R 15	0.937244	0.376250	0.475107	0.100*	0.237(3) 0.257(5)
C11_15	0.047704	0.3762 (18)	0.502050	0.100	0.257(5)
H11A 15	0.977 (3)	0.3702 (18)	0.5539 (14)	0.001 (4)	0.237(3) 0.257(5)
HIIA_15	1.045870	0.397331	0.533164	0.098	0.257(5)
$\frac{11110}{12}$	0.063 (6)	0.392233 0.301 (2)	0.535104	0.098°	0.237(3) 0.257(5)
U12_15	0.903 (0)	0.301(2)	0.534(2)	0.001(4)	0.237(3)
H12A_15	1.020084	0.200917	0.547703	0.121*	0.237(3)
П12Б_15	1.020084	0.290292	0.549404	0.121*	0.237(3)
HI2C_I3	0.934090	0.278200	0.304211	0.121°	0.237(3)
CI3_I5	1.0636 (18)	0.4895 (16)	0.4699 (7)	0.087 (3)	0.257(5)
HI3A_15	1.068800	0.444885	0.475876	0.104*	0.257(5)
HI3B_I5	1.130001	0.516493	0.4/52/3	0.104^{*}	0.257(5)
C14_15	1.026 (2)	0.4827 (14)	0.4226 (7)	0.088 (3)	0.257(5)
HI4A_15	0.990409	0.519514	0.419134	0.106*	0.257 (5)
H14B_15	1.081645	0.486073	0.405526	0.106*	0.257 (5)
C15_15	0.960 (3)	0.4194 (18)	0.4065 (10)	0.089 (4)	0.257 (5)
H15A_15	0.897103	0.422873	0.417716	0.107*	0.257 (5)
H15B_15	0.987528	0.385144	0.419505	0.107*	0.257 (5)
C16_15	0.939 (4)	0.393 (2)	0.3583 (10)	0.092 (4)	0.257 (5)
H16A_15	0.904011	0.422819	0.344920	0.138*	0.257 (5)
H16B_15	0.898782	0.348543	0.353195	0.138*	0.257 (5)
H16C_15	1.000513	0.390367	0.345973	0.138*	0.257 (5)
N1B_15	1.0102 (16)	0.5238 (9)	0.4988 (7)	0.083 (2)	0.243 (5)
C1B_15	0.9234 (17)	0.4874 (16)	0.4673 (8)	0.087 (3)	0.243 (5)
H1C_15	0.872523	0.470129	0.484307	0.105*	0.243 (5)
H1D_15	0.897536	0.521019	0.453177	0.105*	0.243 (5)
C2B_15	0.933 (2)	0.4307 (14)	0.4322 (8)	0.088 (3)	0.243 (5)
H2C_15	0.971866	0.400808	0.444297	0.106*	0.243 (5)
H2D_15	0.867543	0.404829	0.420950	0.106*	0.243 (5)
C3B_15	0.980 (3)	0.4544 (18)	0.3970 (9)	0.090 (4)	0.243 (5)
H3C 15	1.051757	0.462576	0.405523	0.108*	0.243 (5)

H3D_15	0.962126	0.498048	0.395061	0.108*	0.243 (5)
C4B_15	0.962 (4)	0.413 (2)	0.3527 (10)	0.088 (4)	0.243 (5)
H4D_15	0.903842	0.423227	0.337510	0.132*	0.243 (5)
H4E_15	0.951784	0.366107	0.354520	0.132*	0.243 (5)
H4F_15	1.018403	0.423658	0.337189	0.132*	0.243 (5)
C5B_15	1.0636 (19)	0.5847 (11)	0.4850 (11)	0.083 (3)	0.243 (5)
H5C_15	1.122751	0.602545	0.505531	0.100*	0.243 (5)
H5D_15	1.085553	0.570247	0.456671	0.100*	0.243 (5)
C6B_15	1.008 (2)	0.6408 (16)	0.4815 (17)	0.081 (3)	0.243 (5)
H6C_15	0.943613	0.622409	0.464991	0.097*	0.243 (5)
H6D_15	0.997202	0.661771	0.510601	0.097*	0.243 (5)
C7B_15	1.061 (3)	0.6933 (18)	0.4601 (17)	0.079 (4)	0.243 (5)
H7C_15	1.128845	0.706413	0.473835	0.094*	0.243 (5)
H7D_15	1.062878	0.673629	0.429636	0.094*	0.243 (5)
C8B_15	1.016 (2)	0.7539 (13)	0.4618 (12)	0.082 (4)	0.243 (5)
H8D_15	1.050395	0.783592	0.445120	0.122*	0.243 (5)
H8E_15	1.020186	0.776724	0.491697	0.122*	0.243 (5)
H8F_15	0.947068	0.741258	0.449860	0.122*	0.243 (5)
C9B_15	1.0848 (17)	0.4782 (11)	0.5045 (11)	0.084 (3)	0.243 (5)
H9C 15	1.128204	0.480876	0.481640	0.100*	0.243 (5)
H9D 15	1.125684	0.496668	0.532187	0.100*	0.243 (5)
C10B 15	1.049 (2)	0.4078 (12)	0.5040 (11)	0.084 (3)	0.243 (5)
H10C 15	1.106916	0.386744	0.507808	0.101*	0.243 (5)
H10D 15	1.016529	0.388548	0.474634	0.101*	0.243 (5)
C11B 15	0.981 (4)	0.385 (2)	0.5342 (16)	0.081 (4)	0.243 (5)
H11C 15	0.914695	0.392888	0.525292	0.097*	0.243 (5)
H11D 15	1.002432	0.411425	0.563269	0.097*	0.243 (5)
C12B 15	0.975 (5)	0.311 (2)	0.536 (3)	0.081 (4)	0.243 (5)
H12D 15	0.991093	0.287360	0.508816	0.121*	0.243 (5)
H12E 15	0.908769	0.292081	0.540677	0.121*	0.243 (5)
H12F 15	1.021432	0.306084	0.559531	0.121*	0.243 (5)
C13B 15	0.9720 (19)	0.5396 (16)	0.5423 (7)	0.082 (3)	0.243 (5)
H13C 15	0.908861	0.509464	0.540811	0.099*	0.243 (5)
H13D 15	0.957725	0.585240	0.545552	0.099*	0.243 (5)
C14B 15	1.034 (2)	0.5353 (18)	0.5844 (7)	0.077 (3)	0.243 (5)
H14C 15	1.020046	0.489975	0.590749	0.092*	0.243 (5)
H14D_15	1.104212	0.546975	0.581955	0.092*	0.243 (5)
C15B 15	1.0034 (19)	0.5842 (16)	0.6184 (9)	0.077 (3)	0.243 (5)
H15C 15	0.938953	0.564143	0.625426	0.093*	0.243 (5)
H15D 15	0.993883	0.623547	0.606034	0.093*	0.243 (5)
C16B 15	1.070 (3)	0.609 (2)	0.6604 (10)	0.077 (4)	0.243 (5)
H16D 15	1.090465	0.570519	0.670798	0.116*	0.243 (5)
H16E 15	1.034536	0.631823	0.681797	0.116*	0.243 (5)
H16F 15	1.127440	0.638935	0.655703	0.116*	0.243 (5)
_					· · /

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ni1 16	0.0434 (5)	0.0400 (4)	0.0311 (4)	0.0155 (4)	0.0088 (4)	0.0110 (3)
Ni2 16	0.0398 (5)	0.0370 (4)	0.0337 (4)	0.0051 (3)	0.0102 (4)	0.0082 (3)
Ni3 16	0.0378 (4)	0.0371 (4)	0.0309 (4)	0.0103 (3)	0.0100 (3)	0.0088 (3)
Ni4 16	0.0355 (4)	0.0425 (4)	0.0308 (4)	0.0069 (3)	0.0049 (3)	0.0078 (3)
Ni5 16	0.0278 (4)	0.0272 (3)	0.0259 (4)	0.0054 (3)	0.0045 (3)	0.0038 (3)
Ni6_16	0.0313 (4)	0.0282 (4)	0.0278 (4)	0.0027 (3)	0.0077 (3)	0.0045 (3)
Ni7_16	0.0311 (4)	0.0275 (4)	0.0253 (4)	0.0052 (3)	0.0034 (3)	0.0049 (3)
Ni8_16	0.0260 (4)	0.0271 (3)	0.0288 (4)	0.0025 (3)	0.0031 (3)	0.0047 (3)
01_16	0.0411 (18)	0.0338 (15)	0.0298 (17)	0.0094 (13)	0.0102 (14)	0.0098 (13)
O2_16	0.0298 (16)	0.0426 (17)	0.0321 (17)	0.0091 (13)	0.0068 (13)	0.0082 (14)
03_16	0.0391 (18)	0.0310 (15)	0.0333 (17)	0.0069 (13)	0.0067 (14)	0.0077 (13)
O4_16	0.0311 (16)	0.0241 (13)	0.0225 (15)	0.0017 (11)	0.0022 (12)	0.0020 (11)
O5_16	0.0258 (15)	0.0297 (14)	0.0280 (16)	0.0062 (12)	0.0076 (12)	0.0022 (12)
06_16	0.0268 (15)	0.0250 (13)	0.0287 (16)	0.0018 (11)	0.0026 (12)	0.0052 (12)
N1_1	0.063 (3)	0.052 (2)	0.038 (2)	0.028 (2)	0.014 (2)	0.013 (2)
N2_1	0.045 (2)	0.044 (2)	0.042 (2)	0.0146 (19)	0.016 (2)	0.0118 (19)
C1_1	0.091 (5)	0.059 (3)	0.046 (3)	0.046 (3)	0.024 (3)	0.018 (3)
C2_1	0.062 (4)	0.047 (3)	0.056 (4)	0.026 (3)	0.018 (3)	0.011 (3)
C3_1	0.064 (4)	0.061 (3)	0.041 (3)	0.033 (3)	0.025 (3)	0.015 (3)
C4_1	0.107 (6)	0.071 (4)	0.066 (4)	0.052 (4)	0.034 (4)	0.017 (3)
C5_1	0.087 (5)	0.049 (3)	0.102 (6)	0.027 (3)	-0.003 (4)	0.005 (4)
C6_1	0.102 (6)	0.067 (4)	0.097 (6)	0.041 (4)	-0.002 (5)	0.000 (4)
C7_1	0.123 (8)	0.066 (5)	0.135 (8)	0.038 (5)	-0.008 (6)	0.013 (5)
C8_1	0.128 (8)	0.074 (5)	0.155 (9)	0.046 (5)	-0.038 (7)	-0.005 (6)
C9_1	0.189 (13)	0.083 (6)	0.163 (11)	0.031 (7)	-0.025 (9)	0.033 (7)
C10_1	0.247 (17)	0.079 (7)	0.204 (14)	0.049 (9)	-0.039 (12)	0.025 (8)
C11_1	0.25 (2)	0.124 (11)	0.32 (2)	-0.008 (12)	0.008 (18)	0.087 (14)
N1_2	0.063 (3)	0.036 (2)	0.048 (3)	0.010(2)	0.019 (2)	0.0138 (19)
N2_2	0.065 (3)	0.042 (2)	0.041 (2)	0.018 (2)	0.015 (2)	0.0135 (19)
C1_2	0.084 (5)	0.042 (3)	0.070 (4)	0.014 (3)	0.038 (4)	0.022 (3)
C2_2	0.109 (6)	0.046 (3)	0.082 (5)	0.032 (4)	0.051 (4)	0.032 (3)
C3_2	0.087 (5)	0.050 (3)	0.060 (4)	0.033 (3)	0.024 (3)	0.026 (3)
C4_2	0.158 (9)	0.062 (4)	0.183 (10)	0.057 (5)	0.107 (8)	0.072 (6)
C5_2	0.092 (5)	0.045 (3)	0.061 (4)	0.017 (3)	0.010 (3)	0.022 (3)
C6_2	0.126 (7)	0.045 (3)	0.108 (6)	0.030 (4)	0.046 (5)	0.036 (4)
C7_2	0.111 (6)	0.056 (4)	0.080 (5)	0.028 (4)	0.024 (4)	0.033 (3)
C8_2	0.097 (6)	0.043 (3)	0.096 (5)	0.020 (3)	0.020 (4)	0.025 (3)
C9_2	0.135 (7)	0.059 (4)	0.078 (5)	0.037 (4)	0.029 (5)	0.029 (4)
C10_2	0.104 (6)	0.047 (3)	0.083 (5)	0.016 (3)	0.011 (4)	0.017 (3)
C11_2	0.205 (12)	0.071 (5)	0.095 (6)	0.065 (6)	0.057 (7)	0.038 (5)
N1_3	0.041 (2)	0.042 (2)	0.037 (2)	0.0080 (17)	0.0118 (19)	0.0101 (17)
N2_3	0.042 (2)	0.042 (2)	0.041 (2)	0.0006 (18)	0.0123 (19)	0.0131 (18)
C1_3	0.049 (3)	0.050 (3)	0.039 (3)	0.014 (2)	0.017 (3)	0.010 (2)
C2_3	0.048 (3)	0.067 (3)	0.050 (3)	0.016 (3)	0.019 (3)	0.018 (3)
C3 3	0.048 (3)	0.050 (3)	0.053 (3)	-0.003(2)	0.024 (3)	0.009 (3)

C4 3	0.061 (4)	0.088 (4)	0.068 (4)	0.004 (3)	0.040(3)	0.021 (3)
C5_3	0.064 (5)	0.082 (5)	0.044 (4)	0.001 (4)	0.026 (4)	0.023 (4)
C6 3	0.090 (6)	0.079 (5)	0.059 (5)	0.007 (4)	0.027 (4)	0.026 (4)
C7_3	0.103 (6)	0.078 (5)	0.077 (5)	-0.003(5)	0.013 (5)	0.025 (4)
C8_3	0.137 (7)	0.093 (6)	0.090 (6)	0.004 (6)	0.025 (6)	0.021 (5)
C9_3	0.150(7)	0.083 (6)	0.085 (6)	0.012 (6)	0.009 (6)	0.011 (5)
$C10^{-3}$	0.161 (8)	0.102(7)	0.097 (6)	0.009(7)	0.026 (7)	0.009 (6)
C11_3	0.152(13)	0.123(12)	0.113 (9)	0.016 (10)	0.004(10)	0.010 (8)
$C4B_3$	0.061(4)	0.088(4)	0.068(4)	0.004(3)	0.040(3)	0.021(3)
$C5B_3$	0.075 (6)	0.087 (6)	0.063 (6)	0.003 (6)	0.034 (6)	0.021(6)
C6B_3	0.075(0)	0.007 (6)	0.003(0)	0.003 (6)	0.025 (6)	0.022(6)
C7B_3	0.000(7) 0.107(8)	0.077(0) 0.083(7)	0.003(7) 0.081(7)	0.005(0)	0.025(0)	0.022(0)
C7D_3	0.107(8)	0.003(7)	0.031(7)	0.003(7)	0.013(7)	0.022(0)
$C_{0}D_{3}$	0.125(8)	0.070(7)	0.079(7)	0.011(0)	0.013(0)	0.020(0)
$C_{9}B_{-3}$	0.140(8)	0.091(7)	0.094(7)	0.009(7)	0.021(7)	0.014(7)
C10B_3	0.153(8)	0.097(8)	0.101(7)	0.009(7)	0.017(7)	0.015(7)
CIIB_5	0.158(10)	0.112(15)	0.119(14)	0.010(15)	0.004(14)	0.004(13)
NI_4	0.055 (3)	0.041 (2)	0.033(2)	0.011(2)	0.013(2)	0.00/1 (18)
N2_4	0.045 (2)	0.045 (2)	0.031 (2)	0.0050 (18)	0.0056 (18)	0.00/0(18)
CI_4	0.066 (4)	0.044 (3)	0.037 (3)	0.014 (3)	0.018 (3)	0.010 (2)
C2_4	0.076 (4)	0.044 (3)	0.034 (3)	0.012 (3)	0.008 (3)	0.008 (2)
C3_4	0.061 (4)	0.049 (3)	0.032 (3)	0.007 (3)	0.000 (2)	0.009 (2)
C4_4	0.092 (4)	0.054 (3)	0.042 (3)	0.015 (3)	0.008 (3)	-0.001(2)
C5_4	0.088 (5)	0.054 (5)	0.054 (6)	0.019 (5)	0.006 (5)	-0.002(4)
C6_4	0.090 (5)	0.063 (5)	0.057 (6)	0.023 (5)	0.013 (5)	0.003 (5)
C7_4	0.085 (6)	0.079 (5)	0.064 (5)	0.018 (5)	0.013 (5)	0.010 (5)
C8_4	0.079 (7)	0.089 (7)	0.078 (6)	0.020 (6)	0.009 (6)	0.013 (6)
C9_4	0.088 (6)	0.100 (7)	0.096 (6)	0.026 (7)	0.003 (6)	0.003 (7)
C10_4	0.091 (7)	0.110 (9)	0.114 (8)	0.027 (8)	0.003 (7)	0.012 (8)
C11_4	0.113 (11)	0.118 (13)	0.145 (13)	0.017 (11)	-0.008 (11)	0.005 (11)
C4B_4	0.092 (4)	0.054 (3)	0.042 (3)	0.015 (3)	0.008 (3)	-0.001 (2)
C5B_4	0.088 (5)	0.055 (5)	0.054 (6)	0.017 (5)	0.006 (5)	-0.002 (5)
C6B_4	0.091 (6)	0.065 (5)	0.060 (6)	0.022 (5)	0.010 (6)	-0.001 (5)
C7B_4	0.093 (6)	0.068 (5)	0.068 (6)	0.023 (5)	0.007 (5)	0.002 (5)
C8B_4	0.092 (6)	0.086 (6)	0.075 (5)	0.021 (6)	0.005 (6)	0.000 (6)
C9B_4	0.092 (6)	0.102 (8)	0.104 (7)	0.027 (7)	0.002 (6)	0.004 (7)
C10B 4	0.096 (7)	0.110 (9)	0.118 (8)	0.021 (8)	0.000(7)	0.007 (8)
C11B_4	0.117 (14)	0.121 (14)	0.148 (17)	0.020 (12)	-0.020(13)	0.009 (13)
N1 5	0.043 (3)	0.061 (3)	0.037 (2)	-0.001(2)	0.007 (2)	0.005 (2)
N2_5	0.048 (3)	0.051 (2)	0.039 (3)	-0.003(2)	0.011 (2)	0.004 (2)
C1_5	0.050 (4)	0.080 (4)	0.045 (3)	-0.013(3)	0.002 (3)	0.002 (3)
C^2_5	0.066 (4)	0.069(4)	0.053(4)	-0.020(3)	0.010(3)	-0.009(3)
$C3_5$	0.059(4)	0.059(3)	0.058(4)	-0.017(3)	0.020(3)	0.005(3)
$C4_5$	0.093(5)	0.097(4)	0.069(4)	-0.045(4)	0.021(4)	-0.019(3)
C5 5	0.102 (6)	0.108 (6)	0.068 (6)	-0.042(5)	0.013(5)	-0.021(5)
C6 5	0.102(0)	0.125(7)	0.000(0)	-0.040(6)	0.013(0)	-0.023(6)
$C7_5$	0.121(7)	0.123(7) 0.147(8)	0.078(7)	-0.037(7)	0.003 (0)	-0.025(0)
C_{8}	0.121(7) 0.137(8)	0.177(0)	0.005 (8)	-0.033(7)	0.007(0)	-0.025(0)
$C_0 5$	0.157(0) 0.152(10)	0.175(0)	0.095(0)	-0.022(0)		-0.036(0)
<u>()</u>	0.133 (10)	0.190 (10)	0.110 (9)	-0.022 (9)	-0.000 (8)	-0.030 (9)

C10 5	0.160 (11)	0.192 (11)	0.112 (10)	-0.030 (10)	-0.010 (9)	-0.031 (10)
C11 5	0.187 (18)	0.201 (17)	0.087 (14)	-0.017 (16)	-0.022 (13)	-0.021 (14)
C4B 5	0.093 (5)	0.097 (4)	0.069 (4)	-0.045 (4)	0.021 (4)	-0.019(3)
C5B_5	0.107 (7)	0.110(7)	0.082 (7)	-0.043 (6)	0.018 (6)	-0.028(6)
C6B_5	0.118 (7)	0.124 (7)	0.086 (7)	-0.037(6)	0.004 (6)	-0.024(6)
C7B ⁵	0.115 (7)	0.127 (8)	0.087 (7)	-0.038(7)	0.005 (6)	-0.018(7)
C8B 5	0.128 (7)	0.152 (8)	0.094 (8)	-0.030(7)	0.000 (7)	-0.033(7)
C9B 5	0.131 (9)	0.170 (9)	0.085 (9)	-0.023(8)	-0.007(8)	-0.041(8)
C10B 5	0.138 (9)	0.190 (9)	0.101 (9)	-0.024(8)	0.002 (8)	-0.053(8)
C11B 5	0.165 (16)	0.188 (15)	0.139 (16)	-0.029(14)	-0.026(14)	-0.040(14)
N1 6	0.040 (2)	0.055 (3)	0.039 (2)	0.0123 (19)	0.004 (2)	0.009 (2)
N2_6	0.046(2)	0.056(3)	0.037(2)	0.021(2)	0.0098(19)	0.0143(19)
C1_6	0.044(3)	0.077(4)	0.027(2)	0.016(3)	-0.005(3)	0.008(3)
C_{2}^{-6}	0.047(3)	0.090(4)	0.047(3)	0.010(3) 0.025(3)	0.005(3)	0.000(3)
C_{2}^{0}	0.049(3)	0.070(1)	0.044(3)	0.022(3)	0.000(3)	0.023(3)
$C4_{6}$	0.019(3)	0.120 (6)	0.060(4)	0.039(4)	-0.005(3)	0.021(3) 0.028(4)
C_{1_0}	0.000 (4)	0.120(0) 0.193(11)	0.050(4)	0.057(4)	0.003(3)	0.052 (6)
C5_0	0.080(6)	0.175(11) 0.144(8)	0.034(5)	0.002(7)	0.010(4)	0.052 (0)
$C0_0$	0.080(0)	0.144(8) 0.160(9)	0.081(0)	0.023(0)	0.000(5)	0.000(0)
C ⁸ 6	0.039(7)	0.100(9)	0.090(7)	-0.005(8)	0.020(3)	0.004(7)
C9_6	0.127(10) 0.182(15)	0.131(10) 0.188(15)	0.115(8) 0.185(15)	0.005(8)	0.022(7)	0.051(0)
C_{2}^{-0}	0.182(13)	0.163(13)	0.165(15)	0.001(13)	0.080(12)	0.000(12)
$C10_0$	0.29(2) 0.40(3)	0.103(14) 0.170(14)	0.107(14) 0.23(2)	0.030(10) 0.140(10)	0.083(13) 0.13(2)	0.030(12)
N1 7	0.40(3)	0.170(14) 0.0246(10)	0.23(2)	0.149(19)	0.13(2)	0.000(14)
N1_/	0.030(2)	0.0340(19)	0.034(2)	0.0030(13)	0.0003(10)	0.0009(10)
N2_/	0.037(2)	0.0295(18)	0.030(2)	0.0069(15)	0.0048(10)	0.0054 (15)
C1_/	0.030(3)	0.031(2)	0.038(3)	0.0010(19)	0.001(2)	-0.002(2)
C2_/	0.048(3)	0.032(2)	0.035(3)	0.001(2)	-0.003(2)	0.000(2)
C3_/	0.046(3)	0.031(2)	0.033(3)	0.013(2)	0.004 (2)	-0.0011 (19)
C4_/	0.061 (4)	0.032 (2)	0.057(4)	0.004(2)	-0.004(3)	-0.009 (2)
C5_7	0.088 (4)	0.032 (2)	0.066 (4)	0.001 (3)	0.015 (3)	-0.005 (2)
C6_7	0.100 (6)	0.033 (5)	0.076 (6)	-0.001 (5)	0.016 (6)	-0.003 (5)
C7_7	0.116 (8)	0.038 (5)	0.082 (6)	0.003 (6)	0.019 (6)	0.000 (5)
C8_7	0.133 (9)	0.041 (5)	0.097 (7)	0.007 (6)	0.014 (7)	0.006 (5)
C9_7	0.144 (9)	0.049 (5)	0.106 (8)	0.009 (7)	0.016 (7)	0.005 (6)
C10_7	0.159 (11)	0.063 (6)	0.116 (9)	0.005 (8)	0.011 (9)	0.008 (7)
C11_7	0.198 (15)	0.083 (10)	0.121 (13)	0.000 (11)	0.018 (12)	0.036 (10)
C5B_7	0.088 (4)	0.032 (2)	0.066 (4)	0.001 (3)	0.015 (3)	-0.005(2)
C6B_7	0.100 (6)	0.035 (4)	0.077 (6)	-0.001 (5)	0.017 (5)	-0.009 (4)
C7B_7	0.117 (7)	0.037 (4)	0.083 (6)	0.007 (5)	0.022 (6)	-0.002(4)
C8B_7	0.136 (8)	0.042 (4)	0.099 (7)	0.006 (6)	0.014 (7)	0.005 (5)
C9B_7	0.151 (9)	0.048 (5)	0.106 (8)	0.007 (6)	0.016 (7)	0.007 (5)
C10B_7	0.159 (10)	0.061 (6)	0.116 (9)	0.009 (7)	0.010 (8)	0.007 (6)
C11B_7	0.151 (12)	0.076 (9)	0.122 (11)	0.021 (9)	0.037 (11)	-0.002 (8)
N1_8	0.030 (2)	0.0331 (18)	0.0256 (19)	0.0106 (15)	0.0057 (15)	0.0024 (15)
N2_8	0.039 (2)	0.0319 (19)	0.032 (2)	0.0050 (16)	0.0089 (17)	0.0050 (15)
C1_8	0.039 (3)	0.035 (2)	0.034 (3)	0.0106 (19)	0.007 (2)	0.0038 (19)
C2_8	0.034 (3)	0.043 (2)	0.029 (2)	0.007 (2)	0.0068 (19)	0.0041 (19)
C3_8	0.043 (3)	0.040 (2)	0.035 (3)	0.003 (2)	0.011 (2)	0.010(2)

