

Received 21 August 2023 Accepted 4 October 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: cluster compound; crystal structure; valence electron count.

CCDC reference: 2299097

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of Cs₂GdNb₆Cl₁₅O₃ in the structural evolution of niobium oxychlorides with octahedral Nb₆-cluster units

Saronom Silaban,^a Maefa Eka Haryani,^b Fakhili Gulo^c* and Christiane Perrin^d

^aDepartment of Chemistry, Medan State University, Medan 20221, Indonesia, ^bDepartment of Chemistry Education, Sriwijaya University, Inderalaya, Ogan Ilir 30662, South Sumatra, Indonesia, ^cStudy Program of Environmental Science, Postgraduate Program, Sriwijaya University, Palembang 30139, South Sumatra, Indonesia, and ^dInstitut de Chimie de Rennes, Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511, CNRS-Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France. *Correspondence e-mail: fgulo@unsri.ac.id

 $Cs_2GdNb_6Cl_{15}O_3$, dicaesium gadolinium hexaniobium pentadecachloride trioxide, was synthesized by solid-state reactions starting from a stoichiometric mixture of CsCl, Gd_2O_3 , Nb, NbCl₅, and Nb₂O₅. The crystal structure is based on octahedral Nb₆ cluster units (point group symmetry 3.2) with composition $[(Nb_6Cl_9^iO_3^i)Cl_6^a]^{5-}$ where *i* and *a* denote inner and outer ligands. $Cs_2GdNb_6Cl_{15}O_3$ exhibits 14 valence electrons per cluster unit. The cluster units are linked to each other by Cs^I and Gd^{III} atoms, whereby Cs^I (site symmetry 3..) is 12-coordinated by six Cl^{*i*} and six Cl^{*a*} ligands belonging to six neighboring cluster units and Gd^{III} (site symmetry 3.2) is 9-coordinated by three O^{*i*} and six Cl^{*i*} ligands belonging to three adjacent cluster units. The arrangement of cluster units corresponds to a stacking of $\dots AA'A \dots$ layers along [001]. $Cs_2GdNb_6Cl_{15}O_3$ is isotypic with $Cs_2UNb_6Cl_{15}O_3$.

1. Chemical context

Transition-metal clusters have high potentials and synergetic effects in the fields of biotechnology, catalysis, or sensor applications (Nguyen *et al.*, 2022). The use of these clusters as supramolecular building units is advantageous because of their unique structural, chemical and physical properties (Zhou & Lachgar, 2007). For example, charge-transfer (CT) solids with an anti-perovskite crystal structure have been derived from molybdenum cluster units by electro-crystallization (Hiramatsu *et al.*, 2015), or octahedral cluster units of niobium have been widely used as raw materials for the preparation of novel compounds with interesting structures and magnetic properties (Naumov *et al.*, 2003; Zhang *et al.*, 2011).

A large number of binary, ternary and quaternary niobium compounds with octahedral clusters based on the $[Nb_6L^i{}_{12}L^a{}_6]$ unit (L = halogen or oxygen ligands) have been reported previously (Perrin *et al.*, 2001). In this cluster unit, the edge of the Nb₆ octahedron is bridged by twelve inner ligands (L^i) while the other six outer ligands (L^a) are located at apical positions (Schäfer & von Schnering, 1964). The number of electrons involved in the formation of metal-metal bonds in the cluster is called the valence electron count (VEC). The ideal VEC value per cluster is 16 for chloride compounds and 14 for oxide compounds. In chlorides, the cluster units are interlinked by involving outer ligands (Perrin, 1997), whereas in oxides, the connectivity between the units is achieved through the inner ligands (Köhler *et al.*, 1991). Mixing of halogen and oxygen as ligands for Nb₆ cluster compounds is a very interesting topic for in-depth studies to enrich our knowledge about new materials and their physical and chemical properties. It has been reported that the structural, magnetic and electronic properties of octahedral clusters of niobium oxychlorides are influenced by oxygen ligands (Fontaine *et al.*, 2011). In this respect, preparation and characterization of new oxychloride compounds with octahedral Nb₆ clusters were reported by Perrin *et al.* with one Oⁱ (Cordier *et al.*, 1996), two Oⁱ (Gulo & Perrin, 2000), three Oⁱ (Cordier *et al.*, 2001) ligands per cluster unit. Other oxychloride compounds containing four Oⁱ (Anokhina *et al.*, 1998, 2000) and six Oⁱ (Anokhina *et al.*, 2001) ligands per cluster unit are also known.

The niobium oxychloride compound $Cs_2UNb_6Cl_{15}O_3$ was synthesized and structurally characterized many years ago (Cordier *et al.*, 1997). We have now prepared a related compound with composition $Cs_2GdNb_6Cl_{15}O_3$ and have determined its crystal structure where gadolinium occupies the same position as uranium in the previous compound. In the current communication, the crystal structure, interatomic distances, and the role of monovalent and trivalent cations in $Cs_2GdNb_6Cl_{15}O_3$ are compared with other niobium oxychlorides containing octahedral Nb₆ clusters.

