

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 16 October 2023 Accepted 23 November 2023

Edited by Y. Ozawa, University of Hyogo, Japan

Keywords: crystal structure; redetermination; niobium(V) fluoride; synthesis; powder X-ray diffraction.

CCDC references: 2309973; 2289431

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and redetermination of the crystal structure of NbF_5

Martin Möbs and Florian Kraus*

Anorganische Chemie, Fluorchemie, Philipps-Universität Marburg, Hans, Meerwein-Str. 4, 35032 Marburg, Germany. *Correspondence e-mail: f.kraus@uni-marburg.de

Single crystals of NbF₅, niobium(V) fluoride, have been obtained by the reaction of niobium metal in a stream of dilute elemental fluorine at 473 K and subsequent sublimation. The as-obtained bulk phase compound was shown to be pure by powder X-ray diffraction at 293 K and by IR and Raman spectroscopy. A single-crystal X-ray analysis was conducted at 100 K. In comparison to the previously reported structure model [Edwards (1964). *J. Chem. Soc.* pp. 3714–3718], the lattice parameters and fractional atom coordinates were determined to much higher precision and individual, anisotropic displacement parameters were refined for all atoms.

1. Chemical context

NbF₅ was first synthesized by Ruff and Schiller (Ruff, 1909; Ruff & Schiller, 1911) from the reaction of Nb metal with elemental fluorine or from the reaction of NbCl₅ with anhydrous HF. By now, several alternative ways for its synthesis have also been described in the literature (Schäfer et al., 1965; O'Donnell & Peel, 1976). Niobium pentafluoride is a colorless, hygroscopic solid that melts at 352.1 K and has a boiling point of 506.5 K (Junkins et al., 1952). The vapor pressure (Junkins et al., 1952; Fairbrother & Frith, 1951), the enthalpy of fusion (Junkins et al., 1952), and the electrical conductivity (Fairbrother et al., 1954) of liquid NbF5 have also been determined. Infrared and Raman spectra of the solid were measured (Preiss & Reich, 1968; Beattie et al., 1969) and the structure of NbF₅ in the (supercooled) liquid, glassy state and the gas phase have been investigated by Raman spectroscopy (Boghosian et al., 2005; Papatheodorou et al., 2008). In a search for a suitable laboratory synthesis of NbF₅, we investigated several methods for its preparation. During our efforts, single crystals of several millimeters in size were obtained when hot NbF5 re-sublimed at colder parts of our reaction setup (see Synthesis and crystallization). The former crystal structure published by Edwards (1964) is of lower precision compared to structure determinations possible nowadays and displacement parameters had not been refined anisotropically.

2. Structural commentary

The lattice parameters obtained from powder X-ray diffraction at 293 K [a = 9.62749 (19), b = 14.4564 (3) c = 5.12831 (10) Å, $\beta = 95.8243$ (4)°] agree with those determined by Edwards (1964) [a = 9.62 (1), b = 14.43 (2), c = 5.12 (1) Å, $\beta = 96.1$ (3)°]. Although the temperature was not explicitly stated in Edwards' work, it can be assumed that the structure was determined at room temperature. The powder X-ray diffraction pattern is shown in Fig. 1; crystallographic details Table 1

Selected crystallographic details for NbF₅ determined from single-crystal X-ray diffraction (SCXRD, middle column) and powder X-ray diffraction (PXRD, Rietveld refinement, right column).