C4_8	0.053 (3)	0.052 (3)	0.037 (3)	0.013 (3)	0.016 (2)	0.005 (2)
C5 ⁸	0.052 (3)	0.056 (3)	0.038 (3)	0.016 (3)	0.012 (2)	0.009 (2)
C6_8	0.062 (4)	0.058 (3)	0.044 (3)	0.015 (3)	0.014 (3)	0.003 (3)
C7_8	0.075 (4)	0.057 (3)	0.055 (4)	0.017 (3)	0.012 (3)	-0.001(3)
C8_8	0.078 (5)	0.066 (4)	0.071 (5)	0.006 (3)	0.007 (4)	-0.002(3)
C9_8	0.129 (7)	0.057 (4)	0.079 (5)	0.019 (4)	0.011 (5)	-0.001 (4)
C10 8	0.135 (8)	0.055 (4)	0.120 (7)	0.003 (5)	0.006 (6)	-0.005 (4)
C11_8	0.202 (13)	0.062 (5)	0.136 (9)	0.013 (6)	0.025 (9)	0.004 (5)
N1 9	0.029 (2)	0.0351 (19)	0.034 (2)	0.0043 (15)	0.0024 (16)	0.0066 (16)
N2 9	0.032(2)	0.0310 (18)	0.030(2)	0.0047 (15)	0.0026 (16)	0.0042 (15)
C1.9	0.031(2)	0.040(2)	0.038(3)	0.0005 (19)	-0.004(2)	0.002(2)
$C^2 9$	0.031(2) 0.030(2)	0.048(3)	0.032(3)	0.006(2)	-0.0002(19)	0.002(2)
$C3_9$	0.030(2)	0.047(3)	0.032(3)	0.000(2)	-0.001(2)	0.003(2)
$C4_9$	0.037(3)	0.017(3)	0.032(3)	0.012(2) 0.008(2)	-0.007(2)	0.011(2)
$C_{5,9}$	0.042(3)	0.003(3) 0.078(4)	0.037(3)	0.000(2)	-0.012(3)	-0.000(2)
C_{0}	0.044(3) 0.051(4)	0.076(4)	0.042(3)	0.004(3)	0.012(3)	-0.010(3)
C7.9	0.051(4)	0.080(4)	0.043(3)	0.000(3)	-0.001(3)	-0.016(3)
C_{γ}	0.055(4)	0.082(4)	0.054(4)	0.010(3)	0.001(3)	-0.003(4)
	0.073(5)	0.080(5)	0.003(4)	0.020(4)	0.000(4)	0.003(4)
$C_{J_{j}}$	0.078(3) 0.113(7)	0.084(5)	0.072(3)	0.021(4)	0.000(4)	0.001(4)
C10_9	0.113(7) 0.147(10)	0.080(0)	0.100(7)	0.021(3)	0.013(0)	0.009(3)
N1 10	0.147(10)	0.088(0)	0.107(11)	0.010(7)	0.010(9)	0.020(7)
N1_10 N2_10	0.044(2)	0.033(2)	0.030(2)	0.0003(17)	0.0111(10) 0.0050(17)	0.0001(17)
$N_{2}10$	0.042(2)	0.037(2)	0.029(2)	0.0074(17)	0.0039(17)	0.0089(10)
$C1_{10}$	0.033(3)	0.043(3)	0.033(3)	0.003(2)	0.010(2)	0.010(2)
$C_{2}10$	0.071(4)	0.032(2)	0.030(3)	0.008(2)	0.010(2)	0.009(2)
C3_10	0.055 (3)	0.044 (3)	0.035 (3)	0.014(2)	0.007(2)	0.014 (2)
C4_10	0.103 (5)	0.042 (3)	0.047(3)	0.007(3)	0.013 (3)	0.018 (2)
C5_10	0.118 (8)	0.046 (4)	0.063 (5)	0.002 (5)	0.006 (6)	0.019 (4)
C6_10	0.132 (9)	0.053 (5)	0.089 (6)	0.002 (6)	0.004 (7)	0.019 (5)
C/_10	0.145 (9)	0.058 (5)	0.119 (7)	-0.003 (7)	0.002 (8)	0.019 (5)
C8_10	0.161 (10)	0.069 (6)	0.149 (8)	-0.006 (8)	0.005 (9)	0.031 (6)
C9_10	0.177 (11)	0.100 (7)	0.175 (9)	-0.011 (9)	-0.001 (9)	0.021 (7)
C10_10	0.189 (12)	0.128 (8)	0.186 (10)	-0.010 (10)	-0.003 (10)	0.021 (9)
C11_10	0.185 (17)	0.125 (12)	0.190 (15)	0.020 (14)	0.022 (15)	0.016 (13)
C4B_10	0.103 (5)	0.042 (3)	0.047 (3)	0.007 (3)	0.013 (3)	0.018 (2)
C5B_10	0.119 (8)	0.041 (4)	0.063 (5)	0.005 (5)	0.006 (6)	0.019 (4)
C6B_10	0.135 (9)	0.048 (5)	0.086 (6)	0.000 (6)	0.003 (7)	0.025 (5)
C7B_10	0.153 (9)	0.057 (5)	0.117 (7)	-0.002 (7)	-0.004 (8)	0.025 (5)
C8B_10	0.167 (10)	0.077 (6)	0.147 (8)	-0.010 (8)	-0.006 (9)	0.033 (6)
C9B_10	0.185 (11)	0.102 (7)	0.174 (9)	-0.009 (10)	-0.003 (10)	0.028 (8)
C10B_10	0.189 (12)	0.121 (8)	0.179 (10)	-0.006 (10)	0.000 (10)	0.028 (8)
C11B_10	0.187 (17)	0.139 (13)	0.179 (15)	-0.034 (15)	0.012 (16)	0.007 (13)
N1_11	0.040 (2)	0.036 (2)	0.037 (2)	0.0036 (17)	0.0145 (18)	0.0031 (17)
N2_11	0.034 (2)	0.036 (2)	0.036 (2)	0.0018 (16)	0.0015 (17)	0.0117 (17)
C1_11	0.041 (3)	0.049 (3)	0.040 (3)	-0.002 (2)	0.016 (2)	0.008 (2)
C2_11	0.029 (2)	0.036 (2)	0.049 (3)	-0.0006 (19)	0.006 (2)	0.012 (2)
C3_11	0.038 (3)	0.043 (3)	0.041 (3)	-0.011 (2)	-0.003 (2)	0.009 (2)
C4_11	0.037 (3)	0.046 (3)	0.055 (3)	-0.003 (2)	0.010 (2)	0.014 (2)

C5 11	0.044 (3)	0.047 (3)	0.058 (3)	-0.001(2)	0.014 (3)	0.009 (3)
C6_11	0.046 (3)	0.045 (3)	0.061 (4)	-0.002(2)	0.015 (3)	0.010 (3)
C7 11	0.059 (4)	0.046 (3)	0.067 (4)	0.003 (3)	0.005 (3)	0.015 (3)
C8 11	0.064 (4)	0.047 (3)	0.072 (4)	-0.005 (3)	0.011 (3)	0.018 (3)
C9_11	0.088 (5)	0.054 (3)	0.061 (4)	-0.001 (3)	0.001 (4)	0.015 (3)
C10 11	0.103 (6)	0.061 (4)	0.082 (5)	-0.025 (4)	0.000 (4)	0.026 (4)
C11 11	0.178 (10)	0.055 (4)	0.100 (6)	-0.020(5)	-0.010 (6)	0.033 (4)
N1 12	0.040(2)	0.036 (2)	0.028 (2)	0.0093 (17)	0.0043 (17)	0.0047 (16)
N2 12	0.034 (2)	0.0326 (19)	0.033 (2)	0.0080 (15)	0.0045 (17)	0.0063 (16)
C1 12	0.052 (3)	0.036 (2)	0.032 (3)	0.019 (2)	0.002 (2)	0.0089 (19)
$C2^{-}12$	0.033 (2)	0.030 (2)	0.043 (3)	0.0055 (18)	0.005 (2)	0.0068 (19)
C3 12	0.043 (3)	0.030(2)	0.035 (3)	0.0158 (19)	0.000(2)	0.0007 (18)
C4 12	0.037 (3)	0.031 (2)	0.044 (3)	0.0077 (19)	0.002(2)	0.005 (2)
C5 12	0.041 (3)	0.034(2)	0.059(3)	0.006 (2)	0.002(2)	0.012 (2)
C6_12	0.041 (3)	0.036(2)	0.069 (4)	0.009(2)	0.011(3)	0.014(2)
$C7_{12}$	0.040(3)	0.032(2)	0.090(4)	0.005(2)	0.009(3)	0.014(3)
$C8_{12}$	0.045(3)	0.032(2)	0.085(4)	0.006(2)	0.009(3)	0.014(3)
$C9_{12}$	0.044(3)	0.031(2)	0.002(1) 0.077(4)	0.005(2)	0.003(3)	0.013(2)
$C_{10} 12$	0.051(3)	0.031(2) 0.034(3)	0.073(4)	0.005(2)	0.012(3)	0.013(2) 0.017(2)
C11 12	0.065(4)	0.038(3)	0.073(1) 0.082(4)	0.005(2)	0.012(3)	0.017(2) 0.022(3)
N1 13	0.009(1) 0.050(3)	0.050(3)	0.032(1)	0.005(3)	0.007(3)	0.022(3)
C1_13	0.050(3) 0.054(3)	0.050(2) 0.055(3)	0.059(2)	0.000(2)	0.002(2) 0.003(3)	0.012(2) 0.015(3)
C_{1}^{13}	0.054(3) 0.068(4)	0.055(5)	0.054(3)	0.011(3) 0.032(4)	-0.002(3)	0.015(3)
C_{2}^{13}	0.000 (1)	0.091(5)	0.050(1) 0.063(4)	0.032(1) 0.049(4)	0.002(3)	0.015(3)
$C4_{13}$	0.099(0) 0.132(9)	0.090(9) 0.157(9)	0.089 (6)	0.042(4)	0.012(4)	0.010(4)
C_{-13}	0.152(9) 0.063(4)	0.157(9) 0.054(3)	0.005(0)	0.092(0)	0.015(0)	0.024(0) 0.013(3)
$C5_{13}$	0.003(4)	0.034(3)	0.053(4)	0.004(3)	-0.000(3)	0.015(3)
C_{0}^{13}	0.032(4)	0.073(4)	0.033(4)	-0.002(4)	0.004(3)	0.010(3) 0.023(4)
C_{8}^{-13}	0.073(5)	0.077(4) 0.120(7)	0.002(5)	-0.002(4)	-0.018(4)	0.025(4)
C_{0}^{-13}	0.002(3)	0.120(7)	0.099(0)	0.007(4)	0.010(4)	0.030(3)
C_{10}^{-13}	0.032(3)	0.055(3)	0.045(3)	0.013(3)	0.000(3)	0.013(3)
$C10_{13}$	0.071(4) 0.133(7)	0.003(4)	0.040(3)	0.020(3)	0.010(3)	0.024(3)
$C11_{13}$ $C12_{13}$	0.133(7) 0.162(0)	0.088(3)	0.049(4)	0.049(3)	0.028(4)	0.021(4)
$C12_{13}$	0.102(9)	0.083(3)	0.008(3)	0.040(0)	0.031(0)	0.014(4)
$C13_{13}$	0.032(3)	0.002(3)	0.043(3)	0.010(3)	0.002(3)	0.011(3)
$C14_{13}$	0.049(3)	0.004(3)	0.044(3)	-0.002(3)	0.012(3)	0.010(3)
$C15_{13}$	0.000(4)	0.004(3)	0.038(3)	0.002(3)	-0.007(3)	0.015(3)
N1 14	0.089(3)	0.058(4)	0.033(4)	0.014(3)	0.003(3)	0.010(3)
1 1 14	0.042(4)	0.032(4)	0.049(4)	0.012(4)	0.003(4)	0.010(3)
$C1_{14}$	0.044(3)	0.033(4)	0.050(5)	0.009(4)	0.009(4)	0.000(4)
C_{2}^{14}	0.042(3)	0.037(3)	0.033(3)	0.013(4)	0.008(4)	0.004(4)
C_{3}_{14}	0.040(3)	0.039(3)	0.040(3)	0.020(3)	0.008(3)	0.003(4)
$C4_{14}$	0.033(0)	0.036(3)	0.033(0)	0.014(3)	0.006(3)	0.008(3)
C5_14	0.040 (4)	0.053(4)	0.051(4)	0.011(4)	0.005 (4)	0.005 (4)
$C0_{14}$	0.049 (5)	0.057(5)	0.050(5)	0.020(4)	0.001(4)	0.000(4)
C_{14}	0.049 (6)	0.055(6)	0.053(6)	0.014(5)	0.007 (5)	-0.001(5)
$C\delta_{14}$	0.053(7)	0.062 (7)	0.003 (7)	0.011 (6)	0.000 (1)	0.007(6)
C9_14	0.043 (4)	0.055 (4)	0.049 (4)	0.009 (4)	0.009 (4)	0.009 (4)
C10_14	0.045 (5)	0.063 (5)	0.049 (5)	0.002 (4)	0.012 (4)	0.007 (4)

C11_14	0.049 (6)	0.062 (6)	0.055 (6)	0.008 (5)	0.009 (5)	0.010 (5)
C12_14	0.046 (6)	0.063 (7)	0.048 (6)	0.003 (5)	0.005 (5)	0.008 (5)
C13_14	0.042 (5)	0.054 (5)	0.048 (5)	0.008 (4)	0.003 (4)	0.009 (4)
C14_14	0.050 (6)	0.052 (5)	0.053 (5)	0.015 (5)	-0.001 (5)	0.008 (4)
C15_14	0.057 (6)	0.059 (6)	0.062 (6)	0.002 (5)	-0.009 (5)	0.009 (5)
C16_14	0.058 (6)	0.055 (6)	0.061 (6)	0.002 (5)	0.000 (6)	0.012 (5)
N1_15	0.058 (4)	0.102 (5)	0.091 (5)	0.020 (4)	0.011 (4)	0.017 (5)
C1_15	0.057 (4)	0.102 (6)	0.091 (5)	0.023 (5)	0.012 (4)	0.013 (5)
C2_15	0.050 (5)	0.102 (6)	0.084 (6)	0.026 (5)	0.011 (5)	0.013 (6)
C3_15	0.053 (6)	0.101 (7)	0.085 (7)	0.026 (6)	0.008 (6)	0.015 (6)
C4_15	0.053 (7)	0.104 (8)	0.084 (7)	0.026 (7)	0.010(7)	0.012 (7)
C5_15	0.059 (5)	0.100 (6)	0.092 (5)	0.021 (5)	0.012 (5)	0.015 (5)
C6_15	0.058 (5)	0.097 (6)	0.088 (6)	0.022 (5)	0.010 (5)	0.018 (6)
C7_15	0.057 (6)	0.096 (7)	0.085 (7)	0.022 (6)	0.013 (6)	0.018 (6)
C8_15	0.059 (7)	0.094 (7)	0.084 (7)	0.023 (7)	0.009(7)	0.018 (7)
C9_15	0.059 (5)	0.102 (6)	0.090 (5)	0.019 (5)	0.012 (4)	0.019 (5)
C10_15	0.059 (5)	0.103 (6)	0.090 (5)	0.021 (5)	0.010 (5)	0.018 (5)
C11_15	0.060 (6)	0.102 (7)	0.086 (6)	0.020 (6)	0.010 (6)	0.023 (6)
C12_15	0.059 (7)	0.102 (8)	0.085 (7)	0.022 (7)	0.007 (7)	0.022 (7)
C13_15	0.062 (5)	0.105 (6)	0.094 (5)	0.020 (5)	0.012 (4)	0.016 (5)
C14_15	0.065 (5)	0.105 (6)	0.096 (6)	0.020 (5)	0.012 (5)	0.018 (5)
C15_15	0.065 (6)	0.108 (7)	0.097 (7)	0.019 (6)	0.014 (6)	0.017 (7)
C16_15	0.067 (7)	0.109 (8)	0.100 (8)	0.020 (7)	0.012 (7)	0.017 (8)
N1B_15	0.058 (4)	0.101 (5)	0.091 (5)	0.021 (4)	0.011 (4)	0.018 (5)
C1B_15	0.062 (5)	0.106 (6)	0.095 (5)	0.020 (5)	0.010 (4)	0.015 (5)
C2B_15	0.065 (5)	0.106 (6)	0.095 (6)	0.018 (5)	0.009 (5)	0.018 (5)
C3B_15	0.066 (6)	0.106 (7)	0.098 (7)	0.017 (6)	0.008 (6)	0.020 (7)
C4B_15	0.063 (7)	0.104 (8)	0.099 (8)	0.018 (7)	0.010(7)	0.022 (7)
C5B_15	0.059 (5)	0.101 (6)	0.092 (5)	0.022 (5)	0.012 (5)	0.016 (5)
C6B_15	0.060 (6)	0.097 (6)	0.088 (6)	0.018 (6)	0.012 (5)	0.018 (6)
C7B_15	0.058 (6)	0.096 (7)	0.085 (7)	0.019 (6)	0.012 (6)	0.018 (6)
C8B_15	0.062 (7)	0.098 (7)	0.086 (7)	0.017 (7)	0.009(7)	0.018 (7)
C9B_15	0.061 (4)	0.102 (5)	0.091 (5)	0.021 (4)	0.010 (4)	0.017 (5)
C10B_15	0.060 (5)	0.103 (6)	0.090 (6)	0.019 (5)	0.011 (5)	0.019 (5)
C11B_15	0.059 (6)	0.103 (7)	0.086 (6)	0.021 (6)	0.009 (6)	0.024 (6)
C12B_15	0.059 (7)	0.102 (8)	0.086 (7)	0.023 (7)	0.007 (7)	0.023 (7)
C13B_15	0.056 (5)	0.102 (6)	0.090 (5)	0.022 (5)	0.011 (4)	0.014 (5)
C14B_15	0.051 (5)	0.100 (6)	0.083 (6)	0.022 (5)	0.014 (5)	0.017 (6)
C15B_15	0.051 (6)	0.101 (7)	0.083 (7)	0.024 (6)	0.014 (6)	0.014 (6)
C16B_15	0.052 (7)	0.101 (8)	0.082 (7)	0.029 (7)	0.009 (7)	0.015 (7)
—						

Geometric parameters (Å, °)

Ni1_16—N1_1	2.015 (4)	C1_8—H1_8	0.9500	
Ni1_16—N2_2	2.026 (4)	C2_8—C3_8	1.383 (6)	
Ni1_16—N2_6	2.026 (4)	C2_8—C4_8	1.509 (6)	
Ni1_1602_16	2.165 (3)	C3_8—H3_8	0.9500	
Ni1_16-03_16 ⁱ	2.169 (3)	C4_8—C5_8	1.517 (7)	

Ni1_16—O1_16	2.197 (3)	C4_8—H4A_8	0.9900
Ni1_16—Ni2_16	2.975 (2)	C4_8—H4B_8	0.9900
Ni1 16—Ni3 16 ⁱ	2.9842 (16)	C5 8—C6 8	1.509 (7)
Ni1 16—Ni4 16	2.9876 (17)	C5 8—H5A 8	0.9900
Ni2_16—N1_2	2.020 (4)	C5_8—H5B_8	0.9900
Ni2_16—N2_3	2.024 (4)	C6_8—C7_8	1.518 (7)
$Ni2_{16} - N2_{5^{i}}$	2.026 (5)	C6_8—H6A_8	0.9900
Ni2 16-03 16 ⁱ	2.154 (3)	C6 8—H6B 8	0.9900
Ni2_16—O1_16	2.174 (3)	C7_8_C8_8	1.495 (8)
Ni2 16—O2 16 ⁱ	2.192 (3)	C7 8—H7A 8	0.9900
Ni2 16—Ni4 16 ⁱ	2.9887 (16)	C7 8—H7B 8	0.9900
Ni3_16—N1_3	2.022 (4)	C8 ⁻ 8–C9 ⁻ 8	1.522 (8)
Ni3_16—N1_4	2.028 (4)	C8 8—H8A 8	0.9900
$Ni3^{-}16 - N2^{-}1^{i}$	2.042 (4)	C8_8—H8B_8	0.9900
$Ni3^{-}16-O2^{-}16^{i}$	2.158 (3)	C9 ⁸ —C10 ⁸	1.501 (10)
Ni3 ¹⁶ —01 ¹⁶	2.173 (3)	C9 ⁸ —H9A ⁸	0.9900
Ni3 ¹⁶ —03 ¹⁶	2.191 (3)	C9 ⁸ —H9B ⁸	0.9900
Ni3 ¹⁶ —Ni4 ¹⁶	2.983 (2)	C10 8-C11 8	1.523 (10)
Ni4_16—N1_5	2.014 (4)	C10_8—H10A_8	0.9900
Ni4_16—N2_4	2.023 (4)	C10_8—H10B_8	0.9900
Ni4_16—N1_6	2.025 (4)	C11 ⁸ —H11A ⁸	0.9800
Ni4_16—01_16	2.157 (3)	C11 ⁸ —H11B ⁸	0.9800
Ni4_16_03_16	2.168 (3)	C11_8—H11C_8	0.9800
Ni4_16_02_16	2.196 (3)	N1 9—C1 9	1.333 (5)
Ni5_16—N2_7	2.018 (4)	N1 9—N2 9	1.356 (5)
Ni5_16—N2_12 ⁱⁱ	2.019 (4)	N2 9—C3 9	1.343 (6)
Ni5_16—N1_8	2.042 (4)	C1_9—C2_9	1.393 (6)
Ni5_1606_16	2.156 (3)	C1_9—H1_9	0.9500
Ni5_16—O5_16 ⁱⁱ	2.183 (3)	C2 ⁹ —C3 ⁹	1.384 (6)
Ni5_16_04_16	2.187 (3)	C2 ⁹ —C4 ⁹	1.508 (6)
Ni5_16—Ni8_16	2.9859 (19)	C3 9—H3 9	0.9500
Ni5_16—Ni6_16	2.9899 (16)	C4_9—C5_9	1.544 (7)
Ni6_16—N2_8	2.018 (4)	C4_9—H4A_9	0.9900
Ni6_16—N1_11	2.023 (4)	C4_9—H4B_9	0.9900
Ni6_16—N1_10	2.035 (4)	C5 ⁻ 9—C6 9 ⁻	1.512 (8)
Ni6_16—O6_16 ⁱⁱ	2.173 (3)	C5 9—H5A 9	0.9900
Ni6_16_05_16 ⁱⁱ	2.177 (3)	C5 9—H5B 9	0.9900
Ni6_16—O4_16	2.180 (3)	C6_9—C7_9	1.508 (8)
Ni6_16—Ni8_16 ⁱⁱ	2.9772 (17)	C6_9—H6A_9	0.9900
Ni6_16—Ni7_16	2.9910 (19)	C6 9—H6B 9	0.9900
Ni7_16—N1_12	2.027 (4)	C7_9—C8_9	1.504 (8)
Ni7_16—N2_9	2.031 (4)	C7_9—H7A_9	0.9900
Ni7_16—N2_10	2.031 (4)	C7 9—H7B 9	0.9900
Ni7_16_04_16	2.159 (3)	C8 ⁹ —C9 9	1.513 (9)
Ni7_16—O5_16	2.178 (3)	C8 9—H8A 9	0.9900
Ni7 ¹⁶ —O6 ^{16ⁱⁱ}	2.184 (3)	C8 9—H8B 9	0.9900
Ni7_16—Ni8_16	2.9929 (16)	C9 9—C10 9	1.513 (9)
Ni8_16—N2_11 ⁱⁱ	2.012 (4)	C9 9—H9A 9	0.9900
	< / <		