2. Structural commentary

The structure of $Cs_2GdNb_6Cl_{15}O_3$ is isotypic with $Cs_2UNb_6Cl_{15}O_3$ and displays the Nb₆ octahedron as the basic cluster motif. The asymmetric unit comprises seven sites: one Cs (site symmetry 3.., multiplicity 4, Wyckoff letter *e*), one Gd (3.2, 2 *c*), one Nb (1, 12 *i*), one O (..2, 6 *h*) and three Cl (Cl1: 6 *h*; Cl2 12 *i*; Cl3: 12 *i*). Six symmetry-equivalent niobium atoms build up the octahedral cluster (centered at a position with site symmetry 3.2, 2 *a*). Each niobium atom is surrounded by one oxygen (O) inner-ligand, three chlorine (Cl1 and Cl2) innerligands, and one chlorine (Cl3) outer-ligand. Every edge of the

Figure 1

The $[(Nb_6Cl^i_9O^i_3)Cl^a_6]^{5-}$ unit in the crystal structure of $Cs_2GdNb_6Cl_{15}O_3$. Displacement ellipsoids are shown at the 60% probability level.

The length of the intracluster Nb-Nb bonds range from 2.7686 (5) to 3.0317 (5) Å corresponding to the edge bridged by the O^i and Cl^i ligands, respectively; the average bond length is 2.954 Å. Thus, the Nb₆ octahedron undergoes distortions as observed in other niobium oxychloride compounds. The Nb-Nb distances in this compound are significantly shorter than those observed in other compounds containing two or fewer O^{i} ligands but are significantly longer than those observed in compounds containing four or more O^i ligands (Gulo & Perrin, 2012). In the various oxychloride compounds that have been isolated so far, it seems that an increase in the number of O^i ligands per formula leads to a decrease in the length of intracluster Nb-Nb bonds. This difference is due to a stronger steric effect as observed, for example, in PbLu₃Nb₆Cl₁₅O₆ (Gulo *et al.*, 2001) with six Oⁱ ligands. $Cs_2GdNb_6Cl_{15}O_3$ has three O^{*i*} ligands per cluster. They are localized at *trans*-inner positions relative to the Nb₆ cluster, similar to the arrangement of three Oⁱ ligands in Na_{0.21}Nb₆Cl_{10.5}O₃ where the cluster exhibits point group symmetry 3 (Gulo & Perrin, 2002). In contrast, the three O^{i} ligands in ScNb₆Cl₁₃O₃ occupy a *cis*-inner position relative to the Nb₆ octahedron to produce a cluster motif with 2 symmetry (Cordier et al., 1994). In the title compound, the Nb₆ clusters are arranged in (001) layers with an $\dots AA'A\dots$ stacking along [001] (Fig. 2).

Figure 2

The $\dots AA'A\dots$ stacking of the Nb₆ clusters in the crystal structure of Cs₂GdNb₆Cl₁₅O₃. Cl and O atoms are omitted for clarity

The Nb-Cl^{*i*} distances vary from 2.4543 (7) Å to 2.4802 (7) Å (average 2.468 Å) while the Nb-Cl^{*a*} bond is longer, 2.5728 (7) Å. In general, the Nb-L (L = O, Cl) bond lengths in Cs₂GdNb₆Cl₁₅O₃ are not significantly different from that of other niobium oxychloride compounds (Naumov *et al.*, 2003).

In the crystal structure of $Cs_2GdNb_6Cl_{15}O_3$, the $[(Nb_6Cl_{9}O_3)Cl_6]^{5-}$ units are interconnected through the Cs^I and Gd^{III} atoms that are located in between the layers of Nb₆ clusters (Fig. 2). The existence of such discrete cluster units or the absence of intercluster connectivity has also been observed in PbLu_3Nb_6Cl_{15}O_6 (Gulo *et al.*, 2001) and $Cs_2Ti_4Nb_6Cl_{18}O_6$ (Anokhina *et al.*, 2001) where Nb₆-clusters likewise are formed by six symmetry-equivalent Nb atoms in contrast to $CsNb_6Cl_{12}O_2$ (Gulo & Perrin, 2000) where the Nb₆-octahedron is formed by three different Nb atoms. In the crystal structure of the latter, the the cluster units are linked together via bridging O and Cl ligands.

