Crystal structure of $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ in the structural evolution of niobium oxychlorides with octahedral Nb_{6}-cluster units

Saronom Silaban, ${ }^{\text {a }}$ Maefa Eka Haryani, ${ }^{\text {b }}$ Fakhili Gulo ${ }^{\text {c* }}$ and Christiane Perrin ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Medan State University, Medan 20221, Indonesia, ${ }^{\text {b }}$ Department of Chemistry Education, Sriwijaya University, Inderalaya, Ogan Ilir 30662, South Sumatra, Indonesia, 'Study Program of Environmental Science, Postgraduate Program, Sriwijaya University, Palembang 30139, South Sumatra, Indonesia, and ${ }^{\text {d }}$ Institut de Chimie de Rennes, Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511, CNRS-Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France. *Correspondence e-mail: fgulo@unsri.ac.id
$\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$, dicaesium gadolinium hexaniobium pentadecachloride trioxide, was synthesized by solid-state reactions starting from a stoichiometric mixture of $\mathrm{CsCl}, \mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{Nb}, \mathrm{NbCl}_{5}$, and $\mathrm{Nb}_{2} \mathrm{O}_{5}$. The crystal structure is based on octahedral Nb_{6} cluster units (point group symmetry 3.2) with composition $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{9}^{i} \mathrm{O}_{3}^{i}\right) \mathrm{Cl}_{6}^{a}\right]^{5-}$ where i and a denote inner and outer ligands. $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ exhibits 14 valence electrons per cluster unit. The cluster units are linked to each other by Cs^{I} and $\mathrm{Gd}^{\mathrm{III}}$ atoms, whereby Cs^{I} (site symmetry 3..) is 12-coordinated by six Cl^{i} and six Cl^{a} ligands belonging to six neighboring cluster units and $\mathrm{Gd}^{\mathrm{III}}$ (site symmetry 3.2) is 9-coordinated by three O^{i} and six Cl^{i} ligands belonging to three adjacent cluster units. The arrangement of cluster units corresponds to a stacking of $\ldots A A^{\prime} A \ldots$ layers along [001]. $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ is isotypic with $\mathrm{Cs}_{2} \mathrm{UNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$.

1. Chemical context

Transition-metal clusters have high potentials and synergetic effects in the fields of biotechnology, catalysis, or sensor applications (Nguyen et al., 2022). The use of these clusters as supramolecular building units is advantageous because of their unique structural, chemical and physical properties (Zhou \& Lachgar, 2007). For example, charge-transfer (CT) solids with an anti-perovskite crystal structure have been derived from molybdenum cluster units by electro-crystallization (Hiramatsu et al., 2015), or octahedral cluster units of niobium have been widely used as raw materials for the preparation of novel compounds with interesting structures and magnetic properties (Naumov et al., 2003; Zhang et al., 2011).

A large number of binary, ternary and quaternary niobium compounds with octahedral clusters based on the $\left[\mathrm{Nb}_{6} L^{i}{ }_{12} L^{a}{ }_{6}\right]$ unit ($L=$ halogen or oxygen ligands) have been reported previously (Perrin et al., 2001). In this cluster unit, the edge of the Nb_{6} octahedron is bridged by twelve inner ligands $\left(L^{i}\right)$ while the other six outer ligands $\left(L^{a}\right)$ are located at apical positions (Schäfer \& von Schnering, 1964). The number of electrons involved in the formation of metal-metal bonds in the cluster is called the valence electron count (VEC). The ideal VEC value per cluster is 16 for chloride compounds and 14 for oxide compounds. In chlorides, the cluster units are interlinked by involving outer ligands (Perrin, 1997), whereas in oxides, the connectivity between the units is achieved through the inner ligands (Köhler et al., 1991).

Mixing of halogen and oxygen as ligands for Nb_{6} cluster compounds is a very interesting topic for in-depth studies to enrich our knowledge about new materials and their physical and chemical properties. It has been reported that the structural, magnetic and electronic properties of octahedral clusters of niobium oxychlorides are influenced by oxygen ligands (Fontaine et al., 2011). In this respect, preparation and characterization of new oxychloride compounds with octahedral Nb_{6} clusters were reported by Perrin et al. with one O^{i} (Cordier et al., 1996), two O^{i} (Gulo \& Perrin, 2000), three O^{i} (Cordier et al., 1994, 1997; Gulo \& Perrin, 2002), and six O^{i} (Gulo et al., 2001) ligands per cluster unit. Other oxychloride compounds containing four O^{i} (Anokhina et al., 1998, 2000) and six O^{i} (Anokhina et al., 2001) ligands per cluster unit are also known.

The niobium oxychloride compound $\mathrm{Cs}_{2} \mathrm{UNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ was synthesized and structurally characterized many years ago (Cordier et al., 1997). We have now prepared a related compound with composition $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ and have determined its crystal structure where gadolinium occupies the same position as uranium in the previous compound. In the current communication, the crystal structure, interatomic distances, and the role of monovalent and trivalent cations in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ are compared with other niobium oxychlorides containing octahedral Nb_{6} clusters.

