Received 18 September 2023
Accepted 28 September 2023

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: 5-methyl-3-pyrazolamine; copper(II) acetate; diethanolamine; Hirshfeld surface analysis; crystal structure; copper(II) complexes.

CCDC reference: 2298123

Supporting information: this article has supporting information at journals.iucr.org/e


Published under a CC BY 4.0 licence

# Carbon dioxide capture from air leading to bis[ $N$-(5-methyl-1 H-pyrazol-3-yl- $\kappa N^{2}$ )carbamato$\kappa O$ ]copper(II) tetrahydrate 

Valerii Y. Sirenko, ${ }^{\text {a* }}$ Iryna S. Kuzevanova, ${ }^{\text {b,c }}$ Oleksandr S. Vynohradov, ${ }^{\text {a }}$ Dina D. Naumova ${ }^{\text {a }}$ and Sergiu Shova ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, ${ }^{\text {b }}$ Department of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Pr. 37, 03056 Kyiv, Ukraine, 'cInnovation Development Center ABN, Pirogov str. 2/37, 01030 Kyiv, Ukraine, and dDepartment of Inorganic polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 lasi, Romania. *Correspondence e-mail: valerii_sirenko@knu.ua

A mononuclear square-planar $\mathrm{Cu}^{\text {II }}$ complex of (5-methyl-1 $H$-pyrazol-3-yl) carbamate, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, was synthesized using a one-pot reaction from 5-methyl-3-pyrazolamine and copper(II) acetate in water under ambient conditions. The adsorption of carbon dioxide from air was facilitated by the addition of diethanolamine to the reaction mixture. While diethanolamine is not a component of the final product, it plays a pivotal role in the reaction by creating an alkaline environment, thereby enabling the adsorption of atmospheric carbon dioxide. The central copper(II) atom is in an $\left(\mathrm{N}_{2} \mathrm{O}_{2}\right)$ squareplanar coordination environment formed by two N atoms and two O atoms of two equivalent (5-methyl-1 $H$-pyrazol-3-yl)carbamate ligands. Additionally, there are co-crystallized water molecules within the crystal structure of this compound. These co-crystallized water molecules are linked to the $\mathrm{Cu}^{\text {II }}$ mononuclear complex by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. According to Hirshfeld surface analysis, the most frequently observed weak intermolecular interactions are $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(33.6 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(11.3 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(9.0 \%)$ contacts.

## 1. Chemical context

Currently, global warming stands out as the most significant environmental concern, leading to climate change and giving rise to a range of effects, including elevated sea levels, prolonged droughts, intensified hurricanes, and a surge in extreme weather occurrences (Ochedi et al., 2021). The primary cause of global warming in recent decades can be attributed to the heightened levels of greenhouse gases in the atmosphere, with particular emphasis on the concentration of $\mathrm{CO}_{2}$ (Aghaie et al., 2018). Power plants, comprising more than $40 \%$ of $\mathrm{CO}_{2}$ emissions, with coal-fired facilities accounting for $73 \%$ of fossil fuel-based power plant emissions (Cannone et al., 2021; Mikkelsen et al., 2010), are a significant contributor to the carbon footprint. Given the widespread use of fossil fuels, particularly coal, there is a strong need to develop effective methods for capturing and mitigating $\mathrm{CO}_{2}$ emissions from power plant flue gases, to help stabilize the atmospheric $\mathrm{CO}_{2}$ level (Wang et al., 2017).

Various technologies, including adsorption (Milner et al., 2017), absorption (Conway et al., 2013), membrane separations (Sreedhar et al., 2017), cryogenic distillation (Song et al., 2019), and chemical looping (Kronberger et al., 2004), are currently under research and development for capturing $\mathrm{CO}_{2}$ from flue-gas streams. One potential strategy for reducing
carbon emissions in the future involves the utilization of carbon capture and sequestration (CCS) materials.

The process of CCS entails the specific separation and subsequent storage of $\mathrm{CO}_{2}$ taken from exhaust gas mixtures, which predominantly consist of $\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{O}_{2}$, preventing their release into the atmosphere. Following this, the collected $\mathrm{CO}_{2}$ is transported for either utilization or longterm storage. Amine scrubbing-based chemical capture methods have garnered significant focus and interest (Tang et al., 2005; Mani et al., 2006).

