

Received 29 September 2023 Accepted 9 October 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

**Keywords:** crystal structure; synthesis; thermal properties; copper(I); 1,2-bis(pyridin-4-yl) ethene.

CCDC reference: 2300129

**Supporting information:** this article has supporting information at journals.iucr.org/e



## Synthesis, crystal structure and thermal properties of poly[[ $\mu$ -1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N:N'$ - $\mu$ -bromido-copper(I)] 1,2-bis(pyridin-4-yl)ethene 0.25-solvate]

#### Christian Näther,\* Asmus Müller-Meinhard and Inke Jess

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany. \*Correspondence e-mail: cnaether@ac.uni-kiel.de

The reaction of copper(I) bromide with 1,2-bis(pyridin-4-yl)ethene in acetonitrile leads to the formation of the title compound,  $\{[CuBr(C_{12}H_{10}N_2)]$ .  $0.25C_{12}H_{10}N_2$  or  $CuBr(4-bpe) \cdot 0.25(4-bpe)$  [4-bpe = 1,2-bis(pyridin-4-yl)ethene]. The asymmetric unit consists of one copper(I) cation and one bromide anion in general positions as well as two crystallographically independent half 4-bpe ligands and a quarter of a disordered 4-bpe solvate molecule that are completed by centers of inversion. The copper(I) cations are tetrahededrally coordinated as  $CuBr_2N_2$  and linked by pairs of  $\mu$ -1,1-bridging bromide anions into centrosymmetric dinuclear units that are further connected into layers by the 4-bpe coligands. Between the layers, interlayer C-H···Br hydrogen bonding is observed. The layers are arranged in such a way that cavities are formed in which the disordered 4-bpe solvate molecules are located. Powder X-ray (PXRD) investigations reveal that a pure sample has been obtained. Thermogravimetric (TG) and differential thermoanalysis (DTA) measurements show two mass losses that are accompanied by endothermic events in the DTA curve. The first mass loss correspond to the removal of 0.75 4-bpe molecules, leading to the formation of (CuBr)<sub>2</sub>(4-bpe), already reported in the literature as proven by PXRD.

#### 1. Chemical context

Coordination polymers based on copper(I) halides show a large structural variability and are of interest, for example, regarding their luminescence behavior (Jess *et al.*, 2007; Peng *et al.*, 2010; Gibbons *et al.*, 2017; Jia *et al.*, 2018; Nitsch *et al.*, 2015; Mensah *et al.*, 2021). They consist of CuX substructures including monomeric and dimeric units, chains, double chains and layers, which can be further connected into one-, two- and three-dimensional networks if bridging coligands are present (Peng *et al.*, 2010; Näther *et al.*, 2007; Kromp *et al.*, 2003). For a pairing of a particular copper(I) halide and coligand, frequently two or more compounds with a different ratio between the copper(I) halide and the coligand are found.

In previous investigations we have found that the coligandrich compounds usually lose their coligands stepwise, which lead to the irreversible formation of ligand-deficient intermediates that are obtained in quantitative yield (Näther & Jess, 2004; Näther *et al.*, 2002). In the course of this reaction, compounds with more condensed CuX substructures are formed. This is the case, *e.g.*, for coordination compounds based on pyrazine and 4,4'-bipyridine. With pyrazine, one compound with the composition CuCl(pyrazine) is known in which the copper(I) cations are linked by the chloride anions into chains, which are further connected into layers by the



pyrazine ligands (Moreno et al., 1995). Upon heating, half of the pyrazine ligands are removed, leading to a compound with the composition (CuCl)<sub>2</sub>(pyrazine), in which the Cu<sup>I</sup> cations are linked by  $\mu$ -1,1 bridging chloride anions into double chains, which are further connected into layers by the coligands (Kawata et al., 1998; Näther et al., 2001). 4,4'-Bipyridine compounds with the composition CuX(4,4'-bipyridine) (X = Cl, Br, I) have been reported in which the copper cations are connected into  $(CuX)_2$  dimeric units, which are further linked into layers by the 4.4'-bipyridine ligands (Yaghi & Li, 1995; Batten et al., 1999; Lu et al., 1999). Thermogravimetric experiments prove that the coligands are removed in a stepwise fashion leading to compounds with the composition  $(CuX)_2(4,4'-bipyridine)$  (X = Cl, Br, I), in which the Cu<sup>I</sup> cations are linked into double chains, which are further connected into layers by bridging 4,4'-bipyridine ligands (Yaghi & Li, 1995; Näther & Jess, 2001).

