CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 September 2023
Accepted 18 October 2023

Edited by S.-L. Zheng, Harvard University, USA
Keywords: crystal structure; DippIm; imidazole; aryl imidazole.

CCDC reference: 2302037
Supporting information: this article has supporting information at journals.iucr.org/e

open $\begin{aligned} & \text { access }\end{aligned}$
Published under a CC BY 4.0 licence

Crystal structure of 1-(2,6-diisopropylphenyl)-1Himidazole

Neil Dudeja, Briana C. Arreaga, Jacob P. Brannon and S. Chantal E. Stieber*

Department of Chemistry \& Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA. *Correspondence e-mail: sestieber@cpp.edu

The crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$ or ${ }^{\mathrm{Dipp}} \mathrm{Im}$, is reported. At 106 (2) K, the molecule has monoclinic $P 2_{1} / \mathrm{c}$ symmetry with four molecules in the unit cell. The imidazole ring is rotated $80.7(1)^{\circ}$ relative to the phenyl ring. Intermolecular stabilization primarily results from close contacts between the N atom at the 3 -position on the imidazole ring and the $\mathrm{C}-\mathrm{H}$ bond at the 4 -position on the neighboring ${ }^{\text {Dipp }}$ Im, with aryl-aryl distances outside of the accepted distance of $5 \AA$ for π-stacking.

1. Chemical context

Imidazoles are stable aromatic heterocyclic compounds comprised of a five-membered heterocycle containing two non-adjacent nitrogen atoms and three carbon atoms. They are precursors in many synthetic processes and find use in pharmaceuticals and agrochemicals to create antifungal agents and fungicides (Ebel et al., 2000). 1-(2,6-Diisopropylphenyl)$1 H$-imidazole (${ }^{\text {Dipp }} \mathrm{Im}$) additionally has an aryl ring attached to the imidazole.
Several synthetic approaches towards the synthesis of ${ }^{\text {Dipp }}$ Im are reported, with the most common current route being through the one-pot synthesis with glyoxal, formaldehyde, ammonium chloride, and 2,6-diisopropyl aniline, followed by an acidic workup with $\mathrm{H}_{3} \mathrm{PO}_{4}$ (Liu et al., 2003). A disadvantage of this general route is that the yields are often low, especially for more hindered imidazoles. An alternative approach followed an Ullmann-type coupling using 2 -iodo-1,3-diisopropylbenzene and imidazole, with $10 \% \mathrm{CuI}, 40 \% \mathrm{~N}$, N^{\prime}-dimethylethylenediamine, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, but only resulted in 19% yield of ${ }^{\text {Dipp }}$ Im (Alcalde et al., 2005). The highest yield approach with 78% yield was originally reported in 1889 and is from the reaction of 2,6-diisopropyl aniline with thiophosgene $\left(\mathrm{Cl}_{2} \mathrm{CS}\right)$ in $\mathrm{H}_{2} \mathrm{O}$, followed by addition of $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{OEt}_{2}\right)$, and acidic workup with HCl and HNO_{3} (Wohl \& Marckwald, 1889; Johnson et al., 1969). Despite being the first reported method, this synthetic approach is significantly concerning from a chemical safety perspective because thiophosgene is highly toxic.
${ }^{\text {Dipp }}$ Im is often used as a precursor to a variety of N heterocyclic carbene (NHC) ligands, which are a common ligand class for organometallic chemistry and catalysis (Arduengo, 1999; Hopkinson et al., 2014; Lumiss et al., 2015). To create monodentate NHC ligands, an imidazole is typically reacted with an alkyl or aryl halide to form an imidazolium salt. For bidentate NHC ligands, two imidazoles can be reacted with an alkyl or aryl dihalide to form a bis(imidazolium) salt (Gardiner et al., 1999; Thompson et al., 2022). These imidazolium salts are then deprotonated by a base such as sodium
 (KHMDS) to form the free carbene ligands (Brendel et al., 2014; Yamamoto et al., 2018).

