CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 23 November 2023
Accepted 28 November 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom
\# Current address: Centre for Ore Deposit and Earth Sciences, University of Tasmania, TAS, Private Bag 79, Hobart 7001, Australia

Keywords: crystal structure; phase transition; ordered structure; $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right]^{2+}$; nitrate group; group-subgroup relationship; Bärnighausen tree.

CCDC reference: 2310821

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$
Published under a CC BY 4.0 licence

Dimorphism of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ - the ordered Pna2 ${ }_{1}$ structure at 100 K

Matthias Weil, ${ }^{\mathbf{a} *}$ Owen P. Missen ${ }^{\mathbf{b}, \mathbf{c}} \ddagger$ and Stuart J. Mills ${ }^{\mathbf{c}}$

${ }^{\text {a }}$ Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/E164-051, A-1060 Vienna, Austria, ${ }^{\text {b }}$ School of Earth, Atmosphere and Environment, Monash University, Clayton 3800, Victoria, Australia, and ${ }^{\text {c }}$ Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia. *Correspondence e-mail: matthias.weil@tuwien.ac.at

The re-investigation of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$, dioxidodibismuth(III) hydroxide nitrate, on the basis of single-crystal X-ray diffraction data revealed an apparent structural phase transition of a crystal structure determined previously (space group $C m c 2_{1}$ at 173 K) to a crystal structure with lower symmetry (space group $P n a 2_{1}$ at 100 K$)$. The $C m c 2_{1} \rightarrow P n a 2_{1}$ group-subgroup relationship between the two crystal structures is klassengleiche with index 2. In contrast to the crystal structure in $C m c 2_{1}$ with orientational disorder of the nitrate anion, disorder does not occur in the $P n a 2_{1}$ structure. Apart from the disorder of the nitrate anion, the general structural set-up in the two crystal structures is very similar: $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right]^{2+}$ layers extend parallel to (001) and alternate with layers of $(\mathrm{OH})^{-}$ anions above and $\left(\mathrm{NO}_{3}\right)^{-}$anions below the cationic layer. Whereas the $(\mathrm{OH})^{-}$ anion shows strong bonds to the $\mathrm{Bi}^{\mathrm{III}}$ cations, the $\left(\mathrm{NO}_{3}\right)^{-}$anion weakly binds to the $\mathrm{Bi}^{\text {III }}$ cations of the cationic layer. A rather weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interaction between the $(\mathrm{OH})^{-}$anion and the $\left(\mathrm{NO}_{3}\right)^{-}$anion links adjacent sheets along [001].

1. Chemical context

During hydrothermal phase-formation studies of synthetic montanite, a bismuth(III) oxidotellurate(VI) mineral with composition $\mathrm{Bi}_{2} \mathrm{TeO}_{6} \cdot n \mathrm{H}_{2} \mathrm{O}(0 \leq n \leq 2 / 3$; Missen et al., 2022), small amounts of basic bismuth(III) nitrate $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ were also obtained when the starting materials $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Herpin \& Sudarsanan, 1965; Lazarini, 1985), $\mathrm{Te}(\mathrm{OH})_{6}$ and KOH were reacted under hydrothermal conditions. It is worth noting that no minerals containing both Bi and $\left(\mathrm{NO}_{3}\right)^{-}$have yet been found and described, with all examples of these compounds being synthetic. A routine unit-cell search at 100 K for selected crystals revealed unit-cell parameters very close to those of previously reported $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ (Henry et al., 2005; 173 K single-crystal X-ray data), however not with a C-centred but with a primitive orthorhombic unit cell. We therefore decided to determine the crystal structure based on the 100 K data and report here the results of this study.

2. Structural commentary

The previous crystal-structure determination and refinement of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ in space group $\mathrm{Cmc} 2_{1}$ resulted in a model with the nitrate anion being disordered over two possible orientations. As noted in the original report, this disorder could not be resolved: 'Attempts to further lower the symmetry to order those anions was not successful and no supercell spots were detected on single crystal and powder