One of the methods for reducing carbon dioxide levels in the environment involves capturing it through the formation of carbamates (Conway et al., 2011; McCann et al., 2009; Zhang et al., 2017). Besides, carbamates can be used as catalysts or useful intermediates in the synthesis of other, morevaluable chemicals (Dell'Amico et al., 2003). Given the necessity of capturing $\mathrm{CO}_{2}$ to address broader societal needs, in this article we report the synthesis, crystal structure and Hirshfeld surface analysis of a new mononuclear copper(II) complex with (5-methyl-1H-pyrazol-3-yl)carbamic acid -$\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$.


## 2. Structural commentary

The title compound crystallizes in the monoclinic space group $P 2_{1} / c$, and has a crystal structure built upon neutral mononuclear $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right]$ units (Fig. 1). Co-crystallized water molecules are present in a $1: 4$ ratio to the complex as interstitial molecules. The asymmetric unit includes one copper site (SOF is 0.5 , Wyckoff position 2a), one (5-methyl$1 H$-pyrazol-3-yl)carbamate ligand and two co-crystallized water molecules.

The $\mathrm{Cu}^{\text {II }}$ ion displays a square-planar coordination environment $\left(\mathrm{N}_{2} \mathrm{O}_{2}\right)$ formed by two nitrogen atoms of pyrazole rings and two oxygen atoms of carboxylate group of (5-methyl-1H-pyrazol-3-yl)carbamate ligands. The $\mathrm{Cu} 1-\mathrm{N} 1$ distances are 1.931 (2) $\AA$ while the $\mathrm{Cu} 1-\mathrm{O} 1$ distances are shorter and account to 1.9140 (17) $\AA$. The $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ bond angles are $180^{\circ}$, which is typical for a square-planar arrangement (Fig. 1). At the same time, the $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$ bond angles slightly deviate from the ideal value of $90^{\circ}$, which is the result of the formation of the six-membered chelate rings. Selected bond

Table 1
Selected bond lengths and bond angles ( $\left(\AA,{ }^{\circ}\right.$ ).

| $\mathrm{Cu} 1-\mathrm{O} 1$ | $1.9140(17)$ | $\mathrm{Cu} 1-\mathrm{N} 1$ | $1.931(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$ | 180.0 | $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $91.08(8)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | $88.92(8)$ | $\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cu} 1$ | $126.70(16)$ |

Symmetry codes: (i) $-x,-y,-z$
lengths and bond angles are given in Table 1. The Cu 1 atom lies within the plane defined by $\mathrm{N} 1-\mathrm{O} 1-\mathrm{N} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$. Additionally, the Cu atom lies within the planes of the aromatic rings, whereas O 1 and $\mathrm{O} 1^{\mathrm{i}}$ are slightly above the plane, with an $\mathrm{O} 1\left(\mathrm{O} 1^{\mathrm{i}}\right.$ )-to-plane distance of 0.182 (3) $\AA$.

In the crystal structure, monomeric $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right]$ units form layers with Cu 1 centres lying in the $a b$ plane. The plane-normal-to-plane-normal angle between the horizontal $\mathrm{N} 1-\mathrm{O} 1-\mathrm{N} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$ planes of two adjacent layers is $74.762(2)^{\circ}$.

## 3. Supramolecular features

All the components of the structure are associated via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as well as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Figs. 2, 3). $\pi-\pi$ contacts are also observed between neutral $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right]$ molecular complexes (Fig. 2). The co-crystallized water molecules are interleaved with the supramolecular layers of the neutral $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right]$ complexes along the $c$-axis. The O 4 water molecule participates in four hydrogen bonds, two where it acts as a donor $\left(\mathrm{O} 4-\mathrm{H} 4 E \cdots \mathrm{O} 2^{\mathrm{ii}}\right.$ and $\mathrm{O} 4-\mathrm{H} 4 D \cdots \mathrm{O} 3^{\mathrm{i}}$, see Table 2 for details), and two as acceptor


Figure 1
Representation of the $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right]$ complex and co-crystallized water molecules, showing the atom-labelling scheme and displacement ellipsoids drawn at the $50 \%$ probability level. H atoms are shown as small spheres of arbitrary radii. Symmetry codes: (i) $-x,-y,-z$; (ii) $1-x$, $-\frac{1}{2}+y, \frac{1}{2}-z$.