2. Structural commentary

The structure of $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ is isotypic with $\mathrm{Cs}_{2} \mathrm{UNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ and displays the Nb_{6} octahedron as the basic cluster motif. The asymmetric unit comprises seven sites: one Cs (site symmetry 3.., multiplicity 4, Wyckoff letter e), one Gd $(3.2,2 c)$, one $\mathrm{Nb}(1,12 i)$, one $\mathrm{O}(.2,6 h)$ and three $\mathrm{Cl}(\mathrm{Cl} 1: 6$ $h ; \mathrm{Cl} 212 i ; \mathrm{Cl} 3: 12 i)$. Six symmetry-equivalent niobium atoms build up the octahedral cluster (centered at a position with site symmetry $3.2,2 a$). Each niobium atom is surrounded by one oxygen (O) inner-ligand, three chlorine $(\mathrm{Cl} 1$ and Cl 2$)$ innerligands, and one chlorine $(\mathrm{Cl} 3)$ outer-ligand. Every edge of the

Figure 1
The $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{9}^{i} \mathrm{O}_{3}^{i}\right) \mathrm{Cl}^{a}{ }_{6}\right]^{5-}$ unit in the crystal structure of $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$. Displacement ellipsoids are shown at the 60% probability level.
Nb_{6} octahedron is bridged by a chlorine or oxygen ligand as inner-ligands, and six other chlorine ligands are attached in apical positions as outer ligands, as shown in Fig. 1. This cluster motif can be written as a developed unit, $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{9}^{i} \mathrm{O}_{3}^{i}\right) \mathrm{Cl}^{a}{ }_{6}\right]^{5-}$.

The length of the intracluster $\mathrm{Nb}-\mathrm{Nb}$ bonds range from 2.7686 (5) to 3.0317 (5) A corresponding to the edge bridged by the O^{i} and Cl^{i} ligands, respectively; the average bond length is $2.954 \AA$. Thus, the Nb_{6} octahedron undergoes distortions as observed in other niobium oxychloride compounds. The $\mathrm{Nb}-\mathrm{Nb}$ distances in this compound are significantly shorter than those observed in other compounds containing two or fewer O^{i} ligands but are significantly longer than those observed in compounds containing four or more O^{i} ligands (Gulo \& Perrin, 2012). In the various oxychloride compounds that have been isolated so far, it seems that an increase in the number of O^{i} ligands per formula leads to a decrease in the length of intracluster $\mathrm{Nb}-\mathrm{Nb}$ bonds. This difference is due to a stronger steric effect as observed, for example, in $\mathrm{PbLu}_{3} \mathrm{Nb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{6}$ (Gulo et al., 2001) with six O^{i} ligands. $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ has three O^{i} ligands per cluster. They are localized at trans-inner positions relative to the Nb_{6} cluster, similar to the arrangement of three O^{i} ligands in $\mathrm{Na}_{0.21} \mathrm{Nb}_{6} \mathrm{Cl}_{10.5} \mathrm{O}_{3}$ where the cluster exhibits point group symmetry 3 (Gulo \& Perrin, 2002). In contrast, the three O^{i} ligands in $\mathrm{ScNb}_{6} \mathrm{Cl}_{13} \mathrm{O}_{3}$ occupy a cis-inner position relative to the Nb_{6} octahedron to produce a cluster motif with 2 symmetry (Cordier et al., 1994). In the title compound, the Nb_{6} clusters are arranged in (001) layers with an $\ldots A A^{\prime} A \ldots$ stacking along [001] (Fig. 2).

Figure 2
The $\ldots A A^{\prime} A \ldots$ stacking of the Nb_{6} clusters in the crystal structure of $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3} . \mathrm{Cl}$ and O atoms are omitted for clarity

The $\mathrm{Nb}-\mathrm{Cl}^{i}$ distances vary from 2.4543 (7) \AA to 2.4802 (7) \AA (average $2.468 \AA$) while the $\mathrm{Nb}-\mathrm{Cl}^{a}$ bond is longer, 2.5728 (7) \AA. In general, the $\mathrm{Nb}-L(L=\mathrm{O}, \mathrm{Cl})$ bond lengths in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ are not significantly different from that of other niobium oxychloride compounds (Naumov et al., 2003).

In the crystal structure of $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$, the $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{9}^{i} \mathrm{O}_{3}^{i}\right) \mathrm{Cl}^{a}{ }_{6}\right]^{5-}$ units are interconnected through the Cs^{I} and $\mathrm{Gd}^{\mathrm{III}}$ atoms that are located in between the layers of Nb_{6} clusters (Fig. 2). The existence of such discrete cluster units or the absence of intercluster connectivity has also been observed in $\mathrm{PbLu}_{3} \mathrm{Nb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{6}$ (Gulo et al., 2001) and $\mathrm{Cs}_{2} \mathrm{Ti}_{4} \mathrm{Nb}_{6} \mathrm{Cl}_{18} \mathrm{O}_{6}$ (Anokhina et al., 2001) where Nb_{6}-clusters likewise are formed by six symmetry-equivalent Nb atoms in contrast to $\mathrm{CsNb}_{6} \mathrm{Cl}_{12} \mathrm{O}_{2}$ (Gulo \& Perrin, 2000) where the Nb_{6}-octahedron is formed by three different Nb atoms. In the crystal structure of the latter, the the cluster units are linked together via bridging O and Cl ligands.