Cmc2 ${ }_{1}$

Figure 1
Bärnighausen tree of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$, showing the detailed group-subgroup relationship between the $\mathrm{Cmc} 2_{1}$ and $\mathrm{Pna} 2_{1}$ structures.
diffraction data' (Henry et al., 2005). The current single-crystal X-ray diffraction data clearly revealed space group Pna2 ${ }_{1}$, and the observed disorder of the nitrate anion does not prevail in the primitive unit cell, indicating that an apparent structural phase transition has taken place between 173 K and 100 K . Fig. 1 shows the Bärnighausen tree (Bärnighausen, 1980; Müller, 2013) indicating the group-subgroup relationship between the two space groups and the associated crystal structures, denoted in the following as $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-I for the 173 K data in space group $C m c 2_{1}$ and as $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-II for the 100 K data in space group $P n a 2_{1}$. The latter is a klassengleiche subgroup of $C m c 2_{1}$ with

Figure 2
Crystal structures of the $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)\right.$] polymorphs. Strong $\mathrm{Bi}-\mathrm{O}$ bonds ($2.20-2.62 \AA$) are shown as black lines, weaker $\mathrm{Bi}-\mathrm{O}$ bonds ($2.80-$ $3.00 \AA$) as grey lines; colour code for both structures: Bi1 blue, Bi2 light blue, N 1 purple, O 2 associated with the OH group green, all other O atoms white; the $\mathrm{O} 2 \cdots \mathrm{O}$ hydrogen bond is displayed with green lines. (a) The Pna_{1} structure of $\left.\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-II with atoms at the 97% probability level; symmetry codes refer to Table 1 and (b) the Cmc_{1} structure of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)-\mathrm{I}(H e n r y ~ e t ~ a l ., ~ 2005)$ with atoms shown as spheres of arbitrary radius. In the inset, the nitrate group is rotated by 60° to show the disorder present in $\left.\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)-\mathrm{I}$.
index 2. All atoms in $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-I that are located on sites with mirror symmetry, viz. atoms $\mathrm{Bi} 1, \mathrm{Bi} 2, \mathrm{O} 2, \mathrm{O} 3$ and N 1 , lie on general positions in $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-II. The O1 site in the higher-symmetry structure splits into two sites ($\mathrm{O} 1 A, \mathrm{O} 1 B$) in the lower-symmetry structure, and the two disordered (half-occupied) sites O 4 and O 5 fully order.

Apart from the ordering of the $\left(\mathrm{NO}_{3}\right)^{-}$group, the general structural set-up is very similar in the two crystal structures. $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right]^{2+}$ layers, defined by atoms $\mathrm{Bi} 1, \mathrm{Bi} 2$, and O 1 , are sandwiched between layers of $\left(\mathrm{NO}_{3}\right)^{-}$anions (N1, O3-O5) above and $(\mathrm{OH})^{-}$anions $(\mathrm{O} 2)$ below. Cohesion between the resulting $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ sheets is achieved through presumed weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the hydroxide anion and atom O4 of the nitrate anion (Fig. 2).

Individual bond lengths of the structure units in the two polymorphs differ slightly (Table 1); numerical values are discussed in the following paragraph only for $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)-\mathrm{II}$. Within the $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right]^{2+}$ layer, the two $\mathrm{Bi}^{\mathrm{III}}$ cations exhibit four bonds each [range 2.1964 (8)2.657 (12) \AA] to the $\mathrm{O} 1 A$ and O1B atoms that, in turn, are tetrahedrally surrounded by the $\mathrm{Bi}^{\text {III }}$ cations. Such anioncentered $\left[\mathrm{OBi}_{4}\right]$ tetrahedra are a common structural motif in inorganic bismuth(III) compounds (Krivovichev et al., 2013). Additional strong $\mathrm{Bi}^{\mathrm{III}}-\mathrm{O}$ interactions of 2.335 (9) and 2.493 (9) A include the O2 atom of the hydroxide anion in the adjacent layer. On the other hand, the nitrate anion is only weakly bonded to the $\mathrm{Bi}^{\mathrm{iII}}$ cations of the cationic layer, with four $\mathrm{Bi} 1-\mathrm{O} 3$ interactions ranging from 2.868 (9) to 2.942 (9) \AA, and another weak $\mathrm{Bi} 2-\mathrm{O} 4$ bond of 3.080 (10) \AA. Overall, both $\mathrm{Bi}^{\text {III }}$ cations have eight oxygen atoms as coordination partners. The $\left[\mathrm{BilO}_{8}\right]$ coordination polyhedron can be described as a distorted square antiprism, whereas the $\left[\mathrm{Bi}^{2} \mathrm{O}_{5}(\mathrm{OH})_{3}\right]$ coordination polyhedron shows a significantly greater distortion (Table 1) and is difficult to derive from a simple geometric shape. In both cases, the $6 s^{2}$ free electron pair E of $\mathrm{Bi}^{\mathrm{III}}$ located at the top of the $\left\{\mathrm{BiO}_{4}\right\}$ square-pyramid (as defined by the four short $\mathrm{Bi}-\mathrm{O}$ bonds) is made responsible for the distortion of the polyhedra. The resulting stereochemical effect appears to be less pronounced for the

Table 1
Comparison of bond lengths (\AA) in the $P n a 2_{1}$ and $C m c 2_{1}$ structures of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$.
O atoms marked with an asterisk show half-occupancy.