Ni8 16—N1 7	2.017 (4)	С9 9—Н9В 9	0.9900
Ni8_16—N1_9	2.037 (4)	$C10^{-}9-C11^{-}9$	1.497 (11)
Ni8_16—O6_16	2.172 (3)	C10 9—H10A 9	0.9900
Ni8_16—04_16	2.178 (3)	C10_9—H10B_9	0.9900
Ni8_16—O5_16	2.179 (3)	C11_9—H11A_9	0.9800
O1 16—H1 16	0.824 (16)	C11 9—H11B 9	0.9800
O2_16—H2_16	0.824 (16)	C11_9—H11C_9	0.9800
O3_16—H3_16	0.826 (16)	N1 10-C1 10	1.341 (6)
O4 16—H4 16	0.827 (16)	N1 10—N2 10	1.350 (5)
O5_16—H5_16	0.811 (16)	N2_10—C3_10	1.340 (6)
O6 16—H6 16	0.833 (16)	C1 10 - C2 10	1.379 (7)
N1 1-C1 1	1.335 (6)	C1_10—H1_10	0.9500
N1 1—N2 1	1.344 (6)	$C_{2} = 10 - C_{3} = 10$	1.382 (7)
$N_2 = 1 - C_3 = 1$	1.339 (6)	$C_{2} = 10 - C_{4}B = 10$	1.512 (6)
C1 1 - C2 1	1 375 (7)	$C_{2} = 10 - C_{4} = 10$	1 512 (6)
$C_1 = H_1 = H_1$	0.9500	$C_{3} = 10^{-10} + 3^{-10}$	0.9500
$C_{2}^{2} = C_{3}^{2} = C_{3}^{2}$	1 372 (7)	$C_{4} = 10^{-10} C_{5} = 10^{-10}$	1.527(13)
$C_{2}^{-1} - C_{4}^{-1}$	1.572(7) 1.521(7)	$C_{4} = 10^{-10} + 44^{-10}$	0.9900
$C_{2}I = C_{1}I$	0.9500	C4 10 - H4B 10	0.9900
$C_{4} = C_{5} = 1$	1 494 (8)	$C_{5,10} - C_{6,10}$	1.521(14)
$C_{4} = H_{4A} = 1$	0.9900	$C_{5} = 10^{-10} + 5^{-10}$	0.9900
C4 1—H4B 1	0.9900	$C_{5} = 10^{-115} H_{5}^{-10} H_{5}^{-10}$	0.9900
$C_{5} = -C_{6} = 1$	1 513 (8)	$C_{6} = 10^{-10} C_{7} = 10^{-10} C_{7$	1 495 (14)
$C_{5} = H_{5A} = 1$	0.9900	$C_{6} = 10^{-10} + 10^{-10}$	0.9900
C5_1H5B_1	0.9900	C6_10H6B_10	0.9900
$C_{0} = C_{0} = C_{0}$	1 518 (10)	$C_{7} 10 - C_{8} 10$	1.515(15)
$C_{0} = 1 - H_{0} + 1$	0.9900	C7 10 H7A 10	0.9900
C6 1—H6B 1	0.9900	$C7_{10}$ H7B_10	0.9900
$C_{0}^{-1} = 10 B_{-1}^{-1}$	1 499 (9)	$C_{10} = C_{10} = C_{10}$	1.481(15)
$C7_1 - C3_1$	0.9900	$C_8 = 10 - C_9 = 10$	0.9900
C_{1} H7R 1	0.9900	C8 10 H8B 10	0.9900
$C_{1} = C_{1}$	1 500 (11)	$C_0 10 - C_{10} 10$	1 566 (17)
$C_{8} = 1 - C_{9} = 1$	0.0000	$C_{9} = 10 - C_{10} = 10$	0.0000
$C_8 1 H_{RR} 1$	0.9900	$C_{9} = 10 - 10 + 10$	0.9900
$C_{0} = 1 - 110 - 1$	0.9900 1 522 (12)	$C_{10} = 10 - 119 D_{-10}$	1.546(17)
$C_{9}^{-1} - C_{10}^{-1}$	0.0000	$C_{10} = 10 - C_{11} = 10$	0.0000
C9_1—H9R_1	0.9900	C10_10H10B_10	0.9900
$C_1 = C_1 $	1.438(13)	$C_{11} = 10 - 110 - 10$	0.9900
$C_{10} = H_{10} = 1$	0.9900	C11_10H11B_10	0.9800
$C_{10} = H_{10}R_{-1}$	0.9900	$C_{11} = 10 - 111 - 10$	0.9800
	0.9900	$C4P_{10} = C5P_{10}$	1.510(14)
C11_1H11B_1	0.9800	$C4B_{10} = C3B_{10}$	0.0000
	0.9800	$C4P_{10} H4PP_{10}$	0.9900
	0.9800	$C4B_{10}$ $- H4BB_{10}$ $C5B_{10}$ $C6B_{10}$ $C6B_{10}$	0.9900
N1 2 N2 2	1.350 (0)	$C5B_10 = C0B_10$	1.313 (14) 0.0000
$1 \times 1_2 - 1 \times 2_2$ N2 2 C3 2	1.302 (0)	$C5B_10 - H5BB_10$	0.9900
$112_2 - 0.5_2$	1.333(0) 1.321(2)	$C_{10} = 10 = 10$	1 407 (15)
$C_{1}^{2} - C_{2}^{2}$	1.301 (0)	$C_{0}D_{1}D_{0} + C_{0}D_{1}D_{0}$	1.49/(13)
C1_2—H1_2	0.9500	Сов_10—нова_10	0.9900

C2_2—C3_2	1.380 (8)	C6B_10—H6BB_10	0.9900
C2_2_C4_2	1.501 (7)	C7B_10—C8B_10	1.491 (15)
C3 2—H3 2	0.9500	C7B 10—H7BA 10	0.9900
C4 ² —C5 ²	1.471 (8)	C7B_10—H7BB_10	0.9900
C4_2—H4A_2	0.9900	C8B_10—C9B_10	1.494 (16)
C4 2—H4B 2	0.9900	C8B_10—H8BA_10	0.9900
C5 ² —C6 ²	1.500(7)	C8B_10—H8BB_10	0.9900
C5 ² —H5A 2	0.9900	C9B_10—C10B_10	1.617 (17)
C5 ² —H5B ²	0.9900	C9B_10—H9BA_10	0.9900
C6_2-C7_2	1.476 (8)	C9B_10—H9BB_10	0.9900
C6_2—H6A_2	0.9900	C10B 10—C11B 10	1.529 (17)
C6 2—H6B 2	0.9900	C10B_10—H10C_10	0.9900
C7 2—C8 2	1.491 (7)	C10B 10—H10D 10	0.9900
C7 2—H7A 2	0.9900	C11B 10—H11D 10	0.9800
C7 2—H7B 2	0.9900	C11B_10—H11E_10	0.9800
C8 2—C9 2	1.464 (8)	C11B 10—H11F 10	0.9800
C8 2—H8A 2	0.9900	N1 11—C1 11	1.339 (6)
C8 2—H8B 2	0.9900	N1_11_N2_11	1 358 (5)
C9 2 - C10 2	1 487 (8)	$N_{2} 11 - C_{3} 11$	1 345 (6)
C9 2—H9A 2	0.9900	C1 11 - C2 11	1 379 (6)
C9 2—H9B 2	0.9900	C1_11_H1_11	0.9500
$C10^{2}$ $C11^{2}$	1 445 (9)	$C_{2} 11 - C_{3} 11$	1 377 (6)
$C10_2 - H10A_2$	0.9900	$C_{2} 11 - C_{4} 11$	1.577 (0)
C10_2H10B_2	0.9900	$C_{3} 11 - H_{3} 11$	0.9500
$C_{11}^{-2} - H_{11}^{-11} = 2$	0.9900	$C_{4} 11 - C_{5} 11$	1.521(7)
C11_2H11B_2	0.9800	$C_{4} = H_{4A} = H_$	0.9900
C11_2H11C_2	0.9800	$C_{4} = 11 - H_{4B} = 11$	0.9900
N1 3-C1 3	1 344 (6)	$C_{1} = C_{1} = C_{1}$	1 512 (6)
$N_{1}^{-3} = N_{2}^{-3}$	1 358 (5)	$C_{5} 11 - H_{5} 11$	0.9900
$N_{2}^{-} = N_{2}^{-}$	1.332 (6)	C5_11_H5B_11	0.9900
$12_{-}3_{-}03_{-}3_{-}$	1.332(0) 1 381(7)	$C_{11} = C_{11}$	1.515(7)
$C1_3 - C2_3$	0.0500	C6_11E611	1.313(7)
$C_{1_{3}}^{$	0.9500	C6_11H6B_11	0.9900
$C_2_3 - C_3_3$	1.365(7) 1 513(7)	$C_{0} = 11 - 110 - 11$	1.511(7)
$C_2^{-3} = C_4^{-3} B_3^{-3}$	1.513(7) 1 513(7)	$C_{11} = C_{011}$	1.311(7)
$C_2^{-3} = C_4^{-3}$	0.0500	$C_{11} = H_{11} = H_{11}$	0.9900
$C_{3} = C_{13} = C_{3}$	1 401 (10)	$C_{11} = 17B_{11}$	1.517(8)
$C_{4_{3}} = C_{3_{3}}$	0.0000	$C_{0} = 11 - C_{0} = 11$	1.317(8)
$C4_{3}$ — $H4A_{3}$	0.9900	$C_{0} = 11 - H_{0}A_{1}$	0.9900
$C4_3 - H4B_3$	0.9900	$C_{0} = 11 - 11$	0.9900
C_{5}^{-}	0.0000	$C_{9}_{11} = C_{10}_{11}$	1.312(6)
C_{3}	0.9900	$C9_{11}$ H9A_11	0.9900
С5_5—П5В_5	0.9900	C9_11—H9B_11	0.9900
$C_{0}^{-3} - C_{0}^{-3}$	1.437 (11)	$C10_11$ $U10A_11$	1.303 (9)
$C_0 = -\pi DA_3$	0.7900	$C10_11 - T10A_11$ $C10_11 - U10P_11$	0.9900
$C_0 = - H_0 = 0$	0.9900		0.9900
$C_{1} = C_{0} = S$	1.493 (13)		0.9800
$C_1 = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	0.9900		0.9800
C/_3—H/B_3	0.9900		0.9800

C8_3—C9_3	1.539 (13)	N1_12-C1_12	1.342 (6)
C8_3—H8A_3	0.9900	N1_12—N2_12	1.361 (5)
C8 3—H8B 3	0.9900	N2 12—C3 12	1.340 (5)
C9 3—C10 3	1.530 (14)	C1 12—C2 12	1.380 (6)
C9 3—H9A 3	0.9900	C1 12—H1 12	0.9500
C9 3—H9B 3	0.9900	$C2^{-}12-C3^{-}12$	1.384 (6)
$C10^{-}3-C11^{-}3$	1.476 (14)	C2_12_C4_12	1.502 (6)
C10_3—H10A_3	0.9900	C3 12—H3 12	0.9500
C10_3—H10B_3	0.9900	C4 12—C5 12	1.524 (6)
C11_3—H11A_3	0.9800	C4 12—H4A 12	0.9900
C11_3—H11B_3	0.9800	C4 12—H4B 12	0.9900
C11_3—H11C_3	0.9800	C5 12—C6 12	1.527 (6)
C4B 3—C5B 3	1.474 (16)	C5 12—H5A 12	0.9900
C4B_3—H4BA_3	0.9900	C5 12—H5B 12	0.9900
C4B_3—H4BB_3	0.9900	C6 12—C7 12	1.527 (6)
C5B 3—C6B 3	1.478 (16)	C6 12—H6A 12	0.9900
C5B 3—H5BA 3	0.9900	C6 12—H6B 12	0.9900
C5B 3—H5BB 3	0.9900	C7 12—C8 12	1.520 (6)
C6B 3—C7B 3	1.466 (16)	C7 12—H7A 12	0.9900
C6B 3—H6BA 3	0.9900	C7 12—H7B 12	0.9900
C6B 3—H6BB 3	0.9900	C8 12—C9 12	1.521 (6)
C7B_3—C8B_3	1.508 (17)	C8 12—H8A 12	0.9900
C7B 3—H7BA 3	0.9900	C8 12—H8B 12	0.9900
C7B_3—H7BB_3	0.9900	C9 12—C10 12	1.520 (6)
C8B 3—C9B 3	1.530 (17)	C9 12—H9A 12	0.9900
C8B 3—H8BA 3	0.9900	C9 12—H9B 12	0.9900
C8B_3—H8BB_3	0.9900	C10 12—C11 12	1.509 (7)
C9B 3—C10B 3	1.513 (18)	C10 12—H10A 12	0.9900
C9B_3—H9BA_3	0.9900	C10_12—H10B_12	0.9900
C9B 3—H9BB 3	0.9900	C11 12—H11A 12	0.9800
C10B 3—C11B 3	1.479 (18)	C11 12—H11B 12	0.9800
C10B_3—H10C_3	0.9900	C11 12—H11C 12	0.9800
C10B 3—H10D 3	0.9900	N1 13—C5 13	1.505 (7)
C11B 3—H11D 3	0.9800	N1 13—C9 13	1.516 (6)
C11B 3—H11E 3	0.9800	N1 13—C1 13	1.533 (7)
C11B 3—H11F 3	0.9800	N1 13—C13 13	1.540 (7)
N1 4—C1 4	1.349 (6)	C1 13—C2 13	1.488 (8)
N1 4—N2 4	1.365 (6)	C1 13—H1A 13	0.9900
N2 4—C3 4	1.344 (6)	C1 13—H1B 13	0.9900
C1 4-C2 4	1.384 (7)	C2 13—C3 13	1.508 (9)
C1_4—H1_4	0.9500	C2 13—H2A 13	0.9900
$C2^{-}4-C3^{-}4$	1.392 (7)	C2_13—H2B_13	0.9900
$C2^{-}4$ — $C4B^{-}4$	1.511 (7)	C3 13—C4 13	1.462 (9)
C2 4—C4 4	1.511 (7)	C3 13—H3A 13	0.9900
C3 4—H3 4	0.9500	C3 13—H3B 13	0.9900
C4_4—C5_4	1.533 (14)	C4_13—H4A_13	0.9800
C4_4—H4A_4	0.9900	C4_13—H4B_13	0.9800
C4_4—H4B_4	0.9900	C4_13—H4C_13	0.9800

C5_4C6_4	1.520 (15)	C5_13—C6_13	1.521 (8)
C5_4—H5A_4	0.9900	C5_13—H5A_13	0.9900
C5 4—H5B 4	0.9900	C5 13—H5B 13	0.9900
C6 4—C7 4	1.527 (14)	C6 13—C7 13	1.508 (8)
C6 4—H6A 4	0.9900	C6 13—H6A 13	0.9900
C6 4—H6B 4	0.9900	C6_13—H6B_13	0.9900
C7 ⁴ —C8 ⁴	1.520 (14)	C7 ⁻ 13—C8 ⁻ 13	1.511 (10)
C7 ⁴ —H7A 4	0.9900	C7_13—H7A_13	0.9900
C7_4—H7B_4	0.9900	C7_13—H7B_13	0.9900
C8 4—C9 4	1.505 (15)	C8 13—H8A 13	0.9800
C8 4—H8A 4	0.9900	C8_13—H8B_13	0.9800
C8 4—H8B 4	0.9900	C8 13—H8C 13	0.9800
C9 4—C10 4	1.522 (15)	C9_13—C10_13	1.516 (7)
C9 4—H9A 4	0.9900	C9_13—H9A_13	0.9900
C9 4—H9B 4	0.9900	C9_13—H9B_13	0.9900
C10 4 - C11 4	1.519 (16)	C10 13 - C11 13	1.495 (8)
C10 4—H10A 4	0.9900	C10_13—H10A_13	0.9900
C10_4_H10B_4	0.9900	C10_13—H10B_13	0.9900
C11 4—H11A 4	0.9800	$C_{11} 1_{3} - C_{12} 1_{3}$	1.466 (10)
C11 4—H11B 4	0.9800	C11_13—H11A_13	0.9900
C11 4—H11C 4	0.9800	C11_13—H11B_13	0.9900
C4B 4—C5B 4	1.514 (14)	C12_13—H12A_13	0.9800
C4B 4—H4BA 4	0.9900	C12_13—H12B_13	0.9800
C4B 4—H4BB 4	0.9900	C12_13—H12C_13	0.9800
C5B 4—C6B 4	1.519 (15)	$C_{13} 1_{3} - C_{14} 1_{3}$	1.530(7)
C5B 4—H5BA 4	0.9900	C13_13—H13A_13	0.9900
C5B 4—H5BB 4	0.9900	C13_13—H13B_13	0.9900
C6B 4—C7B 4	1.498 (14)	C14 13—C15 13	1.490 (8)
C6B 4—H6BA 4	0.9900	C14_13—H14A_13	0.9900
C6B 4—H6BB 4	0.9900	C14_13—H14B_13	0.9900
C7B_4—C8B_4	1.500 (14)	C15 13—C16 13	1.518 (8)
C7B_4—H7BA_4	0.9900	C15 13—H15A 13	0.9900
C7B 4—H7BB 4	0.9900	C15_13—H15B_13	0.9900
C8B 4—C9B 4	1.525 (15)	C16_13—H16A_13	0.9800
C8B 4—H8BA 4	0.9900	C16_13—H16B_13	0.9800
C8B_4—H8BB_4	0.9900	C16_13—H16C_13	0.9800
C9B 4—C10B 4	1.522 (15)	N1 14—C5 14	1.518 (14)
C9B_4—H9BA_4	0.9900	N1 14—C13 14	1.521 (9)
C9B_4—H9BB_4	0.9900	N1 14—C9 14	1.521 (13)
C10B 4—C11B 4	1.513 (16)	N1 ¹⁴ —C1 ¹⁴	1.524 (13)
C10B 4—H10C 4	0.9900	C1_14—C2_14	1.512 (15)
C10B 4—H10D 4	0.9900	C1 14—H1A 14	0.9900
C11B 4—H11D 4	0.9800	C1_14—H1B_14	0.9900
C11B 4—H11E 4	0.9800	C2 14—C3 14	1.505 (13)
C11B_4—H11F_4	0.9800	C2_14—H2A_14	0.9900
N1 5-C1 5	1.346 (7)	C2_14—H2B_14	0.9900
N1_5—N2_5	1.357 (6)	C3 14—C4 14	1.502 (14)
N2 ⁵ —C3 ⁵	1.342 (6)	C3 14—H3A 14	0.9900

C1 5—C2 5	1.373 (8)	C3 14—H3B 14	0.9900
C1_5—H1_5	0.9500	C4_14—H4A_14	0.9800
$C2^{-5}-C3^{-5}$	1.400 (8)	C4 14—H4B 14	0.9800
$C2^{-}5-C4B^{-}5$	1.516 (8)	C4 14—H4C 14	0.9800
C2 5-C4 5	1.516 (8)	C5_14—C6_14	1.507 (13)
C3 5—H3 5	0.9500	C5_14—H5A_14	0.9900
C4 5 - C5 5	1,495 (13)	C5_14—H5B_14	0.9900
C4 5 - H4A 5	0 9900	$C6_{14} - C7_{14}$	1 510 (14)
C4 5—H4B 5	0 9900	C6_14—H6A_14	0.9900
$C_{5} = C_{6} = C_{5}$	1 507 (15)	C6_14—H6B_14	0.9900
$C_{5} = H_{5} = 0$	0.9900	C7 14 - C8 14	1.542(15)
C5_5_H5B_5	0.9900	C7 14 H7A 14	0.9900
C6 5-C7 5	1 500 (16)	C7 14 H7B 14	0.9900
C_{0}^{-}	0.9900	$C_{14} = H_{17} = H$	0.9900
$C_{0}^{-5} H_{0}^{-1} R_{0}^{-5}$	0.9900	$C_8 14$ H8B 14	0.9800
$C_0^{-5} = 10B_{-5}^{-5}$	1.481 (16)	C_{8} 14 H8C 14	0.9800
$C_{7}^{-5} = C_{7}^{-5}$	0.0000	$C_0 14$ $C_{10} 14$	1.485(13)
C7_5_H7P_5	0.9900	$C_{9}_{14} = C_{10}_{14}$	0.0000
$C_{-3} - \pi/B_{-3}$	0.9900	$C9_{14}$ H9A_14	0.9900
C_{0}^{-}	1.434(17)	$C_{9}_{14} = H_{9}B_{14}$	0.9900
C_{0}^{0}	0.9900	$C10_14$ $U10_14$	1.508 (15)
С8_5—н8В_5	0.9900	C10_14—H10A_14	0.9900
$C9_{5} - C10_{5}$	1.610 (16)	C10_14—H10B_14	0.9900
C9_5—H9A_5	0.9900		1.531 (15)
С9_5—Н9В_5	0.9900		0.9900
C10_5—C11_5	1.487 (17)	CII_I4—HIIB_I4	0.9900
C10_5—H10A_5	0.9900	C12_14—H12A_14	0.9800
C10_5—H10B_5	0.9900	C12_14—H12B_14	0.9800
C11_5—H11A_5	0.9800	C12_14—H12C_14	0.9800
C11_5—H11B_5	0.9800	C13_14—C14_14	1.544 (16)
C11_5—H11C_5	0.9800	C13_14—H13A_14	0.9900
C4B_5—C5B_5	1.554 (15)	C13_14—H13B_14	0.9900
C4B_5—H4BA_5	0.9900	C14_14—C15_14	1.473 (15)
C4B_5—H4BB_5	0.9900	C14_14—H14A_14	0.9900
C5B_5—C6B_5	1.509 (15)	C14_14—H14B_14	0.9900
C5B_5—H5BA_5	0.9900	C15_14—C16_14	1.527 (15)
C5B_5—H5BB_5	0.9900	C15_14—H15A_14	0.9900
C6B_5C7B_5	1.508 (17)	C15_14—H15B_14	0.9900
C6B_5—H6BA_5	0.9900	C16_14—H16A_14	0.9800
C6B_5—H6BB_5	0.9900	C16_14—H16B_14	0.9800
C7B_5—C8B_5	1.488 (16)	C16_14—H16C_14	0.9800
C7B_5—H7BA_5	0.9900	N1_15—C5_15	1.510 (16)
C7B_5—H7BB_5	0.9900	N1_15—C13_15	1.522 (16)
C8B_5—C9B_5	1.476 (17)	N1_15—C1_15	1.524 (16)
C8B_5—H8BA_5	0.9900	N1_15—C9_15	1.524 (16)
C8B_5—H8BB_5	0.9900	C1_15—C2_15	1.51 (2)
C9B_5—C10B_5	1.564 (17)	C1_15—H1A_15	0.9900
C9B_5—H9BA_5	0.9900	C1_15—H1B_15	0.9900
C9B_5—H9BB_5	0.9900	C2_15—C3_15	1.48 (2)

C10B_5—C11B_5	1.498 (17)	C2_15—H2A_15	0.9900
C10B_5—H10C_5	0.9900	C2_15—H2B_15	0.9900
C10B 5—H10D 5	0.9900	C3 15—C4 15	1.52 (2)
C11B 5—H11D 5	0.9800	C3 15—H3A 15	0.9900
C11B_5—H11E_5	0.9800	C3 ¹⁵ —H3B ¹⁵	0.9900
C11B_5—H11F_5	0.9800	C4_15—H4A_15	0.9800
N1 6—C1 6	1.340 (6)	C4_15—H4B_15	0.9800
N1 ⁶ —N2 ⁶	1.350 (6)	C4_15—H4C_15	0.9800
N2 ⁶ —C3 ⁶	1.343 (6)	C5 ¹⁵ —C6 ¹⁵	1.52 (2)
C1_6—C2_6	1.378 (7)	C5 ¹⁵ —H5A 15	0.9900
C1_6—H1_6	0.9500	C5_15—H5B_15	0.9900
C2_6—C3_6	1.379 (8)	C6_15_C7_15	1.51 (2)
C2_6—C4_6	1.509 (7)	C6_15—H6A_15	0.9900
C3_6—H3_6	0.9500	C6_15—H6B_15	0.9900
C4_6—C5_6	1.513 (9)	C7 ⁻ 15–C8 ⁻ 15	1.48 (2)
C4_6—H4A_6	0.9900	C7 ¹⁵ —H7A 15	0.9900
C4_6—H4B_6	0.9900	C7 ¹⁵ —H7B ¹⁵	0.9900
C5 ⁶ -C6 ⁶	1.533 (10)	C8 ¹⁵ —H8A ¹⁵	0.9800
C5_6—H5A_6	0.9900	C8_15—H8B_15	0.9800
C5_6—H5B_6	0.9900	C8 ¹⁵ —H8C ¹⁵	0.9800
C6_6—C7_6	1.491 (10)	C9 ¹⁵ —C10 ¹⁵	1.48 (2)
C6_6—H6A_6	0.9900	C9 ¹⁵ —H9A ¹⁵	0.9900
C6_6—H6B_6	0.9900	C9 ¹⁵ —H9B ¹⁵	0.9900
C7 ⁶ C8 ⁶	1.501 (11)	C10 15—C11 15	1.48 (2)
C7_6—H7A_6	0.9900	C10_15—H10A_15	0.9900
C7_6—H7B_6	0.9900	C10_15—H10B_15	0.9900
C8_6—C9_6	1.531 (12)	C11 ¹⁵ —C12 ¹⁵	1.53 (2)
C8_6—H8A_6	0.9900	C11 ¹⁵ —H11A 15	0.9900
C8_6—H8B_6	0.9900	C11 ¹⁵ —H11B ¹⁵	0.9900
C9 ⁶ —C10 ⁶	1.464 (14)	C12_15—H12A_15	0.9800
C9 6—H9A 6	0.9900	C12_15—H12B_15	0.9800
C9_6—H9B_6	0.9900	C12_15—H12C_15	0.9800
$C10^{-}6-C11^{-}6$	1.527 (14)	C13 ⁻ 15—C14 ⁻ 15	1.53 (2)
C10_6—H10A_6	0.9900	C13 15—H13A 15	0.9900
C10_6—H10B_6	0.9900	C13 ¹⁵ —H13B ¹⁵	0.9900
C11_6—H11A_6	0.9800	C14 15—C15 15	1.46 (2)
C11_6—H11B_6	0.9800	C14 15—H14A 15	0.9900
C11_6—H11C_6	0.9800	C14_15—H14B_15	0.9900
N1_7_C1_7	1.341 (6)	C15_15—C16_15	1.53 (2)
N1_7—N2_7	1.370 (5)	C15_15—H15A_15	0.9900
N2_7—C3_7	1.342 (5)	C15_15—H15B_15	0.9900
C1_7_C2_7	1.389 (6)	C16_15—H16A_15	0.9800
C1 7—H1 7	0.9500	C16 15—H16B 15	0.9800
C2_7_C3_7	1.379 (6)	C16_15—H16C_15	0.9800
C2_7—C4_7	1.503 (6)	N1B_15—C5B_15	1.515 (16)
C3_7—H3_7	0.9500	N1B_15—C1B_15	1.516 (16)
C4_7—C5B_7	1.514 (8)	N1B_15—C13B_15	1.530 (16)
C4 7—C5 7	1.514 (8)	N1B 15—C9B 15	1.536 (16)