The $\mathrm{Gd}^{\text {III }}$ atom in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ has a coordination number of 9 , defined by three O^{i} and six Cl^{a} ligands provided by three nearby cluster units (Fig. 3), with bond lengths of $\mathrm{Gd}-\mathrm{O}=2.322(3) \AA$ and $\mathrm{Gd}-\mathrm{Cl}=3.0994(8) \AA$. In comparison, in the crystal structure of $\mathrm{PbLu}_{3} \mathrm{Nb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{6}$, the $\mathrm{Lu}^{\mathrm{III}}$ atom is surrounded by only six ligands, viz. two O and four Cl atoms, defining $\mathrm{Lu}_{2} \mathrm{Cl}_{2}$ entities (Gulo et al., 2001). The Nb_{6}-clusters in $\mathrm{PbLu}_{3} \mathrm{Nb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{6}$ connect to each other via these $\mathrm{Lu}_{2} \mathrm{Cl}_{2}$ entities whereby each cluster is surrounded by six $\mathrm{Lu}_{2} \mathrm{Cl}_{2}$ entities, and each of them bridging four adjacent clusters via O and Cl ligands. A related motif is found in $\mathrm{Ti}_{2} \mathrm{Nb}_{6} \mathrm{Cl}_{14} \mathrm{O}_{4}$ where $\mathrm{Ti}^{\text {III }}$ atoms form zigzag chains of edgesharing $\left[\mathrm{TiCl}_{4} \mathrm{O}_{2}\right]$ octahedra (Anokhina et al., 2000). In other cases, the trivalent ions, such as $\mathrm{Sc}^{\mathrm{III}}$ in $\mathrm{ScNb}_{6} \mathrm{Cl}_{13} \mathrm{O}_{3}$ (Cordier et al., 1994) or $\mathrm{Ti}^{\mathrm{III}}$ in $\mathrm{Cs}_{2} \mathrm{Ti}_{3} \mathrm{Nb}_{12} \mathrm{Cl}_{27} \mathrm{O}_{8}$ (Anokhina et al., 2000), have a coordination number of five, defined by three O

Figure 3
The environment of the $\mathrm{Gd}^{\mathrm{III}}$ atom in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$.

Figure 4
The environment of the Cs^{I} atom in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$.
and two Cl ligands. In another case, the $\mathrm{Gd}^{\text {III }}$ atom in $\mathrm{RbGdNb}_{6} \mathrm{Cl}_{18}$ is octahedrally surrounded by six Cl ligands from six neighboring cluster units (Gulo et al., 2023). In general, in the series of niobium oxychloride compounds containing octahedral Nb_{6} clusters, the crystallographic sites associated with trivalent cations are always fully occupied and are surrounded by Cl and O ligands (Gulo \& Perrin, 2012). Only in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ and the isotypic uranium analogue, the trivalent cation occupy the center of a triangle formed by three adjacent cluster units and are bonded to nine ligands.

In $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$, the monovalent Cs^{I} atom is surrounded by six Nb_{6} clusters and coordinated by twelve Cl ligands (Fig. 4). The lengths of $\mathrm{Cs}-\mathrm{Cl}$ bonds range from 3.5074 (8) to 3.9770 (6) \AA. A similar environment around Cs is found in $\mathrm{CsNb}_{6} \mathrm{Cl}_{12} \mathrm{O}_{2}$ with $\mathrm{Cs}-\mathrm{Cl}$ distances between 3.330 (5) and 3.862 (4) Å (Gulo \& Perrin, 2000). In contrast, the Cs^{I} atom in $\mathrm{Cs}_{2} \mathrm{LuNb}_{6} \mathrm{Cl}_{17} \mathrm{O}$ is surrounded by four $\mathrm{Nb}_{6}-$ clusters and is bonded to twelve chlorine ligands with $\mathrm{Cs}-\mathrm{Cl}$ distances in the range 3.567 (1) to 3.619 (1) \AA (Cordier et al., 1996). In $\mathrm{RbGdNb}_{6} \mathrm{Cl}_{18}$ with its smaller monovalent cation Rb^{I}, the coordination number is likewise 12. Here, the cation is surrounded also by four Nb_{6} clusters, and the $\mathrm{Rb}-\mathrm{Cl}$ bond lengths range from 3.471 (1) \AA to 3.557 (2) \AA with an average of $3.512 \AA$ (Gulo et al., 2023). The sites of monovalent cations encountered in the crystal structures of oxychlorides with Nb_{6} clusters are always surrounded by Cl ligands with the exception of $\mathrm{Cs}_{2} \mathrm{LuNb}_{6} \mathrm{Cl}_{17} \mathrm{O}$ where an O atom statistically occupies a site among the twelve inner ligands defining the coordination environment of Cs. On the other hand, the sites associated with the (large) monovalent cation often show partial occupancy. For example, in $\mathrm{Na}_{0.21} \mathrm{Nb}_{6} \mathrm{Cl}_{10.5} \mathrm{O}_{3}$, the corresponding Na site has an occupancy of only 42.6% (Gulo \& Perrin, 2002) and the three Cs sites in $\mathrm{Cs}_{2} \mathrm{Ti}_{4} \mathrm{Nb}_{6} \mathrm{Cl}_{18} \mathrm{O}_{6}$ have occupancies of $38.1 \%, 57.0 \%$ and 6.9% (Anokhina et al., 2001).