$\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)-\mathrm{II}\left(\mathrm{Pna2}_{1}\right)$		$\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-I $\left(\mathrm{Cmc2}_{1}\right)$	
$\mathrm{Bi} 1-\mathrm{O} 1 B^{\mathrm{i}}$	2.203 (8)	Bi1-O1	2.226 (8)
$\mathrm{Bi} 1-\mathrm{O} 1 B^{\text {ii }}$	2.207 (8)	$\mathrm{Bi} 1-\mathrm{O}^{a}{ }^{\text {a }}$	2.226 (8)
Bi1-O1A	2.226 (8)	$\mathrm{Bi} 1-\mathrm{O}^{\text {b }}$	2.244 (8)
$\mathrm{Bi} 1-\mathrm{O} 1 A^{\mathrm{i}}$	2.292 (8)	$\mathrm{Bi} 1-\mathrm{O}^{\text {c }}$	2.244 (8)
Bi1-O3 ${ }^{\text {iii }}$	2.868 (9)	$\mathrm{Bi} 1-\mathrm{O}^{\text {d }}$	2.873 (11)
$\mathrm{Bi} 1-\mathrm{O} 3^{\text {ii }}$	2.868 (8)	Bi1-O3	2.911 (4)
Bi1-O3	2.924 (8)	$\mathrm{Bi} 1-\mathrm{O}^{e}$	2.911 (4)
$\mathrm{Bi} 1-\mathrm{O}^{\text {i }}$	2.941 (9)	$\mathrm{Bi} 1-\mathrm{O}^{f}$	2.957 (11)
Bi2-O1A	2.197 (8)	Bi2-O1	2.239 (7)
Bi2-O1B	2.267 (8)	$\mathrm{Bi} 2-\mathrm{O}^{\text {g }}$	2.239 (7)
Bi2-O2	2.334 (9)	Bi2-O2	2.341 (17)
$\mathrm{Bi} 2-\mathrm{O} 1 A^{\mathrm{i}}$	2.462 (8)	$\mathrm{Bi} 2-\mathrm{O}^{\text {h }}$	2.540 (8)
$\mathrm{Bi} 2-\mathrm{O} 2^{\mathrm{i}}$	2.493 (9)	$\mathrm{Bi} 2-\mathrm{O}^{\text {c }}$	2.540 (8)
Bi2-O1 $B^{\text {iv }}$	2.619 (8)	$\mathrm{Bi} 2-\mathrm{O}^{\text {h }}$	2.839 (6)
$\mathrm{Bi} 2-\mathrm{O} 4^{\text {v }}$	3.080 (10)	$\mathrm{Bi} 2-\mathrm{O} 2^{\text {b }}$	2.839 (6)
$\mathrm{Bi} 2-\mathrm{O} 2^{\text {iv }}$	3.149 (9)		
N1-O5	1.251 (14)	N1-O5*	1.21 (3)
		$\mathrm{N} 1-\mathrm{O} 5^{*}$ *	1.21 (3) ${ }^{j}$
$\mathrm{N} 1-\mathrm{O} 4^{\text {vi }}$	1.251 (13)	N1-O4*	1.19 (2)
		N1-O4**	1.19 (2)
N1-O3	1.291 (14)	N1-O3	1.272 (16)
$\mathrm{O} 2 \cdots \mathrm{O} 4^{\text {vii }}$	2.953 (14)	O2..O3*	2.97 (3)
		$\mathrm{O} 2 \cdots \mathrm{O} 5^{j *}$	2.97 (3)

