Crystal structure and Hirshfeld surface analysis of 10-hydroxy-2-(4-methoxyphenyl)-3-oxo-2,3,3a,4,10,10a-hexahydro-1H-9-thia-2azacyclopenta[b]fluorene-4-carboxylic acid dimethyl sulfoxide-d₆ monosolvate

Gunay Z. Mammadova,^a Elizaveta D. Yakovleva,^b Pavel P. Erokhin,^b Mikhail S. Grigoriev,^c Zeliha Atioğlu,^d Asmet N. Azizova,^e Mehmet Akkurt^f and Ajaya Bhattarai^{g*}

^aOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, ^cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, ^dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, ^eDepartment of Synthesis of Biologically Active Compounds, Scientific Research Center, Azerbaijan Medical University, Samed Vurgun St. 167, Az 1022 Baku, Azerbaijan, [†]Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and ⁸Department of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{22}H_{19}NO_5S \cdot C_2D_6OS$, the central six-membered ring has a slightly distorted boat conformation, while the fused pyrrolidine ring adopts an envelope conformation. These conformations are stabilized by $O-H \cdots O$ hydrogen bonds between the main compound and solvent molecules. In addition, intramolecular C-H···O hydrogen bonds in the main molecule form two S(6) rings. Molecules are connected by pairs of intermolecular C-H···O hydrogen bonds, forming dimers with a $R_2^2(8)$ motif. These dimers form a threedimensional network through $O-H\cdots O$, $O-H\cdots S$ and $C-H\cdots O$ hydrogen bonds with each other directly and through solvent molecules. In addition, weak π - π stacking interactions [centroid-to-centroid distances = 3.9937 (10) and 3.9936 (10) Å, slippages of 2.034 and 1.681 Å] are observed. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H···H 41.7%, O···H/H···O 27.7%, C···H/H···C 17.0%, and $S \cdot \cdot \cdot H/H \cdot \cdot \cdot S$ 7.5%.

1. Chemical context

Intermolecular non-covalent interactions play a critical role in determining the crystal packing and orientation of organic and coordination compounds, leading to significant changes in their properties and actions (Gurbanov et al., 2018, 2020; Kopylovich et al., 2011a,b,c; Mahmoudi et al., 2019, 2021; Mahmudov et al., 2013). In fact, various types of non-covalent bond donors and acceptors determine the supramolecular packing of heterocyclic and coordination compounds, which is a fundamental molecular descriptor for predicting the oral bioavailability as well as biocatalytic activity of small drug candidates (Abdelhamid et al., 2011; Akbari Afkhami et al., 2017; Khalilov et al., 2021; Safavora et al., 2019). This work is a continuation of studies of properties of vinylarene systems, previously obtained by the tandem acylation/[4 + 2]-cycloaddition between 3-(aryl)allylamines and maleic anhydrides as an example of an IMDAV (Intra Molecular Diels-Alder

Received 27 October 2023 Accepted 3 November 2023

ISSN 2056-9890

Edited by B. Therrien, University of Neuchâtel,

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; disorder; dimer; hydrogen bonds; Hirshfeld surface analysis.

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Figure 1

Vinylarene) reaction. The IMDAV reaction is a useful tool for the one-step synthesis of benzofurans, indoles and benzothiophenes annalated with other carbo- or heterocycles (Horak *et al.*, 2015, 2017; Krishna *et al.*, 2022; Nadirova *et al.*, 2020; Zubkov *et al.*, 2016).

We report here the first case of a spontaneous oxidation reaction of an IMDAV adduct (Fig. 1) in air in DMSO at room temperature. Presumably, the DMSO acts as a mild oxidant, as it is observed in a number of other oxidation reactions – Pfitzner-Moffatt, Corey–Kim, Swern, and Kornblum oxidation (Epstein *et al.*, 1967). The slow oxidation of (3aRS,-9bRS,10RS,10aRS)-2-(4-methoxyphenyl)-1-oxo-2,3,3a,4,10,-10a-hexahydro-1*H*-benzo[4,5]thieno[2,3-*f*]isoindole-10-carboxylic acid occurs under stirring of the solution in DMSO-*d*₆for a month. The title compound was isolated in 67% yieldafter a standard treatment of the reaction mixture. It should benoted that in this case, the reaction does not stop at theformation of an alcohol, but leads to the formation of anaromatic product as a result of proton migration.

2. Structural commentary

In the title compound (Fig. 2), the central six-membered ring (C3A/C4B/C4A/C9B/C10/C10A) has a slightly distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) of $Q_T = 0.5290 (17)$ Å, $\theta = 129.87 (18)^{\circ}$ and $\varphi = 156.7 (2)^{\circ}$. The fused pyrrolidine ring (N2/C1/C10A/C3A/C3) adopts an envelope conformation with the C3A atom as the flap [the puckering parameters are Q(2) = 0.3523 (17) Å and $\varphi(2) = 290.0 (3)^{\circ}$], while the fused thiophene ring (S5/C4A/C9B/C9A/C5A) is essentially planar (r.m.s. deviation = 0.002 Å). The molecular conformation is stabilized by an $O-H\cdots O$ hydrogen bond $(O3-H3\cdots O6A)$ between the main compound and solvent molecules, as well as two intramolecular $C-H\cdots O$ hydrogen bonds $(C17-H17A\cdots O1$ and

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots S1A$	0.84	2.72	3.4846 (15)	152
$O3-H3\cdots O6A$	0.84	1.72	2.563 (2)	176
$O3-H3\cdots O6B$	0.84	2.06	2.852 (16)	158
$O5A - H5A \cdots O1^{i}$	0.84	1.96	2.763 (2)	160
$C3A - H3AA \cdots O2$	1.00	2.49	3.202 (2)	127
$C3-H3A\cdots O5B$	0.99	2.54	2.887 (4)	100
$C6-H6A\cdots O6A^{ii}$	0.95	2.48	3.307 (3)	145
$C14-H14A\cdots O4^{iii}$	0.95	2.54	3.445 (2)	159
$C17 - H17A \cdots O1$	0.95	2.33	2.868 (2)	116
$C17 - H17A \cdots O5B^{iv}$	0.95	2.46	3.289 (4)	146
$C18-H18C\cdots O5B^{v}$	0.98	2.43	2.922 (4)	110
$C20A - D20A \cdots O6A^{vi}$	0.98	2.46	3.434 (3)	173
$C20A - D20A \cdots O6B^{vi}$	0.98	1.87	2.839 (13)	168

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{5}{2}, z + \frac{1}{2}$; (iii) -x + 1, -y, -z + 1; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) -x + 1, -y + 1, -z + 1; (vi) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

C3A—H3AA···O2) in the main molecule, which form S(6) rings (O1/C1/N2/C12/C17/H17A and O2/C11/C10/C10A/C3A/H3AA; Table 1; Fig. 2; Bernstein *et al.*, 1995). All bond lengths and angles in the main compound are comparable to those of the analogous compound ethyl 2-methyl-5,8-dioxo-6-phenyl-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylate (CSD refcode OJIPUV; Zaytsev *et al.*, 2021).

3. Supramolecular features and Hirshfeld surface analysis

In the crystal structure of the title compound, molecules are connected by pairs of intermolecular C-H···O hydrogen bonds, forming dimers with an $R_2^2(8)$ motif (Table 1, Fig. 3). These dimers form a three-dimensional network through O-H···O, O-H···S and C-H···O hydrogen bonds, directly with each other and through solvent molecules (Table 1). In addition, weak π - π stacking interactions are observed [$Cg5 \cdots Cg6(x, 1 + y, z) = 3.9937$ (10) Å with slippage of 2.034 Å and $Cg6 \cdots Cg5(x, -1 + y, z) = 3.9936$ (10) Å with slippage of 1.681 Å; Cg5 and Cg6 are the centroids of the C5A/C6/C7/C8/C9/C9A and C12-C17 benzene rings, respectively].

Figure 2

The molecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered DMSO molecule is shown.

Figure 3

A view along the *b*-axis of the crystal packing of the title compound. The $O-H\cdots O$, $O-H\cdots S$ and $C-H\cdots O$ hydrogen bonds are shown as dashed lines. Only the major component of the disordered DMSO molecule is shown.

Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions, and were generated using *Crystal Explorer* 17.5 (Spackman *et al.*, 2021). The 3D d_{norm} surfaces are plotted over a fixed color scale of -0.7960 (red) and 1.2965 (blue) a.u.

Two-dimensional fingerprint plots together with their percentage contributions are shown in Fig. 4. The crystal packing is dominated by $H \cdots H$ contacts, representing van der Waals interactions (41.7% contribution to the overall surface), followed by $O \cdots H/H \cdots O$, $C \cdots H/H \cdots C$ and $S \cdots H/H \cdots S$ interactions, which contribute to 27.7%, 17.0% and 7.5%, respectively. The other contacts ($C \cdots C$ 4.2%, $N \cdots C/C \cdots N$ 1.3%, $O \cdots O$ 0.7%, $N \cdots H/H \cdots N$ 0.1% and $S \cdots C/C \cdots S$ 0.1%) only make a minor contribution to the crystal packing.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom *et al.*, 2016) yielded six entries closely related to the title compound, *viz*. OJIPUV (Zaytsev *et al.*, 2021), JOGYIP (Zhou *et al.*, 2014), LESXIS (Horak *et al.*, 2013), QAFSUO (Zubkov *et al.*, 2016), QAFTAV (Zubkov *et al.*, 2016) and QUKPAP (Horak *et al.*, 2015).

