CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 13 October 2023
Accepted 16 October 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; iron thiocyanate; 3cyanopyridine; thermal properties; IR spectrum.

CCDC references: 2301450; 2301449

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis, crystal structure and properties of tetrakis(pyridine-3-carbonitrile)dithiocyanatoiron(II) and of diaquabis(pyridine-3-carbonitrile)dithiocyanatoiron(II) pyridine-3-carbonitrile monosolvate

Christian Näther,* Asmus Müller-Meinhard and Inke Jess

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The reaction of iron thiocyanate with 3-cyanopyridine $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ leads to the formation of two compounds with the composition $\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]$ (1) and $\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}$ (2). The asymmetric unit of $\mathbf{1}$ consists of one iron cation, two thiocyanate anions and four 3-cyanopyridine ligands in general positions. The iron cation is octahedrally coordinated by two N -bonded thiocyanate anions and four 3-cyanopyridine ligands. The complexes are arranged in columns along the crystallographic c-axis direction and are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. In 2, the asymmetric unit consists of one iron cation on a center of inversion as well as one thiocyanate anion, one 3 -cyanopyridine ligand, one water ligand and one 3 -cyanopyridine solvate molecule in general positions. The iron cation is octahedrally coordinated by two N -bonded thiocyanate anions, two cyanopyridine ligands and two water ligands. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding is observed between the water ligands and the solvent 3 -cyanopyridine molecules. In the crystal structure, alternating layers of the iron complexes and the solvated 3-cyanopyridine molecules are observed. Powder X-ray (PXRD) investigations reveal that both compounds were obtained as pure phases and from IR spectroscopic measurements conclusions on the coordination mode of the thiocanate anions and the cyanogroup were made. Thermogravimetric (TG) and differential thermoanalysis (DTA) of $\mathbf{1}$ indicate the formation of a compound with the composition $\left\{\left[\mathrm{Fe}(\mathrm{NCS})_{2}\right]_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right\}_{n}$ that is isotypic to the corresponding Cd compound already reported in the literature. TG/DTA of $\mathbf{2}$ show several mass losses. The first mass loss corresponds to the removal of the two water ligands leading to the formation of $\mathbf{1}$, which transforms into $\left\{\left[\mathrm{Fe}(\mathrm{NCS})_{2}\right]_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right\}_{n}$, upon further heating.

1. Chemical context

For several years, we and others have been interested in the synthesis, structures and physical properties of coordination compounds based on transition-metal thiocyanates with additional neutral organic coligands. In such compounds, the anionic ligands can be terminally coordinated to the metal cations or they can act as bridging ligands, leading to the formation of networks (Kabešová \& Gažo, 1980). The latter compounds are of special interest because different magnetic phenomena can be observed (González et al., 2012; Werner et al., 2014; Palion-Gazda et al., 2015; Mautner et al., 2018; Rams et al., 2020). Unfortunately, the compounds with a bridging coordination are sometimes difficult to prepare with metal cations such as $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ or Ni , because these cations are less chalcophilic, which means that a terminal coordination is
preferred. In such cases, an alternative synthetic approach can be used based on thermal treatment of suitable precursor compounds, which we developed many years ago for the synthesis of copper(I) halide coordination polymers (Näther et al., 2001; Näther \& Jess, 2004). For the synthesis of thiocyanate coordination polymers, these precursors consist of compounds in which the metal cations are octahedrally coordinated by two terminally N -bonding thiocyanate anions and four coligands that in most cases consist of pyridine derivatives. If such compounds are heated, the coligands are frequently stepwise removed and the empty coordination sites at the metal centers are completed by the S atoms of the anionic ligands that in the complex do not participate in the metal coordination, which enforces a bridging coordination of the thiocyanate anions. Major advantages of this approach are the fact that this reaction is irreversible, that the products are formed in quantitative yields, and that in several cases, polymorphic or isomeric modifications can be prepared (Werner et al., 2015). However, following this approach, only microcrystalline powders are observed that cannot be investigated by single crystal X-ray diffraction. In this case, the corresponding $\mathrm{Cd}(\mathrm{NCS})_{2}$ compounds can be prepared, which also prefer an octahedral coordination. Because cadmium is more chalcophilic than the cations mentioned above, the synthesis of compounds with a bridging coordination is easier and, in most cases, they can easily be crystallized and characterized by single-crystal structure analysis (Wöhlert et al., 2013). In several cases they are isotypic with the $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ or Ni compounds, allowing the structural identification of the latter. Moreover, with $\mathrm{Cd}(\mathrm{NCS})_{2}$ and one definite ligand, usually several compounds with a different, in part unusual ratio between $\mathrm{Cd}(\mathrm{NCS})_{2}$ and the coligands can be obtained. If such compounds are detected, one can determine whether they are also available with other metal cations.

In this context, we have reported new thiocyanate coordination compounds based on $\mathrm{Cd}(\mathrm{NCS})_{2}$ and 3-cyanopyridine as ligand, where five different compounds were detected (Jochim et al., 2020). This includes two solvates with the composition $\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]_{n} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}$ and $[\mathrm{Cd}(\mathrm{NCS})$ $\left.{ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]_{n} \cdot 1 / 3 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}=3\right.$-cyanopyridine $)$ and one further compound with a similar structure with the composition $\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]_{n}$. In all of these compounds, the Cd cations are octahedrally coordinated by two thiocyanate anions and four 3-cyanopyridine coligands and are linked by pairs of $\mu-1,3$-bridging thiocyanate anions into chains, which is a common motif in thiocyanate coordination polymers. Two additional 3-cyanopyridine deficient compounds with an unusual ratio between $\mathrm{Cd}(\mathrm{NCS})_{2}$ and 3-cyanopyridine were also characterized. In $\left\{\left[\mathrm{Cd}(\mathrm{NCS})_{2}\right]_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{3}\right\}_{n}$ and $\left\{\left[\mathrm{Cd}(\mathrm{NCS})_{2}\right]_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right\}_{n}$ the cations are also octahedrally coordinated and linked into chains, but some of the 3-cyanopyridine ligands act as bridging ligands and connect the chains into layers.

In further work, corresponding compounds with $\mathrm{Ni}(\mathrm{NCS})_{2}$ were investigated. With this cation, discrete complexes with the composition $\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$ have already been reported in the literature (Kilkenny \& Nassimbeni, 2001),
$\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, \quad \mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}$ and $\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ were prepared in which the metal cations are always octahedrally coordinated (Krebs et al., 2021). All of these complexes transform into a new compound with the composition $\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}$ upon heating, which can also be prepared from solution. In this compound, the metal cations are linked by pairs of $\mu-1,3-$ bridging thiocyanate anions into dinuclear units that are further connected by single anionic ligands into layers. Therefore, the structures of the $\mathrm{Ni}(\mathrm{NCS})_{2}$ compounds are completely different from those of the $\mathrm{Cd}(\mathrm{NCS})_{2}$ compounds.

Compounds with $\mathrm{Mn}(\mathrm{NCS})_{2}$ and 3-cyanopyridine were prepared because $\mathrm{Mn}^{\mathrm{II}}$ compounds frequently behave similar to $\mathrm{Cd}(\mathrm{NCS})_{2}$ compounds (Krebs et al., 2023). With $\mathrm{Mn}(\mathrm{NCS})_{2}$ compounds with the composition $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$, $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot \operatorname{bis}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ solvate and $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ were obtained, but the latter compound cannot be prepared as a pure phase. Most compounds consist of discrete complexes but in $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ the Mn cations are linked by single μ-1,3-bridging thiocyanates into chains, which are further connected into layers by the 3-cyanopyridine coligands. Thermoanaytical investigations reveal that the discrete complex $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$ transforms into a new compound with the composition $\left[\left(\mathrm{Mn}(\mathrm{NCS})_{2}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]_{n}$ that is isotypic to the corresponding Cd compound mentioned above. When $\operatorname{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot \operatorname{bis}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ solvate is heated, it transforms into $\left[\left(\mathrm{Mn}(\mathrm{NCS})_{2}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]_{n}$ via the discrete complex $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$ as an intermediate. Therefore, the structural behavior and the thermal reactivity is much more similar to that of the $\mathrm{Cd}(\mathrm{NCS})_{2}$ compounds with 3-cyanopyridine as coligand.

