CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 4 September 2023
Accepted 2 October 2023

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela

Keywords: palladium(II) thiosemicarbazone complex; cinnamaldehyde 4phenylthiosemicarbazone; Hirshfeld surface analysis; crystal structure.

CCDC reference: 2163054

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis, crystal structure and Hirshfeld analysis of trans-bis\{(2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-ylidene]hydrazinecarbothioamidato- $\left.\kappa^{2} N^{1}, S\right\}$ palladium(II)

Ana Paula Lopes de Melo, ${ }^{\text {a }}$ Bianca Barreto Martins, ${ }^{\text {a }}$ Leandro Bresolin, ${ }^{\text {a }}{ }^{\text {* }}$ Bárbara Tirloni ${ }^{\text {b }}$ and Adriano Bof de Oliveira ${ }^{\text {c }}$

${ }^{a}$ Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, ${ }^{\text {b }}$ Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima s/n, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, and ${ }^{\text {c}}$ Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil. *Correspondence e-mail: leandro_bresolin@yahoo.com.br

The reaction of (2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-ylidene]hydrazinecarbothioamide (common name: cinnamaldehyde-4-phenylthiosemicarbazone) deprotonated with NaOH in ethanol with an ethanolic suspension of $\mathrm{Pd}^{\mathrm{II}}$ chloride in a $2: 1$ molar ratio yielded the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}\right]$. The anionic ligands act as metal chelators, $\kappa^{2} N^{1} S$-donors, forming fivemembered rings with a trans-configuration. The $\mathrm{Pd}^{\mathrm{II}}$ ion is fourfold coordinated in a slightly distorted square-planar geometry. For each ligand, one $\mathrm{H} \cdots \mathrm{S}$ and one $\mathrm{H} \cdots \mathrm{N}$ intramolecular interactions are observed, with $S(5)$ and $S(6)$ graphset motifs. Concerning the $\mathrm{H} \cdots \mathrm{S}$ interactions, the coordination sphere resembles a hydrogen-bonded macrocyclic environment-type. In the crystal, the complexes are linked via pairs of $\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set motif $R_{2}^{2}(8)$, and building a mono-periodic hydrogen-bonded ribbon along [001]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are: $\mathrm{H} \cdots \mathrm{H}(45.3 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(28.0 \%), \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}(8.0 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(7.4 \%)$.

1. Chemical context

As far as we know, the thiosemicarbazone chemistry can be traced back to the beginning of the 1900s, when a thiosemicarbazide derivative, $\mathrm{H}_{2} \mathrm{~N}-\mathrm{N}(\mathrm{H}) \mathrm{C}(=\mathrm{S}) \mathrm{N} R_{1} R_{2}$, was used as chemical reagent for the characterization of aldehydes and ketones, $R_{3} R_{4} \mathrm{C}=\mathrm{O}$. It was pointed out that the main product of the characterization reaction was a thiosemicarbazone derivative, $\quad R_{3} R_{4} \mathrm{C}=\mathrm{N}-\mathrm{N}(\mathrm{H}) \mathrm{C}(=\mathrm{S}) \mathrm{N} R_{1} R_{2} \quad$ (Freund \& Schander, 1902). In the second half of the 1950s, the use of 4 -phenylthiosemicarbazide as reagent for the characterization of cinnamaldehyde was reported and the cinnamaldehyde 4 -phenylthiosemicarbazone molecule, the ligand of the title compound, was the major product of the reaction (Tišler, 1956).

From early times, as a product of qualitative analysis reactions in the organic chemistry, thiosemicarbazone chemistry emerged as a large class of compounds present in a wide range of scientific disciplines. For example, the cinnamaldehyde 4-phenylthiosemicarbazone derivative shows anti-corrosion activity for copper in nitric acid media (Mostafa, 2000).
One of the most important applications of thiosemicarbazone derivatives is in coordination chemistry. The $\mathrm{N}-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{S})$ fragment can be easily deprotonated and
the negative charge is then delocalized over the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ entity, which enables chemical bonding with many different metal centers, with different Lewis acidity, and a diversity of coordination modes, e.g., chelating and bridging. Complexes with anionic thiosemicarbazone derivatives are more common as a result of the charge density and the geometry adopted by the ligands (Lobana et al., 2009).

Many complexes with thiosemicarbazone ligands show relevant biological activity. For example, $\mathrm{Pd}^{\mathrm{II}}$ heteroleptic complexes with a cinnamaldehyde-thiosemicarbazone derivative turned out to be very active on in vitro Human Topoisomerase $\mathrm{II} \alpha$ inhibition, a biological target of prime importance for cancer research (Rocha et al., 2019). Other $\mathrm{Pd}^{\mathrm{II}}$ homoleptic and heteroleptic complexes with cinnamaldehydethiosemicarbazone as ligands were reported to be active against five human cancer cell lines in vitro: colon (Caco-2), cervix (HeLa), hepatocellular (HepG2), breast (MCF-7) and prostate (PC-3) (Nyawadea et al., 2021). Finally, $\mathrm{Ni}^{\mathrm{II}}$ homoleptic cinnamaldehyde-4-ethylthiosemicarbazone and cinna-maldehyde-4-methylthiosemicarbazone derivative complexes showed, also in in vitro assays, inhibition of cell growth for two selected human tumour cell lines: breast (MCF-7) and lung (A549) (Farias et al., 2021).

Another interesting approach for cinnamaldehyde-thiosemicarbazone chemistry is the synthesis of nanostructured materials through thermal and solvothermal decomposition techniques, where thiosemicarbazone complexes are employed as single-molecule precursors. It was reported that the thermal and solvothermal decomposition of $\mathrm{Zn} L_{2}$ and $\mathrm{ZnCl}_{2}(L \mathrm{H})_{2}$ homo- and heteroleptic complexes results in the formation of ZnS nanocrystallites (for this section only, $L=$ the anionic form of cinnamaldehyde-thiosemicarbazone and $L H=$ the neutral form of it) (Palve \& Garje, 2011). Similarly, $\mathrm{Cd}^{\mathrm{II}}$ heteroleptic complexes $\mathrm{CdCl}_{2}(L \mathrm{H})_{2}$ and $\mathrm{CdI}_{2}(L H)_{2}$ were used as starting materials to obtain CdS nanoparticles (Pawar et al., 2016) and CoS or $\mathrm{Co}_{9} \mathrm{~S}_{8}$ nanocrystallites were synthesized from Co_{2} and $\mathrm{CoCl}_{2}(L \mathrm{H})_{2}$ homo- and heteroleptic complexes (Pawar \& Garje, 2015).