In OJIPUV and JOGYIP, space group $P\overline{1}$, molecules are bonded by intermolecular C-H···O hydrogen bonds, C-H··· π interactions, and π - π stacking interactions, forming three-dimensional networks. In the crystal of LESXIS (*Pbca*), which contains two similar molecules per asymmetric unit, O-H···O hydrogen bonds connect the molecules into chains parallel to the *b*-axis. There are also weak $C-H\cdots\pi$ interactions in the crystal. In the crystal structures of QAFSUO ($P2_1/c$) and QAFTAV ($P2_1/n$), the three-dimensional packings are stabilized by $O-H\cdots O$ hydrogen bonds, $C-H\cdots O$ contacts and $C-H\cdots\pi$ interactions. The asymmetric unit of QUKPAP ($P2_1/c$) comprises two similar molecules, *A* and *B*, of the same chirality. The only considerable difference concerns the conformation of the allyl group. The carboxyl hydrogen atoms are involved in strong hydrogen bonds with the carbonyl atoms of neighboring molecules, giving rise to $(A\cdots B\cdots)_n$ chains.

In the six structures, the different groups bonded to the central twelve-membered ring systems account for the distinct intermolecular interactions in the crystals.

Figure 4

The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$, (d) $C \cdots H/H \cdots C$ and (e) $S \cdots H/H \cdots S$ interactions. [d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

5. Synthesis and crystallization

A solution of (3aRS,9bRS,10RS,10aRS)-2-(4-methoxyphenyl)-1-oxo-2,3,3a,4,10,10a-hexahvdro-1*H*-benzo[4,5]thieno[2,3-*f*]isoindole-10-carboxylic acid (30.0 mg, 0.08 mmol) in 0.5 ml of DMSO- d_6 was stirred for 30 days in an open flask. The reaction mixture was concentrated, diluted with EtOH (0.5 mL), and the solid was filtered, washed with Et₂O ($3 \times 1 \text{ mL}$), and air dried. The title compound was obtained as a colorless powder, yield 67%, 25.2 mg; m.p. > 523 K (with decomp.). IR (KBr), ν (cm⁻¹): 1722 (CO₂), 1644 (N-C=O), 1514. ¹H NMR (700.2 MHz, DMSO- d_6): δ (J, Hz) there are no OH peaks 12.78 (s, 1H, CO₂H), 8.04 (d, J = 7.6, 1H, H Ar), 7.92 (d, J = 7.6, 1H, H Ar), 7.59 (*d*, *J* = 9.1, 2H, H Ar), 7.42 (*t*, *J* = 7.6, 1H, H Ar), 7.34 (t, J = 7.6, 1H, H Ar), 6.97 (d, J = 9.1, 2H, H Ar), 2.47-2.44 (m, 1H, H-4) 4.28 (d, J = 4.8, 1H, H-10), 4.00 (t, J = 8.7, 1H, H-3A), 3.75 (s, 3H, CH₃), 3.73 (t, J = 8.7, 1H, H-3B), 3.40-3.37 (m, 1H, H-3a), 3.21 (dd, J = 16.0, 4.8, 1H, H-10a).¹³C {¹H} NMR (176.1 MHz, DMSO- d_6): δ 172.7, 172.2, 156.1, 139.6, 138.8, 138.4, 133.5, 126.7, 124.7, 124.6, 122.9, 122.7, 121.1 (2C), 114.3 (2C), 68.2, 55.7, 52.2, 47.8, 40.5, 32.7. MS (ESI) m/z: $[M + H]^+$ 494. Elemental analysis calculated (%) for C₂₂H₁₉NO₅S·C₂D₆OS: C 58.40, H 6.33, N 2.84, S 12.99; found: C 58.13, H 6.47, N 3.07, S 13.20.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the OH groups were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O-H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms bound to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.95-1.00 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The dimethyl sulfoxide solvent molecule exhibits disorder at two positions in the ratio 0.8903 (18):0.1097 (18). All the methyl hydrogen atoms of the solvent molecule were assigned as deuterium and refined. The C4B and C4C atoms of the two parts of the disordered solvent molecule were refined using EADP and EXYZ commands, and other similar bond lengths of the disordered solvent molecule were refined using SADI.

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, EY, PE and ANA; X-ray analysis, MG, ZA, GZM and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, EY and PE; supervision, MA and AB. This publication was supported by the Russian Science Foundation (https://rscf.ru/project/22-23-00179/).

References

Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). *Acta Cryst.* E67, 0744.

I able 2	Та	ble	2	
----------	----	-----	---	--

Crystal data	
Chemical formula	$C_{22}H_{19}NO_5S \cdot C_2D_6OS$
$M_{\rm r}$	493.61
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	16.3178 (4), 9.2747 (2), 14.8720 (4)
β (°)	93.771 (1)
$V(Å^3)$	2245.89 (10)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.28
Crystal size (mm)	$0.40 \times 0.28 \times 0.22$
Data collection	
Diffractometer	Bruker Kappa APEXII area- detector diffractometer
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.847, 0.941
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	69078, 6531, 5693
R _{int}	0.032
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.703
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.129, 1.12
No. of reflections	6531
No. of parameters	324
No. of restraints	15
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.54, -0.47

Computer programs: *APEX4* and *SAINT* (Bruker, 2008), *SHELXT2016/6* (Sheldrick, 2015*a*), *SHELXL2016/6* (Sheldrick, 2015*b*, *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

- Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* 46, 14888– 14896.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Epstein, W. W. & Sweat, F. W. (1967). Chem. Rev. 67, 247-260.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). *CrystEngComm*, **22**, 628–633.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.
- Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). *Tetrahedron Lett.* 56, 4499–4501.
- Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). *Tetrahedron Lett.* 58, 4103–4106.
- Horak, Y. I., Lytvyn, R. Z., Zubkov, F. I., Nikitina, E. V., Homza, Y. V., Lis, T., Kinzhybalo, V. & Obushak, M. D. (2013). *Acta Cryst.* E69, 0273–0274.
- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
- Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011*a*). *Cryst. Growth Des.* **11**, 4247–4252.

- Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764–773.
- Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). *Inorg. Chim. Acta*, **374**, 175–180.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.
- Mahmoudi, G., Khandar, A. A., Akbari Afkhami, F., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). *CrystEngComm*, 21, 108–117.
- Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). *Inorg. Chim. Acta*, **519**, 120279.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). *J. Mol. Struct.* **1048**, 108–112.
- Nadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn,

R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). *Synthesis*, **52**, 2196–2223.

- Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. Struct. 234, 1183–1185.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Zaytsev, V. P., Chervyakova, L. V., Sorokina, E. A., Vasilyev, K. A., Çelikesir, S. T., Akkurt, M. & Bhattarai, A. (2021). *Acta Cryst.* E77, 86–90.
- Zhou, L., Zhang, M., Li, W. & Zhang, J. (2014). *Angew. Chem. Int. Ed.* **53**, 6542–6545.
- Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). *Tetrahedron*, 72, 2239–2253.

Acta Cryst. (2023). E79, 1127-1131 [https://doi.org/10.1107/S2056989023009635]

Crystal structure and Hirshfeld surface analysis of 10-hydroxy-2-(4-methoxy-phenyl)-3-oxo-2,3,3a,4,10,10a-hexahydro-1*H*-9-thia-2-azacyclo-penta[*b*]fluorene-4-carboxylic acid dimethyl sulfoxide-*d*₆ monosolvate

Gunay Z. Mammadova, Elizaveta D. Yakovleva, Pavel P. Erokhin, Mikhail S. Grigoriev, Zeliha Atioğlu, Asmet N. Azizova, Mehmet Akkurt and Ajaya Bhattarai

Computing details

10-Hydroxy-2-(4-methoxyphenyl)-3-oxo-2,3,3a,4,10,10a-hexahydro-1*H*-9-thia-2-azacyclopenta[*b*]fluorene-4-carboxylic acid dimethyl sulfoxide-*d*₆ monosolvate

Crystal data

C₂₂H₁₉NO₅S·C₂D₆OS M_r = 493.61 Monoclinic, P2₁/c a = 16.3178 (4) Å b = 9.2747 (2) Å c = 14.8720 (4) Å β = 93.771 (1)° V = 2245.89 (10) Å³ Z = 4

Data collection

Bruker Kappa APEXII area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.847, T_{\max} = 0.941$ 69078 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.129$ S = 1.126531 reflections 324 parameters 15 restraints F(000) = 1024 $D_x = 1.460 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9765 reflections $\theta = 2.6-30.1^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 100 KFragment, colourless $0.40 \times 0.28 \times 0.22 \text{ mm}$