Few arylimidazoles have been structurally characterized, with 1-(2,4,6-trimethylphenyl)-1 H -imidazole (${ }^{\mathrm{Mes}} \mathrm{Im}$) reported by our group (Brannon et al., 2018). Herein, the crystallographic characterization of 1-(2,6-diisopropylphenyl)-1 H imidazole (${ }^{\text {Dipp }} \mathrm{Im}$) is reported.

2. Structural commentary

${ }^{\text {Dipp }}$ Im crystallizes as depicted in Fig. 1 with a planar imidazole ring containing atoms $\mathrm{N} 1, \mathrm{~N} 2$, and $\mathrm{C} 1-\mathrm{C} 3$. The bond angles within the five-membered imidazole ring are $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3=$ $107.02(9)^{\circ}, \mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2=105.30(10)^{\circ}, \mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2=$

Figure 1
View of one molecule of ${ }^{\text {Dipp }} \mathrm{Im}$ with 50% probability ellipsoids.
$110.95(10)^{\circ}, \mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1=104.73(10)^{\circ}$, and $\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1=$ $112.01(10)^{\circ}$. These are all within error of the reported values for ${ }^{\text {Mes }}$ Im of 106.44 (16), 105.65 (17), 110.89 (18), 104.54 (17), and $112.48(17)^{\circ}$, respectively (Brannon et al. 2018). These data suggest that changing the aryl group from 2,4,6-trimethylphenyl to 2,6-diisopropylphenyl has no significant effect on the imidazole ring.

Bond distances to C 1 are consistent with a shorter bond of 1.3544 (14) \AA between $\mathrm{N} 1-\mathrm{C} 1$ and a longer bond of 1.3153 (16) A between C1-N2, likely due to steric effects of the aryl group. The backbone imidazole $\mathrm{C} 2-\mathrm{C} 3$ bond distance of $1.3578(16) \AA$ is consistent with a $\mathrm{Csp}^{2}=\mathrm{Csp}^{2}$ double bond in an imidazole ring (Allen et al., 1987). The backbone $\mathrm{N} 1-\mathrm{C} 3$ and $\mathrm{N} 2-\mathrm{C} 2$ distances are consistent with Csp ${ }^{2}-\mathrm{N}$ imidazole single bonds at $1.3769(14)$ and 1.3759 (16) Å, respectively (Allen et al., 1987). Comparable distances for ${ }^{\text {Mes }} \mathrm{Im}$ are $\mathrm{N} 1-\mathrm{C} 1=1.357(3) \AA, \mathrm{C} 1-\mathrm{N} 2=$ 1.316 (3) $\AA, \mathrm{C} 2-\mathrm{C} 3=1.356$ (3) $\AA, \mathrm{N} 1-\mathrm{C} 3=1.384$ (2) \AA, and $\mathrm{N} 2-\mathrm{C} 2=1.382$ (3) \AA (Brannon et al., 2018). The imidazole ring distances are comparable to those reported for ${ }^{\mathrm{Mes}} \mathrm{Im}$, indicating that the bulkier aryl group has no significant effect.

3. Supramolecular features

The unit cell contains four full molecules of 2,6-diisopropylphenyl imidazole (Fig. 2). Each molecule is oriented such that the imidazole groups are at $80.7(1)^{\circ}$ relative to the aryl ring, based on the measured $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 9$ torsion. Distances between aryl rings are $6.692 \AA$ as measured between neighboring C4-C9 centroids, and 5.912 (2) \AA as measured between C9-C9 on neighboring molecules. There is no uncertainty in the distance between centroids, since these were placed using

Figure 2
View of four molecules of ${ }^{\text {Dipp }} \mathrm{Im}$ in the unit cell with 50% probability ellipsoids, highlighting intermolecular distances and close contacts. Distances between centroids (red circles) are listed without standard deviations because these positions were calculated.