Motivated by the bioinorganic chemistry and materials science of the cinnamaldehyde-thiosemicarbazone complexes, we report herein the synthesis, crystal structure and Hirshfeld analysis of a new $\mathrm{Pd}^{\mathrm{II}}$ homoleptic complex where the cinna-

Figure 1
The molecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 40% probability level.
maldehyde-4-phenylthiosemicarbazone molecules act as anionic ligands.

2. Structural commentary

The asymmetric unit comprises one molecule of the title compound, with all atoms being located in general positions (Fig. 1). The complex consists of one $\mathrm{Pd}^{\mathrm{II}}$ metal center and two deprotonated cinnamaldehyde-4-phenylthiosemicarbazone ligands, which act as metal chelators, forming five-membered metallarings. The ligands are coordinated through N and S atoms in a trans-configuration, $\kappa^{2} N^{1} S$-donors, and the $\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 4$ and the $\mathrm{S} 1-\mathrm{Pd} 1-\mathrm{S} 2$ angles are 178.31 (6) and $177.57(2)^{\circ}$, respectively. The metal ion is fourfold coordinated in a slightly distorted square-planar geometry. The maximum deviation from the mean plane through the Pd1/N1/N4/S1/S2 fragment is 0.0227 (5) \AA for Pd1 and the r.m.s. for the selected atoms is $0.0151 \AA$. Concerning the geometry of the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ entities, the $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 1$ torsion angle is

Figure 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen intramolecular interactions of the title compound (dashed lines), forming rings of $S(5)$ and $S(6)$ graph-set motifs. A hydrogen-bonded macrocyclic coordination environment-type can be suggested for the $\mathrm{Pd}^{\mathrm{II}}$ metal center.

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~S} 2$	0.93	2.60	$3.230(2)$	126
C16-H13 $\cdots \mathrm{N} 2$	0.93	2.32	$2.887(3)$	119
C17-H14 $\cdots \mathrm{S} 1$	0.93	2.72	$3.355(2)$	126
C32-H26 $\cdots \mathrm{N} 5$	0.93	2.39	$2.911(3)$	115
N3-H27 S^{i}	0.86	2.63	$3.4805(18)$	171
N6-H28 S^{ii}	0.86	2.84	$3.6554(19)$	159

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
$0.6(3)^{\circ}$, while $\mathrm{N} 4-\mathrm{N} 5-\mathrm{C} 26-\mathrm{S} 2$ is $-0.4(3)^{\circ}$. Both of the ligands are non-planar, with the angle between the mean planes through the $\mathrm{C} 4-\mathrm{C} 9$ and the $\mathrm{C} 11-\mathrm{C} 16$ aromatic rings being 15.7 (1) ${ }^{\circ}$, while that between the C20-C25 and the C27C32 rings is $45.5(8)^{\circ}$.

Four intramolecular hydrogen-bonding interactions are observed (Fig. 2, Table 1): C1-H1 . S S2 and C17-H14 . . S1, with graph-set motif $S(5)$, and $\mathrm{C} 16-\mathrm{H} 13 \cdots \mathrm{~N} 2$ and $\mathrm{C} 32-\mathrm{H} 26 \cdots \mathrm{~N} 5$, with graph-set motif $S(6)$. Considering the $S(5)$ rings, a hydrogen-bonded macrocyclic coordination environment-type can be suggested for the $\mathrm{Pd}^{\mathrm{II}}$ metal center, while the $S(6)$ rings contribute to the stabilization of the molecular structure.

Finally, the anionic form of the ligands was assigned because of the absence of hydrazinic H atoms and the change in the bond lengths of the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ entities. For the neutral or free, i.e., non-coordinating thiosemicarbazones, the $\mathrm{N}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bonds have lengths of double-bond character, while the $\mathrm{N}-\mathrm{C}$ bond shows lengths of single-bond type, which can be written as a $\mathrm{N}=\mathrm{N}(\mathrm{H})-\mathrm{C}=\mathrm{S}$ fragment. When the acidic H atom of the hydrazinic fragment is removed, the negative charge is delocalized over the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ chain and the bond lengths change to intermediate values. Thus, the $\mathrm{N}-\mathrm{N}$ and the $\mathrm{C}-\mathrm{S}$ bond lengths assume single-bond character, being longer, and the $\mathrm{N}-\mathrm{C}$ bond lengths assume double-bond character, being shorter. Information about the bond lengths

Figure 3
Crystal structure section of the title compound viewed along the b-axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions are drawn as dashed lines, forming rings of $R_{2}^{2}(8)$ graph-set motif and linking the molecules along the c-axis. [Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.]

Table 2
Bond lengths (\AA) for the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ entities in cinnamaldehyde-4phenylthiosemicarbazone structures: as a neutral molecule and as an anionic ligand.

	$\mathrm{N}-\mathrm{N}$	$\mathrm{N}-\mathrm{C}$	$\mathrm{C}-\mathrm{S}$
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}^{a c},{ }_{c}$	$1.369(2)$	$1.354(2)$	$1.6704(19)$
$\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}{ }^{b}{ }^{c}{ }^{,}$	$1.405(5)$	$1.301(6)$	$1.730(5)$
$\mathrm{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}{ }^{b},{ }^{2}$	$1.390(2)$	$1.293(2)$	$1.7520(19)$
	$1.393(2)$	$1.291(2)$	$1.7328(19)$

Notes: (a) Neutral, non-coordinated form of the cinnamaldehyde 4-phenylthiosemicarbazone; (b) anionic, coordinated form of the cinnamaldehyde 4-phenylthiosemicarbazone; (c) Song et al. (2014); (d) this work.
of the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ entities for the cinnamaldehyde-4phenylthiosemicarbazone molecule, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$, and the $\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}$ (Song et al., 2014) and $\operatorname{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}$ complexes, this work, are summarized in Table 2. These data are in agreement with reported bond lengths values for thiosemicarbazone derivatives (Oliveira et al., 2014).