Based on all these findings, we decided to prepare corresponding compounds based on $\mathrm{Fe}(\mathrm{NCS})_{2}$ and 3-cyanopyridine to investigate if this cation behaves more similarly to $\mathrm{Cd}^{\mathrm{II}}$, $\mathrm{Mn}^{\mathrm{II}}$ or $\mathrm{Ni}^{\mathrm{II}}$. Within this systematic work, only two discrete complexes were obtained, which were investigated for their thermal behavior.

1

2. Structural commentary

The asymmetric unit of $\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$ (1) consists of one iron cation as well as of two thiocyanate anions and four 3-cyanopyridine coligands in general positions (Fig. 1). The iron cations are octahedrally coordinated by two terminally N bonded thiocyanate anions and four 3-cyanopyridine coligands that coordinate via the pyridine N atom to the metal

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$) for $\mathbf{1}$.

$\mathrm{Fe} 1-\mathrm{N} 1$	$2.065(2)$	$\mathrm{Fe} 1-\mathrm{N} 21$	$2.273(2)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$2.069(2)$	$\mathrm{Fe} 1-\mathrm{N} 31$	$2.257(2)$
$\mathrm{Fe} 1-\mathrm{N} 11$	$2.2660(19)$	$\mathrm{Fe} 1-\mathrm{N} 41$	$2.2339(19)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 2$	$179.21(9)$	$\mathrm{N} 11-\mathrm{Fe} 1-\mathrm{N} 21$	$97.44(7)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 11$	$90.70(8)$	$\mathrm{N} 31-\mathrm{Fe} 1-\mathrm{N} 11$	$176.72(7)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 21$	$90.56(8)$	$\mathrm{N} 31-\mathrm{Fe} 1-\mathrm{N} 21$	$85.31(7)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 31$	$91.05(8)$	$\mathrm{N} 41-\mathrm{Fe} 1-\mathrm{N} 11$	$90.12(7)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 41$	$90.15(9)$	$\mathrm{N} 41-\mathrm{Fe} 1-\mathrm{N} 21$	$172.40(7)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 11$	$88.70(8)$	$\mathrm{N} 41-\mathrm{Fe} 1-\mathrm{N} 31$	$87.11(7)$
N2-Fe1-N21	$89.00(8)$	$\mathrm{Fe} 1-\mathrm{N} 1-\mathrm{C} 1$	$175.0(2)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 31$	$89.57(8)$	$\mathrm{Fe} 1-\mathrm{N} 2-\mathrm{C} 2$	$163.2(2)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 41$	$90.37(8)$		

Table 2
Selected geometric parameters ($\left(\AA,^{\circ}\right.$) for 2.

$\mathrm{Fe} 1-\mathrm{N} 1$	$2.1207(10)$	$\mathrm{Fe} 1-\mathrm{N} 11$	$2.2358(10)$
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.1267(9)$		
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 1$	$89.42(4)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{N} 11$	$87.62(3)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1$	$90.58(4)$	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 11$	$92.38(3)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 11$	$89.86(4)$	$\mathrm{Fe} 1-\mathrm{N} 1-\mathrm{C} 1$	$167.09(10)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{N} 11$	$90.14(4)$		

centers (Fig. 1). This compound is isotypic to $\mathrm{Ni}(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}, \mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$ and $\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}$ already reported in the literature (Kilkenny \& Nassimbeni, 2001; Krebs et al., 2021, Krebs et al., 2023; Jochim et al., 2019). Despite differences because of the different ionic radii, the bond lengths are comparable to those in the isotypic compounds (Table 1). From the $\mathrm{N}-\mathrm{Fe}-\mathrm{N}$ bond angles it is obvious that the octahedra are slightly distorted (Table 1).

In $\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ (2), the asymmetric unit consists of one iron cation that is located on a center of inversion as well as one thiocyanate anion, one 3-cyanopyridine ligand, one water ligand and one 3-cyanopyridine solvate molecule in general positions (Fig. 2). The

Figure 1
The molecular structure of $\mathbf{1}$ with displacement ellipsoids drawn at the 50% probability level.

Figure 2
The molecular structure of $\mathbf{2}$ with displacement ellipsoids drawn at the 50% probability level. Symmetry codes for the generation of equivalent atoms: (i) $-x+1,-y+1,-z+1$.
iron cation is octahedrally coordinated by two 3-cyanopyridine coligands that are connected via the pyridine N atom to the $\mathrm{Fe}^{\mathrm{II}}$ cations, two water ligands and two terminally N bonded thiocyanate anions. This compound is isotypic to $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right) \quad$ and $\mathrm{Zn}(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ that are reported in the literature (Krebs et al., 2023; Jochim et al., 2019). The Fe-X ($X=\mathrm{N}, \mathrm{O}$) bond lengths are slightly shorter than those in the corresponding Mn compound and the bond angles show that the octahedra are slightly distorted (Table 2).

3. Supramolecular features

In compound $\mathbf{1}$ the discrete complexes are arranged in columns that are oriented along the crystallographic c-axis direction (Fig. 3). Within the columns, neighboring 3-cyano-

Figure 3
Crystal structure of $\mathbf{1}$ viewed along the crystallographic c-axis direction with $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ bonds shown as dashed lines.

Table 3
Hydrogen-bond geometry $\left(\AA{ }^{\circ}\right)$ for $\mathbf{1}$.

$\underline{D-H \cdots A}$	$D-\mathrm{H}$	$\mathrm{H} \cdots$ A	$D \cdots A$	$D-\mathrm{H} \cdots A$
C11-H11...N1	0.95	2.63	3.190 (3)	118
C15-H15 . ${ }^{\text {N } 2 ~}$	0.95	2.58	3.113 (3)	115
C21-H21..N2	0.95	2.54	3.108 (3)	118
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{~N} 22^{\text {i }}$	0.95	2.67	3.514 (4)	148
C25-H25 \cdots N1	0.95	2.61	3.181 (3)	119
C31-H31 . .N1	0.95	2.67	3.214 (3)	117
C35-H35 . ${ }^{\text {N } 2 ~}$	0.95	2.53	3.091 (3)	118
$\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{~N} 12{ }^{\text {ii }}$	0.95	2.67	3.538 (4)	151
$\mathrm{C} 41-\mathrm{H} 41 \cdots \mathrm{~N} 22^{\text {iii }}$	0.95	2.61	3.487 (3)	154
C44-H44 . S $1^{\text {iv }}$	0.95	2.82	3.498 (3)	129
$\mathrm{C} 45-\mathrm{H} 45 \cdots \mathrm{~N} 2$	0.95	2.55	3.123 (3)	119

Symmetry codes: $\begin{aligned} & \text { (i) } \quad-x+1,-y, z-\frac{1}{2} ; \\ & -x+1,-y+1, z-\frac{1}{2} \text {; (iv) }-x+\frac{3}{2}, y+\frac{1}{2}, z+\frac{1}{2} \text {. }\end{aligned}$ (ii) $\quad-x+1,-y+1, z+\frac{1}{2}$; \quad (iii) $-x+1,-y+1, z-\frac{1}{2} ;$ (iv) $-x+\frac{3}{2}, y+\frac{1}{2}, z+\frac{1}{2}$.
pyridine rings are not coplanar, with no indication of $\pi-\pi$ stacking interactions. The complexes are connected via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding but most of these interactions exhibit $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ angles far from linearity, indicating that they do not represent strong interactions (Table 3 and Fig. 3)

In compound 2 the discrete complexes are also stacked in columns that proceed along the crystallographic a-axis (Fig. 4). These columns are arranged in layers that are parallel to the $a b$-plane. The 3-cyanopyridine solvate molecules are located between these layers and are connected to the complexes via $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding where the pyridine N atom is involved (Table 4 and Fig. 4). There are additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, but from the distances and angles it is obvious that they correspond to only very weak interactions. Within the 3-cyanopyridine layers, neighboring 3-cyanopyridine molecules are oriented parallel but shifted relative to each other, preventing $\pi-\pi$ interactions (Fig. 4).