6531 independent reflections 5693 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 30.0^\circ, \ \theta_{min} = 4.2^\circ$ $h = -22 \rightarrow 22$ $k = -13 \rightarrow 13$ $l = -20 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0518P)^2 + 1.8241P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.54$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1A	0.06873 (3)	0.67027 (5)	0.20351 (4)	0.03201 (16)	0.8903 (18)
S1B	-0.0094(3)	0.7350 (5)	0.2022 (3)	0.0386 (13)*	0.1097 (18)
S5	0.21789 (3)	1.16195 (5)	0.65744 (3)	0.03355 (13)	
01	0.36715 (8)	0.72156 (13)	0.33936 (8)	0.0253 (3)	
O2	0.14801 (9)	0.83115 (17)	0.39946 (10)	0.0367 (3)	
03	0.20598 (9)	0.93552 (15)	0.28380 (8)	0.0338 (3)	
Н3	0.165707	0.899140	0.253855	0.041*	
O4	0.47133 (8)	0.05607 (13)	0.38739 (8)	0.0275 (3)	
O5A	0.25163 (15)	0.8579 (2)	0.70428 (13)	0.0338 (6)	0.637 (4)
H5A	0.283755	0.813423	0.741012	0.041*	0.637 (4)
O5B	0.3604 (2)	0.9025 (4)	0.6728 (2)	0.0282 (9)	0.363 (4)
H5B	0.358402	0.867406	0.724666	0.034*	0.363 (4)
O6A	0.08659 (10)	0.82728 (16)	0.18542 (11)	0.0337 (4)	0.8903 (18)
O6B	0.0447 (10)	0.8676 (13)	0.2106 (10)	0.044 (3)*	0.1097 (18)
N2	0.35684 (8)	0.60178 (14)	0.47516 (9)	0.0193 (3)	
C1	0.35193 (10)	0.71814 (17)	0.41916 (10)	0.0193 (3)	
C3A	0.29022 (10)	0.77925 (18)	0.55483 (10)	0.0218 (3)	
H3AA	0.232017	0.752657	0.536985	0.026*	
C3	0.34047 (11)	0.64061 (18)	0.56878 (10)	0.0231 (3)	
H3A	0.392113	0.658285	0.605867	0.028*	
H3B	0.308591	0.564525	0.597492	0.028*	
C4B	0.29054 (12)	0.8898 (2)	0.63036 (11)	0.0302 (4)	0.637 (4)
H4A	0.349158	0.910797	0.649808	0.036*	0.637 (4)
C4C	0.29054 (12)	0.8898 (2)	0.63036 (11)	0.0302 (4)	0.363 (4)
H4B	0.251734	0.853878	0.674610	0.036*	0.363 (4)
C4A	0.25370 (11)	1.02578 (19)	0.58966 (11)	0.0258 (3)	
C5A	0.19138 (11)	1.26951 (19)	0.56388 (11)	0.0264 (3)	
C6	0.15675 (13)	1.4072 (2)	0.56345 (14)	0.0338 (4)	
H6A	0.143922	1.452519	0.618055	0.041*	
C7	0.14169 (12)	1.4755 (2)	0.48199 (14)	0.0331 (4)	
H7A	0.117404	1.568665	0.480419	0.040*	
C8	0.16150 (12)	1.41029 (19)	0.40123 (13)	0.0295 (4)	
H8A	0.151707	1.460284	0.345810	0.035*	
C9B	0.24595 (10)	1.06021 (17)	0.50055 (10)	0.0204 (3)	
C9A	0.21054 (10)	1.20072 (17)	0.48381 (11)	0.0213 (3)	
C9	0.19531 (10)	1.27320 (18)	0.40184 (11)	0.0238 (3)	
H9A	0.208082	1.228670	0.346961	0.029*	
C10A	0.32805 (9)	0.84675 (16)	0.47404 (10)	0.0187 (3)	
H10A	0.380248	0.894315	0.497193	0.022*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.27474 (9)	0.96355 (16)	0.42751 (10)	0.0184 (3)	
H10B	0.309492	1.021507	0.387981	0.022*	
C11	0.20217 (10)	0.90191 (17)	0.36979 (11)	0.0216 (3)	
C12	0.38481 (9)	0.46286 (16)	0.45148 (10)	0.0189 (3)	
C13	0.42078 (10)	0.37136 (18)	0.51699 (11)	0.0218 (3)	
H13A	0.426719	0.402232	0.577975	0.026*	
C14	0.44797 (10)	0.23566 (18)	0.49391 (11)	0.0224 (3)	
H14A	0.471177	0.173102	0.539320	0.027*	
C15	0.44140 (10)	0.19057 (16)	0.40438 (11)	0.0206 (3)	
C16	0.40420 (10)	0.28012 (17)	0.33900 (11)	0.0227 (3)	
H16A	0.398353	0.249190	0.278021	0.027*	
C17	0.37553 (10)	0.41479 (17)	0.36268 (10)	0.0214 (3)	
H17A	0.349271	0.474921	0.317799	0.026*	
C18	0.46796 (13)	0.0111 (2)	0.29506 (13)	0.0319 (4)	
H18A	0.490909	-0.086181	0.291209	0.048*	
H18B	0.410733	0.010725	0.270532	0.048*	
H18C	0.499947	0.078007	0.260286	0.048*	
C19A	0.02185 (17)	0.6061 (3)	0.0999 (2)	0.0471 (7)	0.8903 (18)
D19A	0.008139	0.503811	0.105923	0.071*	0.8903 (18)
D19B	-0.028387	0.661165	0.084572	0.071*	0.8903 (18)
D19C	0.059929	0.617892	0.052192	0.071*	0.8903 (18)
C20A	-0.01808 (16)	0.6679 (3)	0.26878 (19)	0.0470 (6)	0.8903 (18)
D20A	-0.032251	0.567942	0.282401	0.070*	0.8903 (18)
D20B	-0.005525	0.720540	0.325154	0.070*	0.8903 (18)
D20C	-0.064553	0.713967	0.234952	0.070*	0.8903 (18)
C19B	0.0423 (13)	0.6018 (18)	0.2686 (12)	0.049 (4)*	0.1097 (18)
D19D	0.010074	0.512543	0.265939	0.074*	0.1097 (18)
D19E	0.096287	0.583660	0.245646	0.074*	0.1097 (18)
D19F	0.049335	0.635024	0.331200	0.074*	0.1097 (18)
C20B	0.0041 (16)	0.666 (2)	0.0930 (9)	0.049 (4)*	0.1097 (18)
D20D	-0.029537	0.579159	0.082990	0.074*	0.1097 (18)
D20E	-0.012775	0.738825	0.047762	0.074*	0.1097 (18)
D20F	0.062047	0.641717	0.087819	0.074*	0.1097 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0229 (2)	0.0222 (2)	0.0503 (3)	-0.00093 (17)	-0.0028 (2)	0.0081 (2)
S5	0.0489 (3)	0.0338 (2)	0.01792 (19)	0.0139 (2)	0.00149 (17)	-0.00626 (16)
01	0.0395 (7)	0.0201 (5)	0.0168 (5)	0.0014 (5)	0.0053 (5)	-0.0001 (4)
O2	0.0332 (7)	0.0444 (8)	0.0314 (7)	-0.0135 (6)	-0.0070 (6)	0.0084 (6)
O3	0.0458 (8)	0.0352 (7)	0.0188 (6)	-0.0119 (6)	-0.0097 (5)	0.0031 (5)
O4	0.0368 (7)	0.0202 (6)	0.0260 (6)	0.0073 (5)	0.0066 (5)	0.0023 (4)
O5A	0.0472 (13)	0.0372 (12)	0.0179 (9)	0.0081 (9)	0.0094 (8)	0.0081 (8)
O5B	0.0288 (18)	0.036 (2)	0.0193 (16)	-0.0038 (14)	-0.0041 (12)	-0.0009 (13)
O6A	0.0408 (9)	0.0232 (7)	0.0346 (8)	-0.0094 (6)	-0.0158 (7)	0.0074 (6)
N2	0.0236 (6)	0.0192 (6)	0.0149 (5)	0.0026 (5)	-0.0004(5)	0.0004 (5)
C1	0.0218 (7)	0.0183 (7)	0.0174 (6)	0.0003 (5)	-0.0009 (5)	-0.0003 (5)

C3A	0.0264 (7)	0.0258 (7)	0.0131 (6)	0.0056 (6)	0.0004 (5)	0.0014 (5)
C3	0.0288 (8)	0.0258 (8)	0.0146 (6)	0.0067 (6)	0.0007 (6)	0.0018 (6)
C4B	0.0406 (10)	0.0370 (9)	0.0127 (7)	0.0155 (8)	-0.0008 (6)	-0.0016 (6)
C4C	0.0406 (10)	0.0370 (9)	0.0127 (7)	0.0155 (8)	-0.0008 (6)	-0.0016 (6)
C4A	0.0320 (8)	0.0278 (8)	0.0172 (7)	0.0080 (7)	-0.0010 (6)	-0.0045 (6)
C5A	0.0312 (8)	0.0256 (8)	0.0222 (7)	0.0038 (7)	0.0006 (6)	-0.0037 (6)
C6	0.0391 (10)	0.0281 (9)	0.0345 (10)	0.0060 (8)	0.0054 (8)	-0.0086 (7)
C7	0.0355 (9)	0.0217 (8)	0.0424 (11)	0.0042 (7)	0.0044 (8)	-0.0021 (7)
C8	0.0324 (9)	0.0221 (8)	0.0337 (9)	0.0021 (7)	0.0005 (7)	0.0032 (7)
C9B	0.0212 (7)	0.0220 (7)	0.0179 (7)	0.0023 (6)	-0.0005 (5)	-0.0041 (5)
C9A	0.0196 (7)	0.0221 (7)	0.0218 (7)	0.0002 (5)	-0.0009(5)	-0.0037 (6)
C9	0.0249 (7)	0.0215 (7)	0.0249 (8)	0.0006 (6)	0.0014 (6)	-0.0008 (6)
C10A	0.0212 (7)	0.0193 (7)	0.0153 (6)	0.0022 (5)	-0.0004 (5)	-0.0011 (5)
C10	0.0213 (7)	0.0192 (7)	0.0144 (6)	0.0011 (5)	-0.0015 (5)	-0.0012 (5)
C11	0.0248 (7)	0.0186 (7)	0.0205 (7)	0.0014 (6)	-0.0047 (6)	-0.0001 (5)
C12	0.0187 (6)	0.0182 (7)	0.0196 (7)	0.0002 (5)	-0.0009 (5)	0.0014 (5)
C13	0.0233 (7)	0.0239 (7)	0.0177 (7)	0.0020 (6)	-0.0023 (5)	0.0015 (6)
C14	0.0217 (7)	0.0228 (7)	0.0224 (7)	0.0036 (6)	-0.0015 (6)	0.0049 (6)
C15	0.0197 (7)	0.0176 (7)	0.0248 (7)	0.0006 (5)	0.0033 (6)	0.0018 (6)
C16	0.0289 (8)	0.0196 (7)	0.0195 (7)	-0.0010 (6)	0.0013 (6)	0.0004 (6)
C17	0.0261 (7)	0.0186 (7)	0.0188 (7)	0.0000 (6)	-0.0026 (6)	0.0018 (5)
C18	0.0453 (11)	0.0226 (8)	0.0289 (9)	0.0050 (7)	0.0111 (8)	-0.0007 (7)
C19A	0.0414 (14)	0.0399 (14)	0.0605 (17)	-0.0108 (11)	0.0066 (12)	-0.0198 (12)
C20A	0.0358 (12)	0.0560 (16)	0.0497 (15)	-0.0034 (11)	0.0075 (11)	0.0072 (12)