Symmetry codes for the $P n a 2_{1}$ structure: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $x, y-1, z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iv) $x-\frac{1}{2},-y+\frac{3}{2}, z$; (v) $-x+1,-y+1, z-\frac{1}{2}$; (vi) $x-1, y, z$; (vii) $-x+\frac{3}{2}, y-\frac{1}{2}, z-\frac{1}{2}$. Symmetry codes for the $C m c 2_{1}$ structure: $(a)-x, y, z ;(b)-\frac{1}{2}+x,-\frac{1}{2}+y, z ;(c) \frac{1}{2}-x,-\frac{1}{2}+y, z ;(d)-\frac{1}{2}+x, \frac{1}{2}+y, z ;(e)-1+x, y, z ;(f)-\frac{1}{2}+x,-\frac{1}{2}+y, z ;(g)-\frac{1}{2}+x,-\frac{1}{2}+y, z ;(h) \frac{1}{2}+x,-\frac{1}{2}+y$, $z ;(j) 1-x, y, z$.
$\left[\mathrm{Bi1O}_{8}\right]$ coordination polyhedron, but is much clearer with the $\left[\mathrm{Bi}^{2} \mathrm{O}_{5}(\mathrm{OH})_{3}\right]$ coordination polyhedron. This behaviour might possibly be explained by the stronger repulsive interaction between E and the surrounding $(\mathrm{OH})^{-}$groups. The ordered $\left(\mathrm{NO}_{3}\right)^{-}$group in $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-II has an average $\mathrm{N}-\mathrm{O}$ bond length of $1.264 \AA$, which is slightly longer but within the single standard deviation of the mean literature value of 1.247 (29) \AA calculated for $468 \mathrm{~N}-\mathrm{O}$ bonds in nitrates (Gagné \& Hawthorne, 2018). The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles range from 118.7 (10) to 121.3 (11) ${ }^{\circ}$, indicating a slight angular distortion. However, the $\left(\mathrm{NO}_{3}\right)^{-}$group does not deviate from planarity as observed for many nitrates, with deviations of up to $0.02 \AA$ (Jarosch \& Zemann, 1983). In $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ II, the root-mean-square deviation of fitted atoms is $0.0014 \AA$, with a deviation for N 1 of -0.003 (10) \AA from the plane defined by O3, O4(x-1, $y, z)$ and O5.

As shown in Fig. 2, the hydrogen-bonding schemes in the two $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ polymorphs are different. Based on the closest $\mathrm{O} 2 \cdots \mathrm{O}$ contacts between the hydroxide and the nitrate anion, the acceptor changes from $\mathrm{O} 5[\mathrm{O} \cdots \mathrm{O}=$ $2.97(3) \AA]$ in $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)-\mathrm{I}$ to $\mathrm{O} 4[\mathrm{O} \cdots \mathrm{O}=$ $2.953(14) \AA]$ in $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-II. The closest contact of O 2 to O 5 in polymorph-II then is 3.017 (14) \AA and that of O 2 to O 4 in polymorph- I is $3.16 \AA$. The differences in hydrogenbonding correlate with the ordering of the $\left(\mathrm{NO}_{3}\right)^{-}$anion, which might be the driving force for the $\mathrm{Cmc}_{1} \rightarrow \mathrm{Pna2}_{1}$ phase transition. A similar situation is found for the double salt $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SeO}_{4} \cdot 3 \mathrm{NH}_{4} \mathrm{NO}_{3}$ for which the high-temperature polymorph shows disorder of one of the nitrate groups that is fully resolved for the low-temperature polymorph (Weil et al., 2023).

Bond-valence sums (Brown, 2002) were computed to validate the crystal structure model of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$-II. For the $\mathrm{Bi}^{\text {III }}-\mathrm{O}$ pair, the parameters of Krivovichev (2012) and for the pair $\mathrm{N}^{\mathrm{V}}-\mathrm{O}$ the parameters of Brese \& O'Keeffe (1991) were used (results in valence units with the numbers and types of coordination partners in parentheses): Bi1 3.02 (8, O); Bi2 2.89 (8, O); N1 4.73 (3, O); O1A 2.17 (4, Bi); O1B 2.11 (4, Bi), O2 $0.84(2, \mathrm{Bi})$; O3 $2.06(5, \mathrm{~N}+4 \mathrm{Bi})$; O4 $1.72(2, \mathrm{~N}$ $+\mathrm{Bi})$, O5 $1.63(1, \mathrm{~N})$. The results confirm the expected oxidation state of +III for Bi , and also show the underbonding of O 2 as being part of the hydroxide group, and of O 4 and O 5 as possible acceptor atoms of hydrogen bonds.