A further bridging coligand is 1,2-bis(pyridin-4-yl)ethene, for which some compounds have already been reported in the literature (see Database survey). These includes three liganddeficient compounds with the composition  $(CuX)_2(4-bpe)$  (X = Cl, Br, I) in which the copper(I) cations are linked by the halide anions into chains, which are further connected into layers by the 4-bpe ligand (Li et al., 2006; Yang & Li, 2006; Chen et al., 2008; Wang, 2016; Shen & Lush, 2010; Blake et al., 1999; Neal et al., 2019). With CuI, a ligand-rich compound with the composition CuI(4-bpe).0.25 4-bpe has already been reported, which is not known for CuBr and CuI (Hoffman et al., 2020). This compound consists of layers that are stacked in such a way that pores are formed, in which 4-bpe solvate molecules are located. A very similar structure is found for (CuCl)<sub>2</sub>(4-bpe)·4H<sub>2</sub>O, but in this compound the pores are filled with water, instead of 4-bpe (Mohapatra & Maii, 2010). Based on these findings, one can assume that a similar compound might also exist with CuBr. Moreover, for such a compound it is highly likely that upon heating it will transform into the ligand-deficient compound (CuBr)<sub>2</sub>(4-bpe) already reported in the literature. Therefore, we reacted CuBr with 4-bpe in different solvents and from acetonitrile we obtained a new crystalline phase that was characterized by single-crystal X-ray diffraction and thermoanalytical measurements.



#### 2. Structural commentary

The title compound is isotypic to  $CuI(4-bpe)\cdot 0.25$  4-bpe already reported in the literature (Hoffman *et al.*, 2020). Its asymmetric unit consists of one Cu<sup>I</sup> cation and one bromide anion in general positions as well as two crystallographically



#### Figure 1

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes for the generation of equivalent atoms: (i) -x, -y + 2, -z + 1; (ii) -x - 1, -y + 2, -z; (iii) -x + 2, -y + 1, -z + 1.

independent half 4-bpe ligands that are completed by inversion symmetry (Fig. 1). There is one quarter of an additional bpe solvate molecule that is disordered around a center of inversion (Fig. 2 and see *Refinement* section). Because of the disorder, this ligand is not fully occupied and was refined using a split model (Fig. 3).

The copper(I) cations are tetrahedrally coordinated by two symmetry-equivalent bromide anions and two N atoms of two crystallographically independent 4-bpe ligands (Fig. 1). From the bond lengths and angles (Table 1), it is apparent that the tetrahedra are slightly distorted. Pairs of Cu<sup>I</sup> cations are linked by two  $\mu$ -1,1 bridging bromide anions into dimeric (CuBr)<sub>2</sub> units that are located on centers of inversion and are further connected by the 4-bpe ligands into layers (Fig. 4).

#### 3. Supramolecular features

In the crystal structure of the title compound, the layers are arranged in such a way that cavities are formed, which proceed along the a-axis direction, in which the disordered 4-bpe





Crystal structure of the solvate 4-bpe molecule with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code for the generation of equivalent atoms: (iv) -x + 2, -y + 1, -z.



Figure 3

Crystal structure of the title compound showing the disorder of the solvate 4-bpe molecule.



Figure 4

Crystal structure of the title compound with a view of one CuBr(4-bpe) layer along the crystallographic *b*-axis direction. The disordered 4-bpe solvate molecule is not shown for clarity.

solvate molecules are embedded (Fig. 5). The layers are connected *via* intermolecular  $C-H\cdots Br$  hydrogen bonding (Table 2). The  $C-H\cdots Br$  angle is close to linearity, indicating that this is a significant interaction. There are additional  $C-H\cdots Br$  interactions, between the C-H groupings of the solvate 4-bpe ligands and the bromide ions (Table 2).

#### 4. Database survey

A search in the CSD database (version 5.43, last update November 2023; Groom *et al.*, 2016) using *ConQuest* (Bruno *et al.*, 2002) revealed that several compounds with copper(I) halides and 4-bpe as a coligand have been reported. These include three compounds with the composition  $(CuX)_2(4-bpe)$ with X = Cl (CSD refcode WEHVIP, Li *et al.*, 2006; WEHVIP01, Yang *et al.*, 2006; WEHVIP02, Chen *et al.*, 2008; WEHVIP03, Wang, 2016), Br (SUXSUA; Shen & Lush, 2010), I (HUJHID; Blake *et al.*, 1999; HUJHID01, Neal *et al.*, 2019).



Figure 5

Crystal structure of the title compound with a view along the crystallographic *a*-axis direction, showing the pores in which the disordered solvate 4-bpe molecules are embedded.