Table 1
Experimental details.

Crystal data

Chemical formula	$\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$
M_{r}	1560.28
Crystal system, space group	Trigonal, $P \overline{3} 1 c$
Temperature (K)	293
$a, c(\AA)$	$9.1318(1), 17.1558(2)$
$V\left(\AA^{3}\right)$	$1238.95(3)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	9.83
Crystal size (mm)	$0.08 \times 0.07 \times 0.05$
Data collection	Nonius KappaCCD
Diffractometer	Multi-scan $(D E N Z O$ and
Absorption correction	
	Minor, 1997$)$
$T_{\text {min }}, T_{\text {max }}$	$0.004,0.017$
No. of measured, independent and	$7607,2020,1790$
observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.026
$(\sin \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.833
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.029,0.068,1.15$
No. of reflections	2020
No. of parameters	
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	44

Computer programs: COLLECT (Nonius, 1999), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 2014), and publCIF (Westrip, 2010).

The VEC in $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ is 14 per cluster unit, as observed in most oxide (Köhler et al., 1991) and oxychloride compounds (Gulo \& Perrin, 2012). The number of O^{i} ligands per cluster can affect the VEC value. Compounds containing one O^{i} ligand (Cordier et al., 1996) or two O^{i} ligands (Gulo \& Perrin, 2000) exhibit VEC values of 16 and 15. However, niobium oxychloride compounds containing three or more O^{i} ligands per cluster unit have always a VEC of 14 per cluster unit.

3. Synthesis and crystallization

$\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ was prepared by solid-state reactions, starting from a stoichiometric mixture of CsCl (Prolabo, purity 99.5%), $\mathrm{Gd}_{2} \mathrm{O}_{3}$ (Rhône Poulenc), $\mathrm{Nb}_{2} \mathrm{O}_{5}$ (Merck, Optipur), NbCl_{5} (Ventron, purity 99.998%) and niobium powder (Ventron, purity 99.8%). A total of 300 mg of the mixture was mashed and then loaded in a silica tube under argon atmosphere in a glove box. The silica tube sample was then sealed under vacuum condition. The sample was heated in a vertical heating furnace at 973 K for two days, followed by slow cooling to room temperature. Brown single crystals with a block-like form suitable for structural determination were obtained this way.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The remaining maximum and minimum electron density peaks are located $0.19 \AA$ from Nb and $0.54 \AA$ from Cs, respectively.

Acknowledgements

The authors thank T. Roisnel, Centre de Diffractométrie de l'Université de Rennes 1, France, for the data collection on the Enraf-Nonius KappaCCD X-ray diffractometer.

Funding information

The authors wish to thank the Research Institute of Sriwijaya University for research funding.

References

Anokhina, E. V., Day, C. S. \& Lachgar, A. (2000). Chem. Commun. pp. 1491-1492.
Anokhina, E. V., Day, C. S. \& Lachgar, A. (2001). Inorg. Chem. 40, 5072-5076.
Anokhina, E. V., Essig, M. W. \& Lachgar, A. (1998). Angew. Chem. Int. Ed. 37, 522-525.
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cordier, S., Perrin, C. \& Sergent, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 1049-1059.
Cordier, S., Perrin, C. \& Sergent, M. (1996). Mater. Res. Bull. 31, 683690.

Cordier, S., Perrin, C. \& Sergent, M. (1997). Mater. Res. Bull. 32, 2533.

Fontaine, B., Cordier, S., Gautier, R., Gulo, F., Halet, J.-F., Perić, B. \& Perrin, C. (2011). New J. Chem. 35, 2245-2252.
Gulo, F. \& Perrin, C. (2000). J. Mater. Chem. 10, 1721-1724.
Gulo, F. \& Perrin, C. (2002). J. Solid State Chem. 163, 325-331.
Gulo, F. \& Perrin, C. (2012). Oxyhalogénures à Clusters Triangulaires et Octaédriques de Niobium: Synthèses et Caractérisations. Saarbrücken, Germany: Presses Académiques Francophones.
Gulo, F., Roisnel, T. \& Perrin, C. (2001). J. Mater. Chem. 11, 12371241.