Figure 4
Crystal structure of $\mathbf{2}$ viewed along the crystallographic a-axis direction with $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds shown as dashed lines.

Table 4
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for 2.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 21$	$0.89(2)$	$1.88(2)$	$2.7615(14)$	$175(2)$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.81(2)$	$2.62(2)$	$3.3184(9)$	$145.7(18)$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 1$	0.95	2.54	$3.1243(16)$	120
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~S} \mathrm{~S}^{\text {iii }}$	0.95	3.03	$3.6833(12)$	128
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1^{\text {iv }}$	0.95	2.98	$3.7688(13)$	141
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.67	$3.1894(16)$	115
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{~S} 1$	0.95	2.92	$3.8513(13)$	165
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{~N} 22^{\text {ii }}$	0.95	2.67	$3.3082(17)$	125
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{~S}^{\text {ii }}$	0.95	3.01	$3.8056(13)$	142

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y, z$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1,-y,-z+1$.

4. Database survey

A search in the CSD (version 5.43, last update November 2023; Groom et al., 2016) using ConQuest (Bruno et al., 2002) reveals that a number of thiocyanate coordination compounds with 3-cyanopyridine have already been reported in the literature and most of these compounds have already been mentioned in the Chemical context section above. This includes discrete complexes with the composition $M(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}(M=\mathrm{Ni}, \mathrm{Zn})$ in which the metal cations are octahedrally coordinated by two thiocyanate anions and four 3-cyanopyridine coligands (CSD refcode UDABAC, Kilkenny \& Nassimbeni, 2001; UDABAC01, Krebs et al., 2021; LIPZES, Jochim et al., 2019). There are additional complexes with the composition $M(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}(M=\mathrm{Ni}, \mathrm{Co})$ that contain solvate molecules (UDABIK, Kilkenny \& Nassimbeni, 2001; UDABEG, Kilkenny \& Nassimbeni, 2001; OBONOK, Diehr et al., 2011) as well as one complex of composition $\mathrm{Zn}(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ that also contains solvate molecules (LIZNOA; Jochim et al., 2019).

Additionally, complexes with the composition $\mathrm{Ni}(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}(X)_{2}\left(X=\mathrm{MeCN}, \mathrm{OCH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OHCH}_{3}\right)$ are reported, in which the nickel cations are octahedrally coordinated by two thiocyanate anions, two 3-cyanopyridine coligands and two further coligands (YAXDOU, Krebs et al., 2021; YAXDIO, Krebs et al., 2021; YAXCUZ, Krebs et al., 2021). With $\mathrm{Cu}^{\mathrm{II}}$, an aqua complex with the composition $\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ is also found (ABOVAR; Handy et al., 2017). One complex of the composition $\mathrm{Zn}(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}$ is reported in which the zinc cations are tetrahedrally coordinated by two thiocyanate anions and two 3-cyanopyridine coligands (LIZNUG; Jochim et al., 2019).

Furthermore, one structure of the composition $\mathrm{Ni}(\mathrm{NCS})$ ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}$ exists in which nickel cations are octahedrally coordinated by four thiocyanate anions and two 3-cyanopyridine coligands. The nickel cations are linked by pairs of thiocyanate anions into dinuclear units that are further connected into layers by single bridging anionic ligands (YAXDEK; Krebs et al., 2021). In a further compound of the composition $\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}$, the cadmium cations are octahedrally coordinated by four thiocyanate anions and two 3-cyanopyridine coligands and are linked through two thiocyanate anions into chains (NURTUS; Jochim et al., 2020). Two additional compounds with similar chain structures are
also listed that contain 3-cyanopyridine solvate molecules (NURTOM, Jochim et al., 2020; NURTIG, Jochim et al., 2020). With $\mathrm{Cd}(\mathrm{NCS})_{2}$, two additional compounds are reported in which $\mathrm{Cd}(\mathrm{NCS})_{2}$ chains are linked by some of the 3-cyanopyridine ligands into layers (NURVAA and NURVEE; Jochim et al., 2020). With $\mathrm{Mn}(\mathrm{NCS})_{2}$, the previously mentioned compounds with the composition $\mathrm{Mn}(\mathrm{NCS})_{2^{-}}$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}, \mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ - $\operatorname{bis}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ solvate and $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ ${ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ have also been reported (Krebs et al., 2023) but these are not yet listed in the CSD.

5. Physical characterization investigations

Comparison of the experimental powder pattern of $\mathbf{1}$ and $\mathbf{2}$ with that calculated from single crystal data shows that both compounds were obtained as pure phases (Figs. 5 and 6). For compound $\mathbf{1}$, the CN stretching vibration of the thiocyanate anion is observed at $2056 \mathrm{~cm}^{-1}$ and for the cyanogroup of the 3-cyanopyridine ligand at $2234 \mathrm{~cm}^{-1}$ while for compound 2 these values amount to $2238 \mathrm{~cm}^{-1}$ and $2080 \mathrm{~cm}^{-1}$, which is in agreement with the fact that the thiocyanate anions are only terminally coordinated and that the cyanogroup is not involved in the metal coordination (Figs. S1 and S2).

The thermal properties of both compounds were investigated by simultaneous thermogravimetry and differential thermoanalysis (TG-DTA). For compound 1 the measurements reveal three mass losses due to heating that are accompanied with two endothermic (first and second mass loss) and one exothermic (third mass loss) events in the DTA curve (Fig. 7 and S3). From the first derivative of the TG curve it is obvious that all mass losses are not well resolved. The first mass loss of 37.3% is slightly higher that that calculated for the removal of two 3-canopyridine ligands ($\Delta m_{\text {calc. }}=35.4 \%$). To identify the intermediate formed after the first mass loss we

Figure 5
Experimental (top) and calculated PXRD patterns (bottom) of $\mathbf{1}$.

Figure 6
Experimental (top) and calculated PXRD patterns (bottom) of $\mathbf{2}$.
repeated the TG measurement and isolated the residue after the respective mass loss. The residue was then investigated by IR spectroscopy and powder X-ray diffraction (PXRD). The CN stretching vibrations of the thiocyanate anions are observed at $2105 \mathrm{~cm}^{-1}$ and at $2078 \mathrm{~cm}^{-1}$, which indicates that $\mu-1,3$-bridging anionic ligands are present (Fig. S4). For the cyano group, two different values at $2248 \mathrm{~cm}^{-1}$ and $2270 \mathrm{~cm}^{-1}$ are observed, indicating that some of them are coordinated to the metal center, whereas some others are not (Fig. S4). If the experimental powder pattern is compared with those calculated for all thiocyanate compounds with less 3-cyanopyridine (Fig. S5) that are reported in the literature (see Database survey), it is evident that this crystalline phase is isotypic to

Figure 7
TG curves for $\mathbf{1}$ (top) and $\mathbf{2}$ (bottom) measured with a $4^{\circ} \mathrm{C} \mathrm{min}^{-1}$ heating rate. The mass losses are stated in \%.

Table 5
Experimental details.