Selected geometric parameters (Å,  $^{\circ}$ ).

| Cu1-Br1                  | 2.5441 (5)  | Cu1-N1                   | 1.988 (2)   |
|--------------------------|-------------|--------------------------|-------------|
| Cu1-Br1 <sup>i</sup>     | 2.6424 (5)  | Cu1-N11                  | 1.979 (2)   |
| Br1-Cu1-Br1 <sup>i</sup> | 96.351 (16) | N11-Cu1-Br1              | 107.21 (6)  |
| N1-Cu1-Br1 <sup>i</sup>  | 99.06 (7)   | N11-Cu1-N1               | 131.18 (9)  |
| N1-Cu1-Br1               | 108.16 (6)  | Cu1-Br1-Cu1 <sup>i</sup> | 83.649 (16) |
| N11-Cu1-Br1 <sup>i</sup> | 109.28 (6)  |                          |             |
|                          |             |                          |             |

Symmetry code: (i) -x, -y + 2, -z + 1.

| Table 2       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|--------------------------------|------|-------------------------|--------------|-----------------------------|
| C4-H4···Br1 <sup>ii</sup>      | 0.95 | 2.97                    | 3.919 (3)    | 175                         |
| C5-H5···Br1                    | 0.95 | 3.12                    | 3.759 (2)    | 126                         |
| $C24 - H24 \cdots Br1^{iii}$   | 0.95 | 2.93                    | 3.816 (7)    | 156                         |
| C26−H26···Br1 <sup>iv</sup>    | 0.95 | 2.96                    | 3.861 (12)   | 159                         |
| $C26' - H26' \cdots Br1^{iii}$ | 0.95 | 2.87                    | 3.751 (17)   | 154                         |

Symmetry codes: (ii) -x - 1, -y + 2, -z + 1; (iii) x + 1, y, z - 1; (iv) -x + 1, -y + 1, -z + 1.

In all these compounds, the copper(I) cations are tetrahedrally coordinated by three bromide anions and one 4-bpe ligand. The copper(I) cations are linked by the three  $\mu$ -1,1,1 bridging halide anions into chains that are further linked into layers by the 4-bpe coligands. The chloride and iodide compounds are isotypic, which is not the case for the bromide compound. There is one compound of the composition (CuI)(4-bpe)·0.25 4-bpe that is isotypic to the title compound (TUYRAJ; Hoffman *et al.*, 2020). Another compound of the composition (CuCl)<sub>2</sub>(4-bpe)·4H<sub>2</sub>O has similar unit-cell parameters as well as the same space group, which indicates that this compound may also be isotypic to the title compound (HUTXIE; Mohapatra & Maji, 2010).

There are further compounds that additionally contain triphenylphosphane as ligand, such as  $(CuX)_2(4-bpe)(triphenylphosphane)_2$  with X = I (NAZTEQ; Sugimoto *et al.*, 2018), Br (SIPYEW; Yu *et al.*, 2007). One additional compound with the composition  $(CuCl)_2(4-bpe)(triphenylphosphan)_2 \cdot 2 \operatorname{CH}_2\operatorname{Cl}_2$  contains solvate molecules (SIPYIA; Yu *et al.*, 2007).

#### 5. Thermoanalytical investigations

Comparison of the experimental powder pattern with that calculated from single-crystal data reveals that the title compound was obtained as a pure phase (Fig. S1). The title compound was characterized for its thermal properties by simultaneous thermogravimetry and differential thermo-analysis (TG–DTA). Upon heating, two mass losses are observed in the TG curve that are accompanied by endo-thermic events in the DTA curve (Fig. 6). From the first derivative of the TG curve (DTG curve), it is obvious that both mass losses are well resolved (Fig. 6). The first mass loss of 36.4% is in good agreement with that calculated for the removal of 0.75 4-bpe ligands ( $\Delta m_{calc}$ = 36.8%), whereas the second mass loss of 19.7% is much lower than that expected



Figure 6

 $D\bar{T}G$  , TG and DTA curve for the title compound, measured with a  $4^\circ C$  min  $^{-1}$  heating rate.

for the loss of the remaining 4-bpe ligands ( $\Delta m_{calc.}$ = 24.5%), indicating that in this step the coligands are not completely removed. However, the first observation indicates that after the first mass loss a compound with the composition (CuBr)<sub>2</sub>(4-bpe) has been formed. To prove this assumption, a second TG measurement was performed, in which the residue formed after the first mass loss was isolated and investigated by PXRD. Comparison of the experimental pattern with that calculated for (CuBr)<sub>2</sub>(4-bpe) reported in the literature (Shen *et al.*, 2010) proves that this compound was obtained (Fig. S2).