Geometric parameters (Å, °)

S1A—O6A	1.5127 (15)	C7—C8	1.401 (3)
S1A-C20A	1.769 (3)	С7—Н7А	0.9500
S1A—C19A	1.777 (3)	C8—C9	1.386 (2)
S1B	1.515 (12)	C8—H8A	0.9500
S1B—C19B	1.762 (12)	C9B—C9A	1.441 (2)
S1B-C20B	1.774 (13)	C9B—C10	1.507 (2)
S5—C4A	1.7407 (17)	C9A—C9	1.400 (2)
S5—C5A	1.7434 (18)	С9—Н9А	0.9500
01—C1	1.2288 (19)	C10A—C10	1.526 (2)
O2—C11	1.207 (2)	C10A—H10A	1.0000
O3—C11	1.322 (2)	C10—C11	1.527 (2)
O3—H3	0.8400	C10—H10B	1.0000
O4—C15	1.3692 (19)	C12—C13	1.392 (2)
O4—C18	1.433 (2)	C12—C17	1.393 (2)
O5A—C4B	1.338 (3)	C13—C14	1.385 (2)
O5A—H5A	0.8400	C13—H13A	0.9500
O5B—C4C	1.271 (4)	C14—C15	1.393 (2)
O5B—H5B	0.8400	C14—H14A	0.9500
N2—C1	1.362 (2)	C15—C16	1.388 (2)
N2-C12	1.419 (2)	C16—C17	1.387 (2)
N2—C3	1.479 (2)	C16—H16A	0.9500