3. Database survey

As described above, the crystal structures of the $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ polymorphs comprise of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right]^{2+}$ layers that are typical for Aurivillius phases (Henry et al., 2005). $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ remains the only basic bismuth(III) nitrate for which this structural motif is known so far in the solid state. As shown for numerous other basic bismuth(III) nitrate phases obtained under hydrolytic conditions of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, the hexanuclear cation $\left[\mathrm{Bi}_{6} \mathrm{O}_{4+x}(\mathrm{OH})_{4-x}\right]^{(6-x)+}$ with $x=0$ and $x=1$ was reported to be the predominant species (Nørlund Christensen et al., 2000). Later, Henry et al. (2005) gave a general formula of $\left[\mathrm{Bi}_{6} \mathrm{O}_{x}(\mathrm{OH})_{8-x}\right]^{(10-x)+}$ for the compositorial range of this complex cation.

A search of the Inorganic Crystal Structure Database (ICSD, version 2023_1; Zagorac et al., 2019) revealed the following basic bismuth(III) nitrate phases where this complex
cation is part of the crystal structure (designation of the phases as in the original literature): $\left[\mathrm{Bi}_{6} \mathrm{O}_{5}(\mathrm{OH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Lazarini, 1978), $\left.\left[\mathrm{Bi}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NO}_{3}\right) \mathrm{O}_{4}(\mathrm{OH})_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{5}$ (Lazarini, 1979a), $\mathrm{Bi}_{6} \mathrm{O}_{4}(\mathrm{HO})_{4}\left(\mathrm{NO}_{3}\right)_{6} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ (Sundvall, 1979), $\left[\mathrm{Bi}_{6} \mathrm{O}_{4.5}(\mathrm{OH})_{3.5}\right]_{2}\left(\mathrm{NO}_{3}\right)_{11}$ (Henry et al., 2003), $\left[\mathrm{Bi}_{6} \mathrm{O}_{4}{ }^{-}\right.$ $\left.(\mathrm{OH})_{4}\right]_{0.54}\left[\mathrm{Bi}_{6} \mathrm{O}_{5}(\mathrm{OH})_{3}\right]_{0.46}\left(\mathrm{NO}_{3}\right)_{5.54}$ (Nørlund Christensen \& Lebech, 2012), $\left[\mathrm{Bi}_{6} \mathrm{O}_{4}(\mathrm{OH})_{4}\right]\left(\mathrm{NO}_{3}\right)_{6}$ (Henry et al., 2006), $\left[\mathrm{Bi}_{6} \mathrm{O}_{4}(\mathrm{OH})_{4}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)$ (Miersch et al., 2012), $\left[\mathrm{Bi}_{6} \mathrm{O}_{4}(\mathrm{OH})_{4}\left(\mathrm{NO}_{3}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Miersch et al., 2012), $\left[\mathrm{Bi}_{6} \mathrm{O}_{4}(\mathrm{OH})_{4}\right]\left(\mathrm{NO}_{3}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad$ (Lazarini, $\left.1979 b\right)$, $\quad\left[\mathrm{Bi}_{12}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{OH})_{4}\left(\mu_{2}-\mathrm{OH}\right)_{2}\left(\mu_{3}-\mathrm{O}\right)_{8}\left(\mu_{4}-\mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{Liu}$ et al., 2007).

4. Synthesis and crystallization

Crystals of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ were obtained in a hydrothermal reaction as a byproduct from a mixture of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot-$ $5 \mathrm{H}_{2} \mathrm{O}(0.0786 \mathrm{~g}), \mathrm{Te}(\mathrm{OH})_{6}(0.0124 \mathrm{~g})$ and $\mathrm{KOH}(0.0060 \mathrm{~g})$ in a 3:1:2 molar ratio. The reactants were intermixed and 3.62 g of water was added to achieve a $2 / 3$ inner volume of the Teflon container. The reaction vessel was enclosed in a steel autoclave, heated to 473 K and reacted for a period of 69 days under autogenous pressure. The mixture was then cooled to room temperature by removing the autoclave from the oven. The solid material obtained after the reaction time was filtered off through a glass frit, washed with mother liquor, water and ethanol and dried in air. Aside from few light-yellow crystals of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ with a plate-like form, all other products were cryptocrystalline.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Inspection of the diffraction data revealed twinning by a 180° rotation about the c axis and inversion, which means that the Flack parameter could not be determined. After crystal structure solution, the atomic coordinates and atom labelling were adapted to the $\mathrm{Cmc} 2_{1}$ structure (Henry et al., 2005) for better comparison. The Bi atoms were refined with anisotropic displacement parameters, all other atoms with isotropic displacement parameters each; the H atom of the hydroxide anion (O 2) could not be localized. The remaining maximum ($3.03 \mathrm{e}^{-} \AA^{-3}$) and minimum $\left(-3.58 \mathrm{e}^{-} \AA^{-3}\right)$ electron-density peaks are located 1.63 and $1.47 \AA$ away from Bi2 and Bi1, respectively.