3. Supramolecular features

In the crystal, the molecules are connected via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions with graph-set motif $R_{2}^{2}(8)$, forming a mono-periodic hydrogen-bonded ribbon along [001] (Fig. 3, Table 1).

The Hirshfeld surface analysis (Hirshfeld, 1977) of the crystal structure was performed with Crystal Explorer (Wolff et al., 2012). The graphical representations of the Hirshfeld surface for the title compound are represented using a ball-and-stick model with transparency, in two side-views and

Figure 4
Two side-views in separate figures of the Hirshfeld surface graphical representation $\left(d_{\text {norm }}\right)$ for the title compound. The surface is drawn with transparency and simplified for clarity and the regions with strongest intermolecular interactions are shown in magenta. [$d_{\text {norm }}$ range: -0.289 to 1.415]

Figure 5
The Hirshfeld surface two-dimensional fingerprint plot for the title compound showing the $(a) \mathrm{H} \cdots \mathrm{H},(b) \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ and (d) $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ contacts in detail (cyan dots). The contributions of the interactions to the crystal cohesion amount to $45.3,28.0,8.0$ and 7.4%, respectively. The $d_{\mathrm{i}}\left(x\right.$-axis) and the d_{e} (y-axis) values are the closest internal and external distances from given points on the Hirshfeld surface (in \AA).
separate figures for clarity (Fig. 4). The locations of the strongest intermolecular contacts, i.e, the regions around the S1, H27, S2 and H28 atoms, are indicated in magenta. These atoms are those involved in the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions represented in the previous figure (Fig. 3): $\mathrm{N} 3-\mathrm{H} 27 \cdots \mathrm{~S} 2^{\mathrm{i}}$ and $\mathrm{N} 6-\mathrm{H} 28 \cdots \mathrm{~S} 1^{\text {ii }}$ [symmetry codes: (i) x, $-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $\left.x,-y+\frac{1}{2}, z-\frac{1}{2}\right]$. The Hirshfeld surface analysis of the crystal structure also indicates that the most relevant intermolecular interactions for crystal packing are the following: (a) H…H (45.3\%), (b) H $\cdot \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(28.0 \%),(c)$ $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ (8.0%) and (d) $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ (7.4\%). The contributions to the crystal packing are shown as twodimensional Hirshfeld surface fingerprint plots with cyan dots (Fig. 5). The d_{i} (x-axis) and the d_{e} (y-axis) values are the closest internal and external distances from given points on the Hirshfeld surface (in \AA).

4. Database survey

To the best of our knowledge and using database tools such as SciFinder ${ }^{\text {TM }}$ (Chemical Abstracts Service, 2023), there is only one report of the crystal structure of a compound bearing cinnamaldehyde-4-phenylthiosemicarbazone as non-coordinated molecule $\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}\right)$ and as a ligand, viz. in the homoleptic $\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}\right]$ complex (Song et al., 2014). The asymmetric unit of the reference coordination compound consists of one $\mathrm{Ni}^{\mathrm{II}}$ ion, which lies on an inversion center, and two deprotonated cinnamaldehyde-4-phenylthiosemicarba-

Figure 6
Part of the crystal structure of the reference compound, the centrosymmetric $\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}\right.$] complex (Song et al., 2014). The $\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{H} \cdots \mathrm{N}$ intermolecular contacts are drawn as dashed lines and the figure is simplified for clarity. [Symmetry codes: $(a)-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;(b)-x$, $y+\frac{1}{2},-z+\frac{1}{2} ;(c)-x+1,-y+2,-z+1$.]
zone ligands, in one of which the atoms are general positions while the second is generated by symmetry (Fig. 6) [symmetry code: $(c)-x+1,-y+2,-z+1]$. The negative charge of the ligand was assigned by the absence of a hydrazinic H atom and the bond distances in the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ chain (please see the remarks in the Structural commentary section of this work and also Table 2). The coordination environment of the $\mathrm{Ni}^{\mathrm{II}}$ complex is quite similar to that for the $\mathrm{Pd}^{\mathrm{II}}$ metal center of the title compound: the anionic ligands act as metal chelators, $\kappa^{2} N^{1} S$-donors, with N and S atoms in trans-positions (180°), the metal center is fourfold coordinated in a square-planar geometry and the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ entity torsion angle is $1.5(6)^{\circ}$.

Although the coordination sphere of the $\mathrm{Pd}^{\mathrm{II}}$ title compound and the $\mathrm{Ni}^{\mathrm{II}}$ analogue compound are similar, the supramolecular arrangement of the complexes is totally different. In the crystal, the molecules of the centrosymmetric $\mathrm{Ni}^{\mathrm{II}}$ coordination compound are linked into a three-dimensional hydrogen-bonded network. The H...S intermolecular interactions, like those observed in the $\mathrm{Pd}^{\mathrm{II}}$ complex (Fig. 3), are not present in this case and only very weak $\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{H} \cdots \mathrm{N}$ intermolecular contacts are noted. The values for the hydrogen-bonding of the asymmetric part of the complex amount to: $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{C}^{a}=2.90(5) \AA, \mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 1^{a}=$ 2.73 (5) $\AA, \mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{C} 14^{b}=2.86$ (6) \AA and $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{C}^{a}$ $=2.90$ (7) \AA [symmetry codes: $(a)-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;(b)-x$, $y+\frac{1}{2},-z+\frac{1}{2}$] (Fig. 6). The $\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{H} \cdots \mathrm{N}$ distances are slightly above the sum of the van der Waals radii for the respective atoms (Bondi, 1964; Rowland \& Taylor, 1996) and they are the only intermolecular contacts observed for the supramolecular structure of the $\mathrm{Ni}^{\mathrm{II}}$ complex.