The Gd^{III} atom in Cs₂GdNb₆Cl₁₅O₃ has a coordination number of 9, defined by three O^i and six Cl^a ligands provided by three nearby cluster units (Fig. 3), with bond lengths of Gd-O = 2.322 (3) Å and Gd-Cl = 3.0994 (8) Å. In comparison, in the crystal structure of PbLu₃Nb₆Cl₁₅O₆, the Lu^{III} atom is surrounded by only six ligands, viz. two O and four Cl atoms, defining Lu₂Cl₂ entities (Gulo et al., 2001). The Nb₆-clusters in PbLu₃Nb₆Cl₁₅O₆ connect to each other via these Lu₂Cl₂ entities whereby each cluster is surrounded by six Lu₂Cl₂ entities, and each of them bridging four adjacent clusters via O and Cl ligands. A related motif is found in Ti₂Nb₆Cl₁₄O₄ where Ti^{III} atoms form zigzag chains of edgesharing [TiCl₄O₂] octahedra (Anokhina et al., 2000). In other cases, the trivalent ions, such as Sc^{III} in ScNb₆Cl₁₃O₃ (Cordier et al., 1994) or Ti^{III} in Cs₂Ti₃Nb₁₂Cl₂₇O₈ (Anokhina et al., 2000), have a coordination number of five, defined by three O

Figure 3 The environment of the Gd^{III} atom in $Cs_2GdNb_6Cl_{15}O_3$.

Figure 4 The environment of the Cs^{I} atom in $Cs_2GdNb_6Cl_{15}O_3$.

and two Cl ligands. In another case, the Gd^{III} atom in RbGdNb₆Cl₁₈ is octahedrally surrounded by six Cl ligands from six neighboring cluster units (Gulo *et al.*, 2023). In general, in the series of niobium oxychloride compounds containing octahedral Nb₆ clusters, the crystallographic sites associated with trivalent cations are always fully occupied and are surrounded by Cl and O ligands (Gulo & Perrin, 2012). Only in Cs₂GdNb₆Cl₁₅O₃ and the isotypic uranium analogue, the trivalent cation occupy the center of a triangle formed by three adjacent cluster units and are bonded to nine ligands.

In $Cs_2GdNb_6Cl_{15}O_3$, the monovalent Cs^I atom is surrounded by six Nb₆ clusters and coordinated by twelve Cl ligands (Fig. 4). The lengths of Cs-Cl bonds range from 3.5074 (8) to 3.9770 (6) Å. A similar environment around Cs is found in CsNb₆Cl₁₂O₂ with Cs-Cl distances between 3.330 (5) and 3.862 (4) Å (Gulo & Perrin, 2000). In contrast, the Cs^I atom in Cs₂LuNb₆Cl₁₇O is surrounded by four Nb₆clusters and is bonded to twelve chlorine ligands with Cs-Cl distances in the range 3.567 (1) to 3.619 (1) Å (Cordier et al., 1996). In RbGdNb₆Cl₁₈ with its smaller monovalent cation Rb¹, the coordination number is likewise 12. Here, the cation is surrounded also by four Nb₆ clusters, and the Rb-Cl bond lengths range from 3.471 (1) Å to 3.557 (2) Å with an average of 3.512 Å (Gulo et al., 2023). The sites of monovalent cations encountered in the crystal structures of oxychlorides with Nb₆ clusters are always surrounded by Cl ligands with the exception of Cs₂LuNb₆Cl₁₇O where an O atom statistically occupies a site among the twelve inner ligands defining the coordination environment of Cs. On the other hand, the sites associated with the (large) monovalent cation often show partial occupancy. For example, in Na_{0.21}Nb₆Cl_{10.5}O₃, the corresponding Na site has an occupancy of only 42.6% (Gulo & Perrin, 2002) and the three Cs sites in Cs₂Ti₄Nb₆Cl₁₈O₆ have occupancies of 38.1%, 57.0% and 6.9% (Anokhina et al., 2001).

 Table 1

 Experimental details.

Crystal data	
Chemical formula	Cs2GdNb6Cl15O3
$M_{\rm r}$	1560.28
Crystal system, space group	Trigonal, $P\overline{3}1c$
Temperature (K)	293
<i>a</i> , <i>c</i> (Å)	9.1318 (1), 17.1558 (2)
$V(Å^3)$	1238.95 (3)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	9.83
Crystal size (mm)	$0.08 \times 0.07 \times 0.05$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (DENZO and SCALEPACK; Otwinowski Minor 1997)
T , T	0.004_0.017
¹ min, ¹ max	7607 2020 1700
observed $[I > 2\sigma(I)]$ reflections	7007, 2020, 1790
R _{int}	0.026
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.833
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.068, 1.15
No. of reflections	2020
No. of parameters	44
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.38, -1.35

Computer programs: COLLECT (Nonius, 1999), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 2014), and publCIF (Westrip, 2010).

The VEC in $Cs_2GdNb_6Cl_{15}O_3$ is 14 per cluster unit, as observed in most oxide (Köhler *et al.*, 1991) and oxychloride compounds (Gulo & Perrin, 2012). The number of O^i ligands per cluster can affect the VEC value. Compounds containing one O^i ligand (Cordier *et al.*, 1996) or two O^i ligands (Gulo & Perrin, 2000) exhibit VEC values of 16 and 15. However, niobium oxychloride compounds containing three or more O^i ligands per cluster unit have always a VEC of 14 per cluster unit.