C4 7—H4A 7	0.9900	C1B 15-C2B 15	1.51 (2)
C4_7—H4B_7	0.9900	C1B_15—H1C_15	0.9900
C5 ⁷ —C6 ⁷	1.539 (15)	C1B_15—H1D_15	0.9900
C5_7—H5A_7	0.9900	C2B_15—C3B_15	1.47 (2)
C5 7—H5B 7	0.9900	C2B 15—H2C 15	0.9900
C6 7—C7 7	1.504 (16)	C2B_15—H2D_15	0.9900
C_{6}^{-} 7—H6A 7	0.9900	$C_{3B} 15 - C_{4B} 15$	1.50(2)
C6 7—H6B 7	0.9900	$C3B_15$ — $H3C_15$	0.9900
C7 7 - C8 7	1.509 (15)	$C3B_{15} - H3D_{15}$	0.9900
C7 7—H7A 7	0.9900	$C4B_{15} H4D_{15}$	0.9800
C7 7—H7B 7	0.9900	$C4B_{15}$ $H4E_{15}$	0.9800
$C_{1}^{0} = C_{1}^{0} C_{1}^{0}$	1 515 (15)	$C4B_15$ $H4E_15$ $C4B_15$ $H4E_15$	0.9800
$C_{8,7} = C_{9,7}$	0.0000	$C_{10} = 15$	1.51(2)
C_{0}^{2} T_{0}^{2} H_{0}^{2} T_{0}^{2}	0.9900	$C5B_{15} = C0B_{15}$	0.0000
$C_0 7 C_{10} 7$	0.9900	C5D_15_H5D_15	0.9900
C_{9}^{-} $-C_{10}^{-}$	1.512 (10)	$C_{5B}_{15} = -15 \\ C_{6B}_{15} = -15 \\ C_{7B}_{15} = -15 \\ C_{7$	0.9900
$C_{9}/=H_{9}A_{1}/$	0.9900	$C6B_15 - C7B_15$	1.31 (2)
C9_/—H9B_/	0.9900	$C0B_{15} - H0C_{15}$	0.9900
$C10_{-}/C11_{-}/$	1.501 (16)	C6B_15—H6D_15	0.9900
$C10_/$ —H10A_/	0.9900	C/B_15—C8B_15	1.49 (2)
C10_/—H10B_/	0.9900	C/B_15—H/C_15	0.9900
CII_/—HIIA_/	0.9800	C/B_15—H/D_15	0.9900
C11_7—H11B_7	0.9800	C8B_15—H8D_15	0.9800
C11_7—H11C_7	0.9800	C8B_15—H8E_15	0.9800
C5B_7—C6B_7	1.530 (13)	C8B_15—H8F_15	0.9800
C5B_7—H5BA_7	0.9900	C9B_15—C10B_15	1.47 (2)
C5B_7—H5BB_7	0.9900	C9B_15—H9C_15	0.9900
C6B_7—C7B_7	1.510 (15)	C9B_15—H9D_15	0.9900
C6B_7—H6BA_7	0.9900	C10B_15—C11B_15	1.49 (2)
C6B_7—H6BB_7	0.9900	C10B_15—H10C_15	0.9900
C7B_7—C8B_7	1.513 (13)	C10B_15—H10D_15	0.9900
C7B_7—H7BA_7	0.9900	C11B_15—C12B_15	1.54 (2)
C7B_7—H7BB_7	0.9900	C11B_15—H11C_15	0.9900
C8B_7—C9B_7	1.510 (14)	C11B_15—H11D_15	0.9900
C8B_7—H8BA_7	0.9900	C12B_15—H12D_15	0.9800
C8B_7—H8BB_7	0.9900	C12B_15—H12E_15	0.9800
C9B 7—C10B 7	1.522 (14)	C12B 15—H12F 15	0.9800
C9B ⁷ —H9BA ⁷	0.9900	C13B_15—C14B_15	1.55 (2)
C9B 7—H9BB 7	0.9900	C13B 15—H13C 15	0.9900
C10B 7—C11B 7	1.512 (16)	C13B_15—H13D_15	0.9900
C10B_7—H10C_7	0.9900	C14B_15—C15B_15	1.49 (2)
C10B 7—H10D 7	0.9900	C14B_15—H14C_15	0.9900
C11B 7—H11D 7	0.9800	C14B_15—H14D_15	0.9900
C11B 7—H11E 7	0.9800	C15B_15—C16B_15	1.52 (2)
C11B 7—H11F 7	0.9800	C15B 15—H15C 15	0.9900
N1 8—C1 8	1.336 (5)	C15B 15—H15D 15	0.9900
N1 8—N2 8	1.355 (5)	C16B 15—H16D 15	0.9800
N2 8-C3 8	1.342 (6)	C16B 15—H16E 15	0.9800
C1 8—C2 8	1.389 (6)	C16B 15—H16F 15	0.9800

N1_1—Ni1_16—N2_2	95.00 (18)	C5_7—C4_7—H4A_7	108.7
N1 1—Ni1 16—N2 6	97.14 (18)	C2 7—C4 7—H4B 7	108.7
N2 2—Ni1 16—N2 6	96.04 (18)	C5 7—C4 7—H4B 7	108.7
N1 ¹ —Ni1 ¹⁶ —O2 ¹⁶	91.57 (15)	H4A 7—C4 7—H4B 7	107.6
N2 2—Ni1 16—O2 16	170.24 (16)	C4 7—C5 7—C6 7	110.5 (11)
N2 ⁶ —Ni1 ¹⁶ —O2 ¹⁶	90.27 (15)	C4_7—C5_7—H5A_7	109.5
$N1^{-1}$ — $Ni1^{-1}6$ — $O3^{-1}6^{i}$	89.85 (16)	C6 7—C5 7—H5A 7	109.5
$N2^{-}2$ — $Ni1^{-}16$ — $O3^{-}16^{i}$	91.28 (16)	C4_7—C5_7—H5B_7	109.5
$N2^{-}6$ —Ni1^{-}16—O3^{-}16^{i}	169.37 (14)	C6 7—C5 7—H5B 7	109.5
$02^{-}16$ —Ni1 16—O3 16 ⁱ	81.51 (12)	H5A 7—C5 7—H5B 7	108.1
N1 1—Ni1 16—O1 16	169.68 (15)	C7 7—C6 7—C5 7	113.2 (16)
N2 2—Ni1 16—O1 16	90.71 (15)	C7 ⁷ —C6 ⁷ —H6A ⁷	108.9
N2 6—Ni1 16—O1 16	90.77 (15)	C5 7—C6 7—H6A 7	108.9
O2_16—Ni1_16—O1_16	81.74 (12)	C7 7—C6 7—H6B 7	108.9
O3 16 ⁱ —Ni1 16—O1 16	81.42 (13)	C5 7—C6 7—H6B 7	108.9
N1 1—Ni1 16—Ni2 16	128.62 (15)	H6A 7—C6 7—H6B 7	107.7
N2 2—Ni1 16—Ni2 16	66.46 (13)	C6 7—C7 7—C8 7	115.6 (15)
N2 6—Ni1 16—Ni2 16	130.75 (12)	C6 7—C7 7—H7A 7	108.4
O2 16—Ni1 16—Ni2 16	103.78 (9)	C8 7—C7 7—H7A 7	108.4
$O_{3} 16^{i}$ Ni1 16 Ni2 16	46.30 (9)	C6 7—C7 7—H7B 7	108.4
01_16—Ni1_16—Ni2_16	46.79 (9)	C8 7—C7 7—H7B 7	108.4
N1 1—Ni1 16—Ni3 16^{i}	65.86 (12)	H7A 7—C7 7—H7B 7	107.5
N2 2—Ni1 16—Ni3 16 ⁱ	131.11 (14)	C7 7—C8 7—C9 7	113.1 (15)
N2 6—Ni1 16—Ni3 16^{i}	129.35 (13)	C7 7—C8 7—H8A 7	109.0
O2 16—Ni1 16—Ni3 16 ⁱ	46.26 (9)	C9 7—C8 7—H8A 7	109.0
O3 16 ⁱ —Ni1 16—Ni3 16 ⁱ	47.12 (8)	C7 7—C8 7—H8B 7	109.0
01 16—Ni1 16—Ni3 16 ⁱ	103.96 (9)	C9 7—C8 7—H8B 7	109.0
Ni2 16—Ni1 16—Ni3 16 ⁱ	90.29 (3)	H8A 7—C8 7—H8B 7	107.8
N1 1—Ni1 16—Ni4 16	132.24 (14)	C10 7—C9 7—C8 7	112.5 (15)
N2 2—Ni1 16—Ni4 16	129.54 (13)	C10 7—C9 7—H9A 7	109.1
N2 6—Ni1 16—Ni4 16	65.90 (12)	C8 7—C9 7—H9A 7	109.1
O2 16—Ni1 16—Ni4 16	47.19 (9)	C10 7—C9 7—H9B 7	109.1
O3 16 ⁱ —Ni1 16—Ni4 16	103.48 (9)	C8 7—C9 7—H9B 7	109.1
01 16—Ni1 16—Ni4 16	46.11 (9)	H9A 7—C9 7—H9B 7	107.8
Ni2 16—Ni1 16—Ni4 16	89.71 (4)	C11 7—C10 7—C9 7	110.0 (16)
Ni3 ^{16ⁱ} —Ni1 ¹⁶ —Ni4 ¹⁶	90.21 (4)	C11_7—C10_7—H10A_7	109.7
N1 2—Ni2 16—N2 3	95.28 (17)	C9 7—C10 7—H10A 7	109.7
$N1^{2}$ — $Ni2^{-16}$ — $N2^{-5^{i}}$	95.92 (19)	C11 7—C10 7—H10B 7	109.7
$N2^{3}$ — $Ni2^{16}$ — $N2^{5^{i}}$	97.20 (18)	C9 7—C10 7—H10B 7	109.7
N1 2—Ni2 16—O3 16 ⁱ	90.88 (15)	H10A 7—C10 7—H10B 7	108.2
N2 3—Ni2 16—O3 16 ⁱ	169.57 (14)	C10 7—C11 7—H11A 7	109.5
N2 5^{i} —Ni2 16—O3 16 ⁱ	90.51 (15)	C10 7—C11 7—H11B 7	109.5
N1 2—Ni2 16—O1 16	91.81 (16)	H11A 7—C11 7—H11B 7	109.5
N2 3—Ni2 16—O1 16	89.10 (15)	C10 7—C11 7—H11C 7	109.5
N2_5 ⁱ —Ni2_16—O1_16	169.52 (15)	H11A 7—C11 7—H11C 7	109.5
O3 16 ⁱ —Ni2 16—O1 16	82.29 (12)	H11B 7—C11 7—H11C 7	109.5
N1 2—Ni2 16—O2 16 ⁱ	170.33 (16)	C4 7—C5B 7—C6B 7	116.2 (9)

N2_3-Ni2_16-O2_16 ⁱ	90.82 (14)	C4_7—C5B_7—H5BA_7	108.2
$N2_5^{i}$ $Ni2_{16}$ $O2_{16^{i}}$	90.75 (16)	C6B_7—C5B_7—H5BA_7	108.2
O3_16 ⁱ —Ni2_16—O2_16 ⁱ	82.03 (12)	C4_7—C5B_7—H5BB_7	108.2
O1_16—Ni2_16—O2_16 ⁱ	80.76 (12)	C6B_7—C5B_7—H5BB_7	108.2
N1 2—Ni2 16—Ni1 16	66.52 (13)	H5BA 7—C5B 7—H5BB 7	107.4
N2 3—Ni2 16—Ni1 16	129.06 (13)	С7В 7—С6В 7—С5В 7	113.4 (14)
$N2^{5^{i}}$ Ni2 16 Ni1 16	130.35 (13)	C7B ⁷ —C6B ⁷ —H6BA 7	108.9
O3 16 ⁱ —Ni2 16—Ni1 16	46.73 (9)	C5B 7—C6B 7—H6BA 7	108.9
O1_16—Ni2_16—Ni1_16	47.43 (8)	C7B ⁷ —C6B ⁷ —H6BB ⁷	108.9
O2 16 ⁱ —Ni2 16—Ni1 16	103.81 (9)	C5B_7—C6B_7—H6BB_7	108.9
N1 2—Ni2 16—Ni4 16 ⁱ	130.21 (13)	H6BA 7—C6B 7—H6BB 7	107.7
$N2^{-}3$ —Ni2^{-}16—Ni4^{-}16^{i}	131.35 (13)	C6B 7—C7B 7—C8B 7	114.5 (12)
$N2^{5^{i}}$ Ni2 16 Ni4 16 ⁱ	66.01 (13)	C6B 7—C7B 7—H7BA 7	108.6
$03^{-}16^{i}$ Ni $2^{-}16$ Ni $4^{-}16^{i}$	46.43 (9)	C8B_7—C7B_7—H7BA_7	108.6
O1_16—Ni2_16—Ni4_16 ⁱ	103.56 (9)	C6B 7—C7B 7—H7BB 7	108.6
$02^{-}16^{i}$ Ni $2^{-}16$ Ni $4^{-}16^{i}$	47.12 (8)	C8B_7—C7B_7—H7BB_7	108.6
Ni1 16—Ni2 16—Ni4 16 ⁱ	89.86 (3)	H7BA 7—C7B 7—H7BB 7	107.6
N1 3—Ni3 16—N1 4	95.82 (17)	C9B 7—C8B 7—C7B 7	115.7 (13)
$N1^{-}3$ — $Ni3^{-}16$ — $N2^{-}1^{i}$	98.03 (17)	C9B 7—C8B 7—H8BA 7	108.4
$N1^{4}$ Ni3 16 N2 1 ⁱ	94.35 (17)	C7B 7—C8B 7—H8BA 7	108.4
$N1^{3}$ Ni 3^{16} O2 16^{i}	91.85 (15)	C9B_7—C8B_7—H8BB_7	108.4
$N1^{-4}$ Ni 3^{-16} O2 16^{i}	169.49 (15)	C7B ⁷ —C8B ⁷ —H8BB ⁷	108.4
$N2^{-}1^{i}$ Ni $3^{-}16$ O $2^{-}16^{i}$	91.68 (15)	H8BA 7—C8B 7—H8BB 7	107.4
N1 3—Ni3 16—O1 16	89.74 (14)	C8B 7—C9B 7—C10B 7	116.7 (13)
N1 4—Ni3 16—O1 16	91.29 (15)	C8B 7—C9B 7—H9BA 7	108.1
$N2^{-}1^{i}$ Ni $3^{-}16$ O $1^{-}16$	169.88 (14)	C10B 7—C9B 7—H9BA 7	108.1
$02^{-}16^{i}$ Ni $\overline{3}$ 16 -01^{-} 16	81.54 (12)	C8B 7—C9B 7—H9BB 7	108.1
N1 3—Ni3 16—O3 16	169.23 (14)	C10B 7—C9B 7—H9BB 7	108.1
N1 4—Ni3 16—O3 16	90.20 (15)	H9BA 7—C9B 7—H9BB 7	107.3
$N2^{-}1^{i}$ Ni $3^{-}16$ O $3^{-}16$	90.39 (14)	C11B 7—C10B 7—C9B 7	112.2 (14)
$O2^{-}16^{i}$ Ni $\overline{3}$ 16 $O3^{-}$ 16	81.15 (12)	C11B 7—C10B 7—H10C 7	109.2
O1_16—Ni3_16—O3_16	81.18 (12)	C9B_7—C10B_7—H10C_7	109.2
N1 3—Ni3 16—Ni4 16	128.72 (13)	C11B 7—C10B 7—H10D 7	109.2
N1 4—Ni3 16—Ni4 16	66.33 (12)	C9B 7—C10B 7—H10D 7	109.2
N2_1 ⁱ —Ni3_16—Ni4_16	129.49 (13)	H10C_7—C10B_7—H10D_7	107.9
O2 16 ⁱ —Ni3 16—Ni4 16	103.23 (9)	C10B 7—C11B 7—H11D 7	109.5
O1_16—Ni3_16—Ni4_16	46.23 (9)	C10B_7—C11B_7—H11E_7	109.5
O3 ¹⁶ —Ni3 ¹⁶ —Ni4 ¹⁶	46.48 (9)	H11D 7—C11B 7—H11E 7	109.5
N1 3—Ni3 16—Ni1 16 ⁱ	131.72 (13)	C10B ⁷ —C11B ⁷ —H11F ⁷	109.5
$N1^{-}4$ —Ni3^{-}16—Ni1^{-}16^{i}	129.31 (12)	H11D 7—C11B 7—H11F 7	109.5
$N2^{-}1^{i}$ Ni $3^{-}16$ Ni $1^{-}16^{i}$	66.44 (12)	H11E 7—C11B 7—H11F 7	109.5
$02^{-}16^{i}$ Ni $\overline{3}$ 16 Ni $\overline{1}$ 16 ⁱ	46.43 (9)	C1 8—N1 8—N2 8	108.0 (3)
O1 16—Ni3 16—Ni1 16 ⁱ	103.52 (9)	C1 ⁸ —N1 ⁸ —Ni5 ¹⁶	139.0 (3)
O3_16—Ni3_16—Ni1 ⁻ 16 ⁱ	46.50 (9)	N2_8—N1_8—Ni5_16	112.7 (2)
Ni4_16—Ni3_16—Ni1_16 ⁱ	89.79 (3)	C3_8—N2_8—N1_8	107.2 (3)
N1_5—Ni4_16—N2_4	94.69 (17)	C3_8—N2_8—Ni6_16	137.9 (3)
N1_5—Ni4_16—N1_6	96.18 (19)	N1_8—N2_8—Ni6_16	114.8 (3)
N2_4—Ni4_16—N1_6	96.75 (17)	N1_8-C1_8-C2_8	111.0 (4)

N1_5—Ni4_16—O1_16	169.66 (15)	N1_8-C1_8-H1_8	124.5
N2_4—Ni4_16—O1_16	93.98 (15)	C2_8—C1_8—H1_8	124.5
N1_6—Ni4_16—O1_16	88.37 (16)	C3_8—C2_8—C1_8	102.6 (4)
N1 5—Ni4 16—O3 16	92.59 (16)	C3 8—C2 8—C4 8	126.6 (4)
N2 ⁴ —Ni4 ¹⁶ —O3 ¹⁶	88.08 (15)	C1 ⁸ —C2 ⁸ —C4 ⁸	130.8 (4)
N1 6—Ni4 16—O3 16	169.59 (15)	N2 8-C3 8-C2 8	111.3 (4)
01 ¹⁶ —Ni ⁴ 16—O ³ 16	82.08 (12)	N2 ⁸ —C3 ⁸ —H3 ⁸	124.4
N1 5—Ni4 16—O2 16	88.54 (15)	C2 ⁸ —C3 ⁸ —H3 ⁸	124.4
N2 ⁴ —Ni4 ¹⁶ —O2 ¹⁶	169.34 (15)	C2 ⁸ —C4 ⁸ —C5 ⁸	116.1 (4)
N1_6—Ni4_16—O2_16	92.99 (15)	C2_8—C4_8—H4A_8	108.3
O1 16—Ni4 16—O2 16	81.94 (12)	C5 8—C4 8—H4A 8	108.3
O3_16—Ni4_16—O2_16	81.62 (12)	C2_8—C4_8—H4B_8	108.3
N1 5—Ni4 16—Ni3 16	133.37 (14)	C5 8—C4 8—H4B 8	108.3
N2_4—Ni4_16—Ni3_16	66.39 (12)	H4A_8—C4_8—H4B_8	107.4
N1_6—Ni4_16—Ni3_16	126.91 (13)	C6_8-C5_8-C4_8	116.5 (5)
O1_16—Ni4_16—Ni3_16	46.67 (9)	C6_8—C5_8—H5A_8	108.2
O3_16—Ni4_16—Ni3_16	47.15 (8)	C4_8-C5_8-H5A_8	108.2
O2_16—Ni4_16—Ni3_16	104.16 (9)	C6_8-C5_8-H5B_8	108.2
N1_5—Ni4_16—Ni1_16	126.76 (13)	C4_8-C5_8-H5B_8	108.2
N2_4—Ni4_16—Ni1_16	135.27 (12)	H5A_8-C5_8-H5B_8	107.3
N1_6—Ni4_16—Ni1_16	66.09 (13)	C5_8-C6_8-C7_8	113.2 (5)
O1_16—Ni4_16—Ni1_16	47.23 (8)	C5_8—C6_8—H6A_8	108.9
O3_16—Ni4_16—Ni1_16	104.07 (9)	C7_8—C6_8—H6A_8	108.9
O2_16—Ni4_16—Ni1_16	46.32 (8)	C5_8—C6_8—H6B_8	108.9
Ni3_16—Ni4_16—Ni1_16	90.62 (4)	C7_8—C6_8—H6B_8	108.9
N1_5—Ni4_16—Ni2_16 ⁱ	66.19 (13)	H6A_8-C6_8-H6B_8	107.8
N2_4-Ni4_16-Ni2_16 ⁱ	125.65 (12)	C8_8—C7_8—C6_8	115.4 (6)
N1_6-Ni4_16-Ni2_16 ⁱ	133.89 (12)	C8_8-C7_8-H7A_8	108.4
O1_16-Ni4_16-Ni2_16 ⁱ	104.05 (9)	C6_8-C7_8-H7A_8	108.4
O3_16-Ni4_16-Ni2_16 ⁱ	46.05 (8)	C8_8-C7_8-H7B_8	108.4
O2_16-Ni4_16-Ni2_16 ⁱ	47.00 (9)	C6_8-C7_8-H7B_8	108.4
Ni3_16—Ni4_16—Ni2_16 ⁱ	90.05 (3)	H7A_8—C7_8—H7B_8	107.5
Ni1_16—Ni4_16—Ni2_16 ⁱ	90.12 (4)	C7_8—C8_8—C9_8	113.5 (6)
N2_7—Ni5_16—N2_12 ⁱⁱ	95.27 (15)	C7_8-C8_8-H8A_8	108.9
N2_7—Ni5_16—N1_8	94.94 (15)	C9_8-C8_8-H8A_8	108.9
N2_12 ⁱⁱ —Ni5_16—N1_8	97.94 (15)	C7_8-C8_8-H8B_8	108.9
N2_7—Ni5_16—O6_16	91.02 (13)	C9_8-C8_8-H8B_8	108.9
N2_12 ⁱⁱ —Ni5_16—O6_16	90.20 (14)	H8A_8-C8_8-H8B_8	107.7
N1_8—Ni5_16—O6_16	169.41 (12)	C10_8-C9_8-C8_8	114.5 (7)
N2_7—Ni5_16—O5_16 ⁱⁱ	170.36 (13)	C10_8-C9_8-H9A_8	108.6
N2_12 ⁱⁱ —Ni5_16—O5_16 ⁱⁱ	90.79 (14)	C8_8—C9_8—H9A_8	108.6
N1_8—Ni5_16—O5_16 ⁱⁱ	91.62 (13)	C10_8-C9_8-H9B_8	108.6
O6_16—Ni5_16—O5_16 ⁱⁱ	81.46 (11)	C8_8—C9_8—H9B_8	108.6
N2_7—Ni5_16—O4_16	91.06 (13)	H9A_8—C9_8—H9B_8	107.6
N2_12 ⁱⁱ —Ni5_16—O4_16	169.53 (13)	C9_8-C10_8-C11_8	112.6 (8)
N1_8—Ni5_16—O4_16	89.79 (13)	C9_8-C10_8-H10A_8	109.1
O6_16—Ni5_16—O4_16	81.35 (11)	C11_8-C10_8-H10A_8	109.1
O5_16 ⁱⁱ —Ni5_16—O4_16	81.90 (11)	C9_8-C10_8-H10B_8	109.1

N2_7—Ni5_16—Ni8_16	66.19 (11)	C11_8-C10_8-H10B_8	109.1
N2_12 ⁱⁱ —Ni5_16—Ni8_16	129.32 (11)	H10A_8—C10_8—H10B_8	107.8
N1_8—Ni5_16—Ni8_16	128.93 (11)	C10_8-C11_8-H11A_8	109.5
O6 16—Ni5 16—Ni8 16	46.59 (8)	C10 8—C11 8—H11B 8	109.5
O5 ^{16ⁱⁱ} —Ni5 ¹⁶ —Ni8 ¹⁶	104.18 (8)	H11A 8-C11 8-H11B 8	109.5
O4 16—Ni5 16—Ni8 16	46.72 (8)	C10 8-C11 8-H11C 8	109.5
N2 ⁷ —Ni5 ¹⁶ —Ni6 ¹⁶	130.75 (11)	H11A 8-C11 8-H11C 8	109.5
N2 12 ⁱⁱ —Ni5 16—Ni6 16	130.84 (11)	H11B 8—C11 8—H11C 8	109.5
N1 ⁸ —Ni5 ¹⁶ —Ni6 ¹⁶	66.27 (10)	C1 9—N1 9—N2 9	108.2 (4)
O6 16—Ni5 16—Ni6 16	103.26 (8)	C1 9—N1 9—Ni8 16	136.9 (3)
O5 16 ⁱⁱ —Ni5 16—Ni6 16	46.62 (8)	N2 9—N1 9—Ni8 16	114.0 (3)
O4_16—Ni5_16—Ni6_16	46.70 (8)	C3 9—N2 9—N1 9	107.2 (4)
Ni8 16—Ni5 16—Ni6 16	90.18 (4)	C3 9—N2 9—Ni7 16	139.2 (3)
N2 8—Ni6 16—N1 11	96.21 (16)	N1 9—N2 9—Ni7 16	113.4 (3)
N2 ⁸ —Ni6 ¹⁶ —N1 ¹⁰	96.19 (16)	N1 9-C1 9-C2 9	110.7 (4)
N1 11—Ni6 16—N1 10	94.92 (17)	N1 9—C1 9—H1 9	124.7
N2 ⁸ —Ni6 ¹⁶ —O6 ^{16ⁱⁱ}	169.19 (13)	C2 9—C1 9—H1 9	124.7
$N1^{-}11$ — $Ni6^{-}16$ — $O6^{-}16^{ii}$	92.73 (13)	C3 9—C2 9—C1 9	102.8 (4)
N1 10—Ni6 16—O6 16 ⁱⁱ	89.06 (14)	C3 9—C2 9—C4 9	128.4 (5)
N2 8—Ni6 16—O5 16 ⁱⁱ	92.29 (14)	C1 9—C2 9—C4 9	128.7 (4)
N1 11—Ni6 16—O5 16 ⁱⁱ	89.41 (14)	N2 9—C3 9—C2 9	111.1 (4)
N1 10—Ni6 16—O5 16 ⁱⁱ	170.00 (14)	N2 9—C3 9—H3 9	124.4
O6 16 ⁱⁱ —Ni6 16—O5 16 ⁱⁱ	81.72 (11)	C2 9—C3 9—H3 9	124.4
N2 8—Ni6 16—O4 16	89.20 (13)	C2 ⁹ —C4 ⁹ —C5 ⁹	113.5 (4)
N1 11—Ni6 16—O4 16	170.19 (14)	C2 9—C4 9—H4A 9	108.9
N1_10—Ni6_16—O4_16	92.62 (14)	C5 9—C4 9—H4A 9	108.9
O6 16 ⁱⁱ —Ni6 16—O4 16	81.11 (11)	C2 ⁹ —C4 ⁹ —H4B ⁹	108.9
O5_16 ⁱⁱ —Ni6_16—O4_16	82.19 (11)	C5 ⁹ —C4 ⁹ —H4B ⁹	108.9
N2 ⁸ —Ni6 ¹⁶ —Ni8 ^{16ⁱⁱ}	132.80 (12)	H4A 9—C4 9—H4B 9	107.7
N1 ¹¹ —Ni ⁶ 16—Ni ⁸ 16 ⁱⁱ	66.24 (11)	C6 9-C5 9-C4 9	114.3 (5)
N1 10—Ni6 16—Ni8 16 ⁱⁱ	127.36 (11)	C6 9—C5 9—H5A 9	108.7
O6 16 ⁱⁱ —Ni6 16—Ni8 16 ⁱⁱ	46.73 (8)	C4 9—C5 9—H5A 9	108.7
O5_16 ⁱⁱ —Ni6_16—Ni8_16 ⁱⁱ	46.90 (8)	C6 9—C5 9—H5B 9	108.7
O4 16—Ni6 16—Ni8 16 ⁱⁱ	104.13 (8)	C4 9—C5 9—H5B 9	108.7
N2_8—Ni6_16—Ni5_16	66.20 (11)	H5A_9—C5_9—H5B_9	107.6
N1 ¹¹ —Ni ⁶ 16—Ni ⁵ 16	128.58 (12)	C7 9–C6 9–C5 9	116.0 (5)
N1 10—Ni6 16—Ni5 16	133.13 (12)	C7_9_C6_9_H6A_9	108.3
O6 16 ⁱⁱ —Ni6 16—Ni5 16	103.38 (8)	C5 9—C6 9—H6A 9	108.3
O5_16 ⁱⁱ —Ni6_16—Ni5_16	46.79 (8)	C7_9_C6_9_H6B_9	108.3
O4_16—Ni6_16—Ni5_16	46.88 (8)	C5_9—C6_9—H6B_9	108.3
Ni8 16 ⁱⁱ —Ni6 16—Ni5 16	90.34 (4)	H6A 9—C6 9—H6B 9	107.4
N2 8—Ni6 16—Ni7 16	127.44 (12)	C8 9–C7 9–C6 9	113.4 (5)
N1 11—Ni6 16—Ni7 16	132.64 (12)	C8 9—C7 9—H7A 9	108.9
N1_10—Ni6_16—Ni7_16	66.20 (11)	C6_9—C7_9—H7A_9	108.9
O6_16 ⁱⁱ —Ni6_16—Ni7_16	46.80 (8)	C8_9—C7_9—H7B_9	108.9
O5_16 ⁱⁱ —Ni6_16—Ni7_16	104.34 (8)	C6_9—C7_9—H7B_9	108.9
O4_16—Ni6_16—Ni7_16	46.13 (8)	H7A_9—C7_9—H7B_9	107.7
Ni8_16 ⁱⁱ —Ni6_16—Ni7_16	90.56 (3)	C7_9—C8_9—C9_9	114.9 (6)