Table 1
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.966(17)$	$2.474(17)$	$3.416(2)$	$164.9(12)$

Symmetry code: (i) $x+1, y, z$.
the Mercury program's centroid algorithm (Macrae et al., 2020). Both of these distances are greater than $5 \AA$, supporting no significant π-stacking stabilization (Janiak, 2000). The closest contact between neighboring molecules is between $\mathrm{N} 2 \cdots \mathrm{H} 3$ at a distance of 2.47 (2) \AA. This technically can be considered a hydrogen bond (Table 1) because H3 is bound to C 3 , which is bound to an electronegative atom, N1. Therefore, the supramolecular structure of ${ }^{\text {Dipp }} \mathrm{Im}$ is primarily stabilized through hydrogen bonding between neighboring imidazoles.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016) on August 30, 2023 yielded no structural results for ${ }^{\text {Dipp }}$ Im through both a drawn structure search and a search of the full name 1-(2,6-diisopropylphenyl)-1H-imidazole. A SciFinder search (SciFinder, 2018) resulted in a substance match with code 25364-47-0, however no structural data were reported.

5. Synthesis and crystallization

The synthesis for ${ }^{\text {Dipp }} \operatorname{Im}$ (Fig. 3) was adapted from a literature procedure (Liu et al., 2003). A 500 mL three-necked roundbottomed flask was charged with $10.01 \mathrm{~g}(0.0564 \mathrm{~mol}, 1 \mathrm{eq}$.$) of$ 2,6-diisopropylaniline followed by $8.20 \mathrm{~g}(0.141 \mathrm{~mol}, 1 \mathrm{eq}$.$) of$ 40% aqueous glyoxal and approximately 100 mL of methanol. The resulting color changed from a clear yellow to a rusty orange solution with a yellow precipitate. Using a funnel, 6.03 g ($0.112 \mathrm{~mol}, 2$ eq.) of ammonium chloride and 9.16 g ($0.305 \mathrm{~mol}, 2$ eq.) of 37% aqueous formaldehyde were added to the round-bottomed flask and diluted with 130 mL of methanol. The mixture was refluxed for 1 h at 368 K , resulting in a dark-brown solution. The flask was removed from the heat and cooled to room temperature before being placed in an ice bath to cool, followed by addition of $15 \mathrm{~mL}(0.15 \mathrm{~mol}, 2 \mathrm{eq}$.) of phosphoric acid over the course of 12 minutes. After addition, it was refluxed at 368 K for 14.5 h , resulting in an opaque darkred solution. The solution was cooled to room temperature and concentrated in vacuo. The dark-brown residue was poured over 300 g of ice and neutralized with a concentrated potassium hydroxide solution until the pH reached 9 , resulting

Figure 3
Reaction scheme.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$
M_{r}	228.33
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	106
$a, b, c(\AA)$	$5.6642(13), 16.519(6), 14.414(6)$
$\beta\left({ }^{\circ}\right)$	$90.73(2)$
$V\left(\AA^{3}\right)$	$1348.6(8)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.07
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$
Data collection	Bruker D8 Venture Kappa
Diffractometer	Multi-scan $(S A D A B S ;$ Krause $e t$
Absorption correction	al., 2015)
	$22918,2975,2750$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.030
$R_{\text {int }}$	0.641
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.040,0.099,1.09$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2975
No. of reflections	234
No. of parameters	All H-atom parameters refined
$\mathrm{H}-$ atom treatment	$0.26,-0.23$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2019/3/1 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).
in a light-brown solution with a dark-brown precipitate. The mixture was extracted three times with approximately 100 mL of diethyl ether, washed 3 times with approximately 100 mL of water, and washed three times with approximately 100 mL of brine. The mixture was transferred to a 1 L round-bottom flask, dried with sodium sulfate, and left to dry for approximately 20 h , resulting in a dark-brown solution. The sodium sulfate was removed by gravity filtration and the solution was concentrated in vacuo resulting in a light-brown solid. The solid was then recrystallized with ethyl acetate, resulting in $1.33 \mathrm{~g}(10.4 \%$ yield $)$ of colorless crystals. The product was characterized with ${ }^{1} \mathrm{H}$ NMR and the results were consistent with reported literature values (Liu et al., 2003).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were refined with all H -atom parameters.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber); National Science Foundation, Directorate for Education and Human Resources (scholarship No. 1826490 to Neil Dudeja, Briana C. Arreaga); U.S. Department of Defense, U.S. Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber); National Institutes of Health, National Institute of General

Medical Sciences (award No. 5R25GM113748-03 to Briana C. Arreaga); Camille and Henry Dreyfus Foundation (award to S. Chantal E. Stieber); U.S. Department of Education (award to Jacob P. Brannon).