Gulo, F., Silaban, S. \& Perrin, C. (2023). J. Chim. Nat. Acta, 11, 46-51.
Hiramatsu, T., Yoshida, Y., Saito, G., Otsuka, A., Yamochi, H., Shimizu, Y., Hattori, Y., Nakamura, Y., Kishida, H., Ito, H., Kirakci, K., Cordier, S. \& Perrin, C. (2015). J. Mater. Chem. C. 3, 1104611054.

Köhler, J., Tischtau, R. \& Simon, A. (1991). J. Chem. Soc. Dalton Trans. pp. 829-832.
Naumov, N. G., Cordier, S., Gulo, F., Roisnel, T., Fedorov, V. E. \& Perrin, C. (2003). Inorg. Chim. Acta, 350, 503-510.
Nguyen, N. T. K., Lebastard, C., Wilmet, M., Dumait, N., Renaud, A., Cordier, S., Ohashi, N., Uchikoshi, T. \& Grasset, F. (2022). Sci. Technol. Adv. Mater. 23, 547-578.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Perrin, C. (1997). J. Alloys Compd. 262-263, 10-21.
Perrin, C., Cordier, S., Gulo, F. \& Perrin, A. (2001). Ferroelectrics, 254, 83-90.
Schäfer, H. \& von Schnering, H. G. (1964). Angew. Chem. 76, 833849.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhang, J.-J., Day, C. S. \& Lachgar, A. (2011). CrystEngComm, 13, 133-137.
Zhou, H. \& Lachgar, A. (2007). Eur. J. Inorg. Chem. pp. 1053-1066.

supporting information

Crystal structure of $\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$ in the structural evolution of niobium oxychlorides with octahedral Nb_{6}-cluster units

Saronom Silaban, Maefa Eka Haryani, Fakhili Gulo and Christiane Perrin

Computing details

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: COLLECT (Nonius, 1999); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

(I)

Crystal data

$\mathrm{Cs}_{2} \mathrm{GdNb}_{6} \mathrm{Cl}_{15} \mathrm{O}_{3}$
$M_{r}=1560.28$
Trigonal, $P \overline{3} 1 c$
$a=9.1318$ (1) \AA
$c=17.1558(2) \AA$
$V=1238.95(3) \AA^{3}$
$Z=2$
$F(000)=1398$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
ω scans
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.004, T_{\text {max }}=0.017$
$D_{\mathrm{x}}=4.182 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12-18^{\circ}$
$\mu=9.83 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, brown
$0.08 \times 0.07 \times 0.05 \mathrm{~mm}$