Empirical formula NbF ₅ NbF ₅ Empirical formula moiety Nb ₄ F ₂₀ Nb ₅ F ₂₀ Color and appearance coloress block colorless powder Size (nm ³): capillary diameter (nm) 0.180 × 0.050 × 0.050 0.3 Molecular mass (g nol ⁻¹) 187.91 187.91 187.91 Crystal system monoclinic monoclinic 2////////////////////////////////////		NbF ₅ (SCXRD)	NbF_5 (PXRD)
Empirical formula molety Nb ₄ F ₃₀ Nb ₄ F ₃₀ Nb ₄ F ₃₀ Color and appearance colorless block colorless powder Size (nm ³); capillary diameter (nm) 0.180 × 0.050 × 0.050 0.3 Molecular mass (g mol ⁻¹) 187.91 187.91 Crystal system monoclinic monoclinic Space group (No.) <i>C2/m</i> (12) <i>C2/m</i> (12) Pearson symbol <i>mC48 mC48</i> a (Å) 9.4863 (12) 9.62749 (19) b (Å) 14.2969 (12) 14.4564 (3) c (Å) 9.892 (6) 5.12831 (10) β (°) 97.292 (10) 95.8234 (4) V (Å ³) 7 71007 (3) Z 2 2 <i>q</i> cak (g cm ⁻³) 3.719 5.15 λ (Å) 0.71073 (Mo Kα) 1.540596 (Cu Kα1) <i>μ</i> (mm ⁻¹) 3.561 7.9495 20 range refined (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 <i>μ</i> (mm ⁻¹) 0.005, 80.340 0.54 ≤ 8 - <i>μ</i> (mm ⁻¹) 7.54945	Empirical formula	NbF5	NbF ₅
Color and appearance colorless block colordess plock colordess plock Size (mm ³); capillary diameter (mm) 0.180 × 0.050 × 0.050 0.3 Molecular mass (g mol ⁻¹) 187.91 187.91 Crystal system monoclinic monoclinic Space group (No.) $C2/m$ (12) monoclinic Pearson symbol mC48 mC48 a (Å) 9.4863 (12) 9.62749 (19) b (Å) 4.2969 (12) 14.4564 (3) c (Å) 9.7292 (10) 95.8243 (4) p (Å) 97.292 (10) 95.8243 (4) p (Å ²) 71.19 (13) 71.07 (3) Z 8 8 8 p_{eals} (g cm ⁻³) 3.719 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) μ (mm ⁻¹) 3.561 27.9495 20 range measured (min, max, increment) 5.182, 60.76, - 6885, 80.340, 0.015 20 range refined (min, max) - - 10.005, 80.340 hkl_{max} -13 $\leq k \leq 13$ $\leq k \leq 8$ 12 </td <td>Empirical formula moiety</td> <td>Nb_4F_{20}</td> <td>Nb_4F_{20}</td>	Empirical formula moiety	Nb_4F_{20}	Nb_4F_{20}
Size (mm ³): capilary diameter (mm) 0.180 × 0.050 × 0.050 0.3 Molecular mass (g mol ⁻¹) 187.91 187.91 Space group (No.) C2/m (12) C2/m (12) Pearson symbol mC48 mC48 a (Å) 9.4863 (12) 9.62749 (19) b (Å) 14.2969 (12) 14.4564 (3) c (Å) 9.8952 (6) 5.12831 (10) β (°) 97.392 (10) 95.8243 (4) ζ (Å) 97.292 (10) 95.8243 (4) ζ (Å) 97.292 (10) 95.8243 (4) ζ (Å) 97.392 (10) 95.8243 (4) χ (Å) 100 20 χ (g cm ⁻³) 3.719 3.515 λ (Å) 100 29 χ (mm ⁻¹) 3.561 27.9495 20 range refined (min, max, increment) 5.182, 60.76, - 6.885, 80.3040, 0.	Color and appearance	colorless block	colorless powder
Molecular mask (g mol ⁻¹) 187.91 187.91 Crystal system monoclinic monoclinic monoclinic Space group (No.) $C2lm$ (12) $C2lm$ (12) Pearson symbol $mC48$ $mC48$ a (Å) 9.4863 (12) 9.62749 (19) b (Å) 14.2969 (12) 14.4564 (3) c (Å) 4.9892 (6) 5.12831 (10) b (Å) 671.19 (13) 710.07 (3) Z 8 8 Z 8 8 Z 100 23 ρ (mol ⁻¹) 3.515 2.40390 (2) Q range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 Q range refined (min, max) - -13 $\leq h \leq 13$ 0 $\leq h \leq 8$ $T = 1 \leq ma^{-1} < 0.005, 80.340$ -18 $\leq k \leq 18$ 0 $\leq k \leq 12$ $-7 \leq t \leq 7$ $-4 \leq t \leq 4$ Absorption correction numerical Quindrical $T_{max} T_{min} R_{\sigma}$ 0.0318, 0.0172 - - G range refined (min, max) 0.994 - -	Size (mm ³); capillary diameter (mm)	$0.180 \times 0.050 \times 0.050$	0.3
Crystal system monoclinic monoclinic monoclinic Space group (No.) Clm (12) Clm (12) Pearson symbol $mC48$ $mC48$ a (Å) 9.4863 (12) 9.62749 (19) b (Å) 14.2909 (12) 14.4564 (3) c (Å) 4.9892 (6) 5.12831 (10) β (°) 97.292 (10) 95.8243 (4) V (Å ³) 71.19 (13) 710.07 (3) Z 2 2 ρ_{calk} (g cm ⁻³) 3.719 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) T (K) 100 293 μ (mm ⁻¹) 3.561 27.9495 20 range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 20 range measured (min, max) - - - μ (mm ⁻¹) 3.561 29.405 2 20 range measured (min, max) - - - μ (mm ⁻¹) 5.182, 60.76, - 6.885, 80.340, 0.015 - 20 range measured (min, max)	Molecular mass $(g \text{ mol}^{-1})$	187.91	187.91
Space group (No.) $C2/m$ (12) $C2/m$ (12) Pearson symbol $mC48$ $mC48$ a (Å) 9.4863 (12) 9.62749 (19) b (Å) 14.2969 (12) 14.4564 (3) c (Å) 4.9892 (6) 5.12831 (10) β (°) 97.292 (10) 95.8243 (4) V (Å ³) 67.19 (13) 710.07 (3) Z 8 2 ρ_{cnk} (g cm ⁻³) 3.719 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) T (K) 100 293 μ (mm ⁻¹) 3.56 2.7.9495 2 θ range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 2 θ range measured (min, max) - 10.005, 80.340 hkl_{max} -13 $\leq h \leq 13$ 0 $\leq h \leq 8$ $-86 \leq 18$ 0 $\leq h \leq 8$ - T_{max} T_{min} 0.07178, 0.760 - T_{max} T_{min} 0.994 - - No. of parameters 0 0 0 No. of rest	Crystal system	monoclinic	monoclinic