C1—C10A	1.511 (2)	С17—Н17А	0.9500
C3A—C4C	1.521 (2)	C18—H18A	0.9800
C3A—C4B	1.521 (2)	C18—H18B	0.9800
C3A-C10A	1.521 (2)	C18—H18C	0.9800
C3A—C3	1.532 (2)	C19A—D19A	0.9800
СЗА—НЗАА	1.0000	C19A—D19B	0.9800
C3—H3A	0.9900	$C19A \rightarrow D19C$	0.9800
C3—H3B	0 9900	C20A - D20A	0.9800
C4B—C4A	1 507 (2)	C_{20A} D20B	0.9800
C4B—H4A	1 0000	C_{20A} D_{20C}	0.9800
C4C - C4A	1.507(2)	C19B - D19D	0.9800
C4C - H4B	1,0000	C19B - D19E	0.9800
C4A - C9B	1 361 (2)	C19B D19E	0.9800
C_{1}^{1}	1.301 (2)	C_{20B} D_{20D}	0.9800
$C_{5A} = C_{0A}$	1.390(3) 1.404(2)	$C_{20B} = D_{20B}$	0.9800
C6 C7	1.404(2) 1.275(2)	$C_{20B} = D_{20E}$	0.9800
	1.575 (5)	C20B—D20F	0.9800
Со—поА	0.9300		
064 814 6204	106 26 (13)	C8 C0 C0A	110 61 (16)
O6A = S1A = C10A	100.20(13) 104.20(12)	C_{8} C_{9} H_{0A}	119.01 (10)
C_{20A} S_{1A} C_{10A}	104.20(12)	$C_0 = C_0 = H_0 A$	120.2
C_{20A} S_{1A} C_{19A}	99.05 (15) 105 ((8)	$C_{9A} = C_{9} = H_{9A}$	120.2
O(B = S1B = C19B)	105.0 (8)	C1 = C10A = C10	103.35(12)
06B - SIB - C20B	105.2 (8)	CI = CI0A = CI0	118.36 (12)
C19B = S1B = C20B	100.2 (9)	C_{3A} $-C_{10A}$ $-C_{10}$	113.66 (13)
C4A—S5—C5A	91.61 (8)	CI-CI0A-HI0A	106.9
С11—О3—Н3	109.5	C3A—C10A—H10A	106.9
C15—O4—C18	116.77 (13)	C10—C10A—H10A	106.9
C4B—O5A—H5A	109.5	C9B—C10—C10A	106.90 (12)
C4C—O5B—H5B	109.5	C9B—C10—C11	111.15 (13)
C1—N2—C12	125.06 (13)	C10A—C10—C11	112.76 (13)
C1—N2—C3	112.06 (13)	C9B—C10—H10B	108.6
C12—N2—C3	122.38 (13)	C10A—C10—H10B	108.6
O1—C1—N2	127.11 (15)	C11—C10—H10B	108.6
O1—C1—C10A	125.25 (14)	O2—C11—O3	124.33 (15)
N2-C1-C10A	107.58 (13)	O2—C11—C10	123.87 (15)
C4C—C3A—C10A	108.91 (14)	O3—C11—C10	111.81 (14)
C4B—C3A—C10A	108.91 (14)	C13—C12—C17	118.87 (14)
C4C—C3A—C3	119.35 (13)	C13—C12—N2	120.50 (14)
C4B—C3A—C3	119.35 (13)	C17—C12—N2	120.62 (13)
C10A—C3A—C3	102.18 (12)	C14—C13—C12	120.51 (15)
С4В—С3А—НЗАА	108.6	C14—C13—H13A	119.7
С10А—С3А—НЗАА	108.6	C12—C13—H13A	119.7
С3—С3А—НЗАА	108.6	C13—C14—C15	120.25 (14)
N2—C3—C3A	101.83 (12)	C13—C14—H14A	119.9
N2—C3—H3A	111.4	C15—C14—H14A	119.9
СЗА—СЗ—НЗА	111.4	O4—C15—C16	124.11 (15)
N2—C3—H3B	111.4	O4—C15—C14	116.36 (14)
СЗА—СЗ—НЗВ	111.4	C16—C15—C14	119.51 (14)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	H3A—C3—H3B	109.3	C17—C16—C15	120.02 (15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O5A—C4B—C4A	108.46 (16)	C17—C16—H16A	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5A—C4B—C3A	118.61 (19)	C15—C16—H16A	120.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4A—C4B—C3A	106.60 (13)	C16—C17—C12	120.76 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5A—C4B—H4A	107.6	С16—С17—Н17А	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A—C4B—H4A	107.6	С12—С17—Н17А	119.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3A—C4B—H4A	107.6	O4—C18—H18A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05B—C4C—C4A	116.3 (2)	O4—C18—H18B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05B-C4C-C3A	112.9 (2)	H18A—C18—H18B	109.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4A - C4C - C3A	106.60 (13)	04—C18—H18C	109.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05B-C4C-H4B	106.9	H18A - C18 - H18C	109.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A - C4C - H4B	106.9	H18B-C18-H18C	109.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3A} — C_{4C} — H_{4B}	106.9	S1A-C19A-D19A	109.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C9B-C4A-C4C	126.63 (15)	SIA-C19A-D19B	109.5
$ \begin{array}{cccccc} C3B-C4A-S5 & 112.36 (13) & S1A-C19A-D19C & 109.5 \\ C4C-C4A-S5 & 120.99 (12) & D19A-C19A-D19C & 109.5 \\ C4B-C4A-S5 & 120.99 (12) & D19B-C19A-D19C & 109.5 \\ C6-C5A-C9A & 121.61 (17) & S1A-C20A-D20A & 109.5 \\ C6-C5A-S5 & 127.31 (14) & S1A-C20A-D20B & 109.5 \\ C9A-C5A-S5 & 127.31 (14) & S1A-C20A-D20B & 109.5 \\ C7-C6-C5A & 118.33 (17) & S1A-C20A-D20C & 109.5 \\ C7-C6-H6A & 120.8 & D20A-C20A-D20C & 109.5 \\ C5A-C5-H6A & 120.8 & D20B-C20A-D20C & 109.5 \\ C6-C7-C8 & 121.20 (17) & S1B-C19B-D19D & 109.5 \\ C6-C7-C8 & 121.20 (17) & S1B-C19B-D19E & 109.5 \\ C9-C8-C7 & 120.31 (17) & S1B-C19B-D19E & 109.5 \\ C9-C8-C7 & 120.31 (17) & S1B-C19B-D19F & 109.5 \\ C9-C8-C7 & 120.31 (17) & S1B-C19B-D19F & 109.5 \\ C7-C6-H8A & 119.8 & D19D-C19B-D19F & 109.5 \\ C9-C8-H8A & 119.8 & D19E-C19B-D19F & 109.5 \\ C4A-C9B-C10 & 123.29 (14) & S1B-C20B-D20E & 109.5 \\ C9A-C9B-C10 & 123.29 (14) & S1B-C20B-D20E & 109.5 \\ C9-C9A-C9B & 119.4 & D20D-C20B-D20E & 109.5 \\ C9-C8-H8A & 119.8 & D19E-C19B-D19F & 109.5 \\ C9-C8-C7 & 100.1 & 13.02 (14) & S1B-C20B-D20E & 109.5 \\ C9A-C9B-C10 & 123.29 (14) & S1B-C20B-D20E & 109.5 \\ C9A-C9B-C10 & 123.65 (14) & D20D-C20B-D20E & 109.5 \\ C9-C9A-C9B & 119.4 (15) & D20E-C20B-D20F & 109.5 \\ C12-N2-C1-O1 & 3.3 (3) & C10-C9B-C9A-C5A & -178.18 (15) \\ C3-N2-C1-O1 & 175.30 (16) & C4A-C9B-C9A & -0.6 (2) \\ C12-N2-C1-C10A & -174.00 (13) & C10-C9B-C9A-C5A & -178.18 (15) \\ C3-N2-C1-C10A & -174.00 (13) & C10-C9B-C9A-C5A & -178.18 (15) \\ C3-N2-C1-C10A & -174.00 (13) & C10-C9B-C9A-C5A & -178.18 (15) \\ C3-N2-C1-C10A & -174.00 (15) & 01-C1-C10A-C3A & -20.34 (16) \\ C10A-C3A-C3-N2 & -154.00 (15) & N2-C1-C10A-C3A & -20.34 (16) \\ C10A-C3A-C3-N2 & -154.00 (15) & N2-C1-C10A-C3A & -20.34 (16) \\ C10A-C3A-C3-N2 & -154.00 (15) & N2-C1-C10A-C10 & 35.5 (2) \\ C10A-C3A-C4B-O5A & -70.7 (2) & C4C-C3A-C10A-C10 & -147.14 (14) \\ C3-C3A-C4B-O5A & -70.7 (2) & C4C-C3A-C10A-C10 & -147.14 (14) \\ C3-C3A-C4B-O5A & -70.7 (2) & C4C-C3A-C10A-C10 & -147.14 (14) \\ C3-C3A-C4B-O5A & -70.7 (2) & C4C-C3A-C10A-C10 & -147.14 (14) \\ C3-C3A-C4B-O5A & -70.7 (2) & C4C-C3A-$	C9B-C4A-C4B	126.63 (15)	D19A - C19A - D19B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9B-C4A-S5	112 36 (13)	S14-C194-D19C	109.5
$\begin{array}{c} C4B-C4A-S5 & 120.97 (12) & D19A-C19A-D19C & 109.5 \\ C4B-C4A-S5 & 120.99 (12) & D19B-C19A-D19C & 109.5 \\ C6-C5A-C9A & 121.61 (17) & S1A-C20A-D20B & 109.5 \\ C6-C5A-S5 & 127.31 (14) & S1A-C20A-D20B & 109.5 \\ C7-C6-C5A & 118.33 (17) & S1A-C20A-D20C & 109.5 \\ C7-C6-H6A & 120.8 & D20A-C20A-D20C & 109.5 \\ C5A-C6-H6A & 120.8 & D20A-C20A-D20C & 109.5 \\ C6-C7-C8 & 121.20 (17) & S1B-C19B-D19D & 109.5 \\ C6-C7-H7A & 119.4 & S1B-C19B-D19E & 109.5 \\ C8-C7-H7A & 119.4 & D19D-C19B-D19E & 109.5 \\ C9-C8-C7 & 120.31 (17) & S1B-C19B-D19F & 109.5 \\ C9-C8-C7 & 120.31 (17) & S1B-C19B-D19F & 109.5 \\ C7-C8-H8A & 119.8 & D19D-C19B-D19F & 109.5 \\ C9-C8-H8A & 119.8 & D19E-C19B-D19F & 109.5 \\ C9-C8-C7 & 120.31 (17) & S1B-C20B-D20D & 109.5 \\ C9-C8-H8A & 119.8 & D19E-C19B-D19F & 109.5 \\ C9-C8-C9B-C10 & 123.29 (14) & S1B-C20B-D20E & 109.5 \\ C9-C9A-C5A & 118.92 (15) & S1B-C20B-D20E & 109.5 \\ C9-C9A-C5A & 118.92 (15) & S1B-C20B-D20F & 109.5 \\ C9-C9A-C5B & 129.13 (15) & D20D-C20B-D20F & 109.5 \\ C9-C9A-C9B & 129.13 (15) & D20D-C20B-D20F & 109.5 \\ C12-N2-C1-O1 & 3.3 (3) & C10-C9B-C9A-C5A & -178.18 (15) \\ C3-N2-C1-C10A & -174.00 (13) & C10-C9B-C9A-C5A & -0.6 (2) \\ C12-N2-C1-C10A & -1.96 (18) & C7-C8-C9-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9 & 0.6 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.14 (17) & C5A-C9A-C9A & -0.8 (2) \\ C12-N2-C1-C10A & -1.96 (18) & C7-C2B-C9A & -0.8 (2) \\ C12-N2-C1-C10A & -1.96 (18) & C7-C2B-C9A & -0.8 (3) \\ C1-N2-C3-C3A & 23.34 & -164.58 (14) & C9B-C9A-C5A & -179.12 (17) \\ C4A-C3A-C3-N2 & -154.00 (15) & N2-C1-C10A-C3A & -20.34 (16) \\ C10A-C3A-C3-N2 & -154$	$C_{AC} = C_{AA} = S_{A}$	112.50(15) 120.99(12)	$D_{100} = C_{100} = D_{100}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{+}C_{-}C_{+}A_{-}S_{-}S_{-}S_{-}S_{-}S_{-}S_{-}S_{-}S$	120.99(12) 120.00(12)	$D_{19}^{19} = C_{19}^{19} = D_{19}^{19} = C_{19}^{19} = D_{19}^{19} = C_{19}^{19} = $	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4D - C4A - S3	120.99(12) 121.61(17)	$S_{14} = C_{19} = C$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6 C5A S5	121.01(17) 127.21(14)	S1A = C20A = D20A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0 = C_5 = S_5$	127.31(14) 111.07(12)	$D_{20A} = C_{20A} = D_{20B}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{3} = C_{5} = C_{5}$	111.07(13) 118.22(17)	$D_{20}A - C_{20}A - D_{20}B$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{-}C_{0}$	110.55 (17)	$D_{20A} = C_{20A} = D_{20C}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C = C = H C A	120.8	$D_{20}A = C_{20}A = D_{20}C$	109.5
C6—C7—C8121.20 (17)S1B—C19B—D19D109.5C6—C7—H7A119.4S1B—C19B—D19E109.5C8—C7—H7A119.4D19D—C19B—D19E109.5C9—C8—C7120.31 (17)S1B—C19B—D19F109.5C9—C8—H8A119.8D19D—C19B—D19F109.5C7—C8—H8A119.8D19D—C19B—D19F109.5C4A—C9B—C9A113.02 (14)S1B—C20B—D20D109.5C4A—C9B—C10123.29 (14)S1B—C20B—D20E109.5C9—C9A—C5A118.92 (15)S1B—C20B—D20F109.5C9—C9A—C5A118.92 (15)S1B—C20B—D20F109.5C5A—C9A—C9B129.13 (15)D20D—C20B—D20F109.5C12—N2—C1—O13.3 (3)C10—C9B—C9A—C5A-0.6 (2)C12—N2—C1—O1175.30 (16)C4A—C9B—C9A—C5A-0.6 (2)C12—N2—C1—C10A-174.00 (13)C10—C9B—C9A—C5A-178.18 (15)C3—N2—C1—C10A-1.96 (18)C7—C8—C9—C9A-0.8 (3)C1—N2—C3—C3A23.14 (17)C5A—C9A—C9=c8-0.3 (2)C12—N2—C3—C3A-164.58 (14)C9B—C9A—C9—C8-179.02 (17)C4C—C3A—C3—N2-154.00 (15)O1—C1—C10A—C3A162.34 (16)C4B—C3A—C3—N2-154.00 (15)O1—C1—C10A—C1035.5 (2)C10A—C3A—C4B—O5A172.66 (17)N2—C1—C10A—C10-147.14 (14)	$C_{A} = C_{0} = H_{0}A$	120.8	D_{20B} C_{20A} D_{20C}	109.5
C0=C7-H7A119.4S1B=C19B=D19E109.5C8=C7-H7A119.4D19D=C19B=D19E109.5C9=C8=C7120.31 (17)S1B=C19B=D19F109.5C9=C8=H8A119.8D19D=C19B=D19F109.5C7=C8=H8A119.8D19E=C19B=D20D109.5C4A=C9B=C9A113.02 (14)S1B=C20B=D20E109.5C4A=C9B=C10123.29 (14)S1B=C20B=D20E109.5C9=C9A=C5A118.92 (15)S1B=C20B=D20F109.5C9=C9A=C5A118.92 (15)S1B=C20B=D20F109.5C9=C9A=C9B129.13 (15)D20D=C20B=D20F109.5C12=N2=C1=O13.3 (3)C10=C9B=C9A=C5A-0.6 (2)C12=N2=C1=O1175.30 (16)C4A=C9B=C9A=C5A-0.6 (2)C12=N2=C1=C10A-174.00 (13)C10=C9B=C9A=C5A-0.8 (3)C1=N2=C1=C10A-1.96 (18)C7=C8=C9=C9A-0.8 (3)C1=N2=C3=C3A23.14 (17)C5A=C9A=C9=C8-0.3 (2)C12=N2=C3=C3A-164.58 (14)C9B=C9A=C9=C8-179.02 (17)C4C=C3A=C3=N2-154.00 (15)O1=C1=C10A=C3A-20.34 (16)C10A=C3A=C3=N2-154.00 (15)N2=C1=C10A=C1035.5 (2)C10A=C3A=C3=N2-33.89 (15)O1=C1=C10A=C10-147.14 (14)C3=C3A=C4B=O5A-707 (2)C4C=C3A=C10A=C1160.51 (13)	C_{0}	121.20 (17)	SIB-CI9B-DI9D	109.5
C8-C/-H/A119.4D19D-C19B-D19E109.5C9-C8-C7120.31 (17)S1B-C19B-D19F109.5C9-C8-H8A119.8D19D-C19B-D19F109.5C7-C8-H8A119.8D19D-C19B-D19F109.5C4A-C9B-C9A113.02 (14)S1B-C20B-D20D109.5C4A-C9B-C10123.29 (14)S1B-C20B-D20E109.5C9-C9A-C9B-C10123.65 (14)D20D-C20B-D20E109.5C9-C9A-C9B118.92 (15)S1B-C20B-D20F109.5C9-C9A-C9B129.13 (15)D20D-C20B-D20F109.5C5A-C9A-C9B111.94 (15)D20E-C20B-D20F109.5C12-N2-C1-O13.3 (3)C10-C9B-C9A-C5A-0.6 (2)C12-N2-C1-O1175.30 (16)C4A-C9B-C9A-C5A-0.6 (2)C12-N2-C1-C10A-174.00 (13)C10-C9B-C9A-C5A-0.6 (2)C12-N2-C3-C3A23.14 (17)C5A-C9A-C9-C8-0.3 (2)C12-N2-C3-C3A-164.58 (14)C9B-C9A-C9-C8-179.02 (17)C4C-C3A-C3-N2-154.00 (15)O1-C1-C10A-C3A162.34 (16)C4B-C3A-C3-N2-154.00 (15)N2-C1-C10A-C3A-20.34 (16)C10A-C3A-C4B-O5A172.66 (17)N2-C1-C10A-C1035.5 (2)C10A-C3A-C4B-O5A-70.7 (2)C4C-C3A-C10-147.14 (14)	$C_0 - C_1 - H_1 A$	119.4	SIB—CI9B—DI9E	109.5