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for granting free access to the single-crystal X-ray diffractometer. We thank TU Wien Bibliothek for financial support through its Open Access Funding Programme. Support funding was provided to OPM by an Australian Government Research Training Program (RTP) Scholarship, a Monash Graduate Excellence Scholarship (MGES) and a Robert Blackwood Monash-Museums Victoria scholarship.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
0.030, 0.057, 0.98

No. of reflections
No. of parameters
2798
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
48
1
H -atom parameters not defined 3.13, -3.61

Twinning involves inversion, so Flack parameter cannot be determined

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ATOMS (Dowty, 2005) and publCIF (Westrip, 2010).

References

Bärnighausen, H. (1980). MATCH, Commun. Math. Chem. 9, 139175.

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, WI, USA.
Dowty, E. (2005). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Gagné, O. C. \& Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.
Henry, N., Evain, M., Deniard, P., Jobic, S., Abraham, F. \& Mentré, O. (2005). Z. Naturforsch. Teil B, 60, 322-327.

Henry, N., Evain, M., Deniard, P., Jobic, S., Mentré, O. \& Abraham, F. (2003). J. Solid State Chem. 176, 127-136.

Henry, N., Mentré, O., Abraham, F., MacLean, E. J. \& Roussel, P. (2006). J. Solid State Chem. 179, 3087-3094.

Herpin, P. \& Sudarsanan, K. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 590-594.
Herrendorf, W. (1997). HABITUS. University of Giessen, Germany. Jarosch, D. \& Zemann, J. (1983). Monatsh. Chem. 114, 267-272.
Krivovichev, S. V. (2012). Z. Kristallogr. 227, 575-579.
Krivovichev, S. V., Mentré, O., Siidra, O. I., Colmont, M. \& Filatov, S. K. (2013). Chem. Rev. 113, 6459-6535.

Lazarini, F. (1978). Acta Cryst. B34, 3169-3173.
Lazarini, F. (1979a). Acta Cryst. B35, 448-450.
Lazarini, F. (1979b). Cryst. Struct. Commun. 8, 69-74.
Lazarini, F. (1985). Acta Cryst. C41, 1144-1145.
Liu, B., Zhou, W., Zhou, Z. \& Zhang, X. (2007). Inorg. Chem. Соттии. 10, 1145-1148.

Miersch, L., Rüffer, T., Schlesinger, M., Lang, H. \& Mehring, M. (2012). Inorg. Chem. 51, 9376-9384.

Missen, O. P., Mills, S. J., Rumsey, M. S., Weil, M., Artner, W., Spratt, J. \& Najorka, J. (2022). Phys. Chem. Miner. 49, 21.
Müller, U. (2013). Symmetry Relationships between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry, International Union of Crystallography Texts on Crystallography. Oxford University Press.
Nørlund Christensen, A. \& Lebech, B. (2012). Dalton Trans. 41, 1971-1980.

Nørlund Christensen, A., Chevallier, M.-A., Skibsted, J. \& Iversen, B. B. (2000). J. Chem. Soc. Dalton Trans. pp. 265-270.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sundvall, B. (1979). Acta Chem. Scand. 33a, 219-224.
Weil, M., Häusler, T., Bonneau, B. \& Füglein, E. (2023). Inorganics, 11, 433.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. \& Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.

supporting information

Dimorphism of $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$ - the ordered Pna2 ${ }_{1}$ structure at 100 K

Matthias Weil, Owen P. Missen and Stuart J. Mills

Computing details

Dioxidodibismuth(III) hydroxide nitrate

Crystal data

$\left[\mathrm{Bi}_{2} \mathrm{O}_{2}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)$
$M_{r}=528.98$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=5.3854$ (13) \AA
$b=5.3676(13) \AA$
$c=17.051$ (4) \AA
$V=492.9(2) \AA^{3}$
$Z=4$
$F(000)=888$