References

Alcalde, E., Dinarès, I., Rodríguez, S. \& Garcia de Miguel, C. (2005). Eur. J. Org. Chem. pp. 1637-1643.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Arduengo, A. J. (1999). Acc. Chem. Res. 32, 913-921.
Brannon, J. P., Stretch, B. E. \& Stieber, S. C. E. (2018). CSD Communication (refcode EYIROT01, deposition No. 1875908). CCDC, Cambridge, England.
Brendel, M., Braun, C., Rominger, F. \& Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.
Bruker AXS (2018). APEX3 and SAINT. Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Ebel, K., Koehler, H., Gamer, A. O. \& Jäckh, R. (2000). Imidazole and Derivatives. In Ullman's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. \& Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hopkinson, M. N., Richter, C., Schedler, M. \& Glorius, F. (2014). Nature, 510, 485-496.
Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Johnson, A. L., Kauer, J. C., Sharma, D. C. \& Dorfman, R. I. (1969). J. Med. Chem. 12, 1024-1028.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. \& Zhang, H. (2003). Synthesis, pp. 2661-2666.
Lummiss, J. A. M., Higman, C. S., Fyson, D. L., McDonald, R. \& Fogg, D. E. (2015). Chem. Sci. 6, 6739-6746.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
SciFinder (2018). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed August 30, 2023).
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Thompson, E. S., Olivas, E. M., Torres, A., Arreaga, B. C., Alarcon, H. L., Dolberry, D., Brannon, J. P. \& Stieber, S. C. E. (2022). Acta Cryst. E78, 905-911.
Wohl, A. \& Marckwald, W. (1889). Ber. Dtsch. Chem. Ges. 22, 568580.

Yamamoto, C. D., Zhang, Z. \& Stieber, S. C. E. (2018). Acta Cryst. E74, 1396-1399.

supporting information

Acta Cryst. (2023). E79, 1079-1082 [https://doi.org/10.1107/S2056989023009179]

Crystal structure of 1-(2,6-diisopropylphenyl)-1H-imidazole

Neil Dudeja, Briana C. Arreaga, Jacob P. Brannon and S. Chantal E. Stieber

Computing details

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT V8.40A (Bruker, 2018); data reduction: SAINT V8.40A (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/3/1 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020).

1-(2,6-Diisopropylphenyl)-1H-imidazole

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$

$M_{r}=228.33$
Monoclinic, $P 2_{1} / c$
$a=5.6642$ (13) \AA
$b=16.519$ (6) \AA
$c=14.414$ (6) \AA
$\beta=90.73$ (2) ${ }^{\circ}$
$V=1348.6$ (8) \AA^{3}
$Z=4$

Data collection

Bruker D8 Venture Kappa

diffractometer
Radiation source: microfocus sealed tube φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
22918 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.099$
$S=1.09$
2975 reflections
234 parameters
0 restraints
$F(000)=496$
$D_{\mathrm{x}}=1.125 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9863 reflections
$\theta=2.8-47.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=106 \mathrm{~K}$
Prism, colorless
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

2975 independent reflections
2750 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-21 \rightarrow 21$
$l=-18 \rightarrow 18$

Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0376 P)^{2}+0.5846 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	0.44635 (15)	0.73907 (5)	0.71450 (6)	0.0157 (2)
H1	0.113 (3)	0.7150 (9)	0.6734 (10)	0.023 (3)*
C1	0.2081 (2)	0.73808 (7)	0.72124 (8)	0.0215 (2)
N2	0.13631 (17)	0.77200 (6)	0.79847 (7)	0.0245 (2)
H2	0.337 (3)	0.8212 (9)	0.9035 (11)	0.028 (4)*
C2	0.3404 (2)	0.79580 (7)	0.84352 (8)	0.0218 (2)
C3	0.5334 (2)	0.77620 (7)	0.79331 (7)	0.0189 (2)
H3	0.701 (3)	0.7824 (9)	0.8042 (10)	0.024 (3)*
C4	0.58676 (18)	0.70733 (6)	0.64044 (7)	0.0155 (2)
H4	0.518 (3)	0.8608 (9)	0.6295 (10)	0.028 (4)*
C5	0.67446 (19)	0.76113 (6)	0.57433 (7)	0.0173 (2)
H5	0.881 (3)	0.7657 (9)	0.4575 (10)	0.026 (4)*
C7	0.8606 (2)	0.64725 (7)	0.49976 (7)	0.0204 (2)
H7	0.806 (3)	0.5371 (9)	0.5612 (10)	0.028 (4)*
C8	0.77076 (19)	0.59529 (7)	0.56604 (8)	0.0200 (2)
H8	0.455 (3)	0.5972 (9)	0.7572 (10)	0.026 (4)*
C9	0.63395 (18)	0.62423 (6)	0.63861 (7)	0.0171 (2)
H9	0.928 (4)	0.8858 (12)	0.6469 (14)	0.059 (6)*
H12	0.429 (3)	0.9356 (11)	0.4939 (12)	0.043 (4)*
C12	0.8378 (3)	0.90170 (9)	0.59054 (13)	0.0409 (4)
H11	0.794 (3)	0.9602 (11)	0.5977 (12)	0.045 (5)*
C11	0.4803 (3)	0.87601 (8)	0.48960 (11)	0.0388 (3)
C10	0.6171 (2)	0.85084 (7)	0.57667 (8)	0.0222 (2)
H10	0.933 (3)	0.8961 (11)	0.5377 (13)	0.042 (5)*
C15	0.3703 (2)	0.50568 (8)	0.66749 (10)	0.0305 (3)
H16	0.457 (3)	0.4716 (11)	0.6197 (13)	0.049 (5)*
H17	0.311 (3)	0.4685 (10)	0.7143 (11)	0.037 (4)*
H18	0.829 (3)	0.4848 (10)	0.7182 (12)	0.042 (4)*
H19	0.680 (3)	0.4898 (10)	0.8134 (12)	0.040 (4)*
H20	0.856 (3)	0.5610 (10)	0.7892 (11)	0.036 (4)*
H15	0.237 (3)	0.5350 (10)	0.6368 (11)	0.040 (4)*
C14	0.7432 (2)	0.52320 (9)	0.76253 (10)	0.0314 (3)
H14	0.337 (4)	0.8422 (13)	0.4783 (14)	0.061 (6)*
C13	0.5411 (2)	0.56655 (7)	0.71156 (8)	0.0209 (2)
H13	0.588 (3)	0.8716 (11)	0.4351 (14)	0.051 (5)*
C6	0.81454 (19)	0.72946 (7)	0.50430 (7)	0.0196 (2)
H6	0.954 (2)	0.6261 (8)	0.4495 (9)	0.020 (3)*