	1	2
Crystal data		
Chemical formula	$\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]$	$\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}$
$M_{\text {r }}$	588.46	624.49
Crystal system, space group	Orthorhombic, Pna2 ${ }_{1}$	Triclinic, $P \overline{1}$
Temperature (K)	100	100
$a, b, c(\AA)$	20.3549 (2), 10.2084 (1), 13.0310 (1)	8.1065 (1), 8.2880 (1), 11.4347 (2)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	84.765 (1), 77.787 (1), 70.826 (1)
$V\left(\AA^{3}\right)$	2707.72 (4)	709.02 (2)
Z	4	1
Radiation type	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	6.21	6.01
Crystal size (mm)	$0.10 \times 0.08 \times 0.06$	$0.11 \times 0.10 \times 0.08$
Data collection		
Diffractometer	XtaLAB Synergy, Dualflex, HyPix	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2023)	Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
$T_{\text {min }}, T_{\text {max }}$	0.745, 1.000	0.727, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	26794, 5727, 5676	29397, 2999, 2999
	0.019	0.022
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.639	0.639
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.027, $0.074,1.06$	0.022, 0.060, 1.15
No. of reflections	5727	2999
No. of parameters	352	196
No. of restraints	1	0
H -atom treatment	H -atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.24, -0.29	0.29, -0.25
Absolute structure	Classical Flack method preferred over Parsons because s.u. lower	-
Absolute structure parameter	-0.001 (3)	-

compounds $\left\{\left[\mathrm{Cd}(\mathrm{NCS})_{2}\right]_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right\}_{n}$ (Jochim et al., 2020) and $\left\{\left[\mathrm{Mn}(\mathrm{NCS})_{2}\right]_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right\}_{n}$ (Krebs et al., 2023) already reported in the literature (Fig. S5). In this context, it is surprising that two different CN stretching vibrations for the thiocyanate anions are observed, because this structure contains only one crystallographically independent anion, but similar observations were made for the corresponding Mn compound (Krebs et al., 2023). However, in the second mass loss the remaining 3-cyanopyridine ligands are removed and upon further heating $\mathrm{Mn}(\mathrm{NCS})_{2}$ decomposes.

For compound 2, four mass losses were observed upon heating that are accompanied with three endothermic and one exothermic events in the DTA curve (Figs. 7 and S6). The first mass loss of 5.2% is in good agreement with the loss of two water ligands $\left(\Delta m_{\text {calc. }}=5.8 \%\right)$. This indicates that compound $\mathbf{1}$ has been formed. To prove this assumption, a second TG measurement was performed in which the residue formed after the first mass loss was isolated and investigated by IR spectroscopy and PXRD. The IR spectra is very similar to that of compound $\mathbf{1}$ (compare Figs. S1 and S7) and comparison of the experimental pattern with that calculated for $\mathbf{1}$ proves that this compound was obtained (Fig. S8). The second mass loss of 44.7% is in excellent agreement with the loss of 2.67 3 -cyanopyridine ligands ($\Delta m_{\text {calc. }}=44.5 \%$), which indicates that after the second mass loss $\left\{\left[\mathrm{Fe}(\mathrm{NCS})_{2}\right]_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right\}_{n}$ has been formed. This assumption has been proved through a repetition
of the TG measurement, isolation of the residue after the second mass loss and by IR (Fig. S9) as well as PXRD investigations (Fig. S10).

6. Synthesis and crystallization

$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and KSCN were purchased from Sigma-Aldrich and 3-cyanopyrine was purchased from Alfa Aesar.

A microcrystalline powder of $\mathbf{1}$ was obtained by the reaction of 0.25 mmol of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(69.5 \mathrm{mg}), 0.5 \mathrm{mmol}$ of KSCN (48.6 mg) and $1 \mathrm{mmol}(104.1 \mathrm{mg})$ of 3-cyanopyridine in 0.5 ml of ethanol. The mixture was stirred for 1 d at room temperature and filtered off. Crystals suitable for single crystal X-ray diffraction were obtained with the same amount of reactants and solvent under hydrothermal conditions (400 K for 1 d) without stirring.

For 2, a microcrystalline powder was obtained by the reaction of 1 mmol of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(278 \mathrm{mg}), 2 \mathrm{mmol}$ of KSCN (194 mg) and $2 \mathrm{mmol}(208.2 \mathrm{mg})$ of 3-cyanopyridine in 1.5 ml of water. The mixture was filtered off after stirring at room temperature for 2 d . To obtain crystals for singe-crystal X-ray diffraction, 0.25 mmol of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(69.5 \mathrm{mg})$, 0.5 mmol of $\mathrm{KSCN}(48.6 \mathrm{mg})$ and $1 \mathrm{mmol}(104.1 \mathrm{mg})$ of 3-cyanopyridine were mixed in 1.5 ml of water and heated for 2 d at 403 K under hydrothermal conditions.

IR spectra of $\mathbf{1}$ and $\mathbf{2}$ can be found in Figs. S1 and S2.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ using a riding model. The water H atoms were located in a difference map and refined isotropically with freely varying coordinates.

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389397.

Diehr, S., Wöhlert, S., Boeckmann, J. \& Näther, C. (2011). Acta Cryst. E67, m1898.
González, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. \& Faus, J. (2012). Inorg. Chem. 51, 5737-5747.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Handy, J. V., Ayala, G. \& Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.

Jochim, A., Jess, I. \& Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212-218.
Jochim, A., Jess, I. \& Näther, C. (2020). Z. Naturforsch. B, 75, 163172.

Kabešová, M. \& Gažo, J. (1980). Chemical Papers. 34, 800-841.
Kilkenny, M. L. \& Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065-3068.
Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. \& Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.

Krebs, C., Thiele, S., Ceglarska, M. \& Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Näther, C. \& Jess, I. (2004). Eur. J. Inorg. Chem. 2004, $2868-2876$.
Näther, C., Jess, I. \& Greve, J. (2001). Polyhedron, 20, 1017-1022.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. A Eur. J. 26, 2837-2851.
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Peters, L. \& Näther, C. (2013). Dalton Trans. 42, 1074610758.

supporting information

Synthesis, crystal structure and properties of tetrakis(pyridine-3-carbonitrile)dithiocyanatoiron(II) and of diaquabis(pyridine-3-carbonitrile)dithiocyanatoiron(II) pyridine-3-carbonitrile monosolvate

Christian Näther, Asmus Müller-Meinhard and Inke Jess

Computing details

Data collection: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023) for (1); CrysAlis PRO 1.171.42.100a (Rigaku OD, 2023) for (2). Cell refinement: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023) for (1); CrysAlis PRO 1.171.42.100a (Rigaku OD, 2023) for (2). Data reduction: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023) for (1); CrysAlis PRO 1.171.42.100a (Rigaku OD, 2023) for (2). For both structures, program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(pyridine-3-carbonitrile)dithiocyanatoiron(II) (1)

Crystal data

$\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right]$
$M_{r}=588.46$
Orthorhombic, Pna_{1}
$a=20.3549$ (2) \AA
$b=10.2084$ (1) \AA
$c=13.0310$ (1) \AA
$V=2707.72(4) \AA^{3}$
$Z=4$
$F(000)=1200$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2023)
$D_{\mathrm{x}}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 22008 reflections
$\theta=4.3-79.7^{\circ}$
$\mu=6.21 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, yellow
$0.10 \times 0.08 \times 0.06 \mathrm{~mm}$

$$
T_{\min }=0.745, T_{\max }=1.000
$$

26794 measured reflections
5727 independent reflections
5676 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=80.1^{\circ}, \theta_{\text {min }}=4.3^{\circ}$
$h=-25 \rightarrow 24$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.074$
$S=1.06$

5727 reflections
352 parameters
1 restraint
Primary atom site location: dual

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0521 P)^{2}+0.7383 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