Ni5_16—Ni6_16—Ni7_16	89.88 (4)	C7_9—C8_9—H8A_9	108.5
N1_12_Ni7_16_N2_9	97.77 (16)	C9_9_C8_9_H8A_9	108.5
N1 12—Ni7 16—N2 10	95.08 (16)	C7 9—C8 9—H8B 9	108.5
N2 9—Ni7 16—N2 10	95.43 (16)	C9 9—C8 9—H8B 9	108.5
N1 ¹² —Ni ⁷ 16—O ⁴ 16	169.64 (14)	H8A 9—C8 9—H8B 9	107.5
N2 9—Ni7 16—O4 16	89.17 (13)	C8 9–C9 9–C10 9	114.2 (6)
N2_10—Ni7_16—O4_16	91.89 (13)	C8 9—C9 9—H9A 9	108.7
N1 12—Ni7 16—O5 16	90.29 (13)	C10 9—C9 9—H9A 9	108.7
N2 9—Ni7 16—O5 16	92.73 (13)	C8 9–C9 9–H9B 9	108.7
N2 10—Ni7 16—O5 16	169.53 (14)	C10 9—C9 9—H9B 9	108.7
O4_16—Ni7_16—O5_16	81.67 (11)	H9A 9—C9 9—H9B 9	107.6
N1 ¹² —Ni7 ¹⁶ —O6 ^{16ⁱⁱ}	90.97 (14)	C11 9-C10 9-C9 9	113.6 (8)
N2 ⁹ —Ni7 ¹⁶ —O6 ^{16ⁱⁱ}	169.26 (13)	C11 9—C10 9—H10A 9	108.8
$N2^{-}10$ — $Ni7^{-}16$ — $O6^{-}16^{ii}$	89.96 (14)	C9 9-C10 9-H10A 9	108.8
O4_16—Ni7_16—O6_16 ⁱⁱ	81.36 (11)	C11 9—C10 9—H10B 9	108.8
O5_16—Ni7_16—O6_16 ⁱⁱ	80.95 (11)	C9 9–C10 9–H10B 9	108.8
N1 12—Ni7 16—Ni6 16	130.36 (12)	H10A 9—C10 9—H10B 9	107.7
N2 9—Ni7 16—Ni6 16	128.11 (11)	C10 9—C11 9—H11A 9	109.5
N2 10—Ni7 16—Ni6 16	66.15 (11)	C10_9—C11_9—H11B_9	109.5
O4_16—Ni7_16—Ni6_16	46.72 (8)	H11A 9—C11 9—H11B 9	109.5
O5_16—Ni7_16—Ni6_16	103.58 (8)	C10 9-C11 9-H11C 9	109.5
O6 16 ⁱⁱ —Ni7 16—Ni6 16	46.51 (8)	H11A 9—C11 9—H11C 9	109.5
N1_12_Ni7_16_Ni8_16	129.86 (12)	H11B_9_C11_9_H11C_9	109.5
N2_9—Ni7_16—Ni8_16	66.48 (10)	C1_10_N1_10_N2_10	107.6 (4)
N2_10—Ni7_16—Ni8_16	132.08 (11)	C1_10_N1_10_Ni6_16	137.6 (4)
O4_16—Ni7_16—Ni8_16	46.63 (8)	N2_10_N1_10_Ni6_16	113.6 (3)
O5_16—Ni7_16—Ni8_16	46.62 (7)	C3_10—N2_10—N1_10	107.9 (4)
O6_16 ⁱⁱ —Ni7_16—Ni8_16	103.09 (8)	C3_10—N2_10—Ni7_16	136.1 (3)
Ni6_16—Ni7_16—Ni8_16	90.02 (4)	N1_10—N2_10—Ni7_16	114.0 (3)
N2_11 ⁱⁱ —Ni8_16—N1_7	95.29 (16)	N1_10-C1_10-C2_10	110.7 (4)
N2_11 ⁱⁱ —Ni8_16—N1_9	96.67 (16)	N1_10-C1_10-H1_10	124.7
N1_7—Ni8_16—N1_9	95.43 (15)	C2_10—C1_10—H1_10	124.7
N2_11 ⁱⁱ —Ni8_16—O6_16	91.49 (14)	C1_10—C2_10—C3_10	103.4 (4)
N1_7—Ni8_16—O6_16	90.78 (13)	C1_10—C2_10—C4B_10	128.4 (5)
N1_9—Ni8_16—O6_16	169.23 (13)	C3_10—C2_10—C4B_10	127.8 (5)
N2_11 ⁱⁱ —Ni8_16—O4_16	169.90 (14)	C1_10—C2_10—C4_10	128.4 (5)
N1_7—Ni8_16—O4_16	91.77 (13)	C3_10—C2_10—C4_10	127.8 (5)
N1_9—Ni8_16—O4_16	89.81 (14)	N2_10-C3_10-C2_10	110.4 (5)
O6_16—Ni8_16—O4_16	81.18 (11)	N2_10—C3_10—H3_10	124.8
N2_11 ⁱⁱ —Ni8_16—O5_16	90.91 (14)	C2_10—C3_10—H3_10	124.8
N1_7—Ni8_16—O5_16	170.40 (13)	C2_10—C4_10—C5_10	112.3 (9)
N1_9—Ni8_16—O5_16	91.11 (13)	C2_10—C4_10—H4A_10	109.1
O6_16—Ni8_16—O5_16	81.72 (11)	C5_10—C4_10—H4A_10	109.1
O4_16—Ni8_16—O5_16	81.21 (11)	C2_10—C4_10—H4B_10	109.1
N2_11 ⁱⁱ —Ni8_16—Ni6_16 ⁱⁱ	66.39 (12)	C5_10-C4_10-H4B_10	109.1
N1_7—Ni8_16—Ni6_16 ⁱⁱ	129.94 (11)	H4A_10-C4_10-H4B_10	107.9
N1_9—Ni8_16—Ni6_16 ⁱⁱ	131.27 (11)	C6_10-C5_10-C4_10	112.0 (13)
O6_16—Ni8_16—Ni6_16 ⁱⁱ	46.78 (8)	C6_10-C5_10-H5A_10	109.2

O4_16—Ni8_16—Ni6_16 ⁱⁱ	103.53 (8)	C4_10—C5_10—H5A_10	109.2
O5_16—Ni8_16—Ni6_16 ⁱⁱ	46.86 (8)	C6_10_C5_10_H5B_10	109.2
N2 11 ⁱⁱ —Ni8 16—Ni5 16	130.42 (12)	C4_10—C5_10—H5B_10	109.2
N1 7—Ni8 16—Ni5 16	66.58 (11)	H5A 10—C5 10—H5B 10	107.9
N1 9—Ni8 16—Ni5 16	129.32 (11)	C7 10—C6 10—C5 10	115.0 (14)
06 16—Ni8 16—Ni5 16	46.16 (8)	C7_10_C6_10_H6A_10	108.5
O4_16—Ni8_16—Ni5_16	46.95 (8)	C5_10_C6_10_H6A_10	108.5
O5_16—Ni8_16—Ni5_16	103.83 (8)	C7_10_C6_10_H6B_10	108.5
Ni6 16 ⁱⁱ —Ni8 16—Ni5 16	89.91 (3)	C5_10_C6_10_H6B_10	108.5
N2 11 ⁱⁱ —Ni8 16—Ni7 16	130.43 (12)	H6A 10—C6 10—H6B 10	107.5
N1 ⁷ —Ni8 16—Ni7 16	130.77 (11)	C6 10—C7 10—C8 10	113.2 (14)
N1 9—Ni8 16—Ni7 16	66.01 (10)	C6_10—C7_10—H7A_10	108.9
06 16—Ni8 16—Ni7 16	103.30 (8)	C8_10—C7_10—H7A_10	108.9
O4_16—Ni8_16—Ni7_16	46.09 (8)	C6_10—C7_10—H7B_10	108.9
O5_16—Ni8_16—Ni7_16	46.59 (8)	C8_10—C7_10—H7B_10	108.9
Ni6 16 ⁱⁱ —Ni8 16—Ni7 16	90.12 (4)	H7A 10—C7 10—H7B 10	107.7
Ni5_16—Ni8_16—Ni7_16	89.92 (4)	C9 10—C8 10—C7 10	110.1 (15)
Ni4 16—01 16—Ni3 16	87.10 (12)	C9_10—C8_10—H8A_10	109.6
Ni4 16—01 16—Ni2 16	152.37 (16)	C7 10—C8 10—H8A 10	109.6
Ni3 16—O1 16—Ni2 16	87.46 (13)	C9 10—C8 10—H8B 10	109.6
Ni4 16—01 16—Ni1 16	86.66 (12)	C7 10—C8 10—H8B 10	109.6
Ni3_16—01_16—Ni1_16	152.52 (16)	H8A 10—C8 10—H8B 10	108.2
Ni2_16—01_16—Ni1_16	85.78 (12)	C8 10—C9 10—C10 10	121.4 (19)
Ni4_16—01_16—H1_16	104.3 (11)	C8 10—C9 10—H9A 10	107.0
Ni3_16—O1_16—H1_16	104.6 (11)	C10 10—C9 10—H9A 10	107.0
Ni2_16—O1_16—H1_16	103.3 (11)	C8 10—C9 10—H9B 10	107.0
Ni1_16—O1_16—H1_16	102.9 (11)	C10 10—C9 10—H9B 10	107.0
Ni3 16 ⁱ —O2 16—Ni1 16	87.31 (12)	H9A 10—C9 10—H9B 10	106.7
$Ni3^{-}16^{i}$ $O2^{-}16$ $Ni2^{-}16^{i}$	87.38 (12)	C11 10—C10 10—C9 10	85.6 (15)
Ni1 ¹ 16—O2 ¹⁶ —Ni2 ¹⁶	152.39 (16)	C11_10—C10_10—H10A_10	114.4
$Ni3^{-}16^{i}$ $O2^{-}16$ $Ni4^{-}16$	152.62 (16)	C9 10—C10 10—H10A 10	114.4
Ni1 ¹ 6—02 ¹⁶ —Ni4 ¹⁶	86.49 (11)	C11 10—C10 10—H10B 10	114.4
$Ni2^{-}16^{i}$ $O2^{-}16$ $Ni4^{-}16$	85.87 (11)	C9 10—C10 10—H10B 10	114.4
Ni3 ^{16ⁱ} -O2 ¹⁶ -H2 ¹⁶	105.3 (11)	H10A 10—C10 10—H10B 10	111.5
Ni1 ¹⁶ —O2 ¹⁶ —H2 ¹⁶	105.3 (11)	C10 10-C11 10-H11A 10	109.5
Ni2 16 ⁱ -02 16-H2 16	102.3 (11)	C10_10_C11_10_H11B_10	109.5
Ni4_16—O2_16—H2_16	102.1 (11)	H11A 10—C11 10—H11B 10	109.5
$Ni2 16^{i} - O3 16 - Ni4 16$	87.51 (12)	C10 10-C11 10-H11C 10	109.5
$Ni2^{-}16^{i}$ O3^{-}16 Ni1^{-}16^{i}	86.98 (12)	H11A 10-C11 10-H11C 10	109.5
Ni4 16—O3 16—Ni1 16 ⁱ	152.43 (15)	H11B_10_C11_10_H11C_10	109.5
Ni2 16 ⁱ -03 16-Ni3 16	152.96 (15)	C5B 10—C4B 10—C2 10	112.5 (10)
Ni4 16—03 16—Ni3 16	86.37 (12)	C5B_10—C4B_10—H4BA_10	109.1
Ni1 ¹ 16 ⁱ —O3 ¹ 16—Ni3 ¹ 16	86.37 (12)	C2 10—C4B 10—H4BA 10	109.1
Ni2 ^{16ⁱ} -03 ¹⁶ -H3 ¹⁶	104.5 (11)	C5B 10—C4B 10—H4BB 10	109.1
Ni4 16-03 16-H3 16	104.1 (11)	C2 10—C4B 10—H4BB 10	109.1
Ni1 16 ⁱ —O3 16—H3 16	103.5 (11)	H4BA 10—C4B 10—H4BB 10	107.8
Ni3 ¹⁶ —O3 ¹⁶ —H3 ¹⁶	102.6 (11)	C4B 10—C5B 10—C6B 10	115.7 (14)
Ni7 16—O4 16—Ni8 16	87.27 (11)	C4B 10—C5B 10—H5BA 10	108.3
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

Ni7_16—O4_16—Ni6_16	87.15 (10)	C6B_10—C5B_10—H5BA_10	108.3
Ni8_16—O4_16—Ni6_16	152.34 (15)	C4B_10—C5B_10—H5BB_10	108.3
Ni7 16—O4 16—Ni5 16	152.92 (15)	C6B 10-C5B 10-H5BB 10	108.3
Ni8 16—O4 16—Ni5 16	86.33 (11)	H5BA 10—C5B 10—H5BB 10	107.4
Ni6 16—04 16—Ni5 16	86.42 (11)	C7B 10—C6B 10—C5B 10	113.2 (14)
Ni7 16—O4 16—H4 16	104.6 (11)	C7B 10—C6B 10—H6BA 10	108.9
Ni8_16—O4_16—H4_16	103.8 (11)	C5B_10—C6B_10—H6BA_10	108.9
Ni6 16—O4 16—H4 16	103.8 (11)	C7B 10—C6B 10—H6BB 10	108.9
Ni5_16—O4_16—H4_16	102.4 (11)	C5B_10—C6B_10—H6BB_10	108.9
Ni6 16 ⁱⁱ —O5 16—Ni7 16	152.08 (15)	H6BA 10—C6B 10—H6BB 10	107.7
Ni6 16 ⁱⁱ —O5 16—Ni8 16	86.24 (11)	C8B 10—C7B 10—C6B 10	113.6 (15)
Ni7_16—O5_16—Ni8_16	86.79 (11)	C8B_10—C7B_10—H7BA_10	108.8
Ni6 16 ⁱⁱ —O5 16—Ni5 16 ⁱⁱ	86.59 (12)	C6B 10—C7B 10—H7BA 10	108.8
Ni7_16—O5_16—Ni5_16 ⁱⁱ	86.99 (11)	C8B_10—C7B_10—H7BB_10	108.8
Ni8_16—O5_16—Ni5_16 ⁱⁱ	151.98 (15)	C6B_10—C7B_10—H7BB_10	108.8
Ni6_16 ⁱⁱ O5_16H5_16	104.1 (11)	H7BA_10—C7B_10—H7BB_10	107.7
Ni7_16—O5_16—H5_16	103.9 (11)	C7B_10—C8B_10—C9B_10	115.1 (16)
Ni8_16—O5_16—H5_16	104.7 (11)	C7B_10—C8B_10—H8BA_10	108.5
Ni5_16 ⁱⁱ _O5_16_H5_16	103.3 (11)	C9B_10—C8B_10—H8BA_10	108.5
Ni5_16—O6_16—Ni8_16	87.25 (11)	C7B_10—C8B_10—H8BB_10	108.5
Ni5_16—O6_16—Ni6_16 ⁱⁱ	153.36 (14)	C9B_10—C8B_10—H8BB_10	108.5
Ni8_16—O6_16—Ni6_16 ⁱⁱ	86.49 (11)	H8BA_10—C8B_10—H8BB_10	107.5
Ni5_16—O6_16—Ni7_16 ⁱⁱ	87.51 (11)	C8B_10-C9B_10-C10B_10	103.5 (16)
Ni8_16—O6_16—Ni7_16 ⁱⁱ	153.60 (14)	C8B_10—C9B_10—H9BA_10	111.1
Ni6_16 ⁱⁱ —O6_16—Ni7_16 ⁱⁱ	86.69 (11)	C10B_10—C9B_10—H9BA_10	111.1
Ni5_16—O6_16—H6_16	103.8 (10)	C8B_10—C9B_10—H9BB_10	111.1
Ni8_16—O6_16—H6_16	103.3 (11)	C10B_10—C9B_10—H9BB_10	111.1
Ni6_16 ⁱⁱ —O6_16—H6_16	102.8 (11)	H9BA_10—C9B_10—H9BB_10	109.0
Ni7_16 ⁱⁱ —O6_16—H6_16	103.1 (11)	C11B_10-C10B_10-C9B_10	89.3 (16)
C1_1-N1_1-N2_1	107.9 (4)	C11B_10—C10B_10—H10C_10	113.8
C1_1-N1_1-Ni1_16	135.5 (4)	C9B_10-C10B_10-H10C_10	113.8
N2_1-N1_1-Ni1_16	115.5 (3)	C11B_10—C10B_10—H10D_10	113.8
C3_1—N2_1—N1_1	107.1 (4)	C9B_10-C10B_10-H10D_10	113.8
C3_1-N2_1-Ni3_16 ⁱ	139.2 (4)	H10C_10—C10B_10—H10D_10	111.0
$N1_1-N2_1-Ni3_16^{i}$	112.1 (3)	C10B_10—C11B_10—H11D_10	109.5
N1_1-C1_1-C2_1	110.8 (5)	C10B_10—C11B_10—H11E_10	109.5
N1_1-C1_1-H1_1	124.6	H11D_10—C11B_10—H11E_10	109.5
C2_1C1_1H1_1	124.6	C10B_10-C11B_10-H11F_10	109.5
C3_1—C2_1—C1_1	102.9 (4)	H11D_10—C11B_10—H11F_10	109.5
C3_1—C2_1—C4_1	130.0 (5)	H11E_10—C11B_10—H11F_10	109.5
C1_1-C2_1-C4_1	127.0 (5)	C1_11—N1_11—N2_11	107.5 (4)
N2_1-C3_1-C2_1	111.3 (5)	C1_11—N1_11—Ni6_16	138.5 (3)
N2_1—C3_1—H3_1	124.4	N2_11—N1_11—Ni6_16	113.3 (3)
C2_1—C3_1—H3_1	124.4	C3_11—N2_11—N1_11	107.5 (4)
C5_1-C4_1-C2_1	113.8 (5)	C3_11—N2_11—Ni8_16 ⁱⁱ	138.6 (3)
C5_1-C4_1-H4A_1	108.8	N1_11—N2_11—Ni8_16 ⁱⁱ	113.8 (3)
C2_1-C4_1-H4A_1	108.8	N1_11—C1_11—C2_11	110.8 (4)
C5 1—C4 1—H4B 1	108.8	N1_11—C1_11—H1_11	124.6

C2_1—C4_1—H4B_1	108.8	C2_11—C1_11—H1_11	124.6
H4A_1—C4_1—H4B_1	107.7	C3_11—C2_11—C1_11	103.6 (4)
C4_1-C5_1-C6_1	116.7 (6)	C3_11—C2_11—C4_11	128.6 (4)
C4 1—C5 1—H5A 1	108.1	C1 11—C2 11—C4 11	127.5 (5)
C6 1—C5 1—H5A 1	108.1	N2 11—C3 11—C2 11	110.6 (4)
C4 1—C5 1—H5B 1	108.1	N2 11—C3 11—H3 11	124.7
C6_1—C5_1—H5B_1	108.1	C2_11—C3_11—H3_11	124.7
H5A_1—C5_1—H5B_1	107.3	C2_11—C4_11—C5_11	112.7 (4)
C5_1—C6_1—C7_1	112.7 (7)	C2_11—C4_11—H4A_11	109.0
C5_1—C6_1—H6A_1	109.0	C5_11—C4_11—H4A_11	109.0
C7_1—C6_1—H6A_1	109.0	C2_11—C4_11—H4B_11	109.0
C5_1—C6_1—H6B_1	109.0	C5_11—C4_11—H4B_11	109.0
C7_1—C6_1—H6B_1	109.0	H4A_11—C4_11—H4B_11	107.8
H6A_1—C6_1—H6B_1	107.8	C6_11—C5_11—C4_11	113.9 (4)
C8_1—C7_1—C6_1	114.9 (8)	C6_11—C5_11—H5A_11	108.8
C8_1—C7_1—H7A_1	108.5	C4_11—C5_11—H5A_11	108.8
C6_1-C7_1-H7A_1	108.5	C6_11—C5_11—H5B_11	108.8
C8_1—C7_1—H7B_1	108.5	C4_11—C5_11—H5B_11	108.8
C6_1—C7_1—H7B_1	108.5	H5A_11—C5_11—H5B_11	107.7
H7A_1—C7_1—H7B_1	107.5	C5_11—C6_11—C7_11	113.3 (5)
C7_1—C8_1—C9_1	113.8 (9)	C5_11—C6_11—H6A_11	108.9
C7_1—C8_1—H8A_1	108.8	C7_11—C6_11—H6A_11	108.9
C9_1—C8_1—H8A_1	108.8	C5_11—C6_11—H6B_11	108.9
C7_1—C8_1—H8B_1	108.8	C7_11—C6_11—H6B_11	108.9
C9_1—C8_1—H8B_1	108.8	H6A_11—C6_11—H6B_11	107.7
H8A_1—C8_1—H8B_1	107.7	C8_11—C7_11—C6_11	114.0 (5)
C8_1—C9_1—C10_1	113.6 (10)	C8_11—C7_11—H7A_11	108.7
C8_1—C9_1—H9A_1	108.8	C6_11—C7_11—H7A_11	108.7
C10_1—C9_1—H9A_1	108.8	C8_11—C7_11—H7B_11	108.7
C8_1—C9_1—H9B_1	108.8	C6_11—C7_11—H7B_11	108.7
C10_1—C9_1—H9B_1	108.8	H7A_11—C7_11—H7B_11	107.6
H9A_1—C9_1—H9B_1	107.7	C7_11—C8_11—C9_11	115.1 (5)
C11_1—C10_1—C9_1	111.0 (12)	C7_11—C8_11—H8A_11	108.5
C11_1-C10_1-H10A_1	109.4	C9_11—C8_11—H8A_11	108.5
C9_1-C10_1-H10A_1	109.4	C7_11—C8_11—H8B_11	108.5
C11_1-C10_1-H10B_1	109.4	C9_11—C8_11—H8B_11	108.5
C9_1-C10_1-H10B_1	109.4	H8A_11—C8_11—H8B_11	107.5
H10A_1-C10_1-H10B_1	108.0	C10_11—C9_11—C8_11	113.6 (6)
C10_1-C11_1-H11A_1	109.5	C10_11—C9_11—H9A_11	108.8
C10_1-C11_1-H11B_1	109.5	C8_11—C9_11—H9A_11	108.8
H11A_1-C11_1-H11B_1	109.5	C10_11—C9_11—H9B_11	108.8
C10_1-C11_1-H11C_1	109.5	C8_11—C9_11—H9B_11	108.8
H11A_1-C11_1-H11C_1	109.5	H9A_11—C9_11—H9B_11	107.7
H11B_1-C11_1-H11C_1	109.5	C11_11—C10_11—C9_11	113.3 (7)
C1_2—N1_2—N2_2	107.9 (4)	C11_11—C10_11—H10A_11	108.9
C1_2-N1_2-Ni2_16	138.5 (4)	C9_11-C10_11-H10A_11	108.9
N2_2-N1_2-Ni2_16	113.6 (3)	C11_11—C10_11—H10B_11	108.9
C3_2-N2_2-N1_2	107.1 (5)	C9_11—C10_11—H10B_11	108.9