7607 measured reflections
2020 independent reflections
1790 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-12 \rightarrow 12$
$l=-27 \rightarrow 28$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.068$
$S=1.15$
2020 reflections
44 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0258 P)^{2}+3.5848 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.38 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.35$ e \AA^{-3}
Extinction correction: SHELXL2018/3
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00259 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cs	0.333333	0.666667	$0.54654(2)$	$0.02645(9)$
Gd	0.666667	0.333333	0.750000	$0.01649(8)$
Nb	$0.19768(3)$	$0.01608(3)$	$0.68239(2)$	$0.01105(7)$
$\mathrm{Cl1}$	$0.21283(6)$	$-0.21283(6)$	0.750000	$0.01643(17)$
Cl 2	$0.01675(8)$	$-0.20367(8)$	$0.58643(4)$	$0.01569(12)$
Cl 3	$0.47649(9)$	$0.07637(10)$	$0.61760(5)$	$0.02252(15)$
O	$0.3730(3)$	$0.18650(17)$	0.750000	$0.0142(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs	$0.02466(12)$	$0.02466(12)$	$0.03002(19)$	$0.01233(6)$	0.000	0.000
Gd	$0.00919(9)$	$0.00919(9)$	$0.03108(19)$	$0.00460(5)$	0.000	0.000
Nb	$0.00836(10)$	$0.00944(10)$	$0.01540(12)$	$0.00448(7)$	$0.00090(7)$	$0.00034(7)$
Cl 1	$0.0149(3)$	$0.0149(3)$	$0.0233(4)$	$0.0103(3)$	$0.0031(3)$	$0.0031(3)$
Cl 2	$0.0144(3)$	$0.0143(3)$	$0.0180(3)$	$0.0068(2)$	$0.0007(2)$	$-0.0028(2)$
$\mathrm{Cl3}$	$0.0177(3)$	$0.0231(3)$	$0.0298(4)$	$0.0125(3)$	$0.0090(3)$	$0.0033(3)$
O	$0.0092(10)$	$0.0139(9)$	$0.0179(13)$	$0.0046(5)$	0.000	$-0.0004(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cs}-\mathrm{Cl3}^{\text {i }}$	3.5074 (8)	Gd-Cl3	3.0994 (8)
$\mathrm{Cs}-\mathrm{Cl3}^{\text {ii }}$	3.5074 (8)	$\mathrm{Gd}-\mathrm{Cl}^{\text {viii }}$	3.0994 (8)
$\mathrm{Cs}-\mathrm{Cl3}^{\text {iii }}$	3.5074 (8)	$\mathrm{Gd}-\mathrm{Cl}^{\text {vii }}$	3.0994 (8)
$\mathrm{Cs}-\mathrm{Cl3}^{\text {iv }}$	3.5180 (8)	$\mathrm{Gd}-\mathrm{Cl3}^{\text {ix }}$	3.0994 (8)
$\mathrm{Cs}-\mathrm{Cl3}^{\text {v }}$	3.5180 (8)	$\mathrm{Gd}-\mathrm{Cl}^{\text {x }}$	3.0994 (8)
$\mathrm{Cs}-\mathrm{Cl3}^{\text {vi }}$	3.5180 (8)	$\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	3.0994 (8)
$\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	3.6948 (7)	$\mathrm{Nb}-\mathrm{O}$	1.9593 (19)
$\mathrm{Cs}-\mathrm{Cl}^{2 i \mathrm{ii}}$	3.6948 (7)	$\mathrm{Nb}-\mathrm{Cl} 1$	2.4543 (7)
$\mathrm{Cs}-\mathrm{Cl}^{\text {ii }}$	3.6948 (7)	$\mathrm{Nb}-\mathrm{Cl2} 2^{\text {ii }}$	2.4684 (7)
$\mathrm{Cs}-\mathrm{Cl}^{\text {iii }}$	3.9770 (6)	$\mathrm{Nb}-\mathrm{Cl} 2$	2.4802 (7)
$\mathrm{Cs}-\mathrm{Cl1}^{\text {ii }}$	3.9770 (6)	$\mathrm{Nb}-\mathrm{Cl} 3$	2.5728 (7)
$\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	3.9770 (5)	$\mathrm{Nb}-\mathrm{Nb}^{\mathrm{x}}$	2.7686 (5)
$\mathrm{Gd}-\mathrm{O}$	2.322 (3)	$\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	3.0075 (4)
$\mathrm{Gd}-\mathrm{O}^{\text {vii }}$	2.322 (3)	$\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	3.0075 (4)
$\mathrm{Gd}-\mathrm{O}^{\text {iii }}$	2.322 (3)	$\mathrm{Nb}-\mathrm{Nb}{ }^{\text {xii }}$	3.0317 (5)
$\mathrm{Cl} 3-\mathrm{Cs}-\mathrm{Cl3}^{\text {ii }}$	108.589 (15)	$\mathrm{O}^{\text {iii }}-\mathrm{Gd}-\mathrm{Cl3}^{\text {vii }}$	80.189 (14)
Cl3 ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Cl3}^{\text {iii }}$	108.589 (15)	$\mathrm{Cl} 3-\mathrm{Gd}-\mathrm{Cl}^{\text {vii }}$	72.21 (2)

108.589 (15) 108.89 (2)
76.72 (2)
137.786 (19)
76.72 (2)
137.786 (19)
108.89 (2)
62.55 (2)
137.786 (19)
108.89 (2)
76.72 (2)
62.55 (2)
62.55 (2)
61.822 (15)
54.828 (15)
148.77 (2)
69.076 (17)
97.986 (17)
131.531 (19)
54.828 (15)
148.77 (2)
61.822 (15)
131.531 (19)
69.076 (18)
97.986 (17)
116.649 (8)
148.77 (2)
61.822 (15)
54.828 (15)
97.986 (17)
131.531 (19)
69.076 (17)
116.649 (8)
116.649 (8)
62.628 (14)
97.912 (19)
53.624 (14)
168.335 (15)
119.844 (17)
129.093 (15)
99.332 (16)
51.659 (16)
88.306 (13)
97.912 (19)
53.623 (14)
62.629 (14)
129.092 (15)
168.336 (16)