Data collection

Bruker APEXII CCD
diffractometer
ω-scans
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
$T_{\text {min }}=0.017, T_{\text {max }}=0.524$
9853 measured reflections
$D_{\mathrm{x}}=7.129 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3403 reflections
$\theta=2.9-36.3^{\circ}$
$\mu=71.27 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, light yellow
$0.09 \times 0.08 \times 0.01 \mathrm{~mm}$

2798 independent reflections
2407 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=38.8^{\circ}, \theta_{\text {min }}=1.2^{\circ}$
$h=-8 \rightarrow 9$
$k=-9 \rightarrow 8$
$l=-29 \rightarrow 29$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.057$
$S=0.98$
2798 reflections
48 parameters
1 restraint
H -atom parameters not defined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0213 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=3.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-3.61 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Twinning involves } \\
& \text { inversion, so Flack parameter cannot be } \\
& \text { determined }
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Bi1	$0.04362(7)$	$-0.00785(7)$	$0.23658(3)$	$0.00299(7)$
Bi2	$0.08217(8)$	$0.48199(6)$	$0.08442(4)$	$0.00432(8)$
O1A	$0.2866(15)$	$0.2468(15)$	$0.1678(5)$	$0.0041(15)^{*}$
O1B	$0.2840(15)$	$0.7394(15)$	$0.1683(5)$	$0.0053(15)^{*}$
O2	$0.4937(17)$	$0.4539(16)$	$0.0423(6)$	$0.0097(15)^{*}$
N1	$0.021(2)$	$0.4969(18)$	$0.3759(6)$	$0.0091(19)^{*}$
O3	$0.0363(16)$	$0.4977(15)$	$0.3004(5)$	$0.0089(14)^{*}$
O4	$0.8650(17)$	$0.6351(17)$	$0.4084(6)$	$0.0148(19)^{*}$
O5	$0.1626(17)$	$0.3604(16)$	$0.4153(6)$	$0.0145(18)^{*}$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi1	$0.00314(12)$	$0.00303(15)$	$0.00279(14)$	$-0.00018(11)$	$0.00001(12)$	$0.0001(2)$
Bi2	$0.00461(13)$	$0.00439(16)$	$0.00395(15)$	$-0.00002(11)$	$-0.00086(14)$	$0.0010(3)$

Geometric parameters ($\bar{A},{ }^{\circ}$)