The Hirshfeld surface analysis (Hirshfeld, 1977) of the crystal structure of the $\mathrm{Ni}^{\mathrm{II}}$ coordination compound was also performed with CrystalExplorer (Wolff et al., 2012). The graphical representation of the Hirshfeld surface is represented using a ball-and-stick model with transparency and the locations of the strongest intermolecular contacts are draw in magenta, i.e., the regions around the $\mathrm{C} 6, \mathrm{H} 6, \mathrm{~N} 1, \mathrm{H} 1 A, \mathrm{H}^{\#}$ and $\mathrm{C} 14^{\#}$ atoms (Fig. 7) [symmetry code: (\#) $-x+1,-y+2$, $-z+1]$. These data are in agreement with the weak $\mathrm{H} \cdots \mathrm{C}$ and $\mathrm{H} \cdots \mathrm{N}$ intermolecular contacts observed in the previous figure (Fig. 6). The contributions to the crystal packing are shown as

Figure 7
The Hirshfeld surface graphical representation [$d_{\text {norm }}$ range: -0.045 to 1.492] for the centrosymmetric $\mathrm{Ni}^{\mathrm{II}}$ complex (Song et al., 2014). The surface is drawn with transparency and simplified for clarity. The surface regions with strongest intermolecular contacts are shown in magenta. [Symmetry code: $(\#)-x+1,-y+2,-z+1$.]
two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Fig. 8). The Hirshfeld surface analysis of the crystal structure also suggests that the most important intermolecular interactions for crystal packing are the following: (a) $\mathrm{H} \cdots \mathrm{H}$ (47.4\%), (b) H \cdot C/C $\cdots \mathrm{H}(27.6 \%),(c) \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(7.0 \%)$ and $(d) \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}(6.5 \%)$. The $d_{\mathrm{i}}\left(x\right.$-axis) and the $d_{\mathrm{e}}(y$-axis)

Figure 8
The Hirshfeld surface two-dimensional fingerprint plot for the $\mathrm{Ni}^{\mathrm{II}}$ coordination compound (Song et al., 2014) showing the (a) $\mathrm{H} \cdots \mathrm{H},(b)$ $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ and $(d) \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ contacts in detail (cyan dots). The contributions of the interactions to the crystal cohesion amount to $47.4,27.6,7.0$ and 6.5%, respectively. The $d_{\mathrm{i}}\left(x\right.$-axis) and the d_{e} (y-axis) values are the closest internal and external distances from given points on the Hirshfeld surface (in Å).

Table 3
Experimental details.
Crystal data
Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
a, b, c (A)
$\beta\left({ }^{\circ}\right)$
$V\left(\dot{A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.026,0.063,1.05$
No. of reflections
No. of parameters H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

7344
$\left[\mathrm{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}\right]$
667.12

Monoclinic, $P 2_{1} / c$
299
15.084 (5), 11.418 (4), 17.097 (6)
91.097 (9)
2944.0 (16)

4
Mo $K \alpha$
0.81
$0.25 \times 0.18 \times 0.11$

Bruker D8 Venture Photon 100 area detector diffractometer
Multi-scan (SADABS; Krause et al., 2015)
0.699, 0.746

87933, 7344, 6204
0.042
0.668

370
H -atom parameters constrained $0.34,-0.50$

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg, 2006), CrystalExplorer (Wolff et al., 2012), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).
values are the closest internal and external distances from given points on the Hirshfeld surface contacts (in \AA). While for the $\mathrm{Pd}^{\mathrm{II}}$ title compound and the $\mathrm{Ni}^{\mathrm{II}}$ reference compound the most important intermolecular contacts are $\mathrm{H} \cdots \mathrm{H}$ and the $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$, the order of importance changes for the $\mathrm{H} \cdots \mathrm{S} /$ $\mathrm{S} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ contacts. For the crystal packing of the $\mathrm{Pd}^{\mathrm{II}}$ complex, the $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ contacts are more important then $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ contacts, while for the $\mathrm{Ni}^{\mathrm{II}}$ complex this order is the opposite.

5. Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the ligand was adapted from a previously reported procedure (Freund \& Schander, 1902; Tišler, 1956). Cinnamaldehyde-4-phenylthiosemicarbazone was dissolved in ethanol ($4 \mathrm{mmol}, 50 \mathrm{~mL}$) and deprotonated with one pellet of NaOH with stirring maintained for 2 h until the solution turned yellow. Simultaneously, an ethanolic suspension of palladium(II) chloride (2 mmol , 50 mL) was prepared under continuous stirring. A yellowcolored mixture of the ethanolic solution and the ethanolic suspension was maintained with stirring at room temperature for 8 h , until the PdCl_{2} was consumed. Orange single crystals suitable for X -ray diffraction were obtained by the slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, and with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Acknowledgements

APLM thanks CAPES for the award of a PhD scholarship. The authors thank the Department of Chemistry of the Federal University of Santa Maria/Brazil for the access to the X-ray diffraction facility.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES), Finance code 001.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on September 1, 2023).

Farias, R. L., Polez, A. M. R., Silva, A. D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. \& Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815, 1-12.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Freund, M. \& Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 26022606.

Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lobana, T. S., Sharma, R., Bawa, G. \& Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.
Mostafa, H. A. (2000). Electrochim. Acta, 18, 45-53.
Nyawadea, E. A., Sibuyi, N. R. S., Meyer, M., Lalancette, R. \& Onani, M. O. (2021). Inorg. Chim. Acta, 515, 120036, 1-10.

Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. \& Jess, I. (2014). Acta Cryst. E70, 101-103.
Palve, A. M. \& Garje, S. S. (2011). J. Cryst. Growth, 326, 157-162.
Pawar, A. S. \& Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843-1850.
Pawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. \& Revaprasadu, N. (2016). Eur. J. Inorg. Chem. pp. 366-372.

Rocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., NascimentoJúnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. \& Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725, 1-9.

Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Song, J., Zhu, F., Wang, H. \& Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.
Tišler, M. (1956). Z. Anal. Chem. 149, 164-172.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Australia.

supporting information

Synthesis, crystal structure and Hirshfeld analysis of trans-bis\{(2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-ylidene]hydrazinecarbothioamidato$\left.\kappa^{2} N^{1}, S\right\}$ palladium(II)

Ana Paula Lopes de Melo, Bianca Barreto Martins, Leandro Bresolin, Bárbara Tirloni and Adriano Bof de Oliveira

Computing details

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006), CrystalExplorer (Wolff et al., 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).
trans-Bis $\{(2 E)-N$-phenyl-2-[(2E)-3-phenyl-2-propen-1-ylidene] $]$ ydrazinecarbothioamidato- $\left.\kappa^{2} N^{1}, S\right\}$ palladium(II)

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)_{2}\right]$
$M_{r}=667.12$
Monoclinic, $P 2_{1} / c$
$a=15.084$ (5) \AA
$b=11.418$ (4) \AA
$c=17.097$ (6) \AA
$\beta=91.097$ (9) ${ }^{\circ}$
$V=2944.0(16) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture Photon 100 area detector diffractometer
Radiation source: microfocus X ray tube φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.699, T_{\text {max }}=0.746$
87933 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.063$
$S=1.05$

$$
F(000)=1360
$$

$D_{\mathrm{x}}=1.505 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9138 reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.81 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Block, orange
$0.25 \times 0.18 \times 0.11 \mathrm{~mm}$

7344 independent reflections
6204 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-20 \rightarrow 20$
$k=-15 \rightarrow 15$
$l=-22 \rightarrow 22$

7344 reflections
370 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

supporting information

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0241 P)^{2}+1.5227 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.93114 (12)	0.25646 (18)	0.41478 (10)	0.0408 (4)
H1	0.911357	0.222755	0.368099	0.049*
C2	1.02188 (12)	0.29262 (18)	0.41878 (11)	0.0429 (4)
H2	1.042322	0.334403	0.462190	0.052*
C3	1.07777 (12)	0.26780 (19)	0.36174 (11)	0.0434 (4)
H3	1.054715	0.228656	0.318196	0.052*
C4	1.17186 (12)	0.29659 (18)	0.36156 (11)	0.0436 (4)
C5	1.20873 (15)	0.3801 (2)	0.41107 (14)	0.0566 (5)
H4	1.172634	0.422924	0.444057	0.068*
C6	1.29897 (17)	0.4000 (3)	0.41148 (17)	0.0738 (8)
H5	1.323135	0.457206	0.444183	0.089*
C7	1.35360 (16)	0.3362 (3)	0.36419 (19)	0.0765 (8)
H6	1.414532	0.348617	0.366163	0.092*
C8	1.31865 (17)	0.2555 (3)	0.31492 (18)	0.0745 (8)
H7	1.355493	0.212955	0.282440	0.089*
C9	1.22814 (15)	0.2358 (2)	0.31256 (14)	0.0613 (6)
H8	1.204591	0.181127	0.277638	0.074*
C10	0.85343 (12)	0.31504 (17)	0.59615 (10)	0.0377 (4)
C11	0.95766 (12)	0.42049 (17)	0.68829 (10)	0.0397 (4)
C12	0.95571 (14)	0.48633 (19)	0.75646 (11)	0.0466 (5)
H9	0.904012	0.489377	0.785175	0.056*
C13	1.02970 (15)	0.5473 (2)	0.78205 (13)	0.0559 (5)
H10	1.027308	0.591307	0.827731	0.067*
C14	1.10674 (15)	0.5437 (2)	0.74084 (14)	0.0584 (6)
H11	1.156512	0.585126	0.757969	0.070*
C15	1.10894 (14)	0.4777 (2)	0.67371 (14)	0.0597 (6)
H12	1.161063	0.474407	0.645610	0.072*
C16	1.03566 (13)	0.4160 (2)	0.64695 (12)	0.0516 (5)
H13	1.038671	0.371677	0.601430	0.062*
C17	0.55839 (12)	0.16720 (18)	0.50233 (11)	0.0416 (4)
H14	0.578917	0.185524	0.552491	0.050*
C18	0.46597 (12)	0.14045 (18)	0.49358 (11)	0.0429 (4)
H15	0.444566	0.115183	0.445071	0.052*
C19	0.40947 (13)	0.15030 (19)	0.55209 (12)	0.0472 (5)