3. Synthesis and crystallization

 $Cs_2GdNb_6Cl_{15}O_3$ was prepared by solid-state reactions, starting from a stoichiometric mixture of CsCl (Prolabo, purity 99.5%), Gd_2O_3 (Rhône Poulenc), Nb_2O_5 (Merck, Optipur), $NbCl_5$ (Ventron, purity 99.998%) and niobium powder (Ventron, purity 99.8%). A total of 300 mg of the mixture was mashed and then loaded in a silica tube under argon atmosphere in a glove box. The silica tube sample was then sealed under vacuum condition. The sample was heated in a vertical heating furnace at 973 K for two days, followed by slow cooling to room temperature. Brown single crystals with a block-like form suitable for structural determination were obtained this way.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The remaining maximum and minimum electron density peaks are located 0.19 Å from Nb and 0.54 Å from Cs, respectively.

The authors thank T. Roisnel, Centre de Diffractométrie de l'Université de Rennes 1, France, for the data collection on the Enraf–Nonius KappaCCD X-ray diffractometer.

Funding information

The authors wish to thank the Research Institute of Sriwijaya University for research funding.

References

&

- Anokhina, E. V., Day, C. S. & Lachgar, A. (2000). Chem. Commun. pp. 1491–1492.
- Anokhina, E. V., Day, C. S. & Lachgar, A. (2001). *Inorg. Chem.* 40, 5072–5076.
- Anokhina, E. V., Essig, M. W. & Lachgar, A. (1998). Angew. Chem. Int. Ed. **37**, 522–525.
- Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cordier, S., Perrin, C. & Sergent, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 1049–1059.
- Cordier, S., Perrin, C. & Sergent, M. (1996). *Mater. Res. Bull.* **31**, 683–690.
- Cordier, S., Perrin, C. & Sergent, M. (1997). Mater. Res. Bull. 32, 25-33.
- Fontaine, B., Cordier, S., Gautier, R., Gulo, F., Halet, J.-F., Perić, B. & Perrin, C. (2011). *New J. Chem.* **35**, 2245–2252.
- Gulo, F. & Perrin, C. (2000). J. Mater. Chem. 10, 1721-1724.
- Gulo, F. & Perrin, C. (2002). J. Solid State Chem. 163, 325-331.
- Gulo, F. & Perrin, C. (2012). Oxyhalogénures à Clusters Triangulaires et Octaédriques de Niobium: Synthèses et Caractérisations. Saarbrücken, Germany: Presses Académiques Francophones.
- Gulo, F., Roisnel, T. & Perrin, C. (2001). J. Mater. Chem. 11, 1237– 1241.
- Gulo, F., Silaban, S. & Perrin, C. (2023). J. Chim. Nat. Acta, 11, 46-51.
- Hiramatsu, T., Yoshida, Y., Saito, G., Otsuka, A., Yamochi, H., Shimizu, Y., Hattori, Y., Nakamura, Y., Kishida, H., Ito, H., Kirakci, K., Cordier, S. & Perrin, C. (2015). J. Mater. Chem. C. 3, 11046– 11054.
- Köhler, J., Tischtau, R. & Simon, A. (1991). J. Chem. Soc. Dalton Trans. pp. 829–832.
- Naumov, N. G., Cordier, S., Gulo, F., Roisnel, T., Fedorov, V. E. & Perrin, C. (2003). *Inorg. Chim. Acta*, **350**, 503–510.
- Nguyen, N. T. K., Lebastard, C., Wilmet, M., Dumait, N., Renaud, A., Cordier, S., Ohashi, N., Uchikoshi, T. & Grasset, F. (2022). *Sci. Technol. Adv. Mater.* **23**, 547–578.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Perrin, C. (1997). J. Alloys Compd. 262-263, 10-21.
- Perrin, C., Cordier, S., Gulo, F. & Perrin, A. (2001). *Ferroelectrics*, **254**, 83–90.
- Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-849.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, J.-J., Day, C. S. & Lachgar, A. (2011). CrystEngComm, 13, 133–137.
- Zhou, H. & Lachgar, A. (2007). Eur. J. Inorg. Chem. pp. 1053-1066.

supporting information

Acta Cryst. (2023). E79, 1008-1011 [https://doi.org/10.1107/S205698902300871X]

Crystal structure of Cs₂GdNb₆Cl₁₅O₃ in the structural evolution of niobium oxychlorides with octahedral Nb₆-cluster units