Person symbol $mC48$ $mC48$ $mC48$ a (Å) 9.4863 (12) 9.62749 (19) b (Å) 14.2969 (12) 14.4564 (3) c (Å) 4.9892 (6) 5.12831 (10) β (°) 97.292 (10) 95.8243 (4) V (Å ³) 710.07 (3) Z Z 8 8 Z' 8 8 Z' 2 2 ρ_{ealg} (g cm ⁻³) 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) T (K) 100 293 μ (mm ⁻¹) 3.561 27.9495 2θ range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 2θ range refined (min, max) - 10005, 80.340 μ (mm ⁻¹) 3.561 27.9495 2θ range refined (min, max) - 1.45 k \leq 18 $0 \leq h \leq 8$ $-13 \leq h \leq 13$ $0 \leq h \leq 8$ $-72 i \leq 7$ $-4 \leq i \leq 4$ Absorption correction numerical 0 $-72 i \leq 7$ $-4 \leq i \leq 4$ No. of parameters 0994 - - <t< td=""><td>Space group (No.)</td><td>C2/m (12)</td><td>C2/m (12)</td></t<>	Space group (No.)	C2/m (12)	C2/m (12)
a (Å) 94863 (12) 962749 (19) b (Å) 14,2696 (12) 14,4564 (3) c (Å) 4,9892 (6) 5,12831 (10) β (°) 97.292 (10) 95.8243 (4) V (Å ³) 671.19 (13) 710.07 (3) Z 8 8 Z' 2 2 ρ_{eak} (g cm ⁻³) 3.719 3.515 λ (Å) 0.7073 (Mo K α) 1.540596 (Cu K α_1) μ (mm ⁻¹) 3.561 27.9495 2θ range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 2θ range refined (min, max) - - 1000, 0.03, 0.016 μ (mm ⁻¹) 3.561 27.9495 2 2θ range refined (min, max) - - 10.005, 80.340, 0.015 μ stage refined (min, max) - - 12.05, 80.340, 0.015 π stage refined (min, max) - - 12.64 π stage refined (min, max) - - - π stage refined (min, max) - - - π stage refined (min, max) - - - <td>Pearson symbol</td> <td>mC48</td> <td>mC48</td>	Pearson symbol	mC48	mC48
b (Å) 14.2969 (12) 14.4564 (3) c (Å) 4,9892 (6) 5.12831 (10) β (°) 97.292 (10) 95.8243 (4) V (Å ³) 671.19 (13) 710.07 (3) Z 8 8 ρ_{cals} (g cm ⁻³) 3.719 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) T (K) 100 293 μ (mm ⁻¹) 3.561 27.9495 2θ range reasured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 2θ range refined (min, max) -13 ≤ h ≤ 13 0 ≤ h ≤ 8 hk_{max} -13 ≤ h ≤ 13 0 ≤ h ≤ 8 $-75 l \le 7$ $-4 \le l ≤ 4$ 2 Absorption correction numerical cylindrical T_{max}, T_{min} 0.7778, 0.7760 - R_{max}, R_{σ} 0.0318, 0.0172 - Completeness 0.994 - - No. of parameters 0 0 0 No. of constraints 0 0 0 No. of constraints 0 0 0 No. of	a (Å)	9.4863 (12)	9.62749 (19)
c (Å) 4,9892 (6) 5.12831 (10) β (°) 97.292 (10) 95.8243 (4) γ (Å) 671.19 (13) 710.07 (3) Z 8 8 Z' (g cm ⁻³) 2 2 ρ_{chc} (g cm ⁻³) 3.719 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) T (K) 100 293 μ (mm ⁻¹) 3.561 21.9495 2 θ range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 2 θ range refined (min, max) - 10.005, 80.340 μ (mn^{-1}_{nax} -13 $\leq h \leq 13$ 0 $\leq h \leq 8$ $-7 \leq l \leq 7$ -4 $\leq l \leq 4$ - Absorption correction numerical cylindrical T_{max} 0.0318, 0.0172 - Completeness 0.994 - No. of quaranters 60 0 No. of constraints 0 0 No. of constrai	$b(\mathbf{A})$	14.2969 (12)	14.4564 (3)
$ \begin{split} \beta \left(\stackrel{\circ}{\gamma} \\ \gamma \\ V \left(\stackrel{A}{3} \right) \\ Z \\ Z \\ Z \\ \gamma_{calc} \left(g cm^{-3} \right) \\ \lambda \left(\stackrel{A}{A} \right) \\ \gamma \\ (\stackrel{A}{S} \right) \\ ($	c (Å)	4.9892 (6)	5.12831 (10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta(\circ)$	97.292 (10)	95.8243 (4)
Z 8 8 2 ρ_{calc} (g cm ⁻³) 3.719 3.515 λ (Å) 0.71073 (Mo K α) 1.540596 (Cu K α_1) T (K) 100 293 μ (mm ⁻¹) 3.561 27.9495 2θ range measured (min, max, increment) 5.182, 60.76, - 6.885, 80.340, 0.015 2θ range refined (min, max) - 10.005, 80.340 hkl_{max} -13 $\leq h \leq 13$ 0 $\leq h \leq 8$ λkl_{max} -13 $\leq h \leq 13$ 0 $\leq h \leq 12$ $-7 \leq l \leq 7$ $-4 \leq l \leq 4$ Absorption correction numerical cylindrical T_{max} T_{min} 0.7778, 0.7760 - No. of unique reflections 1048 240 No. of parameters 60 0 No. of crestraints 0 0 No. of constraints 0 0 No. of constraints 0 0 Profile parameters - 20 Profile parameters - 20	$V(A^3)$	671.19 (13)	710.07 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Z	8	8
$\begin{array}{lll} \rho_{\rm calc} (g~{\rm cm}^{-3}) & 3.719 & 3.515 \\ \lambda~({\rm A}) & 0.71073~({\rm Mo}~{\it K}\alpha) & 1.540596~({\rm Cu}~{\it K}\alpha_1) \\ \mu~({\rm mm}^{-1}) & 100 & 293 \\ 2\theta~{\rm range}~{\rm measured}~({\rm min,~max,~increment}) & 5.182, 60.76, - & 6.885, 80.340, 0.015 \\ 2\theta~{\rm range}~{\rm refined}~({\rm min,~max}) & - & 10.005, 80.340 \\ hkl_{\rm max} & -13 \leq h \leq 13 & 0 \leq h \leq 8 \\ -13 \leq k \leq 18 & 0 \leq k \leq 12 \\ -7 \leq l \leq 7 & -4 \leq l \leq 4 \\ \end{array}$ Absorption correction numerical cylindrical $T_{\rm max}, T_{\rm min}$ $0.7778, 0.7760 & - \\ R_{\rm int}, R_{\sigma} & 0.0318, 0.0172 & - \\ Completeness & 0.994 & - \\ No.~of~{\rm unique}~{\rm reflections} & 1048 & 240 \\ No.~of~{\rm parameters} & 60 & 0 \\ No.~of~{\rm corstraints} & 0 & 0 \\ No.~of~{\rm corstraints} & 0 & 0 \\ Background~{\rm parameters} & - & - \\ Profile~{\rm parameters} $	Z'	2	2
$\begin{array}{cccc} 1.540596 \ (Cu \ Ka_1) \\ 1.540596 \ (Cu \ Ka_1) \\ 7 \ (K) \\ \mu \ (mm^{-1}) \\ 2\theta \ range measured (min, max, increment) \\ 2\theta \ range refined (min, max) \\ -1 \\ hkl_{max} \\ -1 \\ hkl_{max}$	$\rho_{\rm rate} (g {\rm cm}^{-3})$	3.719	3.515