Bil-O1B ${ }^{\text {i }}$	2.203 (8)	Bi2-O1B	2.267 (8)
Bil-O1B ${ }^{\text {ii }}$	2.207 (8)	$\mathrm{Bi} 2-\mathrm{O} 2$	2.334 (9)
Bil-O1A	2.226 (8)	$\mathrm{Bi} 2-\mathrm{O} 1 \mathrm{~A}^{\mathrm{i}}$	2.462 (8)
Bil-O1A ${ }^{\text {i }}$	2.292 (8)	$\mathrm{Bi} 2-\mathrm{O} 2^{\text {i }}$	2.493 (9)
Bil-O3 ${ }^{\text {iii }}$	2.868 (9)	$\mathrm{Bi} 2-\mathrm{OlB}^{\text {iv }}$	2.619 (8)
$\mathrm{Bi} 1-\mathrm{O} 3{ }^{\text {ii }}$	2.868 (8)	N1-O5	1.251 (14)
Bil-O3	2.924 (8)	N1-O4 ${ }^{\text {² }}$	1.251 (13)
Bil-O3 ${ }^{\text {i }}$	2.941 (9)	N1-O3	1.291 (14)
Bi2-O1A	2.197 (8)		
O1B ${ }^{\text {i }}$ - $\mathrm{Bi} 1-01 \mathrm{~B}^{\text {ii }}$	75.34 (18)	$\mathrm{O} 1 \mathrm{~A}^{\mathrm{i}}-\mathrm{Bi} 2-\mathrm{O} 1 \mathrm{~B}^{\mathrm{iv}}$	64.7 (3)
O1B- ${ }^{\text {i }}$ - ${ }^{\text {a }}$	116.2 (3)	$\mathrm{O} 2 \mathrm{i}-\mathrm{Bi} 2-\mathrm{O}^{\text {B }}{ }^{\mathrm{iv}}$	125.2 (3)
O1B ${ }^{\text {ii }}$ - $\mathrm{Bi} 1-\mathrm{O} 1 \mathrm{~A}$	75.8 (3)	Bi2-O1A-Bi1	113.5 (3)
O1B ${ }^{\text {i }}$ - Bil-O1A ${ }^{\text {i }}$	72.0 (3)	$\mathrm{Bi} 2-\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi} 1{ }^{\text {iii }}$	106.4 (3)
O1B ${ }^{\text {iii }}$ - $\mathrm{Bi} 1-\mathrm{O} 1 \mathrm{~A}^{\mathrm{i}}$	117.4 (3)	$\mathrm{Bi} 1-\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi} 1^{\text {iii }}$	117.4 (4)
O1A-Bil-O1A ${ }^{\text {i }}$	73.15 (16)	$\mathrm{Bi} 2-\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi}^{\text {iii }}$	103.7 (3)
O1A-Bi2-O1B	72.6 (3)	$\mathrm{Bi} 1-\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi}^{\text {iii }}$	112.2 (3)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi} 2-\mathrm{O} 2$	71.7 (3)	$\mathrm{Bi1}{ }^{\text {iii }}-\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi}^{2}{ }^{\text {iii }}$	102.1 (3)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Bi} 2-\mathrm{O} 2$	77.2 (3)	Bi1 ${ }^{\text {iii- }}$-O1B- $\mathrm{Bil}^{\text {vi }}$	116.1 (4)
O1A-Bi2-O1A ${ }^{\text {i }}$	70.34 (18)	Bi1 ${ }^{\text {iii] }}$-O1B-Bi2	107.1 (3)
O1B-Bi2-O1A ${ }^{\text {i }}$	104.4 (3)	Bil ${ }^{\text {vi}}-\mathrm{O} 1 \mathrm{~B}-\mathrm{Bi} 2$	115.2 (4)
$\mathrm{O} 2-\mathrm{Bi} 2-\mathrm{O} 1 \mathrm{~A}^{\mathrm{i}}$	139.4 (3)	$\mathrm{Bi} 1^{\text {iii- }}$-O1B- $\mathrm{Bi}^{2}{ }^{\text {vii }}$	102.8 (3)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi} 2-\mathrm{O} 2^{\mathrm{i}}$	75.1 (3)	$\mathrm{Bi} 1{ }^{\text {vi}}-\mathrm{O} 1 \mathrm{~B}-\mathrm{Bi} 2^{\text {vii }}$	107.3 (3)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Bi} 2-\mathrm{O} 2^{\mathrm{i}}$	147.7 (3)	$\mathrm{Bi} 2-\mathrm{O} 1 \mathrm{~B}-\mathrm{Bi}^{\text {vii }}$	107.3 (3)
$\mathrm{O} 2-\mathrm{Bi} 2-\mathrm{O} 2^{\text {i }}$	91.8 (3)	$\mathrm{Bi} 2-\mathrm{O} 2-\mathrm{Bi}^{2}{ }^{\text {iii }}$	98.8 (3)
$\mathrm{O} 1 \mathrm{~A}^{\mathrm{i}}-\mathrm{Bi} 2-\mathrm{O} 2^{\mathrm{i}}$	64.8 (3)	$\mathrm{O} 5-\mathrm{N} 1-\mathrm{O} 4{ }^{\text {v }}$	121.3 (11)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Bi} 2-\mathrm{O}^{\text {B }}{ }^{\text {iv }}$	106.4 (3)	O5-N1-O3	120.0 (10)

supporting information

$\mathrm{O} 1 \mathrm{~B}-\mathrm{Bi} 2-\mathrm{O}_{1} \mathrm{~B}^{\mathrm{iv}}$	$66.50(16)$	$\mathrm{O}^{\mathrm{v}}-\mathrm{N} 1-\mathrm{O} 3$	$118.7(10)$
$\mathrm{O} 2 — \mathrm{Bi} 2-\mathrm{O}_{1} \mathrm{~B}^{\mathrm{iv}}$	$141.9(3)$		

Symmetry codes: (i) $x-1 / 2,-y+1 / 2, z$; (ii) $x, y-1, z$; (iii) $x+1 / 2,-y+1 / 2, z$; (iv) $x-1 / 2,-y+3 / 2, z$; (v) $x-1, y, z$; (vi) $x, y+1, z$; (vii) $x+1 / 2,-y+3 / 2, z$.