Saronom Silaban, Maefa Eka Haryani, Fakhili Gulo and Christiane Perrin

Computing details

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *COLLECT* (Nonius, 1999); data reduction: *COLLECT* (Nonius, 1999); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I)

```
Crystal data
Cs<sub>2</sub>GdNb<sub>6</sub>Cl<sub>15</sub>O<sub>3</sub>
                                                                               D_{\rm x} = 4.182 {\rm Mg} {\rm m}^{-3}
M_r = 1560.28
                                                                               Mo Ka radiation. \lambda = 0.71073 Å
Trigonal, P\overline{3}1c
                                                                               Cell parameters from 25 reflections
                                                                               \theta = 12 - 18^{\circ}
a = 9.1318 (1) Å
c = 17.1558 (2) Å
                                                                               \mu = 9.83 \text{ mm}^{-1}
V = 1238.95 (3) Å<sup>3</sup>
                                                                               T = 293 \text{ K}
Z = 2
                                                                               Block, brown
F(000) = 1398
                                                                               0.08 \times 0.07 \times 0.05 \text{ mm}
Data collection
Nonius KappaCCD
                                                                               7607 measured reflections
   diffractometer
                                                                               2020 independent reflections
Radiation source: fine-focus sealed tube
                                                                               1790 reflections with I > 2\sigma(I)
\omega scans
                                                                               R_{\rm int} = 0.026
Absorption correction: multi-scan
                                                                               \theta_{\text{max}} = 36.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}
   (DENZO and SCALEPACK; Otwinowski &
                                                                               h = -15 \rightarrow 15
   Minor, 1997)
                                                                               k = -12 \rightarrow 12
T_{\rm min} = 0.004, \ T_{\rm max} = 0.017
                                                                               l = -27 \rightarrow 28
Refinement
Refinement on F^2
                                                                               Secondary atom site location: difference Fourier
Least-squares matrix: full
                                                                                   map
R[F^2 > 2\sigma(F^2)] = 0.029
                                                                               w = 1/[\sigma^2(F_0^2) + (0.0258P)^2 + 3.5848P]
wR(F^2) = 0.068
                                                                                   where P = (F_0^2 + 2F_c^2)/3
S = 1.15
                                                                               (\Delta/\sigma)_{\rm max} = 0.001
                                                                               \Delta \rho_{\rm max} = 1.38 \ {\rm e} \ {\rm \AA}^{-3}
2020 reflections
                                                                               \Delta \rho_{\rm min} = -1.35 \ {\rm e} \ {\rm \AA}^{-3}
44 parameters
                                                                               Extinction correction: SHELXL2018/3
0 restraints
Primary atom site location: structure-invariant
                                                                                   (Sheldrick, 2015b),
                                                                                   Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
   direct methods
                                                                               Extinction coefficient: 0.00259 (19)
```

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cs	0.333333	0.666667	0.54654 (2)	0.02645 (9)	
Gd	0.666667	0.333333	0.750000	0.01649 (8)	
Nb	0.19768 (3)	0.01608 (3)	0.68239(2)	0.01105 (7)	
Cl1	0.21283 (6)	-0.21283 (6)	0.750000	0.01643 (17)	
Cl2	0.01675 (8)	-0.20367 (8)	0.58643 (4)	0.01569 (12)	
C13	0.47649 (9)	0.07637 (10)	0.61760 (5)	0.02252 (15)	
0	0.3730 (3)	0.18650 (17)	0.750000	0.0142 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs	0.02466 (12)	0.02466 (12)	0.03002 (19)	0.01233 (6)	0.000	0.000
Gd	0.00919 (9)	0.00919 (9)	0.03108 (19)	0.00460 (5)	0.000	0.000
Nb	0.00836 (10)	0.00944 (10)	0.01540 (12)	0.00448 (7)	0.00090(7)	0.00034 (7)
Cl1	0.0149 (3)	0.0149 (3)	0.0233 (4)	0.0103 (3)	0.0031 (3)	0.0031 (3)
Cl2	0.0144 (3)	0.0143 (3)	0.0180 (3)	0.0068 (2)	0.0007 (2)	-0.0028 (2)
Cl3	0.0177 (3)	0.0231 (3)	0.0298 (4)	0.0125 (3)	0.0090 (3)	0.0033 (3)
0	0.0092 (10)	0.0139 (9)	0.0179 (13)	0.0046 (5)	0.000	-0.0004 (8)

Geometric parameters (Å, °)