Table 2
Hydrogen-bond geometry ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\underline{D-H \cdots A}$ | $D-\mathrm{H}$ | H $\cdots$ A | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| O4-H4D . $\mathrm{O}^{\text {i }}$ | 0.87 | 1.80 | 2.664 (3) | 171 |
| $\mathrm{O} 4-\mathrm{H} 4 \mathrm{E} \cdots \mathrm{O} 1^{\text {ii }}$ | 0.87 | 2.44 | 2.930 (3) | 116 |
| $\mathrm{O} 4-\mathrm{H} 4 E \cdots \mathrm{O} 2^{\text {ii }}$ | 0.87 | 2.02 | 2.873 (3) | 167 |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {iii }}$ | 0.88 | 1.99 | 2.863 (3) | 169 |
| $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iv }}$ | 0.88 | 2.02 | 2.889 (3) | 169 |
| $\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O}$ | 0.87 | 1.89 | 2.756 (3) | 176 |
| $\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 4$ | 0.87 | 1.92 | 2.783 (3) | 169 |
| $\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\text {iv }}$ | 0.95 | 2.43 | 3.340 (4) | 159 |
| Symmetry codes: <br> (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; <br> (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; <br> (iii) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x, y+\frac{1}{2},-z+\frac{1}{2}$. |  |  |  |  |

( $\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 4$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\mathrm{iii}}$, see Table 2 for details). At the same time, the O 3 water molecule participates in three hydrogen bonds, two where it acts as a donor $(\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$ and $\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 4$, see Table 2 for details) and one as acceptor ( $\mathrm{O} 4-\mathrm{H} 4 D \cdots \mathrm{O} 3^{\mathrm{i}}$, see Table 2 for details). In addition, the O3 water molecule participates in a weak $\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {iv }}$ contact with a $\mathrm{C} 2 \cdots \mathrm{O} 3$ distance of 3.340 (4) A. According to this, the co-crystallized water molecules play an important role in providing cohesion between the neutral $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right]$ molecular complexes. Geometric parameters for intermolecular hydrogen bonds are given in Table 2.

Interestingly, four water molecules and the carboxyl group form a five-membered supramolecular ring (Fig. 3). In addition, $\pi-\pi$ interactions are observed between the $[\mathrm{Cu}(5-$ MeHpzCarb) ${ }_{2}$ ] neutral complexes. The plane-to-plane distance for these $\pi-\pi$ contacts is 3.324 (3) $\AA$ with the plane-to-plane shift being 1.498 (5) $\AA$. It is also worth noting very weak $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts between two contiguous $[\mathrm{Cu}(5-$ $\mathrm{MeHpzCarb})_{2}$ ] units with a carbon-atom-to-plane distance of 3.586 (4) Å.

## 4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using


Figure 2
Partial crystal packing of $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ showing intermolecular $\pi-\pi$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts as green and red dashed lines, respectively.


Figure 3
Partial crystal packing of $\left[\mathrm{Cu}(5-\mathrm{MeHpzCarb})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ showing the fivemembered supramolecular ring formed by four water molecules and the carboxyl group of the (5-methyl-1H-pyrazol-3-yl)carbamate ligand.

Crystal Explorer 21.5 software (Spackman et al., 2021), with standard resolution of the three-dimensional $d_{\text {norm }}$ surfaces plotted over a fixed colour scale of -0.6468 (red) to 1.1041 (blue) a.u. There are eight red spots on the $d_{\text {norm }}$ surface (Fig. 4a). Visualizations were performed using a red-whiteblue colour scheme, where red highlights shorter contacts, white is used for contacts around vdW separation, and blue depicts longer contacts. The red spots on the 3D $d_{\text {norm }}$ Hirshfeld surfaces indicate the direction and strength of the intermolecular $E-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (where $E=\mathrm{N}, \mathrm{O}$ ), as well as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts. The overall two-dimensional fingerprint plots for the selected interactions are shown in Fig. $4 b$.