Absolute structure: Classical Flack method preferred over Parsons because s.u. lower Absolute structure parameter: -0.001 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Fe1	0.61644 (2)	0.57715 (4)	0.50208 (3)	0.01625 (10)
N1	0.60947 (11)	0.5803 (2)	0.34404 (18)	0.0220 (5)
C1	0.60437 (12)	0.5722 (2)	0.2549 (2)	0.0182 (5)
S1	0.59757 (3)	0.56051 (6)	0.13118 (5)	0.02232 (13)
N2	0.62205 (11)	0.5735 (2)	0.66062 (18)	0.0207 (5)
C2	0.61060 (12)	0.5872 (2)	0.7474 (2)	0.0184 (5)
S2	0.59268 (4)	0.60626 (6)	0.86779 (5)	0.02877 (15)
N11	0.51976 (9)	0.68579 (19)	0.51593 (16)	0.0186 (4)
C11	0.47464 (12)	0.6794 (2)	0.44172 (17)	0.0193 (4)
H11	0.485160	0.634024	0.380244	0.023*
C12	0.41249 (12)	0.7369 (2)	0.45077 (19)	0.0203 (5)
C13	0.39634 (12)	0.8027 (2)	0.5405 (2)	0.0218 (5)
H13	0.354112	0.840674	0.549291	0.026*
C14	0.44349 (12)	0.8114 (2)	0.61682 (19)	0.0227 (5)
H14	0.434368	0.856933	0.678783	0.027*
C15	0.50423 (12)	0.7527 (2)	0.60161 (18)	0.0214 (5)
H15	0.536372	0.760156	0.654147	0.026*
C16	0.36587 (13)	0.7271 (2)	0.3681 (2)	0.0233 (5)
N12	0.32775 (12)	0.7231 (2)	0.30298 (19)	0.0312 (5)
N21	0.57491 (9)	0.37054 (19)	0.50576 (17)	0.0190 (4)
C21	0.54990 (11)	0.3198 (2)	0.59197 (19)	0.0198 (4)
H21	0.547628	0.373602	0.651370	0.024*
C22	0.52700 (11)	0.1912 (2)	0.59825 (19)	0.0210 (5)
C23	0.53071 (12)	0.1103 (2)	0.5122 (2)	0.0244 (5)
H23	0.516095	0.021992	0.514719	0.029*
C24	0.55633 (13)	0.1629 (2)	0.4232 (2)	0.0258 (5)
H24	0.559409	0.111195	0.362787	0.031*
C25	0.57755 (13)	0.2922 (2)	0.4227 (2)	0.0231 (5)
H25	0.594798	0.327145	0.360763	0.028*
C26	0.49712 (13)	0.1461 (3)	0.6918 (2)	0.0250 (5)
N22	0.47136 (13)	0.1104 (2)	0.7652 (2)	0.0325 (5)
N31	0.71545 (9)	0.4783 (2)	0.49342 (16)	0.0208 (4)
C31	0.75413 (12)	0.4869 (2)	0.4104 (2)	0.0219 (5)

H31	0.738616	0.533481	0.352142	0.026^{*}
C32	$0.81617(13)$	$0.4300(2)$	$0.4066(2)$	$0.0237(5)$
C33	$0.84021(12)$	$0.3634(3)$	$0.4921(2)$	$0.0275(5)$
H33	0.882745	0.325046	0.491573	0.033^{*}
C34	$0.80029(14)$	$0.3547(3)$	$0.5778(2)$	$0.0293(5)$
H34	0.815036	0.310288	0.637584	0.035^{*}
C35	$0.73825(13)$	$0.4119(2)$	$0.5752(2)$	$0.0248(5)$
H35	0.710769	0.403611	0.633745	0.030^{*}
C36	$0.85443(14)$	$0.4395(3)$	$0.3136(2)$	$0.0285(6)$
N32	$0.88400(12)$	$0.4469(3)$	$0.2389(2)$	$0.0368(6)$
N41	$0.67037(9)$	$0.76769(19)$	$0.49903(17)$	$0.0190(4)$
C41	$0.66633(11)$	$0.8538(2)$	$0.42188(19)$	$0.0212(4)$
H41	0.635285	0.838771	0.368733	0.025^{*}
C42	$0.70611(12)$	$0.9649(3)$	$0.4167(2)$	$0.0220(5)$
C43	$0.75141(12)$	$0.9892(3)$	$0.4943(2)$	$0.0263(5)$
H43	0.779162	1.064013	0.492090	0.032^{*}
C44	$0.75473(13)$	$0.9008(3)$	$0.5748(2)$	$0.0273(5)$
H44	0.784604	0.914585	0.629764	0.033^{*}
C45	$0.71398(12)$	$0.7922(3)$	$0.5742(2)$	$0.0229(5)$
H45	0.716965	0.731957	0.629611	0.027^{*}
C46	$0.70086(13)$	$1.0523(3)$	$0.3298(2)$	$0.0260(5)$
N42	$0.69645(12)$	$1.1210(3)$	$0.2610(2)$	$0.0350(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.01820(17)$	$0.01806(17)$	$0.01250(17)$	$-0.00105(13)$	$0.00061(15)$	$0.00084(13)$
N 1	$0.0273(11)$	$0.0241(11)$	$0.0147(12)$	$0.0001(8)$	$-0.0005(8)$	$0.0004(7)$
C 1	$0.0154(10)$	$0.0165(11)$	$0.0225(15)$	$0.0006(8)$	$0.0018(9)$	$0.0016(9)$
S 1	$0.0246(3)$	$0.0278(3)$	$0.0145(3)$	$0.0040(2)$	$-0.0001(2)$	$-0.0018(2)$
N 2	$0.0233(10)$	$0.0220(11)$	$0.0167(11)$	$-0.0001(8)$	$-0.0013(7)$	$0.0010(7)$
C2	$0.0208(11)$	$0.0159(11)$	$0.0185(14)$	$-0.0020(8)$	$-0.0029(9)$	$0.0024(9)$
S2	$0.0467(4)$	$0.0235(3)$	$0.0162(3)$	$-0.0019(3)$	$0.0055(3)$	$-0.0007(3)$
N 11	$0.0195(8)$	$0.0169(9)$	$0.0196(10)$	$-0.0021(7)$	$0.0008(7)$	$0.0002(7)$
C11	$0.0222(11)$	$0.0183(10)$	$0.0175(11)$	$-0.0019(8)$	$0.0008(8)$	$0.0011(8)$
C12	$0.0210(11)$	$0.0187(11)$	$0.0210(12)$	$-0.0023(8)$	$-0.0002(9)$	$0.0008(9)$
C13	$0.0233(11)$	$0.0177(11)$	$0.0243(12)$	$-0.0001(9)$	$0.0002(9)$	$0.0006(9)$
C14	$0.0286(12)$	$0.0189(11)$	$0.0206(12)$	$0.0012(9)$	$-0.0004(9)$	$-0.0040(9)$
C15	$0.0251(11)$	$0.0193(10)$	$0.0199(11)$	$-0.0022(9)$	$-0.0021(9)$	$-0.0013(9)$
C16	$0.0260(12)$	$0.0195(11)$	$0.0245(12)$	$0.0018(9)$	$-0.0002(10)$	$0.0001(10)$
N12	$0.0324(12)$	$0.0298(11)$	$0.0314(13)$	$0.0020(10)$	$-0.0101(10)$	$-0.0030(9)$
N21	$0.0187(8)$	$0.0200(9)$	$0.0182(9)$	$-0.0009(7)$	$0.0006(7)$	$0.0000(8)$
C21	$0.0197(10)$	$0.0197(11)$	$0.0201(11)$	$-0.0005(8)$	$0.0015(8)$	$-0.0020(9)$
C22	$0.0197(10)$	$0.0203(11)$	$0.0230(12)$	$0.0006(8)$	$0.0039(9)$	$0.0018(9)$
C23	$0.0264(11)$	$0.0193(11)$	$0.0276(13)$	$-0.0010(9)$	$0.0038(10)$	$-0.0011(10)$
C24	$0.0327(13)$	$0.0204(12)$	$0.0244(12)$	$-0.0013(10)$	$0.0036(10)$	$-0.0037(10)$
C25	$0.0284(12)$	$0.0219(12)$	$0.0191(11)$	$0.0001(9)$	$0.0037(9)$	$0.0001(9)$
C26	$0.0284(12)$	$0.0185(11)$	$0.0280(13)$	$-0.0004(9)$	$0.0060(10)$	$-0.0019(10)$