139.5 (4)	H10A_11—C10_11—H10B_11	107.7
113.3 (3)	C10_11—C11_11—H11A_11	109.5
110.9 (6)	C10_11—C11_11—H11B_11	109.5
124.6	H11A 11—C11 11—H11B 11	109.5
124.6	C10 11—C11 11—H11C 11	109.5
103.7 (5)	H11A 11—C11 11—H11C 11	109.5
130.2 (7)	H11B 11—C11 11—H11C 11	109.5
126.1 (7)	C1 12—N1 12—N2 12	106.7 (3)
110.5 (6)	C1 12—N1 12—Ni7 16	139.2 (3)
124.8	N2 12—N1 12—Ni7 16	113.1 (3)
124.8	C3 12—N2 12—N1 12	107.7 (4)
118.3 (6)	C3_12_N2_12_Ni5_16 ⁱⁱ	137.3 (3)
107.7	N1 12—N2 12—Ni5 16 ⁱⁱ	114.6 (3)
107.7	N1_12_C1_12_C2_12	111.9 (4)
107.7	N1_12_C1_12_H1_12	124.1
107.7	C2_12_C1_12_H1_12	124.1
107.1	C1_12—C2_12—C3_12	102.4 (4)
114.8 (6)	C1_12_C2_12_C4_12	129.7 (4)
108.6	C3_12_C2_12_C4_12	127.7 (4)
108.6	N2_12_C3_12_C2_12	111.3 (4)
108.6	N2_12_C3_12_H3_12	124.4
108.6	C2_12_C3_12_H3_12	124.4
107.5	C2_12_C4_12_C5_12	113.2 (4)
120.4 (6)	C2_12—C4_12—H4A_12	108.9
107.2	C5_12—C4_12—H4A_12	108.9
107.2	C2_12—C4_12—H4B_12	108.9
107.2	C5_12—C4_12—H4B_12	108.9
107.2	H4A_12—C4_12—H4B_12	107.7
106.9	C4_12—C5_12—C6_12	113.1 (4)
117.2 (6)	C4_12—C5_12—H5A_12	108.9
108.0	C6_12—C5_12—H5A_12	108.9
108.0	C4_12—C5_12—H5B_12	108.9
108.0	C6_12—C5_12—H5B_12	108.9
108.0	H5A_12-C5_12-H5B_12	107.8
107.3	C7_12—C6_12—C5_12	113.3 (4)
120.3 (6)	C7_12—C6_12—H6A_12	108.9
107.2	C5_12—C6_12—H6A_12	108.9
107.2	C7_12—C6_12—H6B_12	108.9
107.2	C5_12—C6_12—H6B_12	108.9
107.2	H6A_12-C6_12-H6B_12	107.7
106.9	C8_12—C7_12—C6_12	112.7 (4)
117.8 (6)	C8_12—C7_12—H7A_12	109.0
107.9	C6_12—C7_12—H7A_12	109.0
107.9	C8_12—C7_12—H7B_12	109.0
107.9	C6_12—C7_12—H7B_12	109.0
107.9	H7A_12—C7_12—H7B_12	107.8
107.2	C7_12—C8_12—C9_12	115.2 (4)
120.2 (7)	C7_12—C8_12—H8A_12	108.5
	139.5 (4) 113.3 (3) 110.9 (6) 124.6 124.6 124.6 103.7 (5) 130.2 (7) 126.1 (7) 110.5 (6) 124.8 124.8 118.3 (6) 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.5 120.4 (6) 108.6 108.6 108.6 108.6 108.6 108.6 107.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$

C11_2-C10_2-H10A_2	107.3	C9_12—C8_12—H8A_12	108.5
C9_2_C10_2_H10A_2	107.3	C7_12_C8_12_H8B_12	108.5
C11 2—C10 2—H10B 2	107.3	C9 12—C8 12—H8B 12	108.5
C9 2—C10 2—H10B 2	107.3	H8A 12—C8 12—H8B 12	107.5
H10A 2-C10 2-H10B 2	106.9	C10 12—C9 12—C8 12	112.9 (4)
C10 2—C11 2—H11A 2	109.5	C10 12—C9 12—H9A 12	109.0
C10 ² —C11 ² —H11B ²	109.5	C8 12—C9 12—H9A 12	109.0
H11A 2—C11 2—H11B 2	109.5	C10 12—C9 12—H9B 12	109.0
C10 2—C11 2—H11C 2	109.5	C8 12—C9 12—H9B 12	109.0
H11A 2—C11 2—H11C 2	109.5	H9A 12—C9 12—H9B 12	107.8
H11B 2—C11 2—H11C 2	109.5	C11 12—C10 12—C9 12	115.4 (5)
C1_3_N1_3_N2_3	107.3 (4)	C11_12_C10_12_H10A_12	108.4
C1_3—N1_3—Ni3_16	138.7 (3)	C9_12—C10_12—H10A_12	108.4
N2_3—N1_3—Ni3_16	113.3 (3)	C11_12—C10_12—H10B_12	108.4
C3_3_N2_3_N1_3	108.0 (4)	C9_12—C10_12—H10B_12	108.4
C3_3—N2_3—Ni2_16	136.7 (3)	H10A_12—C10_12—H10B_12	107.5
N1_3—N2_3—Ni2_16	114.8 (3)	C10_12—C11_12—H11A_12	109.5
N1_3-C1_3-C2_3	110.6 (4)	C10_12—C11_12—H11B_12	109.5
N1_3_C1_3_H1_3	124.7	H11A_12—C11_12—H11B_12	109.5
C2_3—C1_3—H1_3	124.7	C10_12—C11_12—H11C_12	109.5
C1_3—C2_3—C3_3	103.4 (4)	H11A_12—C11_12—H11C_12	109.5
C1_3—C2_3—C4B_3	127.4 (5)	H11B_12—C11_12—H11C_12	109.5
C3_3—C2_3—C4B_3	129.1 (5)	C5_13—N1_13—C9_13	112.2 (4)
C1_3—C2_3—C4_3	127.4 (5)	C5_13—N1_13—C1_13	108.4 (4)
C3_3—C2_3—C4_3	129.1 (5)	C9_13—N1_13—C1_13	107.4 (4)
N2_3—C3_3—C2_3	110.6 (5)	C5_13—N1_13—C13_13	109.1 (4)
N2_3—C3_3—H3_3	124.7	C9_13—N1_13—C13_13	108.1 (4)
C2_3—C3_3—H3_3	124.7	C1_13—N1_13—C13_13	111.6 (4)
C5_3—C4_3—C2_3	115.5 (6)	C2_13—C1_13—N1_13	116.2 (5)
C5_3—C4_3—H4A_3	108.4	C2_13—C1_13—H1A_13	108.2
C2_3—C4_3—H4A_3	108.4	N1_13—C1_13—H1A_13	108.2
C5_3—C4_3—H4B_3	108.4	C2_13—C1_13—H1B_13	108.2
C2_3—C4_3—H4B_3	108.4	N1_13—C1_13—H1B_13	108.2
H4A_3—C4_3—H4B_3	107.5	H1A_13—C1_13—H1B_13	107.4
C4_3—C5_3—C6_3	115.3 (8)	C1_13—C2_13—C3_13	113.0 (5)
C4_3—C5_3—H5A_3	108.5	C1_13—C2_13—H2A_13	109.0
C6_3—C5_3—H5A_3	108.5	C3_13—C2_13—H2A_13	109.0
C4_3—C5_3—H5B_3	108.5	C1_13—C2_13—H2B_13	109.0
C6_3—C5_3—H5B_3	108.5	C3_13—C2_13—H2B_13	109.0
H5A_3—C5_3—H5B_3	107.5	H2A_13—C2_13—H2B_13	107.8
C7_3—C6_3—C5_3	119.6 (10)	C4_13—C3_13—C2_13	116.5 (7)
C7_3—C6_3—H6A_3	107.4	C4_13—C3_13—H3A_13	108.2
C5_3—C6_3—H6A_3	107.4	C2_13—C3_13—H3A_13	108.2
C7_3—C6_3—H6B_3	107.4	C4_13—C3_13—H3B_13	108.2
C5_3—C6_3—H6B_3	107.4	C2_13—C3_13—H3B_13	108.2
H6A_3-C6_3-H6B_3	107.0	H3A_13—C3_13—H3B_13	107.3
C6_3C7_3C8_3	120.0 (10)	C3_13—C4_13—H4A_13	109.5
C6_3—C7_3—H7A_3	107.3	C3_13—C4_13—H4B_13	109.5

C8_3—C7_3—H7A_3	107.3	H4A_13—C4_13—H4B_13	109.5
C6_3—C7_3—H7B_3	107.3	C3_13—C4_13—H4C_13	109.5
C8_3—C7_3—H7B_3	107.3	H4A_13—C4_13—H4C_13	109.5
H7A_3—C7_3—H7B_3	106.9	H4B_13—C4_13—H4C_13	109.5
C7_3—C8_3—C9_3	114.3 (11)	N1_13—C5_13—C6_13	115.1 (5)
C7 3—C8 3—H8A 3	108.7	N1 13—C5 13—H5A 13	108.5
C9_3—C8_3—H8A_3	108.7	C6_13—C5_13—H5A_13	108.5
C7 3—C8 3—H8B 3	108.7	N1 13—C5 13—H5B 13	108.5
C9_3—C8_3—H8B_3	108.7	C6_13—C5_13—H5B_13	108.5
H8A_3—C8_3—H8B_3	107.6	H5A_13—C5_13—H5B_13	107.5
C10_3_C9_3_C8_3	109.9 (11)	C7_13—C6_13—C5_13	111.3 (6)
C10_3_C9_3_H9A_3	109.7	C7_13—C6_13—H6A_13	109.4
C8_3—C9_3—H9A_3	109.7	C5_13—C6_13—H6A_13	109.4
C10_3—C9_3—H9B_3	109.7	C7_13—C6_13—H6B_13	109.4
C8_3—C9_3—H9B_3	109.7	C5_13—C6_13—H6B_13	109.4
H9A_3—C9_3—H9B_3	108.2	H6A_13—C6_13—H6B_13	108.0
C11_3—C10_3—C9_3	113.1 (13)	C6_13—C7_13—C8_13	112.8 (6)
C11_3—C10_3—H10A_3	109.0	C6_13—C7_13—H7A_13	109.0
C9_3-C10_3-H10A_3	109.0	C8_13—C7_13—H7A_13	109.0
C11_3—C10_3—H10B_3	109.0	C6_13—C7_13—H7B_13	109.0
C9_3—C10_3—H10B_3	109.0	C8_13—C7_13—H7B_13	109.0
H10A_3-C10_3-H10B_3	107.8	H7A_13—C7_13—H7B_13	107.8
C10_3-C11_3-H11A_3	109.5	C7_13—C8_13—H8A_13	109.5
C10_3—C11_3—H11B_3	109.5	C7_13—C8_13—H8B_13	109.5
H11A_3-C11_3-H11B_3	109.5	H8A_13—C8_13—H8B_13	109.5
C10_3—C11_3—H11C_3	109.5	C7_13—C8_13—H8C_13	109.5
H11A_3-C11_3-H11C_3	109.5	H8A_13-C8_13-H8C_13	109.5
H11B_3—C11_3—H11C_3	109.5	H8B_13—C8_13—H8C_13	109.5
C5B_3—C4B_3—C2_3	117.9 (11)	C10_13—C9_13—N1_13	116.9 (4)
C5B_3—C4B_3—H4BA_3	107.8	C10_13—C9_13—H9A_13	108.1
C2_3—C4B_3—H4BA_3	107.8	N1_13—C9_13—H9A_13	108.1
C5B_3—C4B_3—H4BB_3	107.8	C10_13—C9_13—H9B_13	108.1
C2_3—C4B_3—H4BB_3	107.8	N1_13—C9_13—H9B_13	108.1
H4BA_3—C4B_3—H4BB_3	107.2	H9A_13—C9_13—H9B_13	107.3
C4B_3—C5B_3—C6B_3	126.0 (18)	C11_13—C10_13—C9_13	109.4 (5)
C4B_3—C5B_3—H5BA_3	105.8	C11_13—C10_13—H10A_13	109.8
C6B_3C5B_3H5BA_3	105.8	C9_13—C10_13—H10A_13	109.8
C4B_3—C5B_3—H5BB_3	105.8	C11_13—C10_13—H10B_13	109.8
C6B_3—C5B_3—H5BB_3	105.8	C9_13—C10_13—H10B_13	109.8
H5BA_3—C5B_3—H5BB_3	106.2	H10A_13—C10_13—H10B_13	108.2
C7B_3—C6B_3—C5B_3	128 (2)	C12_13—C11_13—C10_13	117.9 (6)
C7B_3—C6B_3—H6BA_3	105.2	C12_13—C11_13—H11A_13	107.8
C5B_3—C6B_3—H6BA_3	105.2	C10_13—C11_13—H11A_13	107.8
C7B_3—C6B_3—H6BB_3	105.2	C12_13—C11_13—H11B_13	107.8
C5B_3—C6B_3—H6BB_3	105.2	C10_13—C11_13—H11B_13	107.8
H6BA_3-C6B_3-H6BB_3	105.9	H11A_13—C11_13—H11B_13	107.2
C6B_3—C7B_3—C8B_3	117 (2)	C11_13—C12_13—H12A_13	109.5
C6B_3—C7B_3—H7BA_3	108.0	C11_13—C12_13—H12B_13	109.5

C8B_3—C7B_3—H7BA_3	108.0	H12A_13—C12_13—H12B_13	109.5
C6B_3—C7B_3—H7BB_3	108.0	C11_13—C12_13—H12C_13	109.5
C8B 3—C7B 3—H7BB 3	108.0	H12A 13-C12 13-H12C 13	109.5
H7BA 3—C7B 3—H7BB 3	107.2	H12B 13—C12 13—H12C 13	109.5
C7B 3—C8B 3—C9B 3	111.4 (19)	C14 13—C13 13—N1 13	117.3 (5)
C7B 3—C8B 3—H8BA 3	109.3	C14 13—C13 13—H13A 13	108.0
C9B 3—C8B 3—H8BA 3	109.3	N1 13—C13 13—H13A 13	108.0
C7B 3—C8B 3—H8BB 3	109.3	C14 13—C13 13—H13B 13	108.0
C9B 3—C8B 3—H8BB 3	109.3	N1 13—C13 13—H13B 13	108.0
H8BA 3—C8B 3—H8BB 3	108.0	H13A 13—C13 13—H13B 13	107.2
C10B 3—C9B 3—C8B 3	117 (2)	C15 13—C14 13—C13 13	114.0 (5)
C10B_3—C9B_3—H9BA_3	108.0	C15 ¹³ —C14 ¹³ —H14A 13	108.7
C8B 3—C9B 3—H9BA 3	108.0	C13 13—C14 13—H14A 13	108.7
C10B 3—C9B 3—H9BB 3	108.0	C15 ¹³ —C14 ¹³ —H14B ¹³	108.7
C8B 3—C9B 3—H9BB 3	108.0	C13 ¹³ —C14 ¹³ —H14B ¹³	108.7
H9BA 3—C9B 3—H9BB 3	107.2	H14A 13—C14 13—H14B 13	107.6
C11B 3—C10B 3—C9B 3	113 (2)	C14 13—C15 13—C16 13	115.2 (5)
C11B 3—C10B 3—H10C 3	109.1	C14 13—C15 13—H15A 13	108.5
C9B 3—C10B 3—H10C 3	109.1	C16_13—C15_13—H15A_13	108.5
C11B 3—C10B 3—H10D 3	109.1	C14 13—C15 13—H15B 13	108.5
C9B $\overline{3}$ —C10B $\overline{3}$ —H10D $\overline{3}$	109.1	C16_13—C15_13—H15B_13	108.5
H10C 3—C10B 3—H10D 3	107.8	H15A 13—C15 13—H15B 13	107.5
C10B_3—C11B_3—H11D_3	109.5	C15_13—C16_13—H16A_13	109.5
C10B_3—C11B_3—H11E_3	109.5	C15_13—C16_13—H16B_13	109.5
H11D 3—C11B 3—H11E 3	109.5	H16A 13—C16 13—H16B 13	109.5
C10B_3—C11B_3—H11F_3	109.5	C15_13—C16_13—H16C_13	109.5
H11D_3—C11B_3—H11F_3	109.5	H16A_13-C16_13-H16C_13	109.5
H11E_3—C11B_3—H11F_3	109.5	H16B_13—C16_13—H16C_13	109.5
C1_4—N1_4—N2_4	107.4 (4)	C5_14—N1_14—C13_14	109.5 (8)
C1_4—N1_4—Ni3_16	136.4 (4)	C5_14—N1_14—C9_14	108.6 (10)
N2_4-N1_4-Ni3_16	113.2 (3)	C13_14—N1_14—C9_14	110.5 (9)
C3_4—N2_4—N1_4	107.7 (4)	C5_14—N1_14—C1_14	111.7 (11)
C3_4—N2_4—Ni4_16	138.2 (4)	C13_14—N1_14—C1_14	105.7 (8)
N1_4-N2_4-Ni4_16	113.5 (3)	C9_14—N1_14—C1_14	110.8 (11)
N1_4-C1_4-C2_4	111.0 (5)	C2_14—C1_14—N1_14	113.4 (10)
N1_4-C1_4-H1_4	124.5	C2_14—C1_14—H1A_14	108.9
C2_4C1_4H1_4	124.5	N1_14—C1_14—H1A_14	108.9
C1_4C2_4C3_4	103.2 (4)	C2_14—C1_14—H1B_14	108.9
C1_4C2_4C4B_4	129.3 (6)	N1_14—C1_14—H1B_14	108.9
C3_4C2_4C4B_4	127.4 (6)	H1A_14—C1_14—H1B_14	107.7
C1_4C2_4C4_4	129.3 (6)	C3_14—C2_14—C1_14	114.0 (10)
C3_4—C2_4—C4_4	127.4 (6)	C3_14—C2_14—H2A_14	108.7
N2_4-C3_4-C2_4	110.8 (5)	C1_14—C2_14—H2A_14	108.7
N2_4—C3_4—H3_4	124.6	C3_14—C2_14—H2B_14	108.7
C2_4—C3_4—H3_4	124.6	C1_14—C2_14—H2B_14	108.7
C2_4C4_4C5_4	111.5 (13)	H2A_14—C2_14—H2B_14	107.6
C2_4—C4_4—H4A_4	109.3	C4_14—C3_14—C2_14	113.1 (10)
C5_4—C4_4—H4A_4	109.3	C4_14—C3_14—H3A_14	109.0

C2 4—C4 4—H4B 4	109.3	C2 14—C3 14—H3A 14	109.0
C5 4—C4 4—H4B 4	109.3	C4_14—C3_14—H3B_14	109.0
H4A 4—C4 4—H4B 4	108.0	C2 14—C3 14—H3B 14	109.0
C6 4-C5 4-C4 4	121.3 (14)	H3A 14—C3 14—H3B 14	107.8
C6 4-C5 4-H5A 4	107.0	C3 14—C4 14—H4A 14	109.5
C4 4—C5 4—H5A 4	107.0	C3 ¹⁴ —C4 ¹⁴ —H4B ¹⁴	109.5
C6 4-C5 4-H5B 4	107.0	H4A 14—C4 14—H4B 14	109.5
C4 4—C5 4—H5B 4	107.0	C3 14—C4 14—H4C 14	109.5
H5A 4—C5 4—H5B 4	106.7	H4A 14—C4 14—H4C 14	109.5
C5 4—C6 4—C7 4	114.1 (15)	H4B ¹⁴ —C4 ¹⁴ —H4C ¹⁴	109.5
C5 4—C6 4—H6A 4	108.7	C6 14—C5 14—N1 14	119.1 (9)
C7 ⁴ —C6 ⁴ —H6A ⁴	108.7	C6 14—C5 14—H5A 14	107.6
C5 4—C6 4—H6B 4	108.7	N1 14—C5 14—H5A 14	107.6
C7_4_C6_4_H6B_4	108.7	C6 ¹⁴ —C5 ¹⁴ —H5B ¹⁴	107.6
H6A 4—C6 4—H6B 4	107.6	N1 14—C5 14—H5B 14	107.6
C8 4-C7 4-C6 4	116.2 (12)	H5A 14—C5 14—H5B 14	107.0
C8 4—C7 4—H7A 4	108.2	C5 14—C6 14—C7 14	117.8 (10)
C6_4_C7_4_H7A_4	108.2	C5_14—C6_14—H6A_14	107.9
C8_4_C7_4_H7B_4	108.2	C7_14—C6_14—H6A_14	107.9
C6_4_C7_4_H7B_4	108.2	C5_14—C6_14—H6B_14	107.9
H7A 4—C7 4—H7B 4	107.4	C7_14—C6_14—H6B_14	107.9
C9 4—C8 4—C7 4	113.0 (12)	H6A 14—C6 14—H6B 14	107.2
C9 4—C8 4—H8A 4	109.0	C6 14—C7 14—C8 14	113.7 (11)
C7 4—C8 4—H8A 4	109.0	C6 14—C7 14—H7A 14	108.8
C9 4—C8 4—H8B 4	109.0	C8 14—C7 14—H7A 14	108.8
C7 4—C8 4—H8B 4	109.0	C6_14—C7_14—H7B_14	108.8
H8A 4—C8 4—H8B 4	107.8	C8 14—C7 14—H7B 14	108.8
C8 4-C9 4-C10 4	112.4 (13)	H7A 14—C7 14—H7B 14	107.7
C8 4—C9 4—H9A 4	109.1	C7 14—C8 14—H8A 14	109.5
C10 4—C9 4—H9Ā 4	109.1	C7_14—C8_14—H8B_14	109.5
C8 4-C9 4-H9B 4	109.1	H8A 14—C8 14—H8B 14	109.5
C10 4—C9 4—H9B 4	109.1	C7 14—C8 14—H8C 14	109.5
H9A 4—C9 4—H9B 4	107.9	H8A 14—C8 14—H8C 14	109.5
C11 4—C10 4—C9 4	113.2 (16)	H8B ¹⁴ —C8 ¹⁴ —H8C ¹⁴	109.5
C11 ⁴ —C10 ⁴ —H10A 4	108.9	C10 14—C9 14—N1 14	118.3 (9)
C9 4—C10 4—H10A 4	108.9	C10_14—C9_14—H9A_14	107.7
C11 4—C10 4—H10B 4	108.9	N1 14—C9 14—H9A 14	107.7
C9 4—C10 4—H10B 4	108.9	C10 14—C9 14—H9B 14	107.7
H10A 4—C10 4—H10B 4	107.8	N1 14—C9 14—H9B 14	107.7
C10 4—C11 4—H11A 4	109.5	H9A 14—C9 14—H9B 14	107.1
C10 4—C11 4—H11B 4	109.5	C9 14—C10 14—C11 14	119.2 (10)
H11A 4—C11 4—H11B 4	109.5	C9 ¹⁴ —C10 ¹⁴ —H10A ¹⁴	107.5
C10 4—C11 4—H11C 4	109.5	C11 14—C10 14—H10A 14	107.5
H11A 4—C11 4—H11C 4	109.5	C9 14—C10 14—H10B 14	107.5
H11B 4—C11 4—H11C 4	109.5	C11 14—C10 14—H10B 14	107.5
C2 4—C4B 4—C5B 4	116.4 (15)	H10A 14—C10 14—H10B 14	107.0
C2 4—C4B 4—H4BA 4	108.2	C10 14—C11 14—C12 14	112.6 (12)
C5B 4—C4B 4—H4BA 4	108.2	C10 14—C11 14—H11A 14	109.1

C2 4—C4B 4—H4BB 4	108.2	C12 14—C11 14—H11A 14	109.1
C5B 4—C4B 4—H4BB 4	108.2	C10 ¹⁴ —C11 ¹⁴ —H11B ¹⁴	109.1
H4BA 4—C4B 4—H4BB 4	107.3	C12 ¹⁴ —C11 ¹⁴ —H11B ¹⁴	109.1
C4B 4—C5B 4—C6B 4	106.4 (12)	H11A 14—C11 14—H11B 14	107.8
C4B 4—C5B 4—H5BA 4	110.5	C11 14—C12 14—H12A 14	109.5
C6B 4—C5B 4—H5BA 4	110.5	C11 ¹⁴ —C12 ¹⁴ —H12B ¹⁴	109.5
C4B 4—C5B 4—H5BB 4	110.5	H12A 14—C12 14—H12B 14	109.5
C6B 4—C5B 4—H5BB 4	110.5	C11 14—C12 14—H12C 14	109.5
H5BA 4—C5B 4—H5BB 4	108.6	H12A 14—C12 14—H12C 14	109.5
C7B 4—C6B 4—C5B 4	113.0 (12)	H12B 14—C12 14—H12C 14	109.5
C7B 4—C6B 4—H6BA 4	109.0	N1 14—C13 14—C14 14	115.5 (11)
C5B_4—C6B_4—H6BA_4	109.0	N1_14—C13_14—H13A_14	108.4
C7B 4—C6B 4—H6BB 4	109.0	C14 14—C13 14—H13A 14	108.4
C5B_4—C6B_4—H6BB_4	109.0	N1_14—C13_14—H13B_14	108.4
H6BA 4—C6B 4—H6BB 4	107.8	C14 14—C13 14—H13B 14	108.4
C6B_4—C7B_4—C8B_4	111.9 (12)	H13A_14—C13_14—H13B_14	107.5
C6B 4—C7B 4—H7BA 4	109.2	C15 14—C14 14—C13 14	110.7 (12)
C8B_4—C7B_4—H7BA_4	109.2	C15 ¹⁴ —C14 ¹⁴ —H14A ¹⁴	109.5
C6B_4—C7B_4—H7BB_4	109.2	C13 ¹⁴ —C14 ¹⁴ —H14A ¹⁴	109.5
C8B_4—C7B_4—H7BB_4	109.2	C15 ¹⁴ —C14 ¹⁴ —H14B ¹⁴	109.5
H7BA 4—C7B 4—H7BB 4	107.9	C13 ¹⁴ —C14 ¹⁴ —H14B ¹⁴	109.5
C7B 4—C8B 4—C9B 4	110.7 (12)	H14A 14—C14 14—H14B 14	108.1
C7B 4—C8B 4—H8BA 4	109.5	C14 14—C15 14—C16 14	112.0 (11)
C9B 4—C8B 4—H8BA 4	109.5	C14 14—C15 14—H15A 14	109.2
C7B 4—C8B 4—H8BB 4	109.5	C16 ¹⁴ —C15 ¹⁴ —H15A ¹⁴	109.2
C9B_4—C8B_4—H8BB_4	109.5	C14_14—C15_14—H15B_14	109.2
H8BA_4—C8B_4—H8BB_4	108.1	C16_14—C15_14—H15B_14	109.2
C10B_4—C9B_4—C8B_4	111.9 (14)	H15A_14—C15_14—H15B_14	107.9
C10B_4C9B_4H9BA_4	109.2	C15_14—C16_14—H16A_14	109.5
C8B_4—C9B_4—H9BA_4	109.2	C15_14—C16_14—H16B_14	109.5
C10B_4C9B_4H9BB_4	109.2	H16A_14—C16_14—H16B_14	109.5
C8B 4—C9B 4—H9BB 4	109.2	C15 14—C16 14—H16C 14	109.5
H9BA_4—C9B_4—H9BB_4	107.9	H16A_14—C16_14—H16C_14	109.5
C11B_4_C10B_4_C9B_4	112.2 (16)	H16B_14—C16_14—H16C_14	109.5
C11B_4—C10B_4—H10C_4	109.2	C5_15_N1_15_C13_15	109.5 (18)
C9B_4—C10B_4—H10C_4	109.2	C5_15—N1_15—C1_15	114.2 (18)
C11B_4—C10B_4—H10D_4	109.2	C13_15—N1_15—C1_15	103.8 (16)
C9B_4—C10B_4—H10D_4	109.2	C5_15—N1_15—C9_15	108.7 (17)
H10C_4-C10B_4-H10D_4	107.9	C13_15—N1_15—C9_15	111.2 (16)
C10B_4_C11B_4_H11D_4	109.5	C1_15—N1_15—C9_15	109.4 (18)
C10B 4—C11B 4—H11E 4	109.5	C2 15—C1 15—N1 15	113.9 (17)
H11D_4—C11B_4—H11E_4	109.5	C2_15—C1_15—H1A_15	108.8
C10B 4—C11B 4—H11F 4	109.5	N1 15—C1 15—H1A 15	108.8
H11D 4—C11B 4—H11F 4	109.5	C2 ¹⁵ —C1 ¹⁵ —H1B ¹⁵	108.8
H11E_4C11B_4H11F_4	109.5	N1_15—C1_15—H1B_15	108.8
C1_5_N1_5_N2_5	107.3 (4)	H1A_15—C1_15—H1B_15	107.7
C1_5—N1_5—Ni4_16	137.8 (4)	C3_15—C2_15—C1_15	113 (2)
N2 5—N1 5—Ni4 16	113.9 (3)	C3 15—C2 15—H2A 15	108.9