#### 6. Synthesis and crystallization

CuBr was purchased from Riedel de Haën. 4-bpe was purchased from Sigma-Aldrich. A microcrystalline powder was obtained by the reaction of 0.5 mmol CuBr (71.75 mg) and 1.0 mmol 4-bpe (182.2 mg) in 3 ml of MeCN. The mixture was stirred for 4 d at room temperature and filtered off. Crystals suitable for single-crystal X-ray diffraction were obtained under hydrothermal conditions for 4 d at 403 K using 0.5 mmol of CuBr (71.75 mg), 2.0 mmol of 4-bpe (364.4 mg) in 3 ml of MeCN as a solvent. An IR spectrum of the title compound can be found in Fig. S3.

#### **Experimental details**

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu  $K\alpha_1$  radiation ( $\lambda = 1.540598$  Å). The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: *WINFIRST*, from ATI Mattson. Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitrogen atmosphere in Al<sub>2</sub>O<sub>3</sub> crucibles using a STA-

| -                                                                        |                                                     |
|--------------------------------------------------------------------------|-----------------------------------------------------|
| Crystal data                                                             |                                                     |
| Chemical formula                                                         | $[CuBr(C_{12}H_{10}N_2)] \cdot 0.25C_{12}H_{10}N_2$ |
| $M_{\rm r}$                                                              | 370.72                                              |
| Crystal system, space group                                              | Triclinic, $P\overline{1}$                          |
| Temperature (K)                                                          | 100                                                 |
| a, b, c (Å)                                                              | 7.7421 (2), 10.1612 (2), 10.1749 (3)                |
| $\alpha, \beta, \gamma$ (°)                                              | 72.143 (2), 73.252 (3), 68.004 (2)                  |
| $V(\dot{A}^3)$                                                           | 692.68 (4)                                          |
| Z                                                                        | 2                                                   |
| Radiation type                                                           | Cu Ka                                               |
| $\mu \text{ (mm}^{-1})$                                                  | 5.50                                                |
| Crystal size (mm)                                                        | $0.16\times0.10\times0.08$                          |
| Determine the stars                                                      |                                                     |
| Data collection                                                          |                                                     |
| Diffractometer                                                           | XtaLAB Synergy, Dualitex, HyPix                     |
| Absorption correction                                                    | OD, 2023)                                           |
| $T_{\min}, T_{\max}$                                                     | 0.686, 1.000                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 15373, 2913, 2872                                   |
| $R_{\rm ext}$                                                            | 0.023                                               |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.639                                               |
|                                                                          |                                                     |
| Refinement $p(p^2) = p(p^2)$                                             | 0.000 0.054 1.00                                    |
| $R[F^- > 2\sigma(F^-)], wR(F^-), S$                                      | 0.029, 0.076, 1.09                                  |
| No. of reflections                                                       | 2913                                                |
| No. of parameters                                                        | 217                                                 |
| No. of restraints                                                        | 16                                                  |
| H-atom treatment                                                         | H-atom parameters constrained                       |
| $\Delta \rho_{\text{man}} \Delta \rho_{\text{min}} (e  \text{\AA}^{-3})$ | 0.60 - 0.62                                         |

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 1999) and publCIF (Westrip, 2010).

PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

#### 7. Refinement

Table 3

Experimental details.

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with  $U_{iso}(H) = 1.2U_{eq}(C)$  using a riding model. The solvate 4-bpe molecule is disordered around a center of inversion. Therefore, it was refined using a split model with restraints for the geometry (SAME) and half occupancy for all atoms.

#### Acknowledgements

The project was supported by the State of Schleswig-Holstein.

#### References

- Batten, S. R., Jeffery, J. C. & Ward, M. D. (1999). *Inorg. Chim. Acta*, **292**, 231–237.
- Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). *Cryst. Eng.* 2, 181–195.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.