The most significant contributions to the overall crystal packing are from $\mathrm{H} \cdots \mathrm{H}(32.2 \%), \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(33.6 \%)$,


Figure 4
(a) Hirshfeld surface representations with the function $d_{\text {norm }}$ plotted onto the surface for the different interactions; (b) two-dimensional fingerprint plots, showing the contributions of different types of interactions.
$\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(11.3 \%), \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(9.0 \%)$ and $\mathrm{C} \cdots \mathrm{N} /$ $\mathrm{N} \cdots \mathrm{C}(4.1 \%)$ interactions. The $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts form a pair of spikes on the sides of the corresponding two-dimensional plot, which are indicative of strong intermolecular interactions between atoms. At the same time, the $\mathrm{H} \cdots \mathrm{N} /$ $\mathrm{N} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ contacts form less pronounced spikes, indicating that these interactions are weaker.

## 5. Database survey

A search of the Cambridge Structure Database (CSD version 5.44, last update June 2023; Groom et al., 2016) revealed that the structure has never been published before. 51 structures for the $\mathrm{Cu}(\text { pyrazole })_{2}\left(\mathrm{CO}_{2}\right)_{2}$ moiety [four-coordinated copper atom with an $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination environment] were found. Most similar to the title compound, complexes forming a fourcoordinated $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination environment, are trans-bis-(3,5-dimethylpyrazole)bis(pivalato)copper(II) (DEFSAJ; Zhou et al., 2006), bis(1H-indazole-3-carboxylato)copper(II) (ETOVUH; Qin et al., 2017), trans-bis(4-nitrobenzoato-O) bis(3,5-dimethylpyrazole-N)copper(II) (KOKGIB; Sarma \& Baruah, 2008) and bis(dimethylammonium) bis( $\mu_{2}-3,5$-dicarboxylatopyrazolato)dicopper(II) (ALERIU; Demir et al., 2016).

## 6. Synthesis and crystallization

5-Methyl-3-pyrazolamine $\left(0.015 \mathrm{~g}, 1.54 \times 10^{-4} \mathrm{~mol}\right)$, copper(II) acetate ( $0.28 \mathrm{~g}, 1.54 \times 10^{-4} \mathrm{~mol}$ ) and diethanolamine ( $0.032 \mathrm{~g}, 3.08 \times 10^{-4} \mathrm{~mol}$ ) were mixed together, and dissolved in water. After 3 days, clear, light-violet crystals were collected by filtration, dried for less than a minute, and then placed under crystallographic oil for further measurements.

## 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of $\mathrm{N}_{(\mathrm{p}, \mathrm{c})}-\mathrm{H}, \mathrm{C}_{\mathrm{p}}-\mathrm{H}$ and $\mathrm{O}_{\mathrm{w}}-\mathrm{H}$ groups ( $\mathrm{p}=$ pyrazole, $\mathrm{c}=$ carbamide, $\mathrm{w}=$ water ) were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for $\mathrm{C}_{\mathrm{p}}-\mathrm{H}$ groups, $\mathrm{N}-\mathrm{H}=0.88 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ for $\mathrm{N}_{(\mathrm{p}, \mathrm{c})}-\mathrm{H}$ groups and $\mathrm{O}-\mathrm{H}=0.87 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ for $\mathrm{O}_{\mathrm{w}}-\mathrm{H}$ groups. Methyl H atoms were positioned geometrically and were allowed to ride on C atoms and rotate around the $\mathrm{C}-\mathrm{C}$ bond, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the $\mathrm{CH}_{3}$ groups.

## Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-09 to Taras Shevchenko National University of Kyiv).