C9-C8-C7120.31 (17)S1B-C19B-D19F109.5C9-C8-H8A119.8D19D-C19B-D19F109.5C7-C8-H8A119.8D19E-C19B-D19F109.5C4A-C9B-C9A113.02 (14)S1B-C20B-D20D109.5C4A-C9B-C10123.29 (14)S1B-C20B-D20E109.5C9A-C9B-C10123.65 (14)D20D-C20B-D20F109.5C9-C9A-C5A118.92 (15)S1B-C20B-D20F109.5C9-C9A-C9B129.13 (15)D20D-C20B-D20F109.5C9-C9A-C9B111.94 (15)D20E-C20B-D20F109.5C12-N2-C1-O13.3 (3)C10-C9B-C9A-C5A-0.6 (2)C12-N2-C1-O1175.30 (16)C4A-C9B-C9A-C5A-0.6 (2)C12-N2-C1-C10A-174.00 (13)C10-C9B-C9A-C5A-178.18 (15)C3-N2-C1-C10A-1.96 (18)C7-C8-C9-C9A-0.8 (3)C1-N2-C3-C3A23.14 (17)C5A-C9A-C9-C8-0.3 (2)C12-N2-C3-C3A-164.58 (14)C9B-C9A-C9-C8-179.02 (17)C4C-C3A-C3-N2-154.00 (15)O1-C1-C10A-C3A-20.34 (16)C4B-C3A-C3-N2-154.00 (15)N2-C1-C10A-C1035.5 (2)C10A-C3A-C3-N2-33.89 (15)O1-C1-C10A-C1035.5 (2)C10A-C3A-C4B-O5A172.66 (17)N2-C1-C10A-C10-147.14 (14)	C8 - C / - H / A	119.4	DI9D—CI9B—DI9E	109.5
C9—C8—H8A 119.8 D19D—C19B—D19F 109.5 C7—C8—H8A 119.8 D19E—C19B—D19F 109.5 C4A—C9B—C9A 113.02 (14) S1B—C20B—D20D 109.5 C4A—C9B—C10 123.29 (14) S1B—C20B—D20E 109.5 C9A—C9B—C10 123.65 (14) D20D—C20B—D20E 109.5 C9—C9A—C5A 118.92 (15) S1B—C20B—D20F 109.5 C9—C9A—C9B 129.13 (15) D20D—C20B—D20F 109.5 C5A—C9A—C9B 119.4 (15) D20E—C20B—D20F 109.5 C12—N2—C1—O1 3.3 (3) C10—C9B—C9A—C5A -0.6 (2) C12—N2—C1—O1 175.30 (16) C4A—C9B—C9A—C5A -0.6 (2) C12—N2—C1—O1 175.30 (16) C4A—C9B—C9A—C5A -0.6 (2) C12—N2—C1—C10A -174.00 (13) C10—C9B—C9A—C5A -178.18 (15) C3—N2—C1—C10A -1.96 (18) C7—C8—C9—C9A -0.8 (3) C1—N2—C3—C3A 23.14 (17) C5A—C9A—C9—C8 -0.3 (2) C12—N2—C3—C3A 21.400 (15) O1—C1—C10A—C3A 162.34 (16) C4A—C3A—C3—N2 -154.00 (15) N2—C1—C10A—C3A -20.34 (16) C4B—C3A—	C9—C8—C7	120.31 (17)	SIB—CI9B—DI9F	109.5
C' - C8 - H8A 119.8 D19E - C19B - D19F 109.5 $C4A - C9B - C9A$ 113.02 (14) S1B - C20B - D20D 109.5 $C4A - C9B - C10$ 123.29 (14) S1B - C20B - D20E 109.5 $C9A - C9B - C10$ 123.65 (14) D20D - C20B - D20E 109.5 $C9A - C9B - C10$ 123.65 (14) D20D - C20B - D20E 109.5 $C9 - C9A - C5A$ 118.92 (15) S1B - C20B - D20F 109.5 $C9 - C9A - C9B$ 129.13 (15) D20D - C20B - D20F 109.5 $C5A - C9A - C9B$ 111.94 (15) D20E - C20B - D20F 109.5 $C12 - N2 - C1 - O1$ 3.3 (3) C10 - C9B - C9A - C5A -0.6 (2) $C12 - N2 - C1 - O1$ 3.3 (3) C10 - C9B - C9A - C5A -0.6 (2) $C12 - N2 - C1 - C10A$ -174.00 (13) C10 - C9B - C9A - C5A -0.6 (2) $C12 - N2 - C1 - C10A$ -1.96 (18) C7 - C8 - C9 - C9A -0.8 (3) $C1 - N2 - C3 - C3A$ 23.14 (17) C5A - C9A - C9 - C8 -0.3 (2) $C12 - N2 - C3 - C3A$ 23.14 (17) C5A - C9A - C9 - C8 -179.02 (17) $C4C - C3A - C3 - N2$ -154.00 (15) O1 - C1 - C10A - C3A 162.	C9—C8—H8A	119.8	DI9D—CI9B—DI9F	109.5
C4A—C9B—C9A113.02 (14)S1B—C20B—D20D109.5C4A—C9B—C10123.29 (14)S1B—C20B—D20E109.5C9A—C9B—C10123.65 (14)D20D—C20B—D20E109.5C9—C9A—C5A118.92 (15)S1B—C20B—D20F109.5C9—C9A—C9B129.13 (15)D20D—C20B—D20F109.5C5A—C9A—C9B111.94 (15)D20E—C20B—D20F109.5C12—N2—C1—O13.3 (3)C10—C9B—C9A—C90.6 (3)C3—N2—C1—O1175.30 (16)C4A—C9B—C9A—C5A-0.6 (2)C12—N2—C1—C10A-174.00 (13)C10—C9B—C9A—C5A-178.18 (15)C3—N2—C1—C10A-1.96 (18)C7—C8—C9—C9A-0.8 (3)C1—N2—C3—C3A23.14 (17)C5A—C9A—C9—C8-0.3 (2)C12—N2—C3—C3A-164.58 (14)C9B—C9A—C9—C8-179.02 (17)C4C—C3A—C3—N2-154.00 (15)O1—C1—C10A—C3A162.34 (16)C10A—C3A—C3—N2-33.89 (15)O1—C1—C10A—C1035.5 (2)C10A—C3A—C4B—O5A172.66 (17)N2—C1—C10A—C1160.51 (13)	C/—C8—H8A	119.8	DI9E—CI9B—DI9F	109.5
C4A = C9B = C10 $123.29(14)$ $S1B = C20B = D20E$ 109.5 $C9A = C9B = C10$ $123.65(14)$ $D20D = C20B = D20E$ 109.5 $C9 = C9A = C5A$ $118.92(15)$ $S1B = C20B = D20F$ 109.5 $C9 = C9A = C9B$ $129.13(15)$ $D20D = C20B = D20F$ 109.5 $C9 = C9A = C9B$ $129.13(15)$ $D20D = C20B = D20F$ 109.5 $C5A = C9A = C9B$ $111.94(15)$ $D20E = C20B = D20F$ 109.5 $C12 = N2 = C1 = O1$ $3.3(3)$ $C10 = C9B = C9A = C5A$ $-0.6(2)$ $C12 = N2 = C1 = O1$ $175.30(16)$ $C4A = C9B = C9A = C5A$ $-0.6(2)$ $C12 = N2 = C1 = C10A$ $-174.00(13)$ $C10 = C9B = C9A = C5A$ $-0.6(2)$ $C12 = N2 = C1 = C10A$ $-174.00(13)$ $C10 = C9B = C9A = C5A$ $-0.6(2)$ $C12 = N2 = C1 = C10A$ $-1.96(18)$ $C7 = C8 = C9 = C9A$ $-0.8(3)$ $C1 = N2 = C3 = C3A$ $23.14(17)$ $C5A = C9 = C9A$ $-0.8(3)$ $C12 = N2 = C3 = C3A$ $-164.58(14)$ $C9B = C9A = C9 = C8$ $-179.02(17)$ $C4C = C3A = C3 = N2$ $-154.00(15)$ $O1 = C1 = C10A = C3A$ $-20.34(16)$ $C10A = C$	C4A—C9B—C9A	113.02 (14)	S1B—C20B—D20D	109.5
C9A—C9B—C10123.65 (14)D20D—C20B—D20E109.5C9—C9A—C5A118.92 (15)S1B—C20B—D20F109.5C9—C9A—C9B129.13 (15)D20D—C20B—D20F109.5C5A—C9A—C9B111.94 (15)D20E—C20B—D20F109.5C12—N2—C1—O13.3 (3)C10—C9B—C9A—C90.6 (3)C12—N2—C1—O1175.30 (16)C4A—C9B—C9A—C5A $-0.6 (2)$ C12—N2—C1—C10A $-174.00 (13)$ C10—C9B—C9A—C5A $-178.18 (15)$ C3—N2—C1—C10A $-1.96 (18)$ C7—C8—C9—C9A $-0.8 (3)$ C12—N2—C3—C3A23.14 (17)C5A—C9A—C9—C8 $-0.3 (2)$ C12—N2—C3—C3A $-164.58 (14)$ C9B—C9A—C9—C8 $-179.02 (17)$ C4C—C3A—C3—N2 $-154.00 (15)$ N2—C1—C10A—C3A $-20.34 (16)$ C10A—C3A—C3—N2 $-33.89 (15)$ O1—C1—C10A—C10 $35.5 (2)$ C10A—C3A—C4B—O5A $172.66 (17)$ N2—C1—C10A—C10 $-147.14 (14)$ C3—C3A—C4B—O5A $-70.7 (2)$ C4C—C3A—C10A—C1 $160.51 (13)$	C4A—C9B—C10	123.29 (14)	S1B—C20B—D20E	109.5
C9-C9A-C5A $118.92 (15)$ $S1B-C20B-D20F$ 109.5 C9-C9A-C9B $129.13 (15)$ $D20D-C20B-D20F$ 109.5 C5A-C9A-C9B $111.94 (15)$ $D20E-C20B-D20F$ 109.5 C12-N2-C1-O1 $3.3 (3)$ $C10-C9B-C9A-C9$ $0.6 (3)$ C3-N2-C1-O1 $175.30 (16)$ $C4A-C9B-C9A-C5A$ $-0.6 (2)$ C12-N2-C1-C10A $-174.00 (13)$ $C10-C9B-C9A-C5A$ $-178.18 (15)$ C3-N2-C1-C10A $-1.96 (18)$ $C7-C8-C9-C9A$ $-0.8 (3)$ C1-N2-C3-C3A $23.14 (17)$ $C5A-C9A-C9-C8$ $-0.3 (2)$ C12-N2-C3-C3A $-164.58 (14)$ $C9B-C9A-C9-C8$ $-179.02 (17)$ C4C-C3A-C3-N2 $-154.00 (15)$ $O1-C1-C10A-C3A$ $162.34 (16)$ C4B-C3A-C3-N2 $-154.00 (15)$ $N2-C1-C10A-C10$ $35.5 (2)$ C10A-C3A-C4B-O5A $172.66 (17)$ $N2-C1-C10A-C10$ $-147.14 (14)$ C3-C3A-C4B-O5A $-70.7 (2)$ $C4C-C3A-C10A-C1$ $160.51 (13)$	C9A—C9B—C10	123.65 (14)	D20D—C20B—D20E	109.5
C9-C9A-C9B129.13 (15)D20D-C20B-D20F109.5C5A-C9A-C9B111.94 (15)D20E-C20B-D20F109.5C12-N2-C1-O13.3 (3)C10-C9B-C9A-C90.6 (3)C3-N2-C1-O1175.30 (16)C4A-C9B-C9A-C5A-0.6 (2)C12-N2-C1-C10A-174.00 (13)C10-C9B-C9A-C5A-178.18 (15)C3-N2-C1-C10A-1.96 (18)C7-C8-C9-C9A-0.8 (3)C1-N2-C3-C3A23.14 (17)C5A-C9A-C9-C8-0.3 (2)C12-N2-C3-C3A-164.58 (14)C9B-C9A-C9-C8-179.02 (17)C4C-C3A-C3-N2-154.00 (15)O1-C1-C10A-C3A162.34 (16)C10A-C3A-C3-N2-154.00 (15)N2-C1-C10A-C3A-20.34 (16)C10A-C3A-C4B-O5A172.66 (17)N2-C1-C10A-C1035.5 (2)C10A-C3A-C4B-O5A-70.7 (2)C4C-C3A-C10A-C10-147.14 (14)	C9—C9A—C5A	118.92 (15)	S1B—C20B—D20F	109.5
C5A—C9A—C9B111.94 (15)D20E—C20B—D20F109.5C12—N2—C1—O13.3 (3)C10—C9B—C9A—C90.6 (3)C3—N2—C1—O1175.30 (16)C4A—C9B—C9A—C5A $-0.6 (2)$ C12—N2—C1—C10A $-174.00 (13)$ C10—C9B—C9A—C5A $-178.18 (15)$ C3—N2—C1—C10A $-1.96 (18)$ C7—C8—C9—C9A $-0.8 (3)$ C1—N2—C3—C3A23.14 (17)C5A—C9A—C9—C8 $-0.3 (2)$ C12—N2—C3—C3A $-164.58 (14)$ C9B—C9A—C9—C8 $-179.02 (17)$ C4C—C3A—C3—N2 $-154.00 (15)$ O1—C1—C10A—C3A $162.34 (16)$ C4B—C3A—C3—N2 $-154.00 (15)$ N2—C1—C10A—C3A $-20.34 (16)$ C10A—C3A—C3—N2 $-33.89 (15)$ O1—C1—C10A—C10 $35.5 (2)$ C10A—C3A—C4B—O5A $172.66 (17)$ N2—C1—C10A—C10 $-147.14 (14)$ C3—C3A—C4B—O5A $-70.7 (2)$ C4C—C3A—C10A—C1 $160.51 (13)$	C9—C9A—C9B	129.13 (15)	D20D—C20B—D20F	109.5
C12-N2-C1-O1 $3.3 (3)$ $C10-C9B-C9A-C9$ $0.6 (3)$ $C3-N2-C1-O1$ $175.30 (16)$ $C4A-C9B-C9A-C5A$ $-0.6 (2)$ $C12-N2-C1-C10A$ $-174.00 (13)$ $C10-C9B-C9A-C5A$ $-178.18 (15)$ $C3-N2-C1-C10A$ $-1.96 (18)$ $C7-C8-C9-C9A$ $-0.8 (3)$ $C1-N2-C3-C3A$ $23.14 (17)$ $C5A-C9A-C9-C8$ $-0.3 (2)$ $C12-N2-C3-C3A$ $-164.58 (14)$ $C9B-C9A-C9-C8$ $-179.02 (17)$ $C4C-C3A-C3-N2$ $-154.00 (15)$ $O1-C1-C10A-C3A$ $162.34 (16)$ $C4B-C3A-C3-N2$ $-154.00 (15)$ $N2-C1-C10A-C3A$ $-20.34 (16)$ $C10A-C3A-C3-N2$ $-33.89 (15)$ $O1-C1-C10A-C10$ $35.5 (2)$ $C10A-C3A-C4B-O5A$ $172.66 (17)$ $N2-C1-C10A-C10$ $-147.14 (14)$ $C3-C3A-C4B-O5A$ $-70.7 (2)$ $C4C-C3A-C10A-C1$ $160.51 (13)$	C5A—C9A—C9B	111.94 (15)	D20E—C20B—D20F	109.5
C3-N2-C1-O1175.30 (16)C4A-C9B-C9A-C5A $-0.6 (2)$ C12-N2-C1-C10A $-174.00 (13)$ C10-C9B-C9A-C5A $-178.18 (15)$ C3-N2-C1-C10A $-1.96 (18)$ C7-C8-C9-C9A $-0.8 (3)$ C1-N2-C3-C3A23.14 (17)C5A-C9A-C9-C8 $-0.3 (2)$ C12-N2-C3-C3A $-164.58 (14)$ C9B-C9A-C9-C8 $-179.02 (17)$ C4C-C3A-C3-N2 $-154.00 (15)$ O1-C1-C10A-C3A $162.34 (16)$ C4B-C3A-C3-N2 $-154.00 (15)$ N2-C1-C10A-C3A $-20.34 (16)$ C10A-C3A-C3-N2 $-33.89 (15)$ O1-C1-C10A-C10 $35.5 (2)$ C10A-C3A-C4B-O5A $172.66 (17)$ N2-C1-C10A-C10 $-147.14 (14)$ C3-C3A-C4B-O5A $-70.7 (2)$ C4C-C3A-C10A-C1 $160.51 (13)$	C12—N2—C1—O1	3.3 (3)	C10—C9B—C9A—C9	0.6 (3)
C12-N2-C1-C10A $-174.00(13)$ $C10-C9B-C9A-C5A$ $-178.18(15)$ $C3-N2-C1-C10A$ $-1.96(18)$ $C7-C8-C9-C9A$ $-0.8(3)$ $C1-N2-C3-C3A$ $23.14(17)$ $C5A-C9A-C9-C8$ $-0.3(2)$ $C12-N2-C3-C3A$ $-164.58(14)$ $C9B-C9A-C9-C8$ $-179.02(17)$ $C4C-C3A-C3-N2$ $-154.00(15)$ $O1-C1-C10A-C3A$ $162.34(16)$ $C10A-C3A-C3-N2$ $-154.00(15)$ $N2-C1-C10A-C3A$ $-20.34(16)$ $C10A-C3A-C3-N2$ $-33.89(15)$ $O1-C1-C10A-C10$ $35.5(2)$ $C10A-C3A-C4B-O5A$ $172.66(17)$ $N2-C1-C10A-C10$ $-147.14(14)$ $C3-C3A-C4B-O5A$ $-70.7(2)$ $C4C-C3A-C10A-C1$ $160.51(13)$	C3—N2—C1—O1	175.30 (16)	C4A—C9B—C9A—C5A	-0.6(2)
C3-N2-C1-C10A -1.96 (18)C7-C8-C9-C9A -0.8 (3)C1-N2-C3-C3A23.14 (17)C5A-C9A-C9-C8 -0.3 (2)C12-N2-C3-C3A -164.58 (14)C9B-C9A-C9-C8 -179.02 (17)C4C-C3A-C3-N2 -154.00 (15)O1-C1-C10A-C3A 162.34 (16)C4B-C3A-C3-N2 -154.00 (15)N2-C1-C10A-C3A -20.34 (16)C10A-C3A-C3-N2 -33.89 (15)O1-C1-C10A-C10 35.5 (2)C10A-C3A-C4B-O5A 172.66 (17)N2-C1-C10A-C10 -147.14 (14)C3-C3A-C4B-O5A -70.7 (2)C4C-C3A-C10A-C1 160.51 (13)	C12—N2—C1—C10A	-174.00 (13)	C10—C9B—C9A—C5A	-178.18 (15)
C1-N2-C3-C3A $23.14(17)$ $C5A-C9A-C9-C8$ $-0.3(2)$ $C12-N2-C3-C3A$ $-164.58(14)$ $C9B-C9A-C9-C8$ $-179.02(17)$ $C4C-C3A-C3-N2$ $-154.00(15)$ $O1-C1-C10A-C3A$ $162.34(16)$ $C4B-C3A-C3-N2$ $-154.00(15)$ $N2-C1-C10A-C3A$ $-20.34(16)$ $C10A-C3A-C3-N2$ $-33.89(15)$ $O1-C1-C10A-C10$ $35.5(2)$ $C10A-C3A-C4B-O5A$ $172.66(17)$ $N2-C1-C10A-C10$ $-147.14(14)$ $C3-C3A-C4B-O5A$ $-707(2)$ $C4C-C3A-C10A-C10$ $16051(13)$	C3—N2—C1—C10A	-1.96 (18)	C7—C8—C9—C9A	-0.8 (3)
C12—N2—C3—C3A $-164.58(14)$ C9B—C9A—C9—C8 $-179.02(17)$ C4C—C3A—C3—N2 $-154.00(15)$ O1—C1—C10A—C3A $162.34(16)$ C4B—C3A—C3—N2 $-154.00(15)$ N2—C1—C10A—C3A $-20.34(16)$ C10A—C3A—C3—N2 $-33.89(15)$ O1—C1—C10A—C10 $35.5(2)$ C10A—C3A—C4B—O5A $172.66(17)$ N2—C1—C10A—C10 $-147.14(14)$ C3—C3A—C4B—O5A $-70.7(2)$ C4C—C3A—C10A—C1 $160.51(13)$	C1—N2—C3—C3A	23.14 (17)	C5A—C9A—C9—C8	-0.3(2)
C4C—C3A—C3—N2 $-154.00(15)$ O1—C1—C10A—C3A $162.34(16)$ C4B—C3A—C3—N2 $-154.00(15)$ N2—C1—C10A—C3A $-20.34(16)$ C10A—C3A—C3—N2 $-33.89(15)$ O1—C1—C10A—C10 $35.5(2)$ C10A—C3A—C4B—O5A $172.66(17)$ N2—C1—C10A—C10 $-147.14(14)$ C3—C3A—C4B—O5A $-707(2)$ C4C—C3A—C10A—C1 $16051(13)$	C12—N2—C3—C3A	-164.58 (14)	C9B—C9A—C9—C8	-179.02 (17)
C4B—C3A—C3—N2 $-154.00(15)$ N2—C1—C10A—C3A $-20.34(16)$ C10A—C3A—C3—N2 $-33.89(15)$ O1—C1—C10A—C10 $35.5(2)$ C10A—C3A—C4B—O5A172.66(17)N2—C1—C10A—C10 $-147.14(14)$ C3—C3A—C4B—O5A $-707(2)$ C4C—C3A—C10A—C1 $16051(13)$	C4C—C3A—C3—N2	-154.00 (15)	O1—C1—C10A—C3A	162.34 (16)
C10A-C3A-C3-N2 $-33.89 (15)$ O1-C1-C10A-C10 $35.5 (2)$ C10A-C3A-C4B-O5A172.66 (17)N2-C1-C10A-C10 $-147.14 (14)$ C3-C3A-C4B-O5A $-70 7 (2)$ C4C-C3A-C10A-C1160 51 (13)	C4B—C3A—C3—N2	-154.00 (15)	N2—C1—C10A—C3A	-20.34 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10A—C3A—C3—N2	-33.89 (15)	O1—C1—C10A—C10	35.5 (2)
$C_3 - C_3 A - C_4 B - O_5 A - 70.7(2)$ $C_4 C - C_3 A - C_1 O_4 - C_1 - 160.51(13)$	C10A—C3A—C4B—O5A	172.66 (17)	N2-C1-C10A-C10	-147.14 (14)
	C3—C3A—C4B—O5A	-70.7 (2)	C4C—C3A—C10A—C1	160.51 (13)