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0140(4)$	$0.0180(4)$	$0.0150(4)$	$0.0011(3)$	$0.0003(3)$	$-0.0003(3)$
C1	$0.0145(5)$	$0.0295(6)$	$0.0205(5)$	$0.0011(4)$	$-0.0007(4)$	$-0.0026(4)$
N2	$0.0167(5)$	$0.0336(6)$	$0.0232(5)$	$0.0032(4)$	$0.0024(4)$	$-0.0032(4)$
C2	$0.0204(5)$	$0.0268(6)$	$0.0181(5)$	$0.0024(4)$	$0.0020(4)$	$-0.0036(4)$
C3	$0.0173(5)$	$0.0224(5)$	$0.0170(5)$	$0.0004(4)$	$-0.0004(4)$	$-0.0029(4)$
C4	$0.0127(5)$	$0.0195(5)$	$0.0144(5)$	$0.0011(4)$	$-0.0003(4)$	$-0.0015(4)$
C5	$0.0171(5)$	$0.0191(5)$	$0.0158(5)$	$-0.0003(4)$	$-0.0022(4)$	$0.0000(4)$
C7	$0.0181(5)$	$0.0272(6)$	$0.0162(5)$	$0.0017(4)$	$0.0027(4)$	$-0.0041(4)$
C8	$0.0196(5)$	$0.0191(5)$	$0.0214(5)$	$0.0023(4)$	$0.0004(4)$	$-0.0030(4)$
C9	$0.0151(5)$	$0.0193(5)$	$0.0169(5)$	$-0.0001(4)$	$-0.0009(4)$	$0.0001(4)$
C12	$0.0394(8)$	$0.0226(6)$	$0.0603(10)$	$-0.0047(6)$	$-0.0099(7)$	$-0.0053(6)$
C11	$0.0495(9)$	$0.0227(6)$	$0.0437(8)$	$0.0063(6)$	$-0.0175(7)$	$0.0030(6)$
C10	$0.0284(6)$	$0.0177(5)$	$0.0205(5)$	$0.0011(4)$	$0.0023(4)$	$0.0019(4)$
C15	$0.0263(6)$	$0.0265(6)$	$0.0387(7)$	$-0.0063(5)$	$-0.0001(5)$	$0.0054(5)$
C14	$0.0278(6)$	$0.0359(7)$	$0.0303(6)$	$0.0002(5)$	$-0.0021(5)$	$0.0130(6)$
C13	$0.0212(5)$	$0.0194(5)$	$0.0222(5)$	$0.0012(4)$	$0.0040(4)$	$0.0026(4)$
C6	$0.0185(5)$	$0.0252(6)$	$0.0151(5)$	$-0.0027(4)$	$0.0009(4)$	$0.0015(4)$

Geometric parameters ($A,{ }^{\circ}$)

N1-C1	1.3544 (14)	C12-H9	0.99 (2)
N1-C3	1.3769 (14)	C12-H11	1.004 (18)
N1-C4	1.4382 (14)	C12-C10	1.5173 (19)
C1-H1	0.950 (15)	C12-H10	0.945 (18)
C1-N2	1.3153 (16)	C11-H12	1.028 (18)
N2-C2	1.3759 (16)	C11-C10	1.5245 (18)
C2-H2	0.961 (15)	C11-H14	1.00 (2)
C2-C3	1.3578 (16)	C11-H13	1.00 (2)
C3-H3	0.965 (15)	C10-H4	0.967 (15)
C4-C5	1.3988 (15)	C15-H16	1.019 (19)
C4-C9	1.3988 (15)	C15-H17	0.975 (17)
C5-C10	1.5176 (16)	C15-H15	0.998 (18)
C5-C6	1.3937 (16)	C15-C13	1.5280 (17)
C7-C8	1.3860 (16)	C14-H18	1.027 (18)
C7-C6	1.3845 (17)	C14-H19	0.988 (17)
C7-H6	0.969 (14)	C14-H20	0.968 (17)
C8-H7	0.984 (15)	C14-C13	1.5300 (17)
C8-C9	1.3941 (15)	C13-H8	0.968 (15)
C9-C13	1.5180 (15)	C6-H5	0.981 (15)
C1-N1-C3	107.02 (9)	H12-C11-H14	108.4 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	127.58 (9)	H12-C11-H13	107.0 (14)
C3-N1-C4	125.40 (9)	C10-C11-H12	110.7 (10)
N1-C1-H1	120.6 (9)	C10-C11-H14	112.7 (12)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	112.01 (10)	C10-C11-H13	108.5 (11)