Cs—Cl3 ⁱ	3.5074 (8)	Gd—Cl3	3.0994 (8)
Cs—Cl3 ⁱⁱ	3.5074 (8)	Gd—Cl3 ^{viii}	3.0994 (8)
Cs—Cl3 ⁱⁱⁱ	3.5074 (8)	Gd—Cl3 ^{vii}	3.0994 (8)
Cs—Cl3 ^{iv}	3.5180 (8)	Gd—Cl3 ^{ix}	3.0994 (8)
Cs—Cl3 ^v	3.5180 (8)	Gd—Cl3 ^x	3.0994 (8)
Cs-Cl3 ^{vi}	3.5180 (8)	Gd—Cl3 ⁱⁱⁱ	3.0994 (8)
Cs—Cl2 ⁱ	3.6948 (7)	Nb—O	1.9593 (19)
Cs-Cl2 ⁱⁱⁱ	3.6948 (7)	Nb—Cl1	2.4543 (7)
Cs—Cl2 ⁱⁱ	3.6948 (7)	Nb—Cl2 ⁱⁱ	2.4684 (7)
Cs-Cl1 ⁱⁱⁱ	3.9770 (6)	Nb—Cl2	2.4802 (7)
Cs—Cl1 ⁱⁱ	3.9770 (6)	Nb—Cl3	2.5728 (7)
Cs-Cl1 ⁱ	3.9770 (5)	Nb—Nb ^x	2.7686 (5)
Gd—O	2.322 (3)	Nb—Nb ^{xi}	3.0075 (4)
$Gd-O^{vii}$	2.322 (3)	Nb—Nb ⁱⁱ	3.0075 (4)
Gd—O ⁱⁱⁱ	2.322 (3)	Nb—Nb ^{xii}	3.0317 (5)
	100 500 (15)		90, 190, (1,4)
C13'—Cs—C13"	108.589 (15)	U ^m —Ga—Cl3 ^{vn}	80.189 (14)
$Cl3^{1}$ — Cs — $Cl3^{11}$	108.589 (15)	$Cl3$ — Gd — $Cl3^{vn}$	72.21 (2)