N22	$0.0417(14)$	$0.0225(11)$	$0.0333(13)$	$-0.0015(9)$	$0.0141(10)$	$0.0011(9)$
N31	$0.0208(9)$	$0.0207(9)$	$0.0210(10)$	$0.0006(7)$	$0.0005(8)$	$0.0005(8)$
C31	$0.0219(11)$	$0.0206(11)$	$0.0232(11)$	$-0.0020(9)$	$0.0021(9)$	$-0.0010(9)$
C32	$0.0223(12)$	$0.0216(12)$	$0.0274(14)$	$-0.0017(9)$	$0.0038(10)$	$-0.0050(9)$
C33	$0.0246(11)$	$0.0255(11)$	$0.0324(14)$	$0.0068(10)$	$-0.0025(10)$	$-0.0063(10)$
C34	$0.0328(13)$	$0.0287(13)$	$0.0263(13)$	$0.0102(11)$	$-0.0037(10)$	$-0.0002(11)$
C35	$0.0278(12)$	$0.0248(11)$	$0.0219(12)$	$0.0048(10)$	$0.0026(10)$	$-0.0001(10)$
C36	$0.0234(13)$	$0.0257(12)$	$0.0363(15)$	$0.0005(9)$	$0.0058(11)$	$-0.0049(11)$
N32	$0.0333(13)$	$0.0315(12)$	$0.0456(16)$	$0.0010(9)$	$0.0146(11)$	$-0.0031(11)$
N41	$0.0182(8)$	$0.0193(9)$	$0.0196(8)$	$-0.0012(7)$	$-0.0011(8)$	$0.0018(8)$
C41	$0.0195(10)$	$0.0224(11)$	$0.0217(11)$	$0.0011(9)$	$-0.0003(9)$	$0.0011(10)$
C42	$0.0212(10)$	$0.0228(11)$	$0.0221(12)$	$0.0003(9)$	$0.0037(9)$	$0.0042(10)$
C43	$0.0231(11)$	$0.0271(12)$	$0.0288(13)$	$-0.0069(9)$	$0.0007(10)$	$0.0023(10)$
C44	$0.0240(12)$	$0.0329(13)$	$0.0250(13)$	$-0.0080(10)$	$-0.0047(10)$	$0.0025(11)$
C45	$0.0230(11)$	$0.0242(11)$	$0.0215(11)$	$-0.0018(9)$	$-0.0030(9)$	$0.0028(10)$
C46	$0.0241(12)$	$0.0241(12)$	$0.0297(14)$	$-0.0011(9)$	$0.0041(10)$	$0.0039(11)$
N42	$0.0339(12)$	$0.0356(13)$	$0.0356(14)$	$-0.0006(10)$	$0.0048(10)$	$0.0130(11)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

Fe1-N1	2.065 (2)	C23-C24	1.380 (4)
Fe1-N2	2.069 (2)	C24-H24	0.9500
Fe1-N11	2.2660 (19)	C24-C25	1.389 (4)
Fe1-N21	2.273 (2)	C25-H25	0.9500
Fe1-N31	2.257 (2)	C26-N22	1.149 (4)
Fe1-N41	2.2339 (19)	N31-C31	1.341 (3)
N1-C1	1.169 (4)	N31-C35	1.346 (3)
C1-S1	1.622 (3)	C31-H31	0.9500
N2-C2	1.163 (4)	C31-C32	1.391 (4)
C2-S2	1.622 (3)	C32-C33	1.394 (4)
N11-C11	1.335 (3)	C32-C36	1.444 (4)
N11-C15	1.347 (3)	C33-H33	0.9500
C11-H11	0.9500	C33-C34	1.384 (4)
C11-C12	1.399 (3)	C34-H34	0.9500
C12-C13	1.388 (3)	C34-C35	1.392 (4)
C12-C16	1.439 (3)	C35-H35	0.9500
C13-H13	0.9500	C36-N32	1.146 (4)
C13-C14	1.385 (4)	N41-C41	1.338 (3)
C14-H14	0.9500	N41-C45	1.345 (3)
C14-C15	1.388 (3)	C41-H41	0.9500
C15-H15	0.9500	C41-C42	1.395 (4)
C16-N12	1.151 (4)	C42-C43	1.390 (4)
N21-C21	1.338 (3)	C42-C46	1.447 (4)
N21-C25	1.346 (3)	C43-H43	0.9500
C21-H21	0.9500	C43-C44	1.386 (4)
C21-C22	1.396 (3)	C44-H44	0.9500
C22-C23	1.395 (3)	C44-C45	1.385 (4)
C22-C26	1.438 (3)	C45-H45	0.9500

C23-H23	0.9500	C46-N42	1.141 (4)
N1-Fe1-N2	179.21 (9)	C24-C23-C22	117.7 (2)
N1—Fe1-N11	90.70 (8)	C24-C23-H23	121.1
N1-Fe1-N21	90.56 (8)	C23-C24-H24	120.3
N1—Fe1-N31	91.05 (8)	C23-C24-C25	119.4 (2)
N1—Fe1-N41	90.15 (9)	C25-C24-H24	120.3
N2-Fe1-N11	88.70 (8)	N21-C25-C24	123.3 (2)
N2-Fe1-N21	89.00 (8)	N21-C25-H25	118.4
N2-Fe1-N31	89.57 (8)	C24-C25-H25	118.4
N2-Fe1-N41	90.37 (8)	N22-C26-C22	177.9 (3)
N11-Fe1-N21	97.44 (7)	C31-N31-Fe1	122.38 (17)
N31-Fe1-N11	176.72 (7)	C31-N31-C35	118.0 (2)
N31-Fe1-N21	85.31 (7)	C35-N31-Fe1	119.59 (17)
N41-Fe1-N11	90.12 (7)	N31-C31-H31	118.8
N41-Fel-N21	172.40 (7)	N31-C31-C32	122.3 (2)
N41-Fe1-N31	87.11 (7)	C32-C31-H31	118.8
Fe1-N1-C1	175.0 (2)	C31-C32-C33	119.6 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	179.7 (3)	C31-C32-C36	119.4 (3)
Fe1-N2-C2	163.2 (2)	C33-C32-C36	121.0 (2)
N2-C2-S2	178.6 (2)	C32-C33-H33	121.0
C11-N11-Fel	121.06 (16)	C34-C33-C32	118.0 (2)
C11-N11-C15	117.6 (2)	C34-C33-H33	121.0
C15-N11-Fe1	121.22 (16)	C33-C34-H34	120.5
N11-C11-H11	118.6	C33-C34-C35	119.1 (3)
N11-C11-C12	122.7 (2)	C35-C34-H34	120.5
C12-C11-H11	118.6	N31-C35-C34	122.9 (3)
C11-C12-C16	120.3 (2)	N31-C35-H35	118.5
C13-C12-C11	119.2 (2)	C34-C35-H35	118.5
C13-C12-C16	120.5 (2)	N32-C36-C32	179.0 (3)
C12-C13-H13	120.9	C41-N41-Fel	123.72 (16)
C14-C13-C12	118.2 (2)	C41-N41-C45	117.8 (2)
C14-C13-H13	120.9	C45-N41-Fel	118.22 (16)
C13-C14-H14	120.4	N41-C41-H41	118.8
C13-C14-C15	119.1 (2)	N41-C41-C42	122.3 (2)
C15-C14-H14	120.4	C42-C41-H41	118.8
N11-C15-C14	123.1 (2)	C41-C42-C46	119.7 (2)
N11-C15-H15	118.4	C43-C42-C41	119.7 (2)
C14-C15-H15	118.4	C43-C42-C46	120.5 (2)
N12-C16-C12	177.8 (3)	C42-C43-H43	121.1
C21-N21-Fe1	121.22 (16)	C44-C43-C42	117.8 (2)
C21-N21-C25	117.4 (2)	C44-C43-H43	121.1
C25-N21-Fe1	121.28 (17)	C43-C44-H44	120.4
N21-C21-H21	118.6	C45-C44-C43	119.2 (2)
N21-C21-C22	122.7 (2)	C45-C44-H44	120.4
C22-C21-H21	118.6	N41-C45-C44	123.2 (2)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 26$	119.5 (2)	$\mathrm{N} 41-\mathrm{C} 45-\mathrm{H} 45$	118.4
C23-C22-C21	119.5 (2)	C44-C45-H45	118.4