Table 3
Experimental details.

| Crystal data |  |
| :---: | :---: |
| Chemical formula | $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |
| $M_{\text {r }}$ | 415.86 |
| Crystal system, space group | Monoclinic, $P 2_{1} / \mathrm{c}$ |
| Temperature (K) | 200 |
| $a, b, c(\AA)$ | $\begin{aligned} & 8.4623(2), 5.64870(16), \\ & 17.4536 \text { (4) } \end{aligned}$ |
| $\beta\left({ }^{\circ}\right.$ ) | 98.786 (2) |
| $V\left(\AA^{3}\right)$ | 824.51 (4) |
| Z | 2 |
| Radiation type | $\mathrm{Cu} K \alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 2.39 |
| Crystal size (mm) | $0.15 \times 0.15 \times 0.15$ |
| Data collection |  |
| Diffractometer | XtaLAB Synergy, Dualflex, HyPix |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2023) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.638, 1.000 |
| No. of measured, independent and observed $[I>2 \sigma(I)$ ] reflections | 5223, 1634, 1401 |
| $R_{\text {int }}$ | 0.042 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.631 |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.041, 0.118, 1.05 |
| No. of reflections | 1634 |
| No. of parameters | 116 |
| No. of restraints | 2 |
| H -atom treatment | H -atom parameters constrained |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$ | $0.45,-0.57$ |

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2018/2 (Sheldrick, 2015b), SHELXL2018/3 (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

## References

Aghaie, M., Rezaei, N. \& Zendehboudi, S. (2018). Renew. Sustain. Energy Rev. 96, 502-525.
Cannone, S. F., Lanzini, A. \& Santarelli, M. (2021). Energies 14, 387. Conway, W., Fernandes, D., Beyad, Y., Burns, R., Lawrance, G., Puxty, G. \& Maeder, M. (2013). J. Phys. Chem. A, 117, 806-813.

Conway, W., Wang, X., Fernandes, D., Burns, R., Lawrance, G., Puxty, G. \& Maeder, M. (2011). J. Phys. Chem. A, 115, 14340-14349.

Dell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. \& Pampaloni, G. (2003). Chem. Rev. 103, 3857-3898.
Demir, S., Çepni, H. M., Hołyńska, M. \& Kavanoz, M. (2016). Z. Naturforsch. 71, 305-310.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kronberger, B., Johansson, E., Löffler, G., Mattisson, T., Lyngfelt, A. \& Hofbauer, H. (2004). Chem. Eng. Technol. 27, 1318-1326.
Mani, F., Peruzzini, M. \& Stoppioni, P. (2006). Green Chem. 8, 9951000.

McCann, N., Phan, D., Wang, X., Conway, W., Burns, R., Attalla, M., Puxty, G. \& Maeder, M. (2009). J. Phys. Chem. A, 113, 5022-5029.
Mikkelsen, M., Jørgensen, M. \& Krebs, F. C. (2010). Energy Environ. Sci. 3, 43-81.
Milner, P. J., Siegelman, R. L., Forse, A. C., Gonzalez, M. I., Runčevski, T., Martell, J. D., Reimer, J. A. \& Long, J. R. (2017). J. Am. Chem. Soc. 139, 13541-13553.
Ochedi, F. O., Yu, J., Yu, H., Liu, Y. \& Hussain, A. (2021). Environ. Chem. Lett. 19, 77-109.
Qin, G.-F., Qin, Q.-Y., Long, B.-F., Wei, D.-P., Xu, Y.-H., Bao, S.-J. \& Yin, X.-H. (2017). J. Iran. Chem. Soc. 14, 1227-1234.

Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sarma, R. \& Baruah, J. B. (2008). J. Coord. Chem. 61, 3329-3335.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Song, C., Liu, Q., Deng, S., Li, H. \& Kitamura, Y. (2019). Renew. Sustain. Energy Rev. 101, 265-278.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.

Sreedhar, I., Vaidhiswaran, R., Kamani, B. M. \& Venugopal, A. (2017). Renew. Sustain. Energy Rev. 68, 659-684.

Tang, Y., Kassel, W. S., Zakharov, L. N., Rheingold, A. L. \& Kemp, R. A. (2005). Inorg. Chem. 44, 359-364.