H16	0.433316	0.172755	0.600361	0.057^{*}
C20	$0.31419(13)$	$0.12958(18)$	$0.54837(12)$	$0.0454(4)$
C21	$0.27211(14)$	$0.0746(2)$	$0.48604(13)$	$0.0513(5)$
H17	0.305174	0.047797	0.444312	0.062^{*}
C22	$0.18134(15)$	$0.0590(2)$	$0.48519(16)$	$0.0644(6)$
H18	0.153934	0.021536	0.442935	0.077^{*}
C23	$0.13142(16)$	$0.0979(3)$	$0.54540(18)$	$0.0713(8)$
H19	0.070293	0.087173	0.544212	0.086^{*}
C24	$0.17159(17)$	$0.1526(3)$	$0.60741(18)$	$0.0739(8)$
H20	0.137628	0.180199	0.648339	0.089^{*}
C25	$0.26240(16)$	$0.1673(2)$	$0.60978(15)$	$0.0653(6)$
H21	0.289272	0.202928	0.653032	0.078^{*}
C26	$0.63696(12)$	$0.14116(18)$	$0.31857(11)$	$0.0406(4)$
C27	$0.52836(12)$	$0.06730(19)$	$0.21755(12)$	$0.0456(5)$
C28	$0.50883(17)$	$0.0809(2)$	$0.13948(14)$	$0.0657(7)$
H22	0.547569	0.121832	0.107827	0.079^{*}
C29	$0.4319(2)$	$0.0341(3)$	$0.10764(19)$	$0.0878(10)$
H23	0.418657	0.044846	0.054772	0.105^{*}
C30	$0.37560(18)$	$-0.0272(3)$	$0.1525(2)$	$0.0837(9)$
H24	0.323855	-0.058496	0.130698	0.100^{*}
C31	$0.39511(18)$	$-0.0431(3)$	$0.23033(19)$	$0.0803(8)$
H25	0.356585	-0.085945	0.261047	0.096^{*}
C32	$0.47140(16)$	$0.0038(2)$	$0.26388(15)$	$0.0633(6)$
H26	0.484228	-0.007087	0.316803	0.076^{*}
N1	$0.87363(10)$	$0.26614(14)$	$0.47008(8)$	$0.0375(3)$
N2	$0.90767(10)$	$0.31587(16)$	$0.53850(9)$	$0.0428(4)$
N3	$0.87873(10)$	$0.36111(16)$	$0.66658(9)$	$0.0442(4)$
H27	0.841082	0.352842	0.703313	0.053^{*}
N4	$0.61600(10)$	$0.16837(14)$	$0.44748(9)$	$0.0383(3)$
N5	$0.58090(10)$	$0.13619(16)$	$0.37463(9)$	$0.0437(4)$
N6	$0.61038(11)$	$0.11296(18)$	$0.24427(9)$	$0.0521(5)$
H28	0.649000	0.124627	0.208750	0.063^{*}
Pd1	$0.74528(2)$	$0.21629(2)$	$0.46039(2)$	$0.03379(5)$
S1	$0.74605(3)$	$0.25655(5)$	$0.59231(3)$	$0.04797(12)$
S2	$0.74676(3)$	$0.18416(6)$	$0.32859(3)$	$0.04861(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0320(9)$	$0.0589(11)$	$0.0314(9)$	$-0.0018(8)$	$0.0020(7)$	$-0.0014(8)$
C2	$0.0327(9)$	$0.0625(12)$	$0.0337(9)$	$-0.0045(8)$	$-0.0002(7)$	$0.0005(8)$
C3	$0.0337(9)$	$0.0606(12)$	$0.0358(9)$	$-0.0037(9)$	$0.0015(7)$	$0.0006(9)$
C4	$0.0326(9)$	$0.0575(12)$	$0.0407(10)$	$-0.0026(8)$	$0.0018(7)$	$0.0101(9)$
C5	$0.0445(12)$	$0.0656(14)$	$0.0596(13)$	$-0.0060(10)$	$-0.0040(10)$	$0.0032(11)$
C6	$0.0551(15)$	$0.0816(18)$	$0.0838(18)$	$-0.0223(14)$	$-0.0209(14)$	$0.0151(15)$
C7	$0.0348(12)$	$0.094(2)$	$0.100(2)$	$-0.0080(13)$	$-0.0040(13)$	$0.0419(18)$
C8	$0.0416(13)$	$0.097(2)$	$0.0858(19)$	$0.0078(13)$	$0.0206(13)$	$0.0207(17)$
C9	$0.0445(12)$	$0.0805(17)$	$0.0594(14)$	$-0.0030(11)$	$0.0151(10)$	$-0.0011(12)$

C10	0.0314 (9)	0.0475 (10)	0.0343 (9)	0.0002 (7)	0.0017 (7)	-0.0005 (7)
C11	0.0351 (9)	0.0486 (10)	0.0354 (9)	0.0000 (8)	-0.0029 (7)	0.0001 (8)
C12	0.0446 (11)	0.0557 (12)	0.0396 (10)	-0.0024 (9)	0.0016 (8)	-0.0032 (9)
C13	0.0578 (13)	0.0596 (13)	0.0499 (12)	-0.0054 (11)	-0.0067 (10)	-0.0103 (10)
C14	0.0443 (12)	0.0655 (14)	0.0650 (14)	-0.0103 (10)	-0.0128 (10)	-0.0005 (11)
C15	0.0341 (10)	0.0826 (17)	0.0624 (14)	-0.0034 (11)	0.0010 (10)	-0.0032 (12)
C16	0.0361 (10)	0.0735 (14)	0.0453 (11)	0.0009 (10)	0.0016 (8)	-0.0096 (10)
C17	0.0360 (9)	0.0542 (11)	0.0347 (9)	-0.0016 (8)	0.0036 (7)	-0.0037 (8)
C18	0.0356 (9)	0.0542 (11)	0.0392 (10)	-0.0007 (8)	0.0053 (8)	-0.0008 (8)
C19	0.0413 (10)	0.0586 (12)	0.0420 (10)	-0.0018 (9)	0.0078 (8)	-0.0009 (9)
C20	0.0390 (10)	0.0505 (11)	0.0471 (11)	0.0018 (8)	0.0116 (8)	0.0071 (9)
C21	0.0415 (11)	0.0609 (13)	0.0516 (12)	0.0024 (10)	0.0072 (9)	0.0081 (10)
C22	0.0468 (13)	0.0740 (16)	0.0722 (16)	-0.0050 (12)	-0.0071 (11)	0.0167 (13)
C23	0.0379 (12)	0.0804 (18)	0.096 (2)	0.0040 (12)	0.0149 (13)	0.0283 (16)
C24	0.0539 (14)	0.0804 (18)	0.089 (2)	0.0055 (13)	0.0362 (14)	0.0086 (16)
C25	0.0539 (14)	0.0782 (16)	0.0645 (15)	-0.0027 (12)	0.0246 (11)	-0.0050 (13)
C26	0.0315 (9)	0.0554 (11)	0.0351 (9)	-0.0013 (8)	0.0021 (7)	-0.0016 (8)
C27	0.0323 (9)	0.0553 (12)	0.0488 (11)	0.0009 (8)	-0.0040 (8)	-0.0101 (9)
C28	0.0631 (15)	0.0751 (16)	0.0582 (14)	-0.0127 (13)	-0.0205 (12)	0.0074 (12)
C29	0.084 (2)	0.095 (2)	0.083 (2)	-0.0132 (18)	-0.0477 (17)	0.0046 (17)
C30	0.0520 (15)	0.089 (2)	0.109 (2)	-0.0128 (14)	-0.0269 (16)	-0.0201 (18)
C31	0.0566 (15)	0.087 (2)	0.098 (2)	-0.0283 (14)	0.0074 (15)	-0.0243 (17)
C32	0.0520 (13)	0.0787 (16)	0.0592 (14)	-0.0154 (12)	0.0031 (11)	-0.0121 (12)
N1	0.0299 (7)	0.0523 (9)	0.0303 (7)	-0.0014 (6)	0.0009 (6)	-0.0023 (6)
N2	0.0324 (8)	0.0645 (10)	0.0316 (8)	-0.0058 (7)	0.0017 (6)	-0.0059 (7)
N3	0.0348 (8)	0.0659 (11)	0.0319 (8)	-0.0070 (8)	0.0045 (6)	-0.0067 (7)
N4	0.0304 (7)	0.0496 (9)	0.0349 (8)	-0.0023 (7)	0.0030 (6)	-0.0023 (7)
N5	0.0322 (8)	0.0646 (11)	0.0342 (8)	-0.0057 (7)	0.0027 (6)	-0.0055 (7)
N6	0.0341 (8)	0.0878 (14)	0.0346 (8)	-0.0110 (9)	0.0028 (7)	-0.0081 (8)
Pd1	0.02574 (7)	0.04563 (8)	0.03007 (7)	-0.00040 (5)	0.00212 (5)	-0.00124 (5)
S1	0.0344 (2)	0.0749 (3)	0.0349 (2)	-0.0119 (2)	0.00699 (18)	-0.0100 (2)
S2	0.0275 (2)	0.0866 (4)	0.0319 (2)	-0.0068 (2)	0.00370 (17)	-0.0071 (2)