$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 26$	$121.0(2)$	$\mathrm{N} 42-\mathrm{C} 46-\mathrm{C} 42$	179.7 (3)
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	121.1		

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D — \mathrm{H} \cdots A$
C11-H11 \cdots N1	0.95	2.63	3.190 (3)	118
C15-H15 \cdots N2	0.95	2.58	3.113 (3)	115
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{~N} 2$	0.95	2.54	3.108 (3)	118
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{~N} 22^{\text {i }}$	0.95	2.67	3.514 (4)	148
C25-H25 \cdots N1	0.95	2.61	3.181 (3)	119
C31-H31 \cdots N1	0.95	2.67	3.214 (3)	117
C35-H35 \cdots N2	0.95	2.53	3.091 (3)	118
C35-H35 \cdots N12 ${ }^{\text {ii }}$	0.95	2.67	3.538 (4)	151
C41-H41 \cdots N22 ${ }^{\text {iii }}$	0.95	2.61	3.487 (3)	154
$\mathrm{C} 44-\mathrm{H} 44 \cdots \mathrm{~S} 1^{\text {iv }}$	0.95	2.82	3.498 (3)	129
C45-H45 \cdots N 2	0.95	2.55	3.123 (3)	119

Symmetry codes: (i) $-x+1,-y, z-1 / 2$; (ii) $-x+1,-y+1, z+1 / 2$; (iii) $-x+1,-y+1, z-1 / 2$; (iv) $-x+3 / 2, y+1 / 2, z+1 / 2$.
Diaquabis(pyridine-3-carbonitrile)dithiocyanatoiron(II) pyridine-3-carbonitrile monosolvate (2)

Crystal data

$\left[\mathrm{Fe}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}$
$M_{r}=624.49$
Triclinic, $P \overline{1}$
$a=8.1065$ (1) \AA
$b=8.2880$ (1) \AA
$c=11.4347(2) \AA$
$\alpha=84.765(1)^{\circ}$
$\beta=77.787(1)^{\circ}$
$\gamma=70.826(1)^{\circ}$
$V=709.02(2) \AA^{3}$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2023)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.060$
$S=1.15$
2999 reflections
196 parameters
0 restraints
$Z=1$
$F(000)=320$
$D_{\mathrm{x}}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 25131 reflections
$\theta=4.0-79.7^{\circ}$
$\mu=6.01 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, yellow
$0.11 \times 0.10 \times 0.08 \mathrm{~mm}$
$T_{\text {min }}=0.727, T_{\text {max }}=1.000$
29397 measured reflections
2999 independent reflections
2999 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=80.4^{\circ}, \theta_{\text {min }}=4.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 14$

Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0302 P)^{2}+0.2457 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$

supporting information

$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Extinction correction: SHELXL-2016/6
(Sheldrick 2016),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0036 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Fe1	0.500000	0.500000	0.500000	$0.01216(8)$
N1	$0.23749(14)$	$0.50517(14)$	$0.58058(10)$	$0.0175(2)$
C1	$0.10930(16)$	$0.48617(15)$	$0.64015(11)$	$0.0145(2)$
S1	$-0.06651(4)$	$0.45890(4)$	$0.72985(3)$	$0.01772(9)$
O1	$0.58744(12)$	$0.38660(11)$	$0.65983(8)$	$0.01684(18)$
N11	$0.55002(13)$	$0.24567(12)$	$0.42347(9)$	$0.0137(2)$
C11	$0.41230(15)$	$0.20838(15)$	$0.39913(10)$	$0.0144(2)$
H11	0.295430	0.284514	0.423936	0.017^{*}
C12	$0.43436(16)$	$0.06162(15)$	$0.33861(11)$	$0.0151(2)$
C13	$0.60473(17)$	$-0.05288(15)$	$0.30294(11)$	$0.0179(2)$
H13	0.622799	-0.154127	0.262362	0.022^{*}
C14	$0.74656(16)$	$-0.01402(16)$	$0.32865(12)$	$0.0183(2)$
H14	0.864668	-0.088837	0.306060	0.022^{*}
C15	$0.71430(16)$	$0.13553(15)$	$0.38781(11)$	$0.0163(2)$
H15	0.812998	0.161414	0.403931	0.020^{*}
C16	$0.27896(17)$	$0.03358(16)$	$0.31361(12)$	$0.0195(3)$
N12	$0.15470(16)$	$0.01357(16)$	$0.29369(12)$	$0.0292(3)$
N21	$0.40361(14)$	$0.59653(13)$	$0.85071(9)$	$0.0177(2)$
C21	$0.22852(17)$	$0.62145(16)$	$0.88138(11)$	$0.0176(2)$
H21	0.176535	0.564393	0.838477	0.021^{*}
C22	$0.11976(16)$	$0.72784(15)$	$0.97378(11)$	$0.0160(2)$
C23	$0.19423(17)$	$0.81232(16)$	$1.03776(11)$	$0.0177(2)$
H23	0.122870	0.885180	1.101462	0.021^{*}
C24	$0.37532(17)$	$0.78663(16)$	$1.00549(12)$	$0.0190(3)$
H24	0.430907	0.842236	1.046636	0.023^{*}
C25	$0.47433(16)$	$0.67873(16)$	$0.91238(11)$	$0.0177(2)$
H25	0.598501	0.661992	0.891042	0.021^{*}
C26	$-0.06797(17)$	$0.74885(16)$	$1.00254(11)$	$0.0191(3)$
N22	$-0.21762(15)$	$0.76797(16)$	$1.02557(11)$	$0.0256(3)$
H1A	$0.531(3)$	$0.450(3)$	$0.724(2)$	$0.045(6)^{*}$
H1B	$0.693(3)$	$0.369(3)$	$0.6554(18)$	$0.042(6)^{*}$
			0	0