Wang, Y., Zhao, L., Otto, A., Robinius, M. \& Stolten, D. (2017). Energy Procedia, 114, 650-665.
Zhang, R., Yang, Q., Liang, Z., Puxty, G., Mulder, R. J., Cosgriff, J. E., Yu, H., Yang, X. \& Xue, Y. (2017). Energy Fuels, 31, 11099-11108. Zhou, J.-H., Liu, Z., Li, Y.-Z., Song, Y., Chen, X.-T. \& You, X.-Z. (2006). J. Coord. Chem. 59, 147-156.

## supporting information

Acta Cryst. (2023). E79, 988-992 [https://doi.org/10.1107/S2056989023008575]

## Carbon dioxide capture from air leading to bis[N-(5-methyl-1H-pyrazol-3-yl$\kappa \mathrm{N}^{2}$ )carbamato- $\kappa$ O]copper(II) tetrahydrate

Valerii Y. Sirenko, Iryna S. Kuzevanova, Oleksandr S. Vynohradov, Dina D. Naumova and Sergiu Shova

## Computing details

Data collection: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); program(s) used to solve structure:
SHELXT2018/2 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis[N-(5-methyl-1 H-pyrazol-3-yl- $\left.\kappa N^{2}\right)$ carbamato- $\kappa$ O] copper(II) tetrahydrate

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=415.86$
Monoclinic, $P 2_{1} / c$
$a=8.4623$ (2) Å
$b=5.64870(16) \AA$
$c=17.4536(4) \AA$
$\beta=98.786(2)^{\circ}$
$V=824.51(4) \AA^{3}$
$Z=2$

## Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Detector resolution: 10.0000 pixels $\mathrm{mm}^{-1}$
$\omega$ scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
$T_{\text {min }}=0.638, T_{\text {max }}=1.000$
5223 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.118$
$S=1.05$
1634 reflections
$F(000)=430$
$D_{\mathrm{x}}=1.675 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2285 reflections
$\theta=5.1-72.3^{\circ}$
$\mu=2.39 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, clear light violet
$0.15 \times 0.15 \times 0.15 \mathrm{~mm}$

1634 independent reflections
1401 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=76.8^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-6 \rightarrow 4$
$l=-16 \rightarrow 22$