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	λ (A)	0.71073 (Μο Κα)	1.540596 (Cu Ka ₁)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T(\mathbf{K})$	100	293
2θ range measured (min, max, increment) $5.182, 60.76, 6.885, 80.340, 0.015$ 2θ range refined (min, max) - $10.005, 80.340$ hkl_{max} $-13 \le h \le 13$ $0 \le h \le 8$ hkl_{max} $-13 \le h \le 13$ $0 \le k \le 12$ $-7 \le l \le 7$ $-4 \le l \le 4$ Absorption correction numerical cylindrical T_{max}, T_{min} $0.7778, 0.7760$ - R_{int}, R_{σ} $0.0318, 0.0172$ - Completeness 0.994 - No. of unique reflections 1048 240 No. of parameters 0 0 No. of constraints 0 0 No. of constraints 0 0 Profile parameters $ 20$ Profile parameters $ 20$	$\mu (mm^{-1})$	3.561	27.9495
2θ range refined (min, max) - 10.005, 80.340 hkl_{max} $-13 \le h \le 13$ $0 \le h \le 8$ $-18 \le k \le 18$ $0 \le k \le 12$ $-7 \le l \le 7$ $-4 \le l \le 4$ Absorption correction numerical cylindrical T_{max}, T_{min} $0.7778, 0.7760$ - R_{int}, R_{σ} 0.0318, 0.0172 - Completeness 0.994 - No. of unique reflections 1048 240 No. of parameters 0 0 No. of constraints 0 0 No. of constraints 0 0 Parameters - 20	2θ range measured (min. max. increment)	5.182, 60.76, -	6.885, 80.340, 0.015
hkl_{max} $-13 \le h \le 13$ $0 \le h \le 8$ $-18 \le k \le 18$ $0 \le k \le 12$ $-7 \le l \le 7$ $-4 \le l \le 4$ Absorption correction numerical cylindrical T_{max}, T_{min} $0.7778, 0.7760$ $ R_{int}, R_{\sigma}$ $0.0318, 0.0172$ $-$ Completeness 0.994 $-$ No. of unique reflections 1048 240 No. of parameters 0 0 No. of constraints 0 0 Background parameters $ 0$ Profile parameters $ 20$ Profile parameters $ 12^a$	2θ range refined (min. max)	_	10.005, 80.340
Internal $-18 \le k \le 18$ $0 \le k \le 12$ $-18 \le k \le 18$ $0 \le k \le 12$ $-7 \le l \le 7$ $-4 \le l \le 4$ Absorption correctionnumericalcylindrical T_{max}, T_{min} $0.7778, 0.7760$ $ R_{int}, R_{\sigma}$ $0.0318, 0.0172$ $-$ Completeness 0.994 $-$ No. of unique reflections 1048 240 No. of parameters 0 0 No. of restraints 0 0 No. of constraints 0 0 Background parameters $ 20$ Profile parameters $ 12^a$	hklmm	$-13 \le h \le 13$	$0 \le h \le 8$
$-7 \le l \le 7$ $-4 \le l \le 4$ Absorption correctionnumericalcylindrical T_{max}, T_{min} $0.7778, 0.7760$ $ R_{int}, R_{\sigma}$ $0.0318, 0.0172$ $-$ Completeness 0.994 $-$ No. of unique reflections 1048 240 No. of parameters 60 74 No. of constraints 0 0 Background parameters $ 20$ Profile parameters $ 12^a$	interinax	$-18 \le k \le 18$	$0 \le k \le 12$
Absorption correctionnumericalcylindrical T_{max}, T_{min} 0.7778, 0.7760– R_{int}, R_{σ} 0.0318, 0.0172–Completeness0.994–No. of unique reflections1048240No. of parameters6074No. of constraints00No. of constraints00Background parameters–20Profile parameters–12 ^a		-7<1<7	-4 < l < 4
T_{max}, T_{min} 0.7778, 0.7760 - R_{int}, R_{σ} 0.0318, 0.0172 - Completeness 0.994 - No. of unique reflections 1048 240 No. of parameters 60 74 No. of constraints 0 0 No. of constraints 0 0 Profile parameters - 20 Profile parameters - 20	Absorption correction	numerical	cylindrical
n_{max} , n_{max} 0.776 , 0.790 $ R_{int}$, R_{σ} 0.0318 , 0.0172 $-$ Completeness 0.994 $-$ No. of unique reflections 1048 240 No. of parameters 60 74 No. of restraints 0 0 No. of constraints 0 0 Background parameters $ 20$ Profile parameters $ 12^a$		0.7778 0.7760	_
No. of unique reflections0.994-No. of unique reflections1048240No. of parameters6074No. of restraints00No. of constraints00Background parameters-20Profile parameters-12 ^a	$R_{\rm max}$, $R_{\rm min}$	0.0318, 0.0172	_
No. of unique reflections1048240No. of parameters6074No. of restraints00No. of constraints00Background parameters-20Profile parameters-12 ^a	Completeness	0.994	_
No. of parameters6074No. of restraints00No. of constraints00Background parameters-20Profile parameters-12 ^a	No of unique reflections	1048	240
No. of restraints00No. of constraints00Background parameters-20Profile parameters-12 ^a	No. of parameters	60	74
No. of constraints 0 0 Background parameters - 20 Profile parameters - 12 ^a	No. of restraints	0	0
Background parameters – 20 Profile parameters – 12 ^a	No. of constraints	0	0
Profile parameters – 12 ^a	Background parameters	-	20
	Profile parameters	_	12^{a}
$R R^{-}$ 0.0308 0.0425	R R		0.0308 0.0425
$\frac{1}{1} \frac{1}{1} \frac{1}$	R^{b}_{p}, R^{wp}_{wp}		0.0889, 0.0904
P, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	$R_{\rm p}$, $R_{\rm wp}$		0.0132
R _{Bragg} 0.012	(Bragg)	1.024	1 77
$\Gamma(F) [1, 2\pi/I] = 0.0143 \ 0.0108 \ -$	$R(F)$ [$I > 2\sigma(I)$ all data]	0.0143 0.0198	1.77
$R(r) [r \ge 2r(r), \text{ an addig}] = 0.0145, 0.0126 = -$	$WR(F^2)$ [$I > 2\sigma(I)$, an uata] $WR(F^2)$ [$I > 2\sigma(I)$ all data]	0.0315 0.0323	_
$\pi_{1}(r) [r = 200, an early (100, 100, 100, 100, 100, 100, 100, 100$	$\Lambda_0 = \Lambda_0 + (e \Lambda^{-3})$	0.0513, 0.0523 0.544 = 0.521	_