Cl3 ⁱⁱ —Cs—Cl3 ⁱⁱⁱ	108.589 (15)	Cl3 ^{viii} —Gd—Cl3 ^{vii}	98.06 (3)
$C13^{i}$ — Cs — $C13^{iv}$	108.89 (2)	O—Gd—Cl3 ^{ix}	80.189 (13)
Cl3 ⁱⁱ —Cs—Cl3 ^{iv}	76.72 (2)	O ^{vii} —Gd—Cl3 ^{ix}	60.971 (13)
Cl3 ⁱⁱⁱ —Cs—Cl3 ^{iv}	137.786 (19)	O ⁱⁱⁱⁱ —Gd—Cl3 ^{ix}	130.969 (15)
$Cl3^{i}$ — Cs — $Cl3^{v}$	76.72 (2)	Cl3—Gd—Cl3 ^{ix}	98.06 (3)
Cl3 ⁱⁱ —Cs—Cl3 ^v	137.786 (19)	Cl3 ^{viii} —Gd—Cl3 ^{ix}	72.21 (2)
$C13^{iii}$ — Cs — $C13^{v}$	108.89 (2)	Cl3 ^{vii} —Gd—Cl3 ^{ix}	121.94 (2)
$Cl3^{iv}$ — Cs — $Cl3^{v}$	62.55 (2)	$O-Gd-Cl3^{x}$	60.971 (13)
$Cl3^{i}$ — Cs — $Cl3^{vi}$	137.786 (19)	O^{vii} —Gd—Cl3 ^x	130.969 (14)
$Cl3^{ii}$ — Cs — $Cl3^{vi}$	108 89 (2)	O^{iii} —Gd—Cl3 ^x	80 189 (14)
C_{13}^{iii} C_{5} C_{13}^{vi}	76 72 (2)	C_{13} G_{d} C_{13}^{x}	121 94 (3)
$C_{13^{iv}}$ C_{5} $C_{13^{vi}}$	62.55(2)	$Cl3^{viii}$ — $Cl3^x$	72 21 (2)
C_{13}^{v} C_{5}^{v} C_{13}^{vi}	62 55 (2)	$C13^{vii}$ -Gd- $C13^{x}$	160.38(3)
C_{13}^{i} C_{3}^{i} C_{13}^{i}	61.822(15)	Cl_{3}^{ix} $Cd_{-}Cl_{3}^{x}$	72 21 (2)
$C_{13}^{ii} = C_{5} = C_{12}^{ii}$	54 828 (15)	O_{-Gd}	(2.21 (2))
$C_{13}^{(1)} = C_{3}^{(2)} = C_{12}^{(1)}$	148.77(2)	$O_{\rm vii}$ Gd Cl ³ ⁱⁱⁱ	130060(14)
$C13^{iv}$ C_5 $C12^{i}$	(1+0.77)(2)	O = Od = Cl3	130.909(14)
$C_{12} = C_{2} = C_{12}$	07.070(17)	$C_{12} = C_{12} = C_{12}$	(13)
C_{12} C_{2} C_{12} C_{12}	97.980(17) 121.521(10)	$C12 \times C12 $	72.20(2)
$C_{12} = C_{2} = C_{12}$	131.331(19)	$C12^{\text{vii}}$ $C4$ $C12^{\text{vii}}$	121.94(3)
$C13^{}C3^{}C12^{}$	54.828 (15) 149.77 (2)	$C13^{\text{IIII}}$ $C12^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	12.21 (2)
	148.77(2)		160.38(3)
$C13^{III}$ $CI = C12^{III}$	61.822 (15)		98.06 (3)
Cl_{3}^{m} — Cs — Cl_{2}^{m}	131.531 (19)		91.438 (10)
Cl_{3} Cs Cl_{2}	69.076 (18)	O—Nb—Cl2 ⁿ	95.39 (2)
Cl3vi—Cs—Cl2 ^m	97.986 (17)	Cl1—Nb—Cl2 ⁿ	165.85 (2)
$Cl2^{i}$ — Cs — $Cl2^{in}$	116.649 (8)	O—Nb—Cl2	169.99 (6)
$Cl3^{i}$ — Cs — $Cl2^{ii}$	148.77 (2)	Cl1—Nb—Cl2	85.583 (18)
$Cl3^{n}$ — Cs — $Cl2^{n}$	61.822 (15)	Cl2 ⁿ —Nb—Cl2	85.58 (3)
$Cl3^{iii}$ — Cs — $Cl2^{ii}$	54.828 (15)	O—Nb—Cl3	75.97 (6)
$Cl3^{iv}$ — Cs — $Cl2^{ii}$	97.986 (17)	Cl1—Nb—Cl3	85.14 (2)
Cl3v—Cs—Cl2 ⁱⁱ	131.531 (19)	Cl2 ⁱⁱ —Nb—Cl3	84.52 (2)
Cl3vi—Cs—Cl2 ⁱⁱ	69.076 (17)	Cl2—Nb—Cl3	94.24 (3)
Cl2 ⁱ —Cs—Cl2 ⁱⁱ	116.649 (8)	O—Nb—Nb ^x	45.05 (6)
Cl2 ⁱⁱⁱ —Cs—Cl2 ⁱⁱ	116.649 (8)	Cl1—Nb—Nb ^x	94.843 (15)
Cl3 ⁱ —Cs—Cl1 ⁱⁱⁱ	62.628 (14)	Cl2 ⁱⁱ —Nb—Nb ^x	98.75 (2)
Cl3 ⁱⁱ —Cs—Cl1 ⁱⁱⁱ	97.912 (19)	Cl2—Nb—Nb ^x	144.687 (16)
Cl3 ⁱⁱⁱ —Cs—Cl1 ⁱⁱⁱ	53.624 (14)	Cl3—Nb—Nb ^x	121.017 (19)
Cl3 ^{iv} —Cs—Cl1 ⁱⁱⁱ	168.335 (15)	O—Nb—Nb ^{xi}	137.22 (6)
Cl3v—Cs—Cl1 ⁱⁱⁱ	119.844 (17)	Cl1—Nb—Nb ^{xi}	89.097 (14)
Cl3 ^{vi} —Cs—Cl1 ⁱⁱⁱ	129.093 (15)	Cl2 ⁱⁱ —Nb—Nb ^{xi}	94.227 (16)
Cl2 ⁱ —Cs—Cl1 ⁱⁱⁱ	99.332 (16)	Cl2—Nb—Nb ^{xi}	52.396 (17)
Cl2 ⁱⁱⁱ —Cs—Cl1 ⁱⁱⁱ	51.659 (16)	Cl3—Nb—Nb ^{xi}	146.53 (2)
Cl2 ⁱⁱ —Cs—Cl1 ⁱⁱⁱ	88.306 (13)	Nb ^x —Nb—Nb ^{xi}	92.291 (4)
Cl3 ⁱ —Cs—Cl1 ⁱⁱ	97.912 (19)	O—Nb—Nb ⁱⁱ	94.52 (4)
Cl3 ⁱⁱ —Cs—Cl1 ⁱⁱ	53.623 (14)	Cl1—Nb—Nb ⁱⁱ	139.044 (15)
Cl3 ⁱⁱⁱ —Cs—Cl1 ⁱⁱ	62.629 (14)	Cl2 ⁱⁱ —Nb—Nb ⁱⁱ	52.752 (17)
Cl3 ^{iv} —Cs—Cl1 ⁱⁱ	129.092 (15)	Cl2—Nb—Nb ⁱⁱ	93.982 (16)
$Cl3^{v}$ — Cs — $Cl1^{ii}$	168.336 (16)	Cl3—Nb—Nb ⁱⁱ	135.56 (2)
		· · · · · · · · · · · · · · · · · · ·	