116 parameters
2 restraints
Primary atom site location: dual
Hydrogen site location: mixed
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0636 P)^{2}+0.4306 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cu1 | 0.000000 | 0.000000 | 0.000000 | $0.0327(2)$ |
| O4 | $0.6601(3)$ | $0.2829(4)$ | $0.29517(11)$ | $0.0518(6)$ |
| H4D | 0.663197 | 0.160498 | 0.265176 | $0.078^{*}$ |
| H4E | 0.733747 | 0.377068 | 0.282986 | $0.078^{*}$ |
| N2 | $-0.2338(3)$ | $0.3798(4)$ | $-0.05018(12)$ | $0.0354(5)$ |
| H2 | -0.253149 | 0.326001 | -0.098018 | $0.042^{*}$ |
| N1 | $-0.1348(2)$ | $0.2716(4)$ | $0.00870(11)$ | $0.0331(5)$ |
| N3 | $-0.0507(3)$ | $0.3550(4)$ | $0.14235(11)$ | $0.0362(5)$ |
| H3 | -0.059104 | 0.455034 | 0.180169 | $0.043^{*}$ |
| O3 | $0.3513(3)$ | $0.4313(5)$ | $0.30719(12)$ | $0.0567(6)$ |
| H3A | 0.280457 | 0.334940 | 0.282998 | $0.085^{*}$ |
| H3B | 0.442727 | 0.365820 | 0.303128 | $0.085^{*}$ |
| C1 | $-0.1376(3)$ | $0.4090(5)$ | $0.07052(14)$ | $0.0327(5)$ |
| C2 | $-0.2365(3)$ | $0.6047(5)$ | $0.05156(15)$ | $0.0368(6)$ |
| H2A | -0.257394 | 0.729896 | 0.084961 | $0.044^{*}$ |
| C4 | $-0.4112(3)$ | $0.7265(6)$ | $-0.07931(17)$ | $0.0455(7)$ |
| H4A | -0.388986 | 0.707721 | -0.132463 | $0.068^{*}$ |
| H4B | -0.398069 | 0.893005 | -0.063909 | $0.068^{*}$ |
| H4C | -0.521048 | 0.676241 | -0.076675 | $0.068^{*}$ |
| C3 | $-0.2977(3)$ | $0.5781(5)$ | $-0.02590(15)$ | $0.0360(6)$ |
| C5 | $0.0462(3)$ | $0.1642(5)$ | $0.16088(13)$ | $0.0339(6)$ |
| O1 | $0.0677(2)$ | $0.0130(3)$ | $0.10968(10)$ | $0.0391(5)$ |
| O2 | $0.1152(2)$ | $0.1456(4)$ | $0.22973(9)$ | $0.0400(5)$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cu1 | $0.0378(3)$ | $0.0405(4)$ | $0.0182(3)$ | $0.0035(2)$ | $-0.0012(2)$ | $-0.0008(2)$ |
| O4 | $0.0577(12)$ | $0.0586(14)$ | $0.0355(10)$ | $-0.0059(11)$ | $-0.0042(9)$ | $-0.0031(9)$ |
| N 2 | $0.0403(11)$ | $0.0409(13)$ | $0.0228(10)$ | $0.0015(10)$ | $-0.0020(8)$ | $0.0030(9)$ |
| N 1 | $0.0363(11)$ | $0.0417(12)$ | $0.0200(9)$ | $0.0032(9)$ | $-0.0003(8)$ | $0.0016(9)$ |
| N 3 | $0.0442(12)$ | $0.0438(13)$ | $0.0196(9)$ | $0.0015(10)$ | $0.0016(8)$ | $-0.0031(9)$ |
| O3 | $0.0618(14)$ | $0.0628(14)$ | $0.0418(12)$ | $-0.0098(12)$ | $-0.0036(10)$ | $0.0008(11)$ |
| C1 | $0.0341(12)$ | $0.0392(14)$ | $0.0245(11)$ | $-0.0040(11)$ | $0.0036(9)$ | $-0.0001(11)$ |
| C2 | $0.0393(13)$ | $0.0412(15)$ | $0.0296(12)$ | $0.0004(12)$ | $0.0046(10)$ | $-0.0009(11)$ |
| C 4 | $0.0419(14)$ | $0.0491(18)$ | $0.0435(15)$ | $0.0032(13)$ | $-0.0004(12)$ | $0.0085(13)$ |