Notes: (a) refined profile parameters include spherical harmonics of order 4; (b) background-corrected R-factors.

of the Rietveld refinement are given in Table 1 and the supporting information.

The single-crystal structure determination was performed at 100 K and thus resulted in smaller lattice parameters by about 1–3% compared to those determined at room temperature (see Table 1). Otherwise, there are no significant structural differences compared to the RT structure. The slight contraction of the lattice parameters is mainly due to the shortening of the distances between the Nb₄F₂₀ molecules, while the intramolecular F–Nb distances determined at 100 K differ only insignificantly from those determined at room temperature.

NbF₅ crystallizes in the space group C2/m (No. 12, Pearson code mC48, Wyckoff sequence j^4i^3h) with the lattice parameters a = 9.4863 (12), b = 14.2969 (12), c = 4.9892 (6) Å, $\beta = 97.292$ (10)°, Z = 8 at 100 K. NbF₅ crystallizes in the MoF₅ structure type (Edwards *et al.*, 1962; Stene *et al.*, 2018). The structure consists of NbF₅ units forming tetrameric molecules that can be described by the Niggli (Niggli, 1945) formula

Figure 1

Powder X-ray diffraction pattern and Rietveld refinement of NbF₅: measured data points (black dots), calculated diffraction pattern (red line), background (green line) and difference curve (gray). The calculated reflection positions are indicated by the vertical bars at the bottom. $R_p = 3.08$, $R_{wp} = 4.25\%$, $R_{Bragg} = 1.32\%$, S = 1.77.

Table 2					
Selected interatomic	distances (Å) f	or the c	crystal	structure	of NbF ₅ .

Nb1-F4	2.0669 (9)	Nb2-F3	1.8121 (10)
Nb1-F5	1.8468 (10)	Nb2-F4	2.0685 (10)
Nb1-F6	1.8157 (11)	Nb1-Nb2	4.1275 (4)
Nb2-F1	1.8577 (14)	Nb1-Nb1 ⁱⁱⁱ	5.8179 (6)
Nb2-F2	1.8378 (14)	Nb2-Nb2 ⁱⁱ	5.8565 (8)

Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z, (iii) -x, -y, 1 - z.

 ${}_{\infty}^{0}$ {[NbF_{2/2}F_{4/1}]₄}. The structure of the Nb₄F₂₀ molecule in the solid and the crystal structure of the compound are shown in Figs. 2 and 3. Two symmetry-independent niobium atoms reside on Wyckoff positions 4h (site symmetry 2, Nb1) and 4i (site symmetry m, Nb2) and are surrounded octahedron-like by six fluorine atoms. By edge-linking via two cis-positioned fluorine atoms, the NbF₆ units form square-like molecules. The atomic distance between the Nb1 atom and the μ -bridging fluorine atoms F4 is 2.0669 (9) Å, while the Nb2 $-\mu$ -F4 distance is 2.0685 (10). Thus, both Nb $-\mu$ -F4 bond lengths are identical within their tripled standard uncertainty. The Nb1 $-\mu$ -F4-Nb2 bridge is slightly bent by 172.94 (5)°, with the bridging fluorine atoms pointing towards the ring center (Wyckoff position 2c, site symmetry 2/m) of the planar Nb₄F₂₀ rings. The distances between the Nb and the F_{trans} atoms, Nb1-F6 and Nb2-F3, which are opposite to the μ -bridging F atoms, are 1.8157 (11) and 1.8121 (10) Å; also overlapping within the 3σ criterion. The μ -F–Nb–F_{trans} angles measure 172.83 (4) and 171.95 (4) $^{\circ}$. The terminally bound fluorine ligands in axial positions (F1, F2 and F5) show slightly longer Nb-F bonds of 1.8577 (14), 1.8378 (14), and 1.8468 (10) Å compared to those oriented equatorially (F3 and F6), showing Nb-F distances of 1.8121 (10) and 1.8157 (11) Å. This phenomenon was observed to a similar extent for the structure

Figure 2

Structure of the Nb₄ F_{20} molecule as it appears in the crystal structure of NbF₅. Atom labeling in accordance with Edwards *et al.* (1962). Displacement ellipsoids are shown at the 70% probability level at 100 K. [Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z; (iii) -x, -y, 1 - z.]

Table 3	
Selected interatomic angles (°) for the crystal structure of NbF ₅ .	

F6-Nb1-F6 ⁱⁱ	97.52 (7)	F3-Nb2-F3 ⁱ	98.46 (7)
F6-Nb1-F5	95.18 (5)	F3-Nb2-F2	96.78 (5)
F6 ⁱ -Nb1-F5	95.61 (5)	F3 ⁱ -Nb2-F2	96.78 (5)
F6–Nb1–F5 ⁱⁱ	95.61 (5)	F3-Nb2-F1	94.53 (5)
F6 ⁱⁱ —Nb1—F5 ⁱⁱ	95.18 (5)	F3 ⁱ -Nb2-F1	94.53 (5)
F5–Nb1–F5 ⁱⁱ	163.61 (7)	F2-Nb2-F1	162.63 (6)
F6—Nb1—F4 ⁱⁱ	172.83 (4)	F3-Nb2-F4	89.47 (5)
F6 ⁱⁱ —Nb1—F4 ⁱⁱ	89.59 (4)	F3 ⁱ -Nb2-F4	171.95 (4)
F5–Nb1–F4 ⁱⁱ	83.14 (5)	F2-Nb2-F4	83.54 (5)
F5 ⁱⁱ —Nb1—F4 ⁱⁱ	84.63 (4)	F1-Nb2-F4	83.43 (4)
F6-Nb1-F4	89.59 (4)	F3-Nb2-F4 ⁱ	171.95 (4)
F6 ⁱⁱ —Nb1—F4	172.83 (4)	F3 ⁱ -Nb2-F4 ⁱ	89.47 (5)
F5-Nb1-F4	84.62 (4)	F2-Nb2-F4 ⁱ	83.54 (5)
F5 ⁱⁱ —Nb1—F4	83.14 (5)	F1-Nb2-F4 ⁱ	83.43 (4)
F4 ⁱⁱ —Nb1—F4	83.32 (5)	F4-Nb2-F4 ⁱ	82.57 (5)
Nb1—Nb2—Nb1 ⁱⁱⁱ	89.62 (1)	Nb1-F4-Nb2	172.94 (5)
Nb2—Nb1—Nb2 ⁱⁱ	90.38 (1)		

Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z, (iii) -x, -y, 1 - z.

of MoF₅ (Stene *et al.*, 2018) and can be attributed to the structural trans effect (Coe & Glenwright, 2000; Shustorovich et al., 1975). The Nb atoms in a molecule lie in a flat, nearly square plane and the crystallographic point group of the Nb₄F₂₀ molecule is 2/m (C_{2h}). The intramolecular Nb1···Nb2 distance is 4.1275 (4) Å while the Nb1···Nb2···Nb1 angle measures $89.62 (1)^{\circ}$. The distances between diagonally opposite Nb atoms in the ring are 5.8565 (8), and 5.8179 (6) Å. Thus, the four Nb atoms of the Nb₄F₂₀ molecule do not form an ideal square. It is distorted in a diamond shape, which corresponds to a compression along the twofold axis of rotation. An overview of interatomic distances and angles in the structure of NbF₅ is given in Tables 2 and 3. The global crystal structure can be approximately described by a cubic closepacking of the fluorine atoms, in which 1/5th of the octahedral voids are occupied by Nb atoms in such a way that the Nb_4F_{20} molecules are obtained (Edwards, 1964; Müller, 2009).