C10A—C3A—C4B—C4A	50.03 (19)	C4B—C3A—C10A—C1	160.51 (13)
C3—C3A—C4B—C4A	166.67 (15)	C3—C3A—C10A—C1	33.35 (15)
C10A—C3A—C4C—O5B	-78.8 (2)	C4C-C3A-C10A-C10	-69.78 (17)
C3—C3A—C4C—O5B	37.8 (3)	C4B-C3A-C10A-C10	-69.78 (17)
C10A—C3A—C4C—C4A	50.03 (19)	C3—C3A—C10A—C10	163.06 (13)
C3—C3A—C4C—C4A	166.67 (15)	C4A—C9B—C10—C10A	-12.4 (2)
O5B—C4C—C4A—C9B	107.8 (3)	C9A—C9B—C10—C10A	165.01 (14)
C3A—C4C—C4A—C9B	-19.0 (3)	C4A—C9B—C10—C11	111.08 (18)
O5B—C4C—C4A—S5	-70.3 (3)	C9A—C9B—C10—C11	-71.54 (19)
C3A—C4C—C4A—S5	162.82 (13)	C1-C10A-C10-C9B	168.32 (13)
O5A—C4B—C4A—C9B	-147.8 (2)	C3A—C10A—C10—C9B	46.52 (17)
C3A—C4B—C4A—C9B	-19.0 (3)	C1-C10A-C10-C11	45.88 (19)
O5A—C4B—C4A—S5	34.0 (2)	C3A—C10A—C10—C11	-75.93 (17)
C3A—C4B—C4A—S5	162.82 (13)	C9B-C10-C11-O2	-57.9 (2)
C5A—S5—C4A—C9B	0.01 (15)	C10A—C10—C11—O2	62.1 (2)
C5A—S5—C4A—C4C	178.43 (16)	C9B-C10-C11-O3	122.07 (15)
C5A—S5—C4A—C4B	178.43 (16)	C10A—C10—C11—O3	-117.90 (15)
C4A—S5—C5A—C6	-179.43 (19)	C1—N2—C12—C13	152.25 (16)
C4A—S5—C5A—C9A	-0.33 (14)	C3—N2—C12—C13	-19.0 (2)
C9A—C5A—C6—C7	-0.2 (3)	C1—N2—C12—C17	-28.8 (2)
S5—C5A—C6—C7	178.84 (16)	C3—N2—C12—C17	159.92 (15)
C5A—C6—C7—C8	-0.9 (3)	C17—C12—C13—C14	1.0 (2)
C6—C7—C8—C9	1.4 (3)	N2-C12-C13-C14	179.89 (15)
C4C—C4A—C9B—C9A	-178.00 (17)	C12—C13—C14—C15	1.6 (2)
C4B—C4A—C9B—C9A	-178.00 (17)	C18-04-C15-C16	4.1 (2)
S5—C4A—C9B—C9A	0.3 (2)	C18-04-C15-C14	-177.49 (15)
C4C—C4A—C9B—C10	-0.4 (3)	C13—C14—C15—O4	178.70 (15)
C4B—C4A—C9B—C10	-0.4 (3)	C13—C14—C15—C16	-2.8 (2)
S5-C4A-C9B-C10	177.93 (13)	O4—C15—C16—C17	179.86 (15)
C6—C5A—C9A—C9	0.8 (3)	C14—C15—C16—C17	1.5 (2)
S5—C5A—C9A—C9	-178.38 (13)	C15—C16—C17—C12	1.1 (2)
C6—C5A—C9A—C9B	179.71 (17)	C13—C12—C17—C16	-2.3 (2)
S5—C5A—C9A—C9B	0.55 (19)	N2-C12-C17-C16	178.78 (15)
C4A—C9B—C9A—C9	178.24 (17)		