supporting information

| C3 | $0.0352(12)$ | $0.0391(14)$ | $0.0336(13)$ | $-0.0027(11)$ | $0.0048(10)$ | $0.0041(12)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C5 | $0.0409(13)$ | $0.0417(14)$ | $0.0187(11)$ | $-0.0064(12)$ | $0.0031(9)$ | $0.0000(10)$ |
| O1 | $0.0478(11)$ | $0.0465(12)$ | $0.0205(9)$ | $0.0065(8)$ | $-0.0028(8)$ | $-0.0009(7)$ |
| O2 | $0.0491(10)$ | $0.0501(11)$ | $0.0183(8)$ | $-0.0039(9)$ | $-0.0026(7)$ | $0.0022(8)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Cu} 1-\mathrm{N} 1$ | 1.931 (2) | N3-C5 | 1.363 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu} 1-\mathrm{N} 1^{1}$ | 1.931 (2) | O3-H3A | 0.8697 |
| $\mathrm{Cu} 1-\mathrm{O} 1$ | 1.9140 (17) | O3-H3B | 0.8700 |
| $\mathrm{Cu}-\mathrm{Ol}^{\text {i }}$ | 1.9140 (17) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.396 (4) |
| O4-H4D | 0.8701 | C2-H2A | 0.9500 |
| $\mathrm{O} 4-\mathrm{H} 4 \mathrm{E}$ | 0.8698 | $\mathrm{C} 2-\mathrm{C} 3$ | 1.380 (4) |
| N2-H2 | 0.8800 | C4-H4A | 0.9800 |
| N2-N1 | 1.367 (3) | C4-H4B | 0.9800 |
| N2-C3 | 1.341 (4) | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 0.9800 |
| N1-C1 | 1.333 (3) | C4-C3 | 1.490 (4) |
| N3-H3 | 0.8800 | C5-O1 | 1.269 (3) |
| N3-C1 | 1.387 (3) | C5-O2 | 1.258 (3) |
| N1-Cu1-N1 | 180.0 | $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | 110.7 (2) |
| $\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | 88.92 (8) | N3-C1-C2 | 127.2 (2) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | 91.08 (8) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 127.2 |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | 88.92 (8) | C3-C2-C1 | 105.5 (2) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$ | 91.08 (8) | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 127.2 |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$ | 180.0 | H4A-C4-H4B | 109.5 |
| H4D-O4-H4E | 104.5 | H4A-C4-H4C | 109.5 |
| $\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2$ | 124.3 | H4B-C4-H4C | 109.5 |
| $\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$ | 124.3 | C3-C4-H4A | 109.5 |
| $\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$ | 111.5 (2) | C3-C4-H4B | 109.5 |
| N2-N1-Cu1 | 126.70 (16) | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 109.5 |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$ | 127.60 (17) | N2-C3-C2 | 107.0 (2) |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$ | 105.3 (2) | N2-C3-C4 | 121.7 (2) |
| C1-N3-H3 | 116.4 | C2-C3-C4 | 131.4 (3) |
| C5-N3-H3 | 116.4 | O1-C5-N3 | 120.7 (2) |
| C5-N3-C1 | 127.2 (2) | $\mathrm{O} 2-\mathrm{C} 5-\mathrm{N} 3$ | 117.9 (2) |
| H3A-O3-H3B | 104.5 | $\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$ | 121.4 (3) |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$ | 122.1 (2) | C5-O1-Cu1 | 132.59 (17) |
| $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$ | -7.3 (4) | C1-N3-C5-O1 | 1.3 (4) |
| $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | 172.53 (18) | $\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 5-\mathrm{O} 2$ | -179.9 (2) |
| N2-N1-C1-N3 | 179.7 (2) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$ | -1.3 (3) |
| $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | -0.4 (3) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 179.3 (3) |
| $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$ | 1.1 (3) | $\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cu} 1$ | -173.46 (18) |
| $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$ | -179.4 (2) | $\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cl}$ | -0.5 (3) |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 1.1 (3) | C5-N3-C1-N1 | 0.0 (4) |

## supporting information

| $\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $-179.1(3)$ | $\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$ | $-179.9(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 3-\mathrm{C} 5-\mathrm{O} 1-\mathrm{Cu} 1$ | $5.3(4)$ | $\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1-\mathrm{Cu} 1$ | $-173.44(18)$ |

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 4-\mathrm{H} 4 D \cdots \mathrm{O}{ }^{3 i}$ | 0.87 | 1.80 | 2.664 (3) | 171 |
| $\mathrm{O} 4-\mathrm{H} 4 E \cdots \mathrm{O} 1^{\text {iii }}$ | 0.87 | 2.44 | 2.930 (3) | 116 |
| $\mathrm{O} 4-\mathrm{H} 4 E \cdots \mathrm{O} 2^{\mathrm{iii}}$ | 0.87 | 2.02 | 2.873 (3) | 167 |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {iv }}$ | 0.88 | 1.99 | 2.863 (3) | 169 |
| N3-H3 ${ }^{\text {c }} \mathrm{O}^{\text {v }}$ | 0.88 | 2.02 | 2.889 (3) | 169 |
| $\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$ | 0.87 | 1.89 | 2.756 (3) | 176 |
| $\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 4$ | 0.87 | 1.92 | 2.783 (3) | 169 |
| $\mathrm{C} 2 — \mathrm{H} 2 A \cdots{ }^{-}{ }^{\text {v }}$ | 0.95 | 2.43 | 3.340 (4) | 159 |

Symmetry codes: (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $x-1,-y+1 / 2, z-1 / 2$; (v) $-x, y+1 / 2,-z+1 / 2$.