supporting information

119.844 (17)	Nb ^x —Nb—Nb ⁱⁱ	63.159 (10)
88.305 (13)	Nb ^{xi} —Nb—Nb ⁱⁱ	60.0
99.332 (16)	O—Nb—Nb ^{xii}	93.78 (4)
51.660 (16)	Cl1—Nb—Nb ^{xii}	51.856 (14)
49.043 (19)	Cl2 ⁱⁱ —Nb—Nb ^{xii}	139.534 (16)
53.623 (14)	Cl2—Nb—Nb ^{xii}	91.888 (19)
62.629 (15)	Cl3—Nb—Nb ^{xii}	135.895 (19)
97.912 (19)	Nb ^x —Nb—Nb ^{xii}	62.269 (11)
119.843 (17)	Nb ^{xi} —Nb—Nb ^{xii}	54.570 (9)
129.092 (15)	Nb ⁱⁱ —Nb—Nb ^{xii}	87.296 (5)
168.336 (16)	Nb ^{xii} —Cl1—Nb	76.29 (3)
51.659 (16)	Nb ^{xii} —Cl1—Cs ^{xiii}	142.343 (15)
88.305 (13)	Nb—Cl1—Cs ^{xiii}	87.830 (6)
99.333 (16)	Nb ^{xii} —Cl1—Cs ^{xiv}	87.831 (6)
49.043 (19)	Nb—Cl1—Cs ^{xiv}	142.343 (15)
49.043 (19)	Cs^{xiii} — $Cl1$ — Cs^{xiv}	122.73 (2)
120.0	Nb ^{xi} —Cl2—Nb	74.85 (2)
120.0	Nb ^{xi} —Cl2—Cs ^{xiii}	146.20 (3)
120.000(1)	Nb—Cl2—Cs ^{xiii}	94.06 (2)
60.971 (13)	Nb—Cl3—Gd	88.01 (2)
80.190 (14)	Nb—Cl3—Cs ^{xiii}	96.94 (2)
130.969 (14)	Gd—Cl3—Cs ^{xiii}	146.22 (3)
130.969 (14)	Nb—Cl3—Cs ^v	126.46 (3)
80.189 (14)	Gd—Cl3—Cs ^v	100.30 (2)
60.971 (13)	Cs ^{xiii} —Cl3—Cs ^v	103.28 (2)
160.38 (3)	Nb ^x —O—Nb	89.91 (11)
130.969 (15)	Nb ^x —O—Gd	135.05 (6)
60.971 (13)	Nb—O—Gd	135.05 (6)
	119.844 (17) $88.305 (13)$ $99.332 (16)$ $51.660 (16)$ $49.043 (19)$ $53.623 (14)$ $62.629 (15)$ $97.912 (19)$ $119.843 (17)$ $129.092 (15)$ $168.336 (16)$ $51.659 (16)$ $88.305 (13)$ $99.333 (16)$ $49.043 (19)$ $49.043 (19)$ 120.0 120.0 $120.00 (1)$ $60.971 (13)$ $80.189 (14)$ $130.969 (14)$ $130.969 (14)$ $130.969 (14)$ $130.969 (14)$ $130.969 (14)$ $130.969 (14)$ $130.969 (15)$ $60.971 (13)$	119.844 (17)Nbx-Nb-Nb ⁱⁱ 88.305 (13)Nbxi-Nb-Nb ⁱⁱ 99.332 (16)O-Nb-Nb-Nb ^{xii} 51.660 (16)Cl1-Nb-Nb ^{xii} 49.043 (19)Cl2 ⁱⁱ -Nb-Nb ^{xii} 53.623 (14)Cl2-Nb-Nb ^{xii} 62.629 (15)Cl3-Nb-Nb ^{xii} 97.912 (19)Nbx-Nb-Nb ^{xii} 119.843 (17)Nb ^{xii} -Nb-Nb ^{xii} 129.092 (15)Nb ⁱⁱ -Nb-Nb ^{xii} 168.336 (16)Nb ^{xii} -Cl1-Cs ^{xiii} 88.305 (13)Nb-Cl1-Cs ^{xiii} 99.333 (16)Nb ^{xii} -Cl1-Cs ^{xiv} 49.043 (19)Nb-Cl1-Cs ^{xiv} 49.043 (19)Nb-Cl1-Cs ^{xiii} 120.0Nb ^{xi} -Cl2-Nb120.0Nb ^{xi} -Cl2-Cs ^{xiii} 120.00 (1)Nb-Cl3-Cs ^{xiii} 130.969 (14)Gd-Cl3-Cs ^{xiii} 130.969 (14)Gd-Cl3-Cs ^{xiii} 130.969 (14)Gd-Cl3-Cs ^v 130.969 (15)Nb ^x -O-Mb130.969 (15)Nb ^x -O-Gd

Symmetry codes: (i) x, y+1, z; (ii) -y, x-y, z; (iii) -x+y+1, -x+1, z; (iv) y, -x+y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) x-y, x, -z+1; (vii) -y+1, x-y, z; (viii) -y+1, -x+1, -z+3/2; (ix) -x+y+1, y, -z+3/2; (x) -x+y+1, -z+3/