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.300(2)$	$\mathrm{C} 18-\mathrm{H} 15$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.430(3)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.457(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 19-\mathrm{H} 16$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.332(3)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.381(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 20-\mathrm{C} 25$	$1.389(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.457(3)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.380(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 21-\mathrm{H} 17$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(3)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.361(4)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.389(3)$	$\mathrm{C} 22-\mathrm{H} 18$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(3)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.363(4)$
$\mathrm{C} 5-\mathrm{H} 4$	0.9300	$\mathrm{C} 23-\mathrm{H} 19$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.374(4)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.380(3)$
$\mathrm{C} 6-\mathrm{H} 5$	0.9300	$\mathrm{C} 24-\mathrm{H} 20$	0.9300

C7-C8	1.349 (4)
C7-H6	0.9300
C8-C9	1.383 (3)
C8-H7	0.9300
C9-H8	0.9300
C10-N2	1.293 (2)
$\mathrm{C} 10-\mathrm{N} 3$	1.362 (2)
C10-S 1	1.7520 (19)
C11-C16	1.385 (3)
C11-C12	1.388 (3)
C11-N3	1.413 (2)
C12-C13	1.380 (3)
C12-H9	0.9300
C13-C14	1.371 (3)
C13-H10	0.9300
C14-C15	1.374 (3)
C14-H11	0.9300
C15-C16	1.381 (3)
C15-H12	0.9300
C16-H13	0.9300
C17-N4	1.291 (2)
C17-C18	1.432 (3)
C17-H14	0.9300
C18-C19	1.331 (3)
N1-C1-C2	126.30 (17)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	116.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	116.8
C3-C2-C1	121.49 (18)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.3
C2-C3-C4	125.73 (19)
C2-C3-H3	117.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	117.1
C5-C4-C9	118.0 (2)
C5-C4-C3	122.27 (19)
C9-C4-C3	119.7 (2)
C6-C5-C4	120.0 (2)
C6-C5-H4	120.0
C4-C5-H4	120.0
C7-C6-C5	120.8 (3)
C7-C6-H5	119.6
C5-C6-H5	119.6
C8-C7-C6	119.9 (2)
C8-C7-H6	120.1
C6-C7-H6	120.1
C7-C8-C9	120.2 (3)
C7-C8-H7	119.9

C25-H21	0.9300
C26-N5	1.291 (2)
C26-N6	1.363 (2)
C26-S2	1.7328 (19)
C27-C28	1.370 (3)
C27-C32	1.384 (3)
C27-N6	1.410 (2)
C28-C29	1.380 (3)
C28-H22	0.9300
C29-C30	1.351 (4)
C29-H23	0.9300
C30-C31	1.369 (4)
C30-H24	0.9300
C31-C32	1.384 (3)
C31-H25	0.9300
C32-H26	0.9300
N1-N2	1.390 (2)
N1-Pd1	2.0217 (16)
N3-H27	0.8600
N4-N5	1.393 (2)
N4-Pd1	2.0333 (16)
N6-H28	0.8600
Pd1-S2	2.2836 (9)
Pd 1 -S1	2.3016 (9)
C25-C20-C19	119.0 (2)
C22-C21-C20	120.5 (2)
C22-C21-H17	119.7
C20-C21-H17	119.7
C23-C22-C21	120.9 (3)
C23-C22-H18	119.6
C21-C22-H18	119.6
C22-C23-C24	119.6 (2)
C22-C23-H19	120.2
C24-C23-H19	120.2
C23-C24-C25	120.3 (2)
C23-C24-H20	119.8
C25-C24-H20	119.8
C24-C25-C20	120.8 (3)
C24-C25-H21	119.6
C20-C25-H21	119.6
N5-C26-N6	119.74 (17)
N5-C26-S2	125.25 (14)
N6-C26-S2	115.00 (13)
C28-C27-C32	119.5 (2)
C28-C27-N6	116.4 (2)
C32-C27-N6	123.9 (2)
C27-C28-C29	120.3 (3)

C9-C8-H7	119.9
C8-C9-C4	121.0 (3)
C8-C9-H8	119.5
C4-C9-H8	119.5
N2-C10-N3	120.03 (17)
N2-C10-S1	124.91 (14)
N3-C10-S1	115.06 (13)
C16-C11-C12	118.73 (18)
C16-C11-N3	124.58 (18)
C12-C11-N3	116.68 (17)
C13-C12-C11	120.6 (2)
C13-C12-H9	119.7
C11-C12-H9	119.7
C14-C13-C12	120.7 (2)
C14-C13-H10	119.7
C12-C13-H10	119.7
C13-C14-C15	118.7 (2)
C13-C14-H11	120.7
C15-C14-H11	120.7
C14-C15-C16	121.6 (2)
C14-C15-H12	119.2
C16-C15-H12	119.2
C15-C16-C11	119.6 (2)
C15-C16-H13	120.2
C11-C16-H13	120.2
N4-C17-C18	126.43 (17)
N4-C17-H14	116.8
C18-C17-H14	116.8
C19-C18-C17	122.63 (19)
C19-C18-H15	118.7
C17-C18-H15	118.7
C18-C19-C20	126.8 (2)
C18-C19-H16	116.6
C20-C19-H16	116.6
C21-C20-C25	117.9 (2)
C21-C20-C19	123.10 (18)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	172.9 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-177.50 (19)
C2-C3-C4-C5	-17.8 (3)
C2-C3-C4-C9	159.6 (2)
C9-C4-C5-C6	-0.8 (3)
C3-C4-C5-C6	176.7 (2)
C4-C5-C6-C7	-1.2 (4)
C5-C6-C7-C8	2.0 (4)
C6-C7-C8-C9	-0.8 (4)
C7-C8-C9-C4	-1.3 (4)
C5-C4-C9-C8	2.0 (4)