Cl 3 viii- $\mathrm{Gd}-\mathrm{Cl3}^{\text {vii }}$	98.06 (3)
$\mathrm{O}-\mathrm{Gd}-\mathrm{Cl}^{3 \mathrm{ix}}$	80.189 (13)
$\mathrm{O}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {ix }}$	60.971 (13)
$\mathrm{O}^{\text {iii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {ix }}$	130.969 (15)
$\mathrm{Cl} 3-\mathrm{Gd}-\mathrm{Cl}^{\text {ix }}$	98.06 (3)
$\mathrm{Cl3}^{\text {viii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {ix }}$	72.21 (2)
$\mathrm{Cl}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl3}^{\text {ix }}$	121.94 (2)
$\mathrm{O}-\mathrm{Gd}-\mathrm{Cl3}^{\text {x }}$	60.971 (13)
$\mathrm{O}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {x }}$	130.969 (14)
$\mathrm{O}^{\text {iii }}-\mathrm{Gd}-\mathrm{Cl3}^{\text {x }}$	80.189 (14)
$\mathrm{Cl} 3-\mathrm{Gd}-\mathrm{Cl}^{\text {x }}$	121.94 (3)
$\mathrm{Cl}^{\text {viii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {x }}$	72.21 (2)
$\mathrm{Cl}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {x }}$	160.38 (3)
$\mathrm{Cl3}^{\text {ix }}-\mathrm{Gd}-\mathrm{Cl3}^{\mathrm{x}}$	72.21 (2)
$\mathrm{O}-\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	80.189 (14)
$\mathrm{O}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	130.969 (14)
$\mathrm{O}^{\text {iii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	60.971 (13)
$\mathrm{Cl} 3-\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	72.20 (2)
$\mathrm{Cl3}^{\text {viii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	121.94 (3)
$\mathrm{Cl3}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl3}^{\text {iii }}$	72.21 (2)
$\mathrm{Cl}^{3 \mathrm{ix}}-\mathrm{Gd}-\mathrm{Cl}^{3 i \mathrm{iij}}$	160.38 (3)
$\mathrm{Cl}^{\mathrm{x}}-\mathrm{Gd}-\mathrm{Cl}^{\text {iii }}$	98.06 (3)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Cl} 1$	91.438 (10)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Cl2} 2^{\text {ii }}$	95.39 (2)
$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Cl}_{2}{ }^{\text {ii }}$	165.85 (2)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Cl} 2$	169.99 (6)
$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Cl} 2$	85.583 (18)
$\mathrm{Cl} 2 \mathrm{ii}-\mathrm{Nb}-\mathrm{Cl} 2$	85.58 (3)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Cl} 3$	75.97 (6)
$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Cl} 3$	85.14 (2)
$\mathrm{Cl2} 2$ - $\mathrm{Nb}-\mathrm{Cl} 3$	84.52 (2)
$\mathrm{Cl} 2-\mathrm{Nb}-\mathrm{Cl} 3$	94.24 (3)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Nb}^{\text {x }}$	45.05 (6)
$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Nb}^{\text {x }}$	94.843 (15)
$\mathrm{Cl} 22^{\mathrm{ii}}-\mathrm{Nb}-\mathrm{Nb}^{\text {x }}$	98.75 (2)
$\mathrm{Cl} 2-\mathrm{Nb}-\mathrm{Nb}^{\text {x }}$	144.687 (16)
$\mathrm{Cl} 3-\mathrm{Nb}-\mathrm{Nb}^{\text {x }}$	121.017 (19)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	137.22 (6)
$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	89.097 (14)
$\mathrm{Cl} 22^{\mathrm{ii}}-\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	94.227 (16)
$\mathrm{Cl} 2-\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	52.396 (17)
$\mathrm{Cl} 3-\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	146.53 (2)
$\mathrm{Nb}^{\mathrm{x}}-\mathrm{Nb}-\mathrm{Nb}^{\text {xi }}$	92.291 (4)
$\mathrm{O}-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	94.52 (4)
$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	139.044 (15)
$\mathrm{Cl} 2 \mathrm{ii}-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	52.752 (17)
$\mathrm{Cl} 2-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	93.982 (16)
$\mathrm{Cl} 3-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	135.56 (2)