138.5 (4)	C3_15—C2_15—H2B_15	108.9
		100.9
113.3 (3)	C1 15—C2 15—H2B 15	108.9
111.2 (5)	H2A 15—C2 15—H2B 15	107.7
124.4	C2 15—C3 15—C4 15	117 (2)
124.4	C2 15—C3 15—H3A 15	108.0
103.4 (5)	C4_15—C3_15—H3A_15	108.0
129.1 (6)	C2 ¹⁵ —C3 ¹⁵ —H3B ¹⁵	108.0
127.4 (6)	C4_15—C3_15—H3B_15	108.0
129.1 (6)	H3A 15—C3 15—H3B 15	107.3
127.4 (6)	C3 15—C4 15—H4A 15	109.5
110.0 (5)	C3_15—C4_15—H4B_15	109.5
125.0	H4A_15—C4_15—H4B_15	109.5
125.0	C3_15—C4_15—H4C_15	109.5
114.3 (9)	H4A_15—C4_15—H4C_15	109.5
108.7	H4B_15—C4_15—H4C_15	109.5
108.7	N1_15—C5_15—C6_15	115.8 (18)
108.7	N1_15—C5_15—H5A_15	108.3
108.7	C6_15—C5_15—H5A_15	108.3
107.6	N1_15—C5_15—H5B_15	108.3
115.1 (13)	C6_15—C5_15—H5B_15	108.3
108.5	H5A_15—C5_15—H5B_15	107.4
108.5	C7_15—C6_15—C5_15	112 (2)
108.5	C7_15—C6_15—H6A_15	109.1
108.5	C5_15—C6_15—H6A_15	109.1
107.5	C7_15—C6_15—H6B_15	109.1
108.7 (14)	C5_15—C6_15—H6B_15	109.1
109.9	H6A_15-C6_15-H6B_15	107.9
109.9	C8_15-C7_15-C6_15	115 (2)
109.9	C8_15—C7_15—H7A_15	108.4
109.9	C6_15—C7_15—H7A_15	108.4
108.3	C8_15—C7_15—H7B_15	108.4
117.0 (17)	C6_15—C7_15—H7B_15	108.4
108.1	H7A_15—C7_15—H7B_15	107.5
108.1	C7_15—C8_15—H8A_15	109.5
108.1	C7_15—C8_15—H8B_15	109.5
108.1	H8A_15—C8_15—H8B_15	109.5
107.3	C7_15—C8_15—H8C_15	109.5
125.7 (19)	H8A_15—C8_15—H8C_15	109.5
105.9	H8B_15-C8_15-H8C_15	109.5
105.9	C10_15—C9_15—N1_15	123 (2)
105.9	C10_15—C9_15—H9A_15	106.7
105.9	N1_15—C9_15—H9A_15	106.7
106.2	C10_15—C9_15—H9B_15	106.7
113.3 (18)	N1_15—C9_15—H9B_15	106.7
108.9	H9A_15—C9_15—H9B_15	106.6
108.9	C9_15—C10_15—C11_15	120 (2)
108.9	C9_15—C10_15—H10A_15	107.3
	111.2 (5) 124.4 124.4 $103.4 (5)$ $129.1 (6)$ $127.4 (6)$ $129.1 (6)$ $127.4 (6)$ $110.0 (5)$ 125.0 125.0 125.0 125.0 $14.3 (9)$ 108.7 108.7 108.7 108.7 108.7 108.7 108.5 105.9 108.9 108.9 108.9	111.2 (5) $H2A_15-C2_15-H2B_15$ 124.4 $C2_15-C3_15-H2B_15$ 124.4 $C2_15-C3_15-H3A_15$ 103.4 (5) $C4_15-C3_15-H3B_15$ 129.1 (6) $C2_15-C3_15-H3B_15$ 127.4 (6) $C4_15-C4_15-H4A_15$ 120.1 (6) $H3A_15-C4_15-H4B_15$ 127.4 (6) $C3_15-C4_15-H4B_15$ 127.4 (6) $C3_15-C4_15-H4B_15$ 125.0 $H4A_15-C4_15-H4C_15$ 114.3 (9) $H4A_15-C4_15-H4C_15$ 114.3 (9) $H4A_15-C4_15-H4C_15$ 108.7 $H4B_15-C5_15-G6_15$ 108.7 $N1_15-C5_15-H5A_15$ 108.7 $N1_15-C5_15-H5A_15$ 108.7 $N1_15-C5_15-H5B_15$ 108.7 $N1_15-C5_15-H5B_15$ 108.7 $C1_15-C5_15-H5B_15$ 108.5 $C7_15-C6_15-H6A_15$ 107.6 $N1_25-C5_15-H5B_15$ 108.5 $C7_15-C6_15-H6B_15$ 108.5 $C7_15-C6_15-H6B_15$ 108.5 $C7_15-C6_15-H6B_15$ 108.5 $C7_15-C6_15-H6B_15$ 109.9 $C8_15-C7_15-H7A_15$ 109.9 $C8_15-C7_15-H7A_15$ 109.9 $C6_15-C7_15-H7B_15$ 108.1 $C7_15-C8_15-H8B_15$ 108.1 $C7_15-C8_15-H8B_15$ 108.1 $C7_15-C8_15-H8B_15$ 108.1 $C7_15-C8_15-H8B_15$ 108.1 $C7_15-C8_15-H8C_15$ 108.1 $C7_15-C8_15-H8C_15$ 108.1 $C7_15-C8_15-H8C_15$ 105.9 $C10_15-C9_15-H9B_15$ 105.9 $C10_15-C9_15-H9B_15$ 105.9 $C10_15-C9_15-H9B_15$ 105.9 $C10_15-C9_15-H9B_15$ 105.9

C10_5—C9_5—H9B_5	108.9	C11_15—C10_15—H10A_15	107.3
H9A_5—C9_5—H9B_5	107.7	C9_15—C10_15—H10B_15	107.3
C11_5—C10_5—C9_5	103.1 (17)	C11_15—C10_15—H10B_15	107.3
C11 5—C10 5—H10A 5	111.2	H10A 15—C10 15—H10B 15	106.9
C9_5—C10_5—H10A_5	111.2	C10_15—C11_15—C12_15	117 (3)
C11_5—C10_5—H10B_5	111.2	C10_15_C11_15_H11A_15	108.1
C9_5—C10_5—H10B_5	111.2	C12_15—C11_15—H11A_15	108.1
H10A_5-C10_5-H10B_5	109.1	C10_15—C11_15—H11B_15	108.1
C10_5—C11_5—H11A_5	109.5	C12_15—C11_15—H11B_15	108.1
C10_5—C11_5—H11B_5	109.5	H11A_15—C11_15—H11B_15	107.3
H11A_5—C11_5—H11B_5	109.5	C11_15—C12_15—H12A_15	109.5
C10_5—C11_5—H11C_5	109.5	C11_15—C12_15—H12B_15	109.5
H11A_5-C11_5-H11C_5	109.5	H12A_15—C12_15—H12B_15	109.5
H11B_5—C11_5—H11C_5	109.5	C11_15—C12_15—H12C_15	109.5
C2_5—C4B_5—C5B_5	112.3 (10)	H12A_15—C12_15—H12C_15	109.5
C2_5—C4B_5—H4BA_5	109.2	H12B_15—C12_15—H12C_15	109.5
C5B_5—C4B_5—H4BA_5	109.2	N1_15—C13_15—C14_15	114.3 (19)
C2_5—C4B_5—H4BB_5	109.2	N1_15—C13_15—H13A_15	108.7
C5B_5—C4B_5—H4BB_5	109.2	C14_15—C13_15—H13A_15	108.7
H4BA_5—C4B_5—H4BB_5	107.9	N1_15—C13_15—H13B_15	108.7
C6B_5—C5B_5—C4B_5	115.9 (13)	C14_15—C13_15—H13B_15	108.7
C6B_5—C5B_5—H5BA_5	108.3	H13A_15—C13_15—H13B_15	107.6
C4B_5—C5B_5—H5BA_5	108.3	C15_15—C14_15—C13_15	112 (2)
C6B_5—C5B_5—H5BB_5	108.3	C15_15—C14_15—H14A_15	109.3
C4B_5—C5B_5—H5BB_5	108.3	C13_15—C14_15—H14A_15	109.3
H5BA_5—C5B_5—H5BB_5	107.4	C15_15—C14_15—H14B_15	109.3
C7B_5—C6B_5—C5B_5	107.5 (15)	C13_15—C14_15—H14B_15	109.3
C7B_5—C6B_5—H6BA_5	110.2	H14A_15—C14_15—H14B_15	108.0
C5B_5—C6B_5—H6BA_5	110.2	C14_15—C15_15—C16_15	120 (3)
C7B_5—C6B_5—H6BB_5	110.2	C14_15—C15_15—H15A_15	107.3
C5B_5—C6B_5—H6BB_5	110.2	C16_15—C15_15—H15A_15	107.3
H6BA 5—C6B 5—H6BB 5	108.5	C14 15—C15 15—H15B 15	107.3
C8B_5—C7B_5—C6B_5	103.7 (16)	C16_15_C15_15_H15B_15	107.3
C8B_5—C7B_5—H7BA_5	111.0	H15A_15—C15_15—H15B_15	106.9
C6B_5—C7B_5—H7BA_5	111.0	C15_15—C16_15—H16A_15	109.5
C8B_5—C7B_5—H7BB_5	111.0	C15_15—C16_15—H16B_15	109.5
C6B_5—C7B_5—H7BB_5	111.0	H16A_15—C16_15—H16B_15	109.5
H7BA_5—C7B_5—H7BB_5	109.0	C15_15—C16_15—H16C_15	109.5
C9B_5—C8B_5—C7B_5	109.7 (16)	H16A_15—C16_15—H16C_15	109.5
C9B_5—C8B_5—H8BA_5	109.7	H16B_15—C16_15—H16C_15	109.5
C7B 5—C8B 5—H8BA 5	109.7	C5B 15—N1B 15—C1B 15	113.3 (19)
C9B ⁵ —C8B ⁵ —H8BB ⁵	109.7	C5B 15—N1B 15—C13B 15	113.2 (19)
C7B 5—C8B 5—H8BB 5	109.7	C1B 15—N1B 15—C13B 15	106.6 (18)
H8BA 5—C8B 5—H8BB 5	108.2	C5B 15—N1B 15—C9B 15	107.0 (17)
C8B_5—C9B_5—C10B_5	101.6 (16)	C1B_15—N1B_15—C9B_15	110.7 (16)
C8B_5—C9B_5—H9BA_5	111.5	C13B_15—N1B_15—C9B_15	105.9 (17)
C10B_5—C9B_5—H9BA_5	111.5	C2B_15—C1B_15—N1B_15	121 (2)
C8B 5—C9B 5—H9BB 5	111.5	C2B 15—C1B 15—H1C 15	107.0

C10B_5—C9B_5—H9BB_5	111.5	N1B_15—C1B_15—H1C_15	107.0
H9BA_5—C9B_5—H9BB_5	109.3	C2B_15—C1B_15—H1D_15	107.0
C11B_5—C10B_5—C9B_5	100.2 (19)	N1B_15—C1B_15—H1D_15	107.0
C11B 5—C10B 5—H10C 5	111.7	H1C 15—C1B 15—H1D 15	106.7
C9B 5-C10B 5-H10C 5	111.7	C3B ¹⁵ —C2B ¹⁵ —C1B ¹⁵	112 (2)
C11B 5—C10B 5—H10D 5	111.7	C3B 15—C2B 15—H2C 15	109.3
C9B 5-C10B 5-H10D 5	111.7	C1B 15—C2B 15—H2C 15	109.3
H10C 5-C10B 5-H10D 5	109.5	C3B 15—C2B 15—H2D 15	109.3
C10B 5—C11B 5—H11D 5	109.5	C1B 15—C2B 15—H2D 15	109.3
C10B 5—C11B 5—H11E 5	109.5	H2C 15—C2B 15—H2D 15	107.9
H11D 5—C11B 5—H11E 5	109.5	C2B 15—C3B 15—C4B 15	120 (3)
C10B 5—C11B 5—H11F 5	109.5	C2B 15—C3B 15—H3C 15	107.2
H11D 5—C11B 5—H11F 5	109.5	C4B 15—C3B 15—H3C 15	107.2
H11E 5—C11B 5—H11F 5	109.5	C2B 15—C3B 15—H3D 15	107.2
C1 6—N1 6—N2 6	107.6 (4)	C4B 15—C3B 15—H3D 15	107.2
C1 6—N1 6—Ni4 16	138.9 (4)	H3C 15—C3B 15—H3D 15	106.9
N2 6—N1 6—Ni4 16	113.3 (3)	C3B 15—C4B 15—H4D 15	109.5
$C_{3} = 0.02 =$	108.0 (4)	C3B 15—C4B 15—H4E 15	109.5
C3 6—N2 6—Ni1 16	137.8 (4)	H4D 15—C4B 15—H4E 15	109.5
N1 6—N2 6—Ni1 16	113.6 (3)	C3B 15—C4B 15—H4F 15	109.5
N1 6-C1 6-C2 6	110.5 (5)	H4D 15—C4B 15—H4F 15	109.5
N1 6—C1 6—H1 6	124.8	H4E 15—C4B 15—H4F 15	109.5
C2_6—C1_6—H1_6	124.8	C6B 15—C5B 15—N1B 15	117.4 (19)
C1 ⁶ -C2 ⁶ -C3 ⁶	103.8 (5)	C6B 15—C5B 15—H5C 15	108.0
C1 ⁶ -C2 ⁶ -C4 ⁶	127.6 (6)	N1B 15—C5B 15—H5C 15	108.0
C3 ⁶ -C2 ⁶ -C4 ⁶	128.6 (6)	C6B ¹⁵ —C5B ¹⁵ —H5D ¹⁵	108.0
N2 ⁶ -C3 ⁶ -C2 ⁶	110.1 (5)	N1B 15—C5B 15—H5D 15	108.0
N2_6—C3_6—H3_6	125.0	H5C_15—C5B_15—H5D_15	107.2
C2_6—C3_6—H3_6	125.0	C7B_15—C6B_15—C5B_15	113 (2)
C2_6—C4_6—C5_6	112.5 (6)	C7B_15—C6B_15—H6C_15	109.0
C2_6—C4_6—H4A_6	109.1	C5B_15—C6B_15—H6C_15	109.0
C5_6—C4_6—H4A_6	109.1	C7B_15—C6B_15—H6D_15	109.0
C2_6—C4_6—H4B_6	109.1	C5B_15—C6B_15—H6D_15	109.0
C5_6—C4_6—H4B_6	109.1	H6C_15—C6B_15—H6D_15	107.8
H4A_6—C4_6—H4B_6	107.8	C8B_15-C7B_15-C6B_15	114 (2)
C4_6-C5_6-C6_6	116.1 (7)	C8B_15—C7B_15—H7C_15	108.6
C4_6—C5_6—H5A_6	108.3	C6B_15—C7B_15—H7C_15	108.6
C6_6-C5_6-H5A_6	108.3	C8B_15—C7B_15—H7D_15	108.6
C4_6—C5_6—H5B_6	108.3	C6B_15—C7B_15—H7D_15	108.6
C6_6-C5_6-H5B_6	108.3	H7C_15—C7B_15—H7D_15	107.6
H5A_6-C5_6-H5B_6	107.4	C7B_15—C8B_15—H8D_15	109.5
C7_6—C6_6—C5_6	116.4 (8)	C7B_15—C8B_15—H8E_15	109.5
C7_6—C6_6—H6A_6	108.2	H8D_15-C8B_15-H8E_15	109.5
C5_6—C6_6—H6A_6	108.2	C7B_15—C8B_15—H8F_15	109.5
C7_6—C6_6—H6B_6	108.2	H8D_15—C8B_15—H8F_15	109.5
C5_6—C6_6—H6B_6	108.2	H8E_15-C8B_15-H8F_15	109.5
H6A_6—C6_6—H6B_6	107.3	C10B_15—C9B_15—N1B_15	118.5 (19)
C6_6—C7_6—C8_6	115.5 (9)	C10B_15—C9B_15—H9C_15	107.7

C6 6—C7 6—H7A 6	108.4	N1B 15—C9B 15—H9C 15	107.7
C8_6C7_6H7A_6	108.4	C10B_15—C9B_15—H9D_15	107.7
C6_6—C7_6—H7B_6	108.4	N1B 15—C9B 15—H9D 15	107.7
C8 6—C7 6—H7B 6	108.4	H9C ¹⁵ —C9B ¹⁵ —H9D ¹⁵	107.1
H7A 6—C7 6—H7B 6	107.5	C9B 15—C10B 15—C11B 15	123 (2)
C7 6—C8 6—C9 6	113.5 (10)	C9B 15—C10B 15—H10C 15	106.7
C7_6—C8_6—H8A_6	108.9	C11B 15—C10B 15—H10C 15	106.7
C9 6—C8 6—H8A 6	108.9	C9B 15—C10B 15—H10D 15	106.7
C7_6—C8_6—H8B_6	108.9	C11B 15—C10B 15—H10D 15	106.7
C9 6—C8 6—H8B 6	108.9	H10C 15—C10B 15—H10D 15	106.6
H8A 6—C8 6—H8B 6	107.7	C10B 15—C11B 15—C12B 15	113 (3)
C10_6-C9_6-C8_6	117.3 (13)	C10B 15—C11B 15—H11C 15	109.0
C10_6—C9_6—H9A_6	108.0	C12B 15—C11B 15—H11C 15	109.0
C8 6—C9 6—H9A 6	108.0	C10B 15—C11B 15—H11D 15	109.0
C10 6—C9 6—H9B 6	108.0	C12B 15—C11B 15—H11D 15	109.0
C8 6-C9 6-H9B 6	108.0	H11C 15—C11B 15—H11D 15	107.8
H9A 6—C9 6—H9B 6	107.2	C11B 15—C12B 15—H12D 15	109.5
C9 6-C10 6-C11 6	114.8 (15)	C11B 15—C12B 15—H12E 15	109.5
C9_6—C10_6—H10A_6	108.6	H12D 15—C12B 15—H12E 15	109.5
C11 6—C10 6—H10A 6	108.6	C11B 15—C12B 15—H12F 15	109.5
C9 6—C10 6—H10B 6	108.6	H12D 15—C12B 15—H12F 15	109.5
C11 6—C10 6—H10B 6	108.6	H12E 15—C12B 15—H12F 15	109.5
H10A 6-C10 6-H10B 6	107.5	N1B 15—C13B 15—C14B 15	121.0 (18)
C10 6-C11 6-H11A 6	109.5	N1B ¹⁵ —C13B ¹⁵ —H13C ¹⁵	107.1
C10_6—C11_6—H11B_6	109.5	C14B 15—C13B 15—H13C 15	107.1
H11A 6-C11 6-H11B 6	109.5	N1B 15—C13B 15—H13D 15	107.1
C10 6-C11 6-H11C 6	109.5	C14B 15—C13B 15—H13D 15	107.1
H11A 6-C11 6-H11C 6	109.5	H13C 15—C13B 15—H13D 15	106.8
H11B 6-C11 6-H11C 6	109.5	C15B 15—C14B 15—C13B 15	105.3 (19)
C1 7—N1 7—N2 7	107.3 (4)	C15B 15—C14B 15—H14C 15	110.7
C1 ⁷ —N1 ⁷ —Ni ⁸ 16	139.4 (3)	C13B 15—C14B 15—H14C 15	110.7
N2 7—N1 7—Ni8 16	113.3 (3)	C15B 15—C14B 15—H14D 15	110.7
C3 ⁷ —N2 ⁷ —N1 ⁷	107.6 (4)	C13B_15—C14B_15—H14D_15	110.7
C3 7—N2 7—Ni5 16	138.4 (3)	H14C 15—C14B 15—H14D 15	108.8
N1 ⁷ -N2 ⁷ -Ni5 ¹⁶	114.0 (3)	C14B 15—C15B 15—C16B 15	119 (2)
N1 7—C1 7—C2 7	110.8 (4)	C14B 15—C15B 15—H15C 15	107.6
N1 ⁷ —C1 ⁷ —H1 ⁷	124.6	C16B ¹⁵ —C15B ¹⁵ —H15C ¹⁵	107.6
C2 ⁷ —C1 ⁷ —H1 ⁷	124.6	C14B 15—C15B 15—H15D 15	107.6
C3_7—C2_7—C1_7	103.5 (4)	C16B_15—C15B_15—H15D_15	107.6
C3 ⁷ —C2 ⁷ —C4 ⁷	127.2 (5)	H15C 15—C15B 15—H15D 15	107.0
C1_7_C2_7_C4_7	129.2 (5)	C15B 15—C16B 15—H16D 15	109.5
N2 ⁷ C3 ⁷ C2 ⁷	110.9 (4)	C15B 15—C16B 15—H16E 15	109.5
N2 7—C3 7—H3 7	124.6	H16D 15—C16B 15—H16E 15	109.5
C2_7_C3_7_H3_7	124.6	C15B_15—C16B_15—H16F_15	109.5
C2_7—C4_7—C5B_7	114.2 (5)	H16D_15—C16B_15—H16F_15	109.5
C2_7—C4_7—C5_7	114.2 (5)	H16E_15—C16B_15—H16F_15	109.5
C2_7—C4_7—H4A_7	108.7		
C1_1—N1_1—N2_1—C3_1	-0.4 (7)	N1_8-C1_8-C2_8-C3_8	-0.1 (5)
--------------------------------------	-------------	---------------------------	------------
Ni1_16—N1_1—N2_1—C3_1	170.0 (4)	N1_8-C1_8-C2_8-C4_8	-178.8 (5)
C1_1-N1_1-N2_1-Ni3_16 ⁱ	-168.8 (4)	N1_8—N2_8—C3_8—C2_8	0.2 (6)
Ni1_16—N1_1—N2_1—Ni3_16 ⁱ	1.7 (5)	Ni6_16—N2_8—C3_8—C2_8	175.7 (4)
N2_1_N1_1_C1_1_C2_1	0.7 (7)	C1_8—C2_8—C3_8—N2_8	-0.1 (6)
Ni1_16—N1_1—C1_1—C2_1	-167.0 (5)	C4_8—C2_8—C3_8—N2_8	178.8 (5)
N1_1—C1_1—C2_1—C3_1	-0.6 (8)	C3_8—C2_8—C4_8—C5_8	-166.9 (5)
N1_1-C1_1-C2_1-C4_1	176.5 (7)	C1_8—C2_8—C4_8—C5_8	11.6 (8)
N1_1_N2_1_C3_1_C2_1	0.0 (7)	C2_8—C4_8—C5_8—C6_8	-75.8 (6)
Ni3_16 ⁱ —N2_1—C3_1—C2_1	163.4 (5)	C4_8-C5_8-C6_8-C7_8	-171.9 (5)
C1_1—C2_1—C3_1—N2_1	0.3 (7)	C5_8-C6_8-C7_8-C8_8	176.3 (6)
C4_1—C2_1—C3_1—N2_1	-176.7 (7)	C6_8-C7_8-C8_8-C9_8	179.2 (6)
C3_1—C2_1—C4_1—C5_1	169.1 (7)	C7_8-C8_8-C9_8-C10_8	-179.4 (7)
C1_1—C2_1—C4_1—C5_1	-7.3 (11)	C8_8-C9_8-C10_8-C11_8	177.7 (8)
C2_1—C4_1—C5_1—C6_1	-177.7 (7)	C1_9—N1_9—N2_9—C3_9	0.2 (5)
C4_1—C5_1—C6_1—C7_1	-174.6 (8)	Ni8_16—N1_9—N2_9—C3_9	-171.0 (3)
C5_1—C6_1—C7_1—C8_1	-179.2 (8)	C1_9—N1_9—N2_9—Ni7_16	175.8 (3)
C6_1—C7_1—C8_1—C9_1	-175.8 (10)	Ni8_16—N1_9—N2_9—Ni7_16	4.7 (3)
C7_1_C8_1_C9_1_C10_1	177.0 (11)	N2_9_N1_9_C1_9_C2_9	-0.1 (5)
C8_1—C9_1—C10_1—C11_1	-178.1 (13)	Ni8_16—N1_9—C1_9—C2_9	168.0 (3)
C1_2N1_2N2_2C3_2	-0.1 (6)	N1_9_C1_9_C2_9_C3_9	0.0 (5)
Ni2_16—N1_2—N2_2—C3_2	179.9 (4)	N1_9-C1_9-C2_9-C4_9	-176.8 (5)
C1_2N1_2N2_2Ni1_16	-177.5 (4)	N1_9_N2_9_C3_9_C2_9	-0.2 (5)
Ni2_16—N1_2—N2_2—Ni1_16	2.5 (4)	Ni7_16—N2_9—C3_9—C2_9	-174.1 (3)
N2_2-N1_2-C1_2-C2_2	0.1 (7)	C1_9—C2_9—C3_9—N2_9	0.1 (5)
Ni2_16—N1_2—C1_2—C2_2	-180.0 (5)	C4_9_C2_9_C3_9_N2_9	176.9 (5)
N1_2-C1_2-C2_2-C3_2	0.0 (8)	C3_9—C2_9—C4_9—C5_9	-93.0 (7)
N1_2-C1_2-C2_2-C4_2	-177.3 (7)	C1_9—C2_9—C4_9—C5_9	83.0 (7)
N1_2-N2_2-C3_2-C2_2	0.1 (7)	C2_9—C4_9—C5_9—C6_9	-63.3 (6)
Ni1_16—N2_2—C3_2—C2_2	176.5 (5)	C4_9—C5_9—C6_9—C7_9	-70.7 (7)
C1_2-C2_2-C3_2-N2_2	0.0 (8)	C5_9—C6_9—C7_9—C8_9	178.5 (5)
C4_2-C2_2-C3_2-N2_2	177.1 (8)	C6_9—C7_9—C8_9—C9_9	175.0 (6)
C3_2-C2_2-C4_2-C5_2	29.1 (15)	C7_9—C8_9—C9_9—C10_9	179.8 (7)
C1_2-C2_2-C4_2-C5_2	-154.3 (8)	C8_9—C9_9—C10_9—C11_9	-178.2 (8)
C2_2-C4_2-C5_2-C6_2	-178.1 (8)	C1_10—N1_10—N2_10—C3_10	-0.7 (5)
C4_2-C5_2-C6_2-C7_2	-174.9 (9)	Ni6_16-N1_10-N2_10-C3_10	-170.4 (3)
C5_2-C6_2-C7_2-C8_2	-179.5 (8)	C1_10—N1_10—N2_10—Ni7_16	165.7 (3)
C6_2-C7_2-C8_2-C9_2	-176.5 (8)	Ni6_16—N1_10—N2_10—Ni7_16	5-4.0 (4)
C7_2-C8_2-C9_2-C10_2	-179.0 (8)	N2_10-N1_10-C1_10-C2_10	0.4 (5)
C8_2-C9_2-C10_2-C11_2	-176.0 (9)	Ni6_16-N1_10-C1_10-C2_10	166.3 (4)
C1_3—N1_3—N2_3—C3_3	-0.8 (6)	N1_10-C1_10-C2_10-C3_10	0.1 (6)
Ni3_16—N1_3—N2_3—C3_3	-173.0 (4)	N1_10-C1_10-C2_10-C4B_10	-173.3 (5)
C1_3—N1_3—N2_3—Ni2_16	172.5 (3)	N1_10-C1_10-C2_10-C4_10	-173.3 (5)
Ni3_16—N1_3—N2_3—Ni2_16	0.3 (4)	N1_10—N2_10—C3_10—C2_10	0.8 (5)
N2_3—N1_3—C1_3—C2_3	1.1 (6)	Ni7_16—N2_10—C3_10—C2_10	-161.2 (4)
Ni3_16—N1_3—C1_3—C2_3	170.3 (4)	C1_10—C2_10—C3_10—N2_10	-0.5 (6)
N1_3-C1_3-C2_3-C3_3	-1.0 (7)	C4B_10-C2_10-C3_10-N2_10	172.9 (5)
N1_3-C1_3-C2_3-C4B_3	179.6 (6)	C4_10—C2_10—C3_10—N2_10	172.9 (5)