In addition to X-ray powder diffraction, the bulk phase was also investigated by IR and Raman spectroscopy. The obtained spectra, which are given in the supporting informa-

Crystal structure of NbF₅ viewed along the c axis. Displacement ellipsoids are shown at 70% probability level at 100 K.

Figure 4

Scheme of the apparatus used for the synthesis of NbF₅. (*a*) Connection to a metal Schlenk line for evacuation, purging with inert gas, and fluorine supply, (*b*) tube furnace, (*c*) copper pipe surrounded by a heating sleeve, (*d*) PFA U-trap for product collection equipped with Monel connectors and diaphragm valves (Hoke), (*e*) PFA gas wash bottle with steel fitting filled with perfluoro polyether, (*f*) outlet connected to the absorber.

tion, agree with those reported in the literature (Preiss & Reich, 1968; Beattie *et al.*, 1969; Papatheodorou *et al.*, 2008), and indicate a phase pure sample.

3. Conclusion

NbF₅ was synthesized from F_2 and Nb metal and obtained as a colorless, phase-pure solid and by sublimation as single crystals. The previous structure model was significantly improved with much more precise atomic coordinates and all atoms refined anisotropically, giving much better bond lengths and angles for the Nb₄F₂₀ molecules.

4. Synthesis and crystallization

Niobium pentafluoride was synthesized from the elements directly using the apparatus sketched in Fig. 4. Therein, niobium metal sheets (17.28g, 185.9mmol, TANIOBIS GmbH) were loaded in a corundum boat, which was placed inside a tube furnace. One side of the inner corundum tube of the furnace was connected to a metal Schlenk line *via* a PTFE sealed copper fitting, allowing control of the fluorine supply, as well as evacuating and purging the system with argon. The other side was connected to a U-shaped, 3/4-inch PFA tube *via*

Figure 5

Photo of colorless crystalline NbF₅ accumulated in the U-shaped PFA tube during the reaction (left, photo was taken inside a glove box) and corundum boat containing niobium metal: before (top right) and during the reaction (bottom right).

a copper pipe, followed by a PFA gas wash bottle filled with perfluoro polyether (Hostinert 216) and an absorber column filled with soda lime (Carl Roth). The copper pipe, all fittings and valves were surrounded by heating sleeves or wires and heated to 473 K to prevent resublimation of solid NbF₅ inside. Before use, the apparatus was thoroughly baked out and passivated using diluted fluorine (F₂/Ar, 20:80 ν/ν , Solvay). For the reaction a stream of diluted fluorine (F₂/Ar, 20:80 ν/ν , approx. 36 mL min⁻¹) was applied and the furnace temperature was set to 473 K. The first single crystals of resublimed NbF₅ were obtained within several minutes in the U-shaped PFA tube. After 16 h the reaction was complete, giving 34.2 g (182.0 mmol, 98%) NbF₅ as a colorless, crystalline solid (see Fig. 5).

5. Structure determination

5.1 Single crystal structure determination: A crystal of NbF₅ was selected under pre-dried perfluorinated oil (Fomblin YR 1800) and mounted using a MiTeGen loop. Intensity data of a suitable crystal were recorded with an IPDS 2 diffractometer (Stoe & Cie). The diffractometer was operated with Mo $K\alpha$ radiation (0.71073 Å, graphite monochromator) and equipped with an image plate detector. Evaluation, integration and reduction of the diffraction data was carried out using the X-AREA software suite (X-AREA V1.90; Stoe & Cie, 2020). A numerical absorption correction was applied with the modules X-SHAPE and X-RED32 of the X-AREA software suite. The structures were solved with dual-space methods (SHELXT; Sheldrick, 2015*a*), and refined against F^2 (SHELXL) within the ShelXle GUI (Sheldrick, 2015b; Hübschle et al., 2011). All atoms were refined with anisotropic displacement parameters. The highest residual electron density after the final refinement was 0.80 Å distant from atom F6. Representations of the crystal structures were created with the DIAMOND software (Brandenburg & Putz, 2022).

5.2 Powder X-ray diffraction: For powder X-ray diffraction, the sample was ground using a glassy carbon mortar and filled into a quartz capillary with a diameter of 0.3 mm. The powder X-ray pattern was recorded with a StadiMP diffractometer (Stoe & Cie) in Debye-Scherrer geometry. The diffractometer was operated with Cu $K\alpha_1$ radiation (1.5406 Å, germanium monochromator) and equipped with a MYTHEN 1K detector.

Rietveld refinements (Rietveld, 1969) were performed using the *TOPAS-Academic* software (version 7; Coelho, 2018). The structural model derived from single-crystal X-ray diffraction was used as the starting point for the refinement. A shifted Chebyshev polynomial was used to describe the background of the powder pattern, the peak profiles were fitted with a modified Thompson–Cox–Hastings pseudo-Voigt ('TCHZ') function as implemented in *TOPAS*, and the zero offset was refined. To account for absorption, an intensity correction for cylindrical samples was applied as implemented in *TOPAS*. A weak preferential orientation of the crystallites was taken into account by means of a fourth-order sphericalharmonics function. The final refinement cycles converged with free refinement of all background, profile, and lattice parameters, including the coordinates of all atoms, the isotropic displacement parameters of the F atoms and anisotropic displacement parameters of the Nb atoms. Further details concerning the Rietveld refinement are given in Table 1 and in the supporting information. Crystal data, data collection and structure refinement details are summarized in Table 4.

Acknowledgements

We thank the X-ray facilities of Dr Ivlev for their great service and TANIOBIS GmbH for the donation of niobium compounds. We thank Solvay for the kind donation of fluorine.

Funding information

Funding for this research was provided by: TANIOBIS GmbH.