C27-C28-H22	119.9
C29-C28-H22	119.9
C30-C29-C28	120.6 (3)
C30-C29-H23	119.7
C28-C29-H23	119.7
C29-C30-C31	119.7 (2)
C29-C30-H24	120.2
C31-C30-H24	120.2
C30-C31-C32	120.9 (3)
C30-C31-H25	119.6
C32-C31-H25	119.6
C31-C32-C27	119.0 (2)
C31-C32-H26	120.5
C27-C32-H26	120.5
C1-N1-N2	113.95 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pd} 1$	124.60 (13)
N2—N1—Pd1	121.45 (11)
C10-N2-N1	114.18 (15)
C10-N3-C11	129.63 (16)
C10-N3-H27	115.2
C11-N3-H27	115.2
C17-N4-N5	113.40 (15)
C17-N4-Pd1	125.56 (13)
N5-N4-Pd1	121.01 (11)
C26-N5-N4	114.13 (15)
C26-N6-C27	129.03 (17)
C26-N6-H28	115.5
C27-N6-H28	115.5
N1—Pd1-N4	178.31 (6)
N1—Pd1-S2	95.66 (4)
N4—Pd1-S2	82.94 (4)
N1—Pd1-S1	82.92 (4)
N4-Pd1-S1	98.45 (4)
S2—Pd1-S1	177.57 (2)
C10-S1—Pd1	95.74 (6)
C26-S2-Pd1	96.65 (6)
C32-C27-C28-C29	1.5 (4)
N6-C27-C28-C29	177.0 (3)
C27-C28-C29-C30	-1.1 (5)
C28-C29-C30-C31	0.0 (5)
C29-C30-C31-C32	0.6 (5)
C30-C31-C32-C27	-0.1 (4)
C28-C27-C32-C31	-0.9 (4)
N6-C27-C32-C31	-176.0 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	-0.7 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pd} 1$	178.74 (16)
N3-C10-N2-N1	179.95 (17)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-175.5(2)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.8(3)$
$\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-179.92(19)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.3(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-0.3(4)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$0.4(4)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$0.2(4)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$-0.7(3)$
$\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$-180.0(2)$
$\mathrm{N} 4-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$-174.5(2)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$177.5(2)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$13.0(4)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 25$	$-166.5(2)$
$\mathrm{C} 25-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$0.5(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$-178.9(2)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$0.3(4)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$-0.2(4)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$-0.8(4)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 20$	$1.7(4)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 25-\mathrm{C} 24$	$-1.5(4)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 25-\mathrm{C} 24$	$178.0(2)$

$\mathrm{S} 1-\mathrm{C} 10-\mathrm{N} 2-\mathrm{N} 1$	$0.6(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10$	$-173.45(18)$
$\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10$	$7.1(2)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 11$	$4.6(3)$
$\mathrm{S} 1-\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 11$	$-175.92(16)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 10$	$-18.5(3)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 10$	$162.2(2)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{N} 4-\mathrm{N} 5$	$-2.1(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{N} 4-\mathrm{Pd} 1$	$176.05(16)$
$\mathrm{N} 6-\mathrm{C} 26-\mathrm{N} 5-\mathrm{N} 4$	$-179.31(18)$
$\mathrm{S} 2-\mathrm{C} 26-\mathrm{N} 5-\mathrm{N} 4$	$-0.4(3)$
$\mathrm{C} 17-\mathrm{N} 4-\mathrm{N} 5-\mathrm{C} 26$	$177.55(18)$
$\mathrm{Pd} 1-\mathrm{N} 4-\mathrm{N} 5-\mathrm{C} 26$	$-0.7(2)$
$\mathrm{N} 5-\mathrm{C} 26-\mathrm{N} 6-\mathrm{C} 27$	$-6.0(4)$
$\mathrm{S} 2-\mathrm{C} 26-\mathrm{N} 6-\mathrm{C} 27$	$175.02(18)$
$\mathrm{C} 28-\mathrm{C} 27-\mathrm{N} 6-\mathrm{C} 26$	$160.2(2)$
$\mathrm{C} 32-\mathrm{C} 27-\mathrm{N} 6-\mathrm{C} 26$	$-24.6(4)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 1-\mathrm{Pd} 1$	$-6.03(18)$
$\mathrm{N} 3-\mathrm{C} 10-\mathrm{S} 1-\mathrm{Pd} 1$	$174.54(14)$
$\mathrm{N} 5-\mathrm{C} 26-\mathrm{S} 2-\mathrm{Pd} 1$	$1.1(2)$
N6-C26-S2-Pd1	$179.99(15)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{~S} 2$	0.93	2.60	$3.230(2)$	126
$\mathrm{C} 16-\mathrm{H} 13 \cdots \mathrm{~N} 2$	0.93	2.32	$2.887(3)$	119
$\mathrm{C} 17 — \mathrm{H} 14 \cdots \mathrm{~S} 1$	0.93	2.72	$3.355(2)$	126
$\mathrm{C} 32-\mathrm{H} 26 \cdots \mathrm{~N} 5$	0.93	2.39	$2.911(3)$	115
$\mathrm{~N} 3-\mathrm{H} 27 \cdots \mathrm{~S} 2^{\mathrm{i}}$	0.86	2.63	$3.4805(18)$	171
$\mathrm{~N} 6-\mathrm{H} 28 \cdots$ S $^{\mathrm{ii}}$	0.86	2.84	$3.6554(19)$	159

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $x,-y+1 / 2, z-1 / 2$.