N1_3-C1_3-C2_3-C4_3 N1_3-N2_3-C3_3-C2_3	179.6 (6) 0.2 (7)
Ni2_16—N2_3—C3_3—C2_3	-170.9 (4)
C1_3_C2_3_C3_3_N2_3	0.5 (7)
C4B_3—C2_3—C3_3—N2_3	179.9 (6)
C4_3—C2_3—C3_3—N2_3	179.9 (6)
C1_3—C2_3—C4_3—C5_3	166.7 (7)
C3_3-C2_3-C4_3-C5_3	-12.6 (11)
C2_3-C4_3-C5_3-C6_3	-64.9 (11)
C4_3C5_3C6_3C7_3	-178.9 (9)
C5_3—C6_3—C7_3—C8_3	179.5 (11)
C6_3-C7_3-C8_3-C9_3	174.8 (11)
C7_3-C8_3-C9_3-C10_3	178.8 (11)
C8_3-C9_3-C10_3-C11_3	-79.8 (17)
C1_3—C2_3—C4B_3—C5B_3	134.3 (14)
C3_3—C2_3—C4B_3—C5B_3	-44.9 (16)
C2_3—C4B_3—C5B_3—C6B_3	46 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3	46 (3) 148 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3	46 (3) 148 (3) 138 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3	46 (3) 148 (3) 138 (3) -100 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3	46 (3) 148 (3) 138 (3) -100 (3) 160 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C6B_3—C7B_3—C8B_3—C9B_3 C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4 C1_4—N1_4—N2_4—Ni4_16	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C6B_3—C7B_3—C8B_3—C9B_3 C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—N2_4—Ni4_16	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4 C1_4—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—C1_4—C2_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4 C1_4—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni_4—C1_4—C2_4—C3_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4) -0.1 (6)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C7B_3—C9B_3—C10B_3— C10B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4 C1_4—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 N1_4—C1_4—C2_4—C3_4 N1_4—C1_4—C2_4—C3_4 N1_4—C1_4—C2_4—C4B_4 N1_4—C1_4—C2_4—C4B_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4) -0.1 (6) -177.4 (5) -177.4
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C8B_3—C9B_3—C10B_3— C11B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4 C1_4—N1_4—N2_4—Ni4_16 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 N1_4—C1_4—C2_4—C3_4 N1_4—C1_4—C2_4—C4B_4 N1_4—C1_4—C2_4—C4B_4 N1_4—C1_4—C2_4—C4_4 N1_4—N2_4—C3_4—C2_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4) -0.1 (6) -177.4 (5) -177.4 (5) -0.3 (6) -0.3 (6) -0.1 (4) -0.1 (5) -0.3 (6) -0.3 (6) -0.1 (6) -0.3 (6) -0.3 (6) -0.1 (6) -0.3 (6) -0.3 (6) -0.1 (6) -0.3 (6) -0.3 (6) -0.1 (6)
C2_3—C4B_3—C5B_3—C6B_3 C4B_3—C5B_3—C6B_3—C7B_3 C5B_3—C6B_3—C7B_3—C8B_3 C6B_3—C7B_3—C8B_3—C9B_3 C7B_3—C8B_3—C9B_3— C10B_3 C7B_3—C9B_3—C10B_3— C10B_3 C1_4—N1_4—N2_4—C3_4 Ni3_16—N1_4—N2_4—C3_4 C1_4—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 Ni3_16—N1_4—C1_4—C2_4 N1_4—C1_4—C2_4—C3_4 N1_4—C1_4—C2_4—C3_4 N1_4—C1_4—C2_4—C4B_4 N1_4—C1_4—C2_4—C4B_4 N1_4—C1_4—C2_4—C4_4 N1_4—C1_4—C2_4—C4_4 N1_4—N2_4—C3_4—C2_4 Ni4_16—N2_4—C3_4—C2_4	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4) -0.1 (6) -177.4 (5) -177.4 (5) -0.3 (6) -169.8 (4) -0.1 (6) -0.1 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4) -0.1 (6) -177.4 (5) -177.4 (5) -0.3 (6) -169.8 (4) 0.2 (6) $48 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 138 (3) 160 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) -177.4 (5) -169.8 (4) 0.2 (6) 169 (4) 160 (5) 160 (5) 160 (5) 160 (5) 160 (6) 157 (5) 160 (6) 157$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 (3) 148 (3) 138 (3) -100 (3) 160 (3) 167 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) 157.9 (4) -0.1 (6) -177.4 (5) -177.4 (5) -0.3 (6) -169.8 (4) 0.2 (6) 177.6 (5) $48 (3) -100 (3) 100 (4) 0.2 (5) -163.5 (3) 172.7 (3) 8.9 (4) -0.1 (6) -177.4 (5) -103.6 (6) -169.8 (4) 0.2 (6) 177.6 (5) 177.6 ($
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 46 \ (3) \\ 148 \ (3) \\ 138 \ (3) \\ -100 \ (3) \\ 160 \ (3) \\ 160 \ (3) \\ 167 \ (4) \\ 0.2 \ (5) \\ -163.5 \ (3) \\ 172.7 \ (3) \\ 8.9 \ (4) \\ -0.1 \ (6) \\ 157.9 \ (4) \\ -0.1 \ (6) \\ -177.4 \ (5) \\ -177.4 \ (5) \\ -169.8 \ (4) \\ 0.2 \ (6) \\ 177.6 \ (5) \\ 177.6 \ (5) \end{array}$

C1_10—C2_10—C4_10—C5_10	94.2 (12)
C3_10—C2_10—C4_10—C5_10	-77.7 (13)
C2_10—C4_10—C5_10—C6_10	176.6 (13)
C4_10—C5_10—C6_10—C7_10	172.2 (18)
C5_10—C6_10—C7_10—C8_10	-177.1 (19)
C6_10—C7_10—C8_10—C9_10	178 (2)
C7_10-C8_10-C9_10-C10_10	-115 (3)
C8_10_C9_10_C10_10_	-136 (3)
C1 10—C2 10—C4B 10—	
$C5\overline{B}_{10}$ – – –	77.6 (13)
C3_10—C2_10—C4B_10— C5B_10	-94.2 (13)
C2_10—C4B_10—C5B_10—	$170 \in (15)$
C6B_10	-1/9.0 (13)
C4B_10—C5B_10—C6B_10— C7B_10	177 (2)
C5B_10—C6B_10—C7B_10—	-175(2)
C8B_10	175(2)
C6B_10—C7B_10—C8B_10— C9B_10	-175 (2)
C7B_10—C8B_10—C9B_10—	151 (3)
C10B_10	151 (5)
C8B_10—C9B_10—C10B_10— C11B_10	162 (3)
C1 11—N1 11—N2 11—C3 11	-1.0(5)
Ni6 16—N1 11—N2 11—C3 11	171.6 (3)
C1 11—N1 11—N2 11—Ni8 16 ⁱⁱ	-177.6(3)
Ni6 16—N1 11—N2 11—	
Ni8_16 ⁱⁱ	-5.1 (4)
N2_11—N1_11—C1_11—C2_11	-0.1 (6)
Ni6 16—N1 11—C1 11—C2 11	-1697(4)
	10(()
NI_II—CI_II—C2_II—C3_II	1.0(0)
NI_II—CI_II—C2_II—C4_II	1/5.2(5)
$N_1 = N_2 = 11 = C_3 = 11 = C_2 = 11$	1.7 (6)
$N_{18} = 16^{-1} - N_2 = 11 - C_3 = 11 - C_2 = 11$	1//.1 (4)
C1_11—C2_11—C3_11—N2_11	-1.6 (6)
C4_11—C2_11—C3_11—N2_11	-175.8 (5)
C3_11—C2_11—C4_11—C5_11	86.0 (7)
C1_11—C2_11—C4_11—C5_11	-86.8 (7)
C2_11—C4_11—C5_11—C6_11	174.0 (5)
C4_11—C5_11—C6_11—C7_11	-178.9 (5)
C5_11—C6_11—C7_11—C8_11	177.6 (5)
C6_11—C7_11—C8_11—C9_11	179.8 (5)
C7_11—C8_11—C9_11—C10_11	-178.8 (6)
C8_11-C9_11-C10_11-C11_11	178.7 (6)
C1_12—N1_12—N2_12—C3_12	0.2 (5)

C3_4-C2_4-C4_4-C5_4 C2_4-C4_4-C5_4-C6_4	-103.5 (11) -64 (3)
C4_4—C5_4—C6_4—C7_4	-62 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-176.8 (14) 67.4 (18) 169.6 (17) -178.4 (19) 73.1 (12) -103.6 (11) -79 (2) -174.0 (17) 178.3 (19) 172.4 (15) -172.2 (18) 177 (2)
C1_5—N1_5—N2_5—C3_5 Ni4_16—N1_5—N2_5—C3_5 C1_5—N1_5—N2_5—Ni2_16 ⁱ	0.4 (6) -170.5 (4) 179.0 (4)
Ni4_16—N1_5—N2_5—Ni2_16 ⁱ	8.2 (4)
$\begin{array}{l} N2_5 & - N1_5 & - C1_5 & - C2_5 \\ Ni4_16 & - N1_5 & - C1_5 & - C2_5 \\ N1_5 & - C1_5 & - C2_5 & - C4B_5 \\ N1_5 & - C1_5 & - C2_5 & - C4B_5 \\ N1_5 & - N2_5 & - C3_5 & - C2_5 \\ N1_5 & - N2_5 & - C3_5 & - C2_5 \\ N1_2_16^i & - N2_5 & - C3_5 & - N2_5 \\ C4B_5 & - C2_5 & - C3_5 & - N2_5 \\ C4B_5 & - C2_5 & - C3_5 & - N2_5 \\ C4_5 & - C2_5 & - C3_5 & - N2_5 \\ C1_5 & - C2_5 & - C4_5 & - C5_5 \\ C3_5 & - C2_5 & - C4_5 & - C5_5 \\ C2_5 & - C4_5 & - C5_5 & - C6_5 \\ \end{array}$	$\begin{array}{c} -0.2 \ (7) \\ 167.4 \ (5) \\ -0.1 \ (8) \\ -175.5 \ (7) \\ -175.5 \ (7) \\ -0.4 \ (7) \\ -178.6 \ (5) \\ 0.3 \ (8) \\ 175.9 \ (7) \\ 175.9 \ (7) \\ 175.9 \ (7) \\ 68.8 \ (14) \\ -105.7 \ (11) \\ -68.8 \ (19) \end{array}$
C4_5—C5_5—C6_5—C7_5	-177.9 (15)
C5_5—C6_5—C7_5—C8_5	-174.6 (18)
C6_5-C7_5-C8_5-C9_5	-77 (3)
C7_5—C8_5—C9_5—C10_5	-149 (2)
C8_5-C9_5-C10_5-C11_5	-121 (2)
C1 5—C2 5—C4B 5—C5B 5	99.0 (12)

Ni7_16—N1_12—N2_12—C3_12	-170.8 (3)
C1_12—N1_12—N2_12—Ni5_16 ⁱⁱ	174.4 (3)
Ni7_16—N1_12—N2_12—	33(4)
Ni5_16 ⁱⁱ	3.3 (4)
N2_12—N1_12—C1_12—C2_12	0.2 (6)
Ni7_16—N1_12—C1_12—C2_12	167.5 (4)
N1 12—C1 12—C2 12—C3 12	-0.5 (6)
N1 12—C1 12—C2 12—C4 12	-175.7 (5)
N1 12—N2 12—C3 12—C2 12	-0.6 (5)
$Ni5 16^{ii} - N2 12 - C3 12 - C2 12$	-172.7(3)
C1 12—C2 12—C3 12—N2 12	0.7 (6)
C4 12—C2 12—C3 12—N2 12	176.0 (4)
C1_12—C2_12—C4_12—C5_12	100.0 (6)
C3 12—C2 12—C4 12—C5 12	-74.1 (6)
	(0)
$C2_{12}-C4_{12}-C5_{12}-C6_{12}$	175.9 (4)
$C4_{12} - C5_{12} - C6_{12} - C7_{12}$	-179.8 (5)
C5 12—C6 12—C7 12—C8 12	177.3 (5)
C6 ¹² —C7 ¹² —C8 ¹² —C9 ¹²	178.9 (5)
C7 ¹² —C8 ¹² —C9 ¹² —C1 ⁰ 12	177.7 (6)
C8 12—C9 12—C10 12—	170.0 (()
C11_12	1/9.0 (6)
C5_13—N1_13—C1_13—C2_13	69.3 (6)
C9_13—N1_13—C1_13—C2_13	-169.2 (5)
C13 13—N1 13—C1 13—C2 13	-50.9 (6)
N1 13—C1 13—C2 13—C3 13	-179.0 (6)
C1 ¹ 3–C2 ¹ 3–C3 ¹ 3–C4 ¹ 3	-171.7 (7)
C9 ¹³ —N1 ¹³ —C5 ¹³ —C6 ¹³	47.0 (7)
C1 13—N1 13—C5 13—C6 13	165.4 (5)
C13 13—N1 13—C5 13—C6 13	-72.8(6)
N1 13—C5 13—C6 13—C7 13	169.8 (5)
$C_{5} 13 - C_{6} 13 - C_{7} 13 - C_{8} 13$	173 3 (6)
$C_{5} 13 - N1 13 - C9 13 - C10 13$	60.8(7)
C1_13_N1_13_C9_13_C10_13	-583(6)
C13 13—N1 13—C9 13—	00.0 (0)
C10 13	-178.9 (5)
N1 13—C9 13—C10 13—	
C11 13	-163.2 (6)
C9 13—C10 13—C11 13—	40.4 (10)
C12_13	-48.4 (10)
C5_13—N1_13—C13_13—	170.5(5)
C14_13	-1/0.5 (5)
C9_13—N1_13—C13_13—	672(6)
C14_13	07.2(0)
C1_13—N1_13—C13_13—	-50.7 (6)
C14_13	20.7 (0)
N1_13_C13_13_C14_13_	-126.9 (5)
C15 13	(-)

C3_5—C2_5—C4B_5—C5B_5	-75.4 (11)
C2_5C4B_5C5B_5C6B_5 C4B_5C5B_5C6B_5C7B_5 C5B_5C6B_5C7B_5C8B_5 C6B_5C7B_5C8B_5C9B_5 C7B_5C8B_5C9B_5 C10B_5	-63.3 (17) -57 (2) -168.5 (17) -180.0 (18) -169 (2)
C8B_5—C9B_5—C10B_5— C11B_5	-144 (2)
C1_6—N1_6—N2_6—C3_6 Ni4_16—N1_6—N2_6—C3_6 C1_6—N1_6—N2_6—Ni1_16 Ni4_16—N1_6—N2_6—Ni1_16 N2_6—N1_6—C1_6—C2_6	0.6 (6) -175.6 (3) -172.2 (4) 11.5 (4) 0.0 (6)
Ni4_16-N1_6-C1_6-C2_6	174.7 (4)
N1_6-C1_6-C2_6-C3_6	-0.6 (7)
N1_6-C1_6-C2_6-C4_6	-179.3 (6)
N1_6-N2_6-C3_6-C2_6	-1.0 (6)
Ni1_16—N2_6—C3_6—C2_6	169.2 (4)
C1_6-C2_6-C3_6-N2_6	0.9 (7)
C4_6-C2_6-C3_6-N2_6	179.7 (6)
C1_6-C2_6-C4_6-C5_6	-101.4 (9)
C3_6—C2_6—C4_6—C5_6	80.2 (9)
$C_{4} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	$\begin{array}{c} -74.6 (9) \\ 179.2 (7) \\ 171.0 (9) \\ -179.0 (12) \\ 173.1 (12) \\ 0.2 (5) \\ -179.5 (3) \\ 178.6 (3) \\ -1.1 (4) \\ 0.4 (5) \\ 180.0 (4) \end{array}$
N1_7-C1_7-C2_7-C3_7	-0.8 (6)
N1_7-C1_7-C2_7-C4_7	-177.7 (5)
N1_7—N2_7—C3_7—C2_7	-0.7 (5)

C13_13—C14_13—C15_13—	76.9 (7)
C_{10} 13 C5 14—N1 14—C1 14—C2 14	67 1 (17)
$C_{13} 14 - N_{1} 14 - C_{1} 14 - C_{2} 14$	-1739(12)
C9 14—N1 14—C1 14—C2 14	-54.1 (17)
N1 14—C1 14—C2 14—C3 14	-165.9 (12)
C1_14—C2_14—C3_14—C4_14	-176.0 (13)
C13_14—N1_14—C5_14—C6_14	-70.0 (12)
C9_14—N1_14—C5_14—C6_14	169.3 (10)
C1_14—N1_14—C5_14—C6_14	46.8 (15)
N1_14—C5_14—C6_14—C7_14	76.3 (14)
C5_14—C6_14—C7_14—C8_14	155.4 (11)
C5_14—N1_14—C9_14—C10_14	-176.6 (10)
C13_14—N1_14—C9_14— C10_14	63.3 (12)
C1_14—N1_14—C9_14—C10_14	-53.6 (15)
N1_14—C9_14—C10_14— C11_14	-79.3 (14)
C9_14—C10_14—C11_14— C12_14	-156.1 (11)
C5_14N1_14C13_14	-57.8 (14)
C9_14—N1_14—C13_14—	(17(12))
C14_14	01.7 (15)
C1_14—N1_14—C13_14— C14_14	-178.3 (18)
N1_14—C13_14—C14_14— C15_14	-172.3 (11)
C13_14—C14_14—C15_14—	-175.9 (13)
C_{10}^{-14}	56 (3)
C13 15—N1 15—C1 15—C2 15	175 (3)
C9 15—N1 15—C1 15—C2 15	-66 (3)
N1 15-C1 15-C2 15-C3 15	166 (3)
C1_15_C2_15_C3_15_C4_15	-176 (3)
C13_15-N1_15-C5_15-C6_15	-72 (3)
C1_15—N1_15—C5_15—C6_15	43 (4)
C9_15—N1_15—C5_15—C6_15	166 (3)
N1_15-C5_15-C6_15-C7_15	178 (3)
C5_15—C6_15—C7_15—C8_15	-159 (4)
C5_15_N1_15_C9_15_C10_15	151 (3)
C13_15—N1_15—C9_15— C10_15	30 (3)
C1_15—N1_15—C9_15—C10_15	-84 (3)
N1_15—C9_15—C10_15— C11_15	68 (4)
C9_15—C10_15—C11_15— C12_15	170 (4)

Ni5_16—N2_7—C3_7—C2_7	-178.6 (4)	C5_15—N1_15—C13_15— C14_15	-40 (3)
C1_7—C2_7—C3_7—N2_7	0.9 (6)	C1_15—N1_15—C13_15— C14_15	-162 (2)
C4_7—C2_7—C3_7—N2_7	177.9 (5)	C9_15—N1_15—C13_15— C14_15	80 (3)
C3_7—C2_7—C4_7—C5B_7	-87.4 (7)	N1_15—C13_15—C14_15— C15_15	-90 (3)
C1_7—C2_7—C4_7—C5B_7	88.7 (7)	C13_15—C14_15—C15_15— C16_15	-161 (4)
C3_7—C2_7—C4_7—C5_7	-87.4 (7)	C5B_15—N1B_15—C1B_15— C2B_15	93 (3)
C1_7—C2_7—C4_7—C5_7	88.7 (7)	C13B_15—N1B_15—C1B_15— C2B_15	-142 (3)
C2_7—C4_7—C5_7—C6_7	-179 (3)	C9B_15—N1B_15—C1B_15— C2B_15	-27 (3)
C4_7—C5_7—C6_7—C7_7	170 (3)	N1B_15—C1B_15—C2B_15— C3B_15	-76 (4)
C5_7—C6_7—C7_7—C8_7	-180 (3)	C1B_15—C2B_15—C3B_15— C4B_15	-155 (4)
C6_7—C7_7—C8_7—C9_7	-178 (3)	C1B_15—N1B_15—C5B_15— C6B_15	64 (4)
C7_7—C8_7—C9_7—C10_7	178 (2)	C13B_15—N1B_15—C5B_15— C6B_15	-58 (4)
C8_7—C9_7—C10_7—C11_7	175 (3)	C9B_15—N1B_15—C5B_15— C6B_15	-174 (3)
C2_7—C4_7—C5B_7—C6B_7	-179 (2)	N1B_15—C5B_15—C6B_15— C7B_15	-170 (4)
C4_7—C5B_7—C6B_7—C7B_7	-173 (2)	C5B_15—C6B_15—C7B_15— C8B_15	-171 (4)
C5B_7—C6B_7—C7B_7—C8B_7	7 –177 (2)	C5B_15—N1B_15—C9B_15— C10B_15	-160 (3)
C6B_7—C7B_7—C8B_7—C9B_7	7 177 (3)	C1B_15—N1B_15—C9B_15— C10B_15	-36 (3)
C7B_7—C8B_7—C9B_7— C10B_7	-176.5 (18)	C13B_15—N1B_15—C9B_15— C10B_15	79 (3)
C8B_7—C9B_7—C10B_7— C11B_7	64 (3)	N1B_15—C9B_15—C10B_15— C11B_15	-57 (5)
 C1_8—N1_8—N2_8—C3_8	-0.2 (5)	C9B_15—C10B_15—C11B_15— C12B_15	-164 (4)
Ni5_16—N1_8—N2_8—C3_8	174.3 (3)	C5B_15—N1B_15—C13B_15— C14B_15	-93 (3)
C1_8—N1_8—N2_8—Ni6_16	-176.9 (3)	C1B_15—N1B_15—C13B_15— C14B_15	142 (3)
Ni5_16—N1_8—N2_8—Ni6_16	-2.3 (4)	C9B_15—N1B_15—C13B_15— C14B_15	24 (3)
N2_8—N1_8—C1_8—C2_8	0.2 (5)	N1B_15—C13B_15—C14B_15— C15B_15	152 (3)
Ni5_16—N1_8—C1_8—C2_8	-172.2 (4)	C13B_15—C14B_15—C15B_15— C16B_15	-161 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.