References

- Beattie, I. R., Livingston, K. M. S., Ozin, G. A. & Reynolds, D. J. (1969). J. Chem. Soc. A, pp. 958–965.
- Boghosian, S., Pavlatou, E. A. & Papatheodorou, G. N. (2005). Vib. Spectrosc. 37, 133–139.
- Brandenburg, K. & Putz, H. (2022). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Coe, B. J. & Glenwright, S. J. (2000). Coord. Chem. Rev. 203, 5-80.

- Coelho, A. A. (2018). J. Appl. Cryst. 51, 210-218.
- Edwards, A. J. (1964). J. Chem. Soc. pp. 3714-3718.
- Edwards, A. J., Peacock, R. D. & Small, R. W. H. (1962). J. Chem. Soc. pp. 4486–4491.
- Fairbrother, F. & Frith, W. C. (1951). J. Chem. Soc. pp. 3051-3056.
- Fairbrother, F., Frith, W. C. & Woolf, A. A. (1954). J. Chem. Soc. pp. 1031–1033.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Junkins, J. H., Farrar, R. L., Barber, E. J. & Bernhardt, H. A. (1952). J. Am. Chem. Soc. 74, 3464–3466.
- Müller, U. (2009). Anorganische Strukturchemie. Wiesbaden: Vieweg + Teubner.
- Niggli, P. (1945). *Grundlagen der Stereochemie*. Basel: Springer Basel AG.
- O'Donnell, T. A. & Peel, T. A. (1976). J. Inorg. Nucl. Chem. 28, 61-62.
- Papatheodorou, G. N., Kalampounias, A. G. & Yannopoulos, S. N. (2008). J. Non-Cryst. Solids, 354, 5521–5528.

Table 4

Experimental details.

Crystal data	
Chemical formula	Nb_4F_{20}
M _r	187.91
Crystal system, space group	Monoclinic, C2/m
Temperature (K)	100
a, b, c (Å)	9.4863 (12), 14.2969 (12), 4.9892 (6)
β (°)	97.292 (10)
$V(Å^3)$	671.19 (13)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.56
Crystal size (mm)	$0.18 \times 0.05 \times 0.05$
Data collection	
Diffractometer	Stoe IPDSII
Absorption correction	Numerical (X-RED32 and X- SHAPE; Stoe & Cie, Stoe & Cie, 2020)
T_{\min}, T_{\max}	0.776, 0.778
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5819, 1048, 903
R _{int}	0.032
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.712
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.014, 0.032, 1.02
No. of reflections	1048
No. of parameters	60
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.54, -0.52

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2020), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and DIAMOND (Brandenburg & Putz, 2020).

Preiss, H. & Reich, P. (1968). Z. Anorg. Allg. Chem. 362, 19-23.

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.

- Ruff, O. (1909). Ber. Dtsch. Chem. Ges. 42, 492-497.
- Ruff, O. & Schiller, E. (1911). Z. Anorg. Chem. 72, 329-357.
- Schäfer, H., Schnering, H. G., Niehues, K.-J. & Nieder-Vahrenholz, H. G. (1965). J. Less-Common Met. 9, 95–104.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shustorovich, E. M., Porai-Koshits, M. A. & Buslaev, Yu. A. (1975). Coord. Chem. Rev. 17, 1–98.
- Stene, R. E., Scheibe, B., Pietzonka, C., Karttunen, A. J., Petry, W. & Kraus, F. (2018). J. Fluor. Chem. 211, 171–179.
- Stoe & Cie (2020). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2023). E79, 1207-1211 [https://doi.org/10.1107/S2056989023010150]

Synthesis and redetermination of the crystal structure of NbF₅

Martin Möbs and Florian Kraus

Computing details

Niobium(V) fluoride

Crystal data

Nb₄F₂₀ $M_r = 187.91$ Monoclinic, C2/m a = 9.4863 (12) Å b = 14.2969 (12) Å c = 4.9892 (6) Å $\beta = 97.292 (10)^{\circ}$ $V = 671.19 (13) \text{ Å}^3$ Z = 8

Data collection

Stoe IPDSII diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method, ω scans Absorption correction: numerical (*X-RED32* and *X-SHAPE*; Stoe & Cie, Stoe & Cie, 2020)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.032$ S = 1.021048 reflections 60 parameters 0 restraints F(000) = 688 $D_x = 3.719 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8094 reflections $\theta = 2.6-30.9^{\circ}$ $\mu = 3.56 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.18 \times 0.05 \times 0.05 \text{ mm}$

 $T_{\min} = 0.776, T_{\max} = 0.778$ 5819 measured reflections 1048 independent reflections 903 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{\max} = 30.4^{\circ}, \theta_{\min} = 2.6^{\circ}$ $h = -13 \rightarrow 13$ $k = -18 \rightarrow 20$ $l = -7 \rightarrow 7$

Primary atom site location: dual Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0196P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.54$ e Å⁻³ $\Delta\rho_{min} = -0.52$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

supporting information

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Nb1	0.000000	0.20347 (2)	0.500000	0.01085 (6)	
Nb2	0.26047 (2)	0.000000	0.24168 (4)	0.01094 (6)	
F1	0.34193 (16)	0.000000	0.6005 (3)	0.0169 (3)	
F2	0.13043 (15)	0.000000	-0.0646 (3)	0.0148 (3)	
F3	0.36790 (12)	0.09599(7)	0.1443 (2)	0.0179 (2)	
F4	0.12213 (11)	0.09546 (6)	0.3786 (2)	0.01482 (19)	
F5	-0.10961 (12)	0.18505 (7)	0.17107 (19)	0.0163 (2)	
F6	0.11939 (13)	0.28718 (7)	0.3733 (2)	0.0171 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb1	0.01143 (11)	0.00957 (9)	0.01173 (9)	0.000	0.00212 (7)	0.000
Nb2	0.01106 (10)	0.01044 (9)	0.01157 (10)	0.000	0.00242 (7)	0.000
F1	0.0168 (7)	0.0195 (6)	0.0141 (6)	0.000	0.0011 (5)	0.000
F2	0.0145 (6)	0.0152 (6)	0.0145 (6)	0.000	0.0013 (5)	0.000
F3	0.0177 (5)	0.0169 (5)	0.0196 (5)	-0.0046 (4)	0.0043 (4)	0.0012 (4)
F4	0.0150 (4)	0.0130 (4)	0.0170 (4)	0.0021 (4)	0.0039 (3)	-0.0013 (4)
F5	0.0176 (5)	0.0163 (4)	0.0146 (4)	-0.0003 (4)	0.0008 (4)	-0.0004 (4)
F6	0.0175 (5)	0.0152 (4)	0.0189 (5)	-0.0026 (4)	0.0036 (4)	0.0018 (4)