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H··· A
O3—H3…S1A	0.84	2.72	3.4846 (15)	152
O3—H3…O6A	0.84	1.72	2.563 (2)	176
O3—H3…O6 <i>B</i>	0.84	2.06	2.852 (16)	158
O5A— $H5A$ ···O1 ⁱ	0.84	1.96	2.763 (2)	160
C3 <i>A</i> —H3 <i>AA</i> ···O2	1.00	2.49	3.202 (2)	127
C3—H3 <i>A</i> ···O5 <i>B</i>	0.99	2.54	2.887 (4)	100
C6—H6 <i>A</i> ···O6 <i>A</i> ⁱⁱ	0.95	2.48	3.307 (3)	145
C14—H14A····O4 ⁱⁱⁱ	0.95	2.54	3.445 (2)	159
C17—H17A…O1	0.95	2.33	2.868 (2)	116
C17—H17 <i>A</i> ···O5 <i>B</i> ^{iv}	0.95	2.46	3.289 (4)	146

C18—H18 C ···O5 B^{v}	0.98	2.43	2.922 (4)	110
C20 <i>A</i> —D20 <i>A</i> ···O6 <i>A</i> ^{vi}	0.98	2.46	3.434 (3)	173
C20 A —D20 A ···O6 B^{vi}	0.98	1.87	2.839 (13)	168

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) x, -y+5/2, z+1/2; (iii) -x+1, -y, -z+1; (iv) x, -y+3/2, z-1/2; (v) -x+1, -y+1, -z+1; (vi) -x, y-1/2, -z+1/2.