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.01011(13)$	$0.01477(14)$	$0.01245(14)$	$-0.00513(10)$	$-0.00059(9)$	$-0.00395(9)$
N 1	$0.0134(5)$	$0.0216(5)$	$0.0188(5)$	$-0.0079(4)$	$0.0004(4)$	$-0.0065(4)$
C 1	$0.0146(5)$	$0.0146(5)$	$0.0155(6)$	$-0.0034(4)$	$-0.0054(4)$	$-0.0043(4)$
S 1	$0.01226(14)$	$0.02427(16)$	$0.01741(16)$	$-0.00805(11)$	$-0.00037(10)$	$-0.00184(11)$
O 1	$0.0146(4)$	$0.0193(4)$	$0.0166(4)$	$-0.0046(3)$	$-0.0025(3)$	$-0.0045(3)$
N 11	$0.0132(5)$	$0.0148(5)$	$0.0131(5)$	$-0.0048(4)$	$-0.0013(4)$	$-0.0020(4)$
C 11	$0.0134(5)$	$0.0162(5)$	$0.0137(6)$	$-0.0048(4)$	$-0.0023(4)$	$-0.0018(4)$
C 12	$0.0159(6)$	$0.0173(5)$	$0.0141(6)$	$-0.0077(5)$	$-0.0025(4)$	$-0.0018(4)$
C 13	$0.0188(6)$	$0.0160(6)$	$0.0190(6)$	$-0.0064(5)$	$-0.0004(5)$	$-0.0046(5)$
C 14	$0.0141(5)$	$0.0161(6)$	$0.0223(6)$	$-0.0029(4)$	$0.0000(5)$	$-0.0038(5)$
C 15	$0.0132(5)$	$0.0192(6)$	$0.0172(6)$	$-0.0066(5)$	$-0.0019(4)$	$-0.0013(5)$
C 16	$0.0188(6)$	$0.0182(6)$	$0.0217(6)$	$-0.0058(5)$	$-0.0019(5)$	$-0.0074(5)$
N 12	$0.0209(6)$	$0.0302(6)$	$0.0397(7)$	$-0.0088(5)$	$-0.0059(5)$	$-0.0151(5)$
N 21	$0.0180(5)$	$0.0207(5)$	$0.0139(5)$	$-0.0057(4)$	$-0.0024(4)$	$-0.0019(4)$
C21	$0.0191(6)$	$0.0207(6)$	$0.0153(6)$	$-0.0084(5)$	$-0.0041(5)$	$-0.0019(5)$
C22	$0.0152(6)$	$0.0189(6)$	$0.0152(6)$	$-0.0073(5)$	$-0.0034(4)$	$0.0005(4)$
C23	$0.0181(6)$	$0.0193(6)$	$0.0162(6)$	$-0.0068(5)$	$-0.0015(5)$	$-0.0040(5)$
C24	$0.0183(6)$	$0.0225(6)$	$0.0194(6)$	$-0.0097(5)$	$-0.0045(5)$	$-0.0029(5)$
C25	$0.0147(5)$	$0.0213(6)$	$0.0172(6)$	$-0.0066(5)$	$-0.0026(4)$	$0.0006(5)$
C26	$0.0198(6)$	$0.0216(6)$	$0.0180(6)$	$-0.0084(5)$	$-0.0037(5)$	$-0.0031(5)$
N22	$0.0188(6)$	$0.0314(6)$	$0.0290(6)$	$-0.0103(5)$	$-0.0041(5)$	$-0.0055(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

Fel-N1 ${ }^{\text {i }}$	2.1207 (10)	C13-C14	1.3841 (17)
Fel-N1	2.1207 (10)	C14-H14	0.9500
$\mathrm{Fe} 1-\mathrm{Ol}^{\text {i }}$	2.1267 (9)	C14-C15	1.3883 (17)
Fel-O1	2.1267 (9)	C15-H15	0.9500
Fel-N11	2.2358 (10)	C16-N12	1.1435 (18)
Fel-N11 ${ }^{\text {i }}$	2.2358 (10)	N21-C21	1.3380 (16)
N1-C1	1.1649 (17)	N21-C25	1.3436 (16)
C1-S1	1.6387 (12)	C21-H21	0.9500
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.89 (2)	C21-C22	1.3916 (18)
O1-H1B	0.81 (2)	C22-C23	1.3956 (17)
N11-C11	1.3390 (15)	C22-C26	1.4419 (17)
N11-C15	1.3463 (15)	C23-H23	0.9500
C11-H11	0.9500	C23-C24	1.3844 (17)
C11-C12	1.3960 (16)	C24-H24	0.9500
C12-C13	1.3949 (17)	C24-C25	1.3850 (18)
C12-C16	1.4421 (17)	C25-H25	0.9500
C13-H13	0.9500	C26-N22	1.1456 (17)
N1 ${ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{N} 1$	180.0	C13-C12-C16	121.70 (11)
N1-Fel-O1	89.42 (4)	C12-C13-H13	121.1
N1 ${ }^{\text {i }}$-Fe1-O1	90.58 (4)	C14-C13-C12	117.77 (11)

$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {i }}$	90.58 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{i}}$	89.42 (4)
N1-Fe1-N11	89.86 (4)
N1--Fe1-N11	90.14 (4)
N1 ${ }^{\text {i }}$-Fe1-N11 ${ }^{\text {i }}$	89.86 (4)
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 11^{\mathrm{i}}$	90.14 (4)
O1--Fe1-O1	180.0
O1--Fel-N11	87.62 (3)
O1- ${ }^{\text {i }}$ - ${ }^{1}-\mathrm{N} 11^{\text {i }}$	92.38 (3)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 11$	92.38 (3)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 11{ }^{\text {i }}$	87.62 (3)
N11-Fe1-N11 ${ }^{\text {i }}$	180.0
Fe1-N1-C1	167.09 (10)
N1-C1-S1	177.12 (11)
Fel-O1-H1A	113.2 (14)
Fe1-O1-H1B	112.3 (14)
H1A-O1-H1B	106.9 (19)
C11-N11-Fe1	118.64 (8)
C11-N11-C15	117.74 (10)
C15-N11-Fe1	123.18 (8)
N11-C11-H11	118.8
N11-C11-C12	122.34 (11)
C12-C11-H11	118.8
C11-C12-C16	118.64 (11)
C13-C12-C11	119.66 (11)
Fe1-N11-C11-C12	172.36 (9)
Fe1-N11-C15-C14	-172.87 (9)
N11-C11-C12-C13	0.88 (18)
N11-C11-C12-C16	-178.52 (11)
C11-N11-C15-C14	-0.63 (18)
C11-C12-C13-C14	-0.64 (18)
C12-C13-C14-C15	-0.17 (18)
C13-C14-C15-N11	0.84 (19)
C15-N11-C11-C12	-0.24 (17)

C14-C13-H13	121.1
C13-C14-H14	120.4
C13-C14-C15	119.26 (11)
C15-C14-H14	120.4
N11-C15-C14	123.23 (11)
N11-C15-H15	118.4
C14-C15-H15	118.4
N12-C16-C12	179.12 (14)
C21-N21-C25	117.81 (11)
N21-C21-H21	118.8
N21-C21-C22	122.43 (11)
C22-C21-H21	118.8
C21-C22-C23	119.45 (11)
C21-C22-C26	119.67 (11)
C23-C22-C26	120.87 (11)
C22-C23-H23	121.0
C24-C23-C22	117.93 (12)
C24-C23-H23	121.0
C23-C24-H24	120.5
C23-C24-C25	119.07 (11)
C25-C24-H24	120.5
N21-C25-C24	123.30 (11)
N21-C25-H25	118.3
C24-C25-H25	118.3
N22-C26-C22	179.03 (14)
C16-C12-C13-C14	178.74 (12)
N21-C21-C22-C23	-0.10 (19)
N21-C21-C22-C26	-179.84 (11)
C21-N21-C25-C24	0.17 (18)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	0.31 (18)
C22-C23-C24-C25	-0.28 (19)
C23-C24-C25-N21	0.04 (19)
C25-N21-C21-C22	-0.14 (18)
C26-C22-C23-C24	-179.96 (12)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 21$	$0.89(2)$	$1.88(2)$	$2.7615(14)$	$175(2)$
$\mathrm{O} 1 — \mathrm{H} 1 B \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.81(2)$	$2.62(2)$	$3.3184(9)$	$145.7(18)$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 1$	0.95	2.54	$3.1243(16)$	120
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~S} 1^{\text {iii }}$	0.95	3.03	$3.6833(12)$	128
$\mathrm{C} 14 — \mathrm{H} 14 \cdots \mathrm{~S} 1^{\text {iv }}$	0.95	2.98	$3.7688(13)$	141
$\mathrm{C} 15 — \mathrm{H} 15 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.67	$3.1894(16)$	115
$\mathrm{C} 21 — \mathrm{H} 21 \cdots \mathrm{~S} 1$	0.95	2.92	$3.8513(13)$	165

supporting information

$\mathrm{C} 24 — \mathrm{H} 24 \cdots \mathrm{~N} 22^{\mathrm{ii}}$	0.95	2.67	$3.3082(17)$	125
$\mathrm{C} 25 — \mathrm{H} 25 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.95	3.01	$3.8056(13)$	142

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y, z$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1,-y,-z+1$.