Geometric parameters (Å, °)

1.8157 (11)	Nb2—F3	1.8121 (10)
1.8158 (10)	Nb2—F3 ⁱⁱ	1.8122 (10)
1.8468 (10)	Nb2—F2	1.8378 (14)
1.8468 (10)	Nb2—F1	1.8577 (14)
2.0669 (9)	Nb2—F4	2.0685 (10)
2.0669 (9)	Nb2—F4 ⁱⁱ	2.0685 (10)
97.52 (7)	F3—Nb2—F2	96.78 (5)
95.18 (5)	F3 ⁱⁱ —Nb2—F2	96.78 (5)
95.61 (5)	F3—Nb2—F1	94.53 (5)
95.61 (5)	F3 ⁱⁱ —Nb2—F1	94.53 (5)
95.18 (5)	F2—Nb2—F1	162.63 (6)
163.61 (7)	F3—Nb2—F4	89.47 (5)
172.83 (4)	F3 ⁱⁱ —Nb2—F4	171.95 (4)
89.59 (4)	F2—Nb2—F4	83.54 (5)
83.14 (5)	F1—Nb2—F4	83.43 (4)
84.63 (4)	F3—Nb2—F4 ⁱⁱ	171.95 (4)
89.59 (4)	F3 ⁱⁱ —Nb2—F4 ⁱⁱ	89.47 (5)
172.83 (4)	F2—Nb2—F4 ⁱⁱ	83.54 (5)
84.62 (4)	F1—Nb2—F4 ⁱⁱ	83.43 (4)
83.14 (5)	F4—Nb2—F4 ⁱⁱ	82.57 (5)
	$\begin{array}{c} 1.8157\ (11)\\ 1.8158\ (10)\\ 1.8468\ (10)\\ 2.0669\ (9)\\ 2.0669\ (9)\\ 2.0669\ (9)\\ 97.52\ (7)\\ 95.18\ (5)\\ 95.61\ (5)\\ 95.61\ (5)\\ 95.61\ (5)\\ 95.18\ (5)\\ 163.61\ (7)\\ 172.83\ (4)\\ 89.59\ (4)\\ 83.14\ (5)\\ 84.63\ (4)\\ 89.59\ (4)\\ 172.83\ (4)\\ 84.62\ (4)\\ 83.14\ (5)\\ \end{array}$	1.8157(11)Nb2—F3 $1.8158(10)$ Nb2—F3 $1.8468(10)$ Nb2—F2 $1.8468(10)$ Nb2—F1 $2.0669(9)$ Nb2—F4 $97.52(7)$ F3—Nb2—F2 $95.18(5)$ F3 ⁱⁱ —Nb2—F2 $95.61(5)$ F3—Nb2—F1 $95.61(5)$ F3 ⁱⁱ —Nb2—F1 $95.18(5)$ F2—Nb2—F1 $163.61(7)$ F3—Nb2—F4 $172.83(4)$ F3 ⁱⁱ —Nb2—F4 $89.59(4)$ F2—Nb2—F4 $83.14(5)$ F1—Nb2—F4 $84.62(4)$ F1—Nb2—F4 ⁱⁱ $83.14(5)$ F1—Nb2—F4 ⁱⁱ $83.14(5)$ F1—Nb2—F4 ⁱⁱ $83.14(5)$ F1—Nb2—F4 ⁱⁱ $83.14(5)$ F4—Nb2—F4 ⁱⁱ

supporting information

F4 ⁱ —Nb1—F4	83.32 (5)	Nb1—F4—Nb2	172.94 (5)
F3—Nb2—F3 ⁱⁱ	98.46 (7)		

Symmetry codes: (i) -x, y, -z+1; (ii) x, -y, z.

Selected interatomic angles (°) for the crystal structure of NbF₅

F6 ⁱ —Nb1—F5	95.61 (5)	F3 ⁱ —Nb2—F2	96.78 (5)	
F6—Nb1—F6 ⁱⁱ	97.52 (7)	F3—Nb2—F3 ⁱ	98.46 (7)	
F6—Nb1—F5	95.18 (5)	F3—Nb2—F2	96.78 (5)	
F6 ⁱ —Nb1—F5	95.61 (5)	F3 ⁱ —Nb2—F2	96.78 (5)	
F6—Nb1—F5 ⁱⁱ	95.61 (5)	F3—Nb2—F1	94.53 (5)	
F6 ⁱⁱ —Nb1—F5 ⁱⁱ	95.18 (5)	F3 ⁱ —Nb2—F1	94.53 (5)	
F5—Nb1—F5 ⁱⁱ	163.61 (7)	F2—Nb2—F1	162.63 (6)	
F6—Nb1—F4 ⁱⁱ	172.83 (4)	F3—Nb2—F4	89.47 (5)	
F6 ⁱⁱ —Nb1—F4 ⁱⁱ	89.59 (4)	F3 ⁱ —Nb2—F4	171.95 (4)	
F5—Nb1—F4 ⁱⁱ	83.14 (5)	F2—Nb2—F4	83.54 (5)	
F5 ⁱⁱ —Nb1—F4 ⁱⁱ	84.63 (4)	F1—Nb2—F4	83.43 (4)	
F6—Nb1—F4	89.59 (4)	F3—Nb2—F4 ⁱ	171.95 (4)	
F6 ⁱⁱ —Nb1—F4	172.83 (4)	F3 ⁱ —Nb2—F4 ⁱ	89.47 (5)	
F5—Nb1—F4	84.62 (4)	F2—Nb2—F4 ⁱ	83.54 (5)	
F5 ⁱⁱ —Nb1—F4	83.14 (5)	F1—Nb2—F4 ⁱ	83.43 (4)	
F4 ⁱⁱ —Nb1—F4	83.32 (5)	F4—Nb2—F4 ⁱ	82.57 (5)	
Nb1—Nb2—Nb1 ⁱⁱⁱ	89.62 (1)	Nb1—F4—Nb2	172.94 (5)	
Nb2—Nb1—Nb2 ⁱⁱ	90.38 (1)			

Symmetry codes: (i) *x*, -*y*, *z*; (ii) -*x*, *y*, 1 - *z*, (iii) -*x*, -*y*, 1 - *z*.