supporting information

$\mathrm{Cl}^{\text {vii }}-\mathrm{Cs}-\mathrm{Cl}^{\text {ii }}$	119.844 (17)	$\mathrm{Nb}^{\mathrm{x}}-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	63.159 (10)
$\mathrm{Cl2}-\mathrm{Cs}-\mathrm{Cl}^{\text {ii }}$	88.305 (13)	$\mathrm{Nb}^{\text {xi }}-\mathrm{Nb}-\mathrm{Nb}^{\text {ii }}$	60.0
$\mathrm{Cl2}{ }^{\text {iii }}-\mathrm{Cs}-\mathrm{Cl}^{1 i}$	99.332 (16)	$\mathrm{O}-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	93.78 (4)
$\mathrm{Cl} 2{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{Cl}^{1 i}{ }^{\text {ii }}$	51.660 (16)	$\mathrm{Cl} 1-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	51.856 (14)
$\mathrm{Cl1}{ }^{\text {iii }}$ - $\mathrm{Cs}-\mathrm{Cl}^{1{ }^{\text {ii }}}$	49.043 (19)	$\mathrm{Cl} 2^{\text {ii }}-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	139.534 (16)
$\mathrm{Cl} 3-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	53.623 (14)	$\mathrm{Cl} 2-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	91.888 (19)
$\mathrm{Cl} 3{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	62.629 (15)	$\mathrm{Cl} 3-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	135.895 (19)
$\mathrm{Cl3} 3 \mathrm{iii}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	97.912 (19)	$\mathrm{Nb}^{\mathrm{x}}-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	62.269 (11)
$\mathrm{Cl3}^{\text {iv }}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	119.843 (17)	$\mathrm{Nb}^{\text {xi }}-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	54.570 (9)
$\mathrm{Cl3}^{2}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	129.092 (15)	$\mathrm{Nb}^{\text {ii }}-\mathrm{Nb}-\mathrm{Nb}^{\text {xii }}$	87.296 (5)
$\mathrm{Cl3}^{\text {vi}}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	168.336 (16)	$\mathrm{Nb}^{\text {xii }}$ - $\mathrm{Cl} 1-\mathrm{Nb}$	76.29 (3)
$\mathrm{Cl2}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	51.659 (16)	$\mathrm{Nb}^{\text {xii }}-\mathrm{Cl} 1-\mathrm{Cs}^{\text {xiii }}$	142.343 (15)
$\mathrm{Cl2} 2 \mathrm{iii}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	88.305 (13)	$\mathrm{Nb}-\mathrm{Cl} 1-\mathrm{Cs}^{\text {xiii }}$	87.830 (6)
$\mathrm{Cl2} 2$ - $\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	99.333 (16)	$\mathrm{Nb}^{\text {xii }}-\mathrm{Cl} 1-\mathrm{Cs}^{\text {xiv }}$	87.831 (6)
$\mathrm{Cl1} 1 \mathrm{iii}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	49.043 (19)	$\mathrm{Nb}-\mathrm{Cl} 1-\mathrm{Cs}^{\text {xiv }}$	142.343 (15)
$\mathrm{Cl1} 1{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{Cl1}^{\text {i }}$	49.043 (19)	$\mathrm{Cs}^{\text {xiii }}-\mathrm{Cl} 1-\mathrm{Cs}^{\text {xiv }}$	122.73 (2)
$\mathrm{O}-\mathrm{Gd}-\mathrm{O}^{\text {vii }}$	120.0	$\mathrm{Nb}^{\text {xi }}-\mathrm{Cl} 2-\mathrm{Nb}$	74.85 (2)
$\mathrm{O}-\mathrm{Gd}-\mathrm{O}^{\text {iii }}$	120.0	$\mathrm{Nb}^{\text {xi }}-\mathrm{Cl} 2-\mathrm{Cs}^{\text {xiii }}$	146.20 (3)
$\mathrm{O}^{\text {vii }}-\mathrm{Gd}-\mathrm{O}^{\text {iii }}$	120.000 (1)	$\mathrm{Nb}-\mathrm{Cl} 2-\mathrm{Cs}^{\text {xiii }}$	94.06 (2)
$\mathrm{O}-\mathrm{Gd}-\mathrm{Cl} 3$	60.971 (13)	$\mathrm{Nb}-\mathrm{Cl} 3-\mathrm{Gd}$	88.01 (2)
$\mathrm{O}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl} 3$	80.190 (14)	$\mathrm{Nb}-\mathrm{Cl} 3-\mathrm{Cs}^{\text {xiii }}$	96.94 (2)
$\mathrm{O}^{\text {iii }}-\mathrm{Gd}-\mathrm{Cl} 3$	130.969 (14)	$\mathrm{Gd}-\mathrm{Cl} 3-\mathrm{Cs}^{\text {xiii }}$	146.22 (3)
$\mathrm{O}-\mathrm{Gd}-\mathrm{Cl}^{\text {viii }}$	130.969 (14)	$\mathrm{Nb}-\mathrm{Cl} 3-\mathrm{Cs}^{\text {v }}$	126.46 (3)
$\mathrm{O}^{\text {viii }}-\mathrm{Gd}-\mathrm{Cl3}^{\text {viii }}$	80.189 (14)	$\mathrm{Gd}-\mathrm{Cl} 3-\mathrm{Cs}^{\text {v }}$	100.30 (2)
$\mathrm{O}^{\text {iii }}-\mathrm{Gd}-\mathrm{Cl}^{\text {viii }}$	60.971 (13)	$\mathrm{Cs}^{\text {xiii }}-\mathrm{Cl} 3-\mathrm{Cs}^{v}$	103.28 (2)
$\mathrm{Cl} 3-\mathrm{Gd}-\mathrm{Cl3}^{\text {viii }}$	160.38 (3)	$\mathrm{Nb}^{\mathrm{x}}-\mathrm{O}-\mathrm{Nb}$	89.91 (11)
$\mathrm{O}-\mathrm{Gd}-\mathrm{Cl}^{\text {vii }}$	130.969 (15)	$\mathrm{Nb}^{\mathrm{x}}-\mathrm{O}-\mathrm{Gd}$	135.05 (6)
$\mathrm{O}^{\text {vii }}-\mathrm{Gd}-\mathrm{Cl3}^{\text {vii }}$	60.971 (13)	$\mathrm{Nb}-\mathrm{O}-\mathrm{Gd}$	135.05 (6)

Symmetry codes: (i) $x, y+1, z$; (ii) $-y, x-y, z$; (iii) $-x+y+1,-x+1, z$; (iv) $y,-x+y+1,-z+1$; (v) $-x+1,-y+1,-z+1$; (vi) $x-y, x,-z+1$; (vii) $-y+1, x-y, z$; (viii) $-y+1,-x+1,-z+3 / 2$; (ix) $-x+y+1, y,-z+3 / 2$; (x) $x, x-y,-z+3 / 2$; (xi) $-x+y,-x, z$; (xii) $-y,-x,-z+3 / 2$; (xiii) $x, y-1, z$; (xiv) $-y+1,-x,-z+3 / 2$.