N2- $\mathrm{C} 1-\mathrm{H} 1$	127.4 (9)
C1-N2-C2	104.73 (10)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2$	121.7 (9)
C3-C2-N2	110.95 (10)
C3-C2-H2	127.4 (9)
N1-C3-H3	121.5 (8)
C2-C3-N1	105.30 (10)
C2-C3-H3	133.2 (8)
C5-C4-N1	118.59 (9)
C9-C4-N1	118.64 (9)
C9-C4-C5	122.75 (10)
C4-C5-C10	121.82 (10)
C6-C5-C4	117.73 (10)
C6-C5-C10	120.44 (10)
C8-C7-H6	120.1 (8)
C6-C7-C8	120.25 (10)
C6-C7-H6	119.6 (8)
C7-C8-H7	118.6 (9)
C7-C8-C9	121.15 (10)
C9-C8-H7	120.3 (9)
C4-C9-C13	122.34 (10)
C8-C9-C4	117.31 (10)
C8-C9-C13	120.34 (10)
H9-C12-H11	107.3 (15)
H9-C12-H10	109.9 (16)
$\mathrm{H} 11-\mathrm{C} 12-\mathrm{H} 10$	108.8 (15)
C10-C12-H9	112.2 (12)
C10-C12-H11	109.9 (10)
C10-C12-H10	108.6 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	-0.11 (13)
N1-C4-C5-C10	-2.52 (15)
N1-C4-C5-C6	178.59 (9)
N1-C4-C9-C8	-179.92 (9)
N1-C4-C9-C13	0.36 (15)
C1-N1-C3-C2	-0.09 (12)
C1-N1-C4-C5	100.55 (13)
C1-N1-C4-C9	-80.74 (14)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	0.05 (14)
N2-C2-C3-N1	0.03 (13)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	0.13 (13)
C3-N1-C4-C5	-79.97 (13)
C3-N1-C4-C9	98.74 (13)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	179.68 (10)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	-179.66 (10)
C4-C5-C10-C12	117.71 (13)
C4-C5-C10-C11	-117.43 (13)

H14-C11-H13	109.4 (16)
C5-C10-H4	108.1 (9)
C5-C10-C11	110.78 (10)
C12-C10-H4	106.8 (9)
C12-C10-C5	111.56 (11)
C12-C10-C11	111.51 (12)
C11-C10-H4	107.8 (9)
H16-C15-H17	106.9 (14)
H16-C15-H15	109.6 (14)
H17-C15-H15	110.4 (14)
C13-C15-H16	109.8 (11)
C13-C15-H17	110.3 (10)
C13-C15-H15	109.8 (10)
H18-C14-H19	107.2 (13)
H18- $\mathrm{C} 14-\mathrm{H} 20$	109.4 (13)
H19-C14-H20	107.9 (13)
C13-C14-H18	110.3 (9)
C13-C14-H19	110.0 (10)
C13-C14-H20	111.9 (10)
C9-C13-H8	109.0 (8)
C9-C13-C15	110.37 (10)
C9-C13-C14	111.28 (10)
C15-C13-H8	107.8 (9)
C15-C13-C14	110.94 (11)
C14-C13-H8	107.4 (9)
C5-C6-H5	119.8 (8)
C7-C6-C5	120.78 (10)
C7-C6-H5	119.4 (8)
C4-C5-C6-C7	1.25 (16)
C4-C9-C13-C15	116.01 (12)
C4-C9-C13-C14	-120.37 (12)
C5-C4-C9-C8	-1.27 (15)
C5-C4-C9-C13	179.01 (10)
C7-C8-C9-C4	1.46 (16)
C7-C8-C9-C13	-178.81 (10)
C8-C7-C6-C5	-1.08 (17)
C8-C9-C13-C15	-63.71 (14)
C8-C9-C13-C14	59.92 (14)
C9-C4-C5-C10	178.83 (10)
C9-C4-C5-C6	-0.06 (16)
C10-C5-C6-C7	-177.65 (10)
C6-C5-C10-C12	-63.43 (15)
C6-C5-C10-C11	61.42 (15)
C6-C7-C8-C9	-0.33 (17)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.966(17)$	$2.474(17)$	$3.416(2)$	$164.9(12)$

Symmetry code: (i) $x+1, y, z$.