## research communications

- Chen, S. P., Fan, G. & Gao, S. L. (2008). Chin. J. Chem. 26, 286-289.
- Gibbons, S. K., Hughes, R. P., Glueck, D. S., Royappa, A. T., Rheingold, A. L., Arthur, R. B., Nicholas, A. D. & Patterson, H. H. (2017). *Inorg. Chem.* **56**, 12809–12820.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hoffman, J. L., Akhigbe, J. E., Reinheimer, E. W. & Smucker, B. W. (2020). *IUCrData*, **5**, x200998.
- Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007). *Dalton Trans*. pp. 2263–2270.
- Jia, J. H., Chen, X. L., Liao, J. Z., Liang, D., Yang, M. X., Yu, R. & Lu, C. Z. (2018). *Dalton Trans.* 48, 1418–1426.
- Kawata, S., Kitigawa, S., Kurnagai, H., Iwabuchi, S. & Katada, M. (1998). *Inorg. Chim. Acta*, 267, 143–145.
- Kromp, T., Sheldrick, W. S. & N\u00e4ther, C. (2003). Z. Anorg. Allg. Chem. 629, 45–54.
- Li, Z.-G., Xu, J.-W., Jia, H.-Q. & Hu, N.-H. (2006). Acta Cryst. C62, m205–m207.
- Lu, J. Y., Cabrera, B. R., Wang, R. J. & Li, J. (1999). *Inorg. Chem.* 38, 4608–4611.
- Mensah, A., Shao, J. J., Ni, J. L., Li, G. J., Wang, F. M. & Chen, L. Z. (2021). Front. Chem. 9, 816363.
- Mohapatra, S. & Maji, T. K. (2010). Dalton Trans. 39, 3412-3419.
- Moreno, J. M., Suarez-Varela, J., Colacio, E., Avila-Rosón, J. C., Hidalgo, M. A. & Martin-Ramos, D. (1995). *Can. J. Chem.* 73, 1591– 1595.

- Näther, C., Bhosekar, G. & Jess, I. (2007). Inorg. Chem. 46, 8079–8087.
- Näther, C., Greve, J. & Jess, I. (2002). Solid State Sci. 4, 813-820.
- Näther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897-910.
- Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868–2876.
- Näther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017-1022.
- Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). *IUCrData*, **4**, x190122.
- Nitsch, J., Kleeberg, C., Fröhlich, R. & Steffen, A. (2015). *Dalton Trans.* 44, 6944–6960.
- Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1071.
- Sugimoto, S., Ohtsu, H. & Tsuge, K. (2018). J. Photochem. Photobiol. Chem. 353, 602–611.
- Wang, C. C. (2016). CSD Communication (refcode WEHVIP03). CCDC, Cambridge, England.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yaghi, O. M. & Li, G. (1995). Angew. Chem. Int. Ed. Engl. 34, 207– 209.
- Yang, L.-Q. & Li, X.-H. (2006). Acta Cryst. E62, m1510-m1511.
- Yu, M. M., Zhao, X. J. & Fu, W. F. (2007). Chin. J. Struct. Chem. 26, 1179–1182.

## supporting information

Acta Cryst. (2023). E79, 1028-1032 [https://doi.org/10.1107/S205698902300885X]

Synthesis, crystal structure and thermal properties of poly[[ $\mu$ -1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N$ :N'- $\mu$ -bromido-copper(I)] 1,2-bis(pyridin-4-yl)ethene 0.25-solvate]

### Christian Näther, Asmus Müller-Meinhard and Inke Jess

**Computing details** 

Data collection: *CrysAlis PRO* 1.171.42.90a (Rigaku OD, 2023); cell refinement: *CrysAlis PRO* 1.171.42.90a (Rigaku OD, 2023); data reduction: *CrysAlis PRO* 1.171.42.90a (Rigaku OD, 2023); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Poly[[ $\mu$ -1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N$ :N'- $\mu$ -bromido-copper(I)] 1,2-bis(pyridin-4-yl)ethene 0.25-solvate]

Crystal data

 $[CuBr(C_{12}H_{10}N_2)] \cdot 0.25C_{12}H_{10}N_2$   $M_r = 370.72$ Triclinic,  $P\overline{1}$  a = 7.7421 (2) Å b = 10.1612 (2) Å c = 10.1749 (3) Å a = 72.143 (2)°  $\beta = 73.252$  (3)°  $\gamma = 68.004$  (2)° V = 692.68 (4) Å<sup>3</sup>

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm<sup>-1</sup> ω scans Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2023)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.029$  $wR(F^2) = 0.076$ S = 1.092913 reflections 217 parameters Z = 2 F(000) = 368  $D_x = 1.780 \text{ Mg m}^{-3}$ Cu K $\alpha$  radiation,  $\lambda = 1.54184 \text{ Å}$ Cell parameters from 12191 reflections  $\theta = 4.7-77.9^{\circ}$   $\mu = 5.50 \text{ mm}^{-1}$ T = 100 K Block, red  $0.16 \times 0.10 \times 0.08 \text{ mm}$ 

 $T_{\min} = 0.686, T_{\max} = 1.000$ 15373 measured reflections 2913 independent reflections 2872 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.023$  $\theta_{\max} = 80.1^{\circ}, \theta_{\min} = 4.7^{\circ}$  $h = -9 \rightarrow 9$  $k = -12 \rightarrow 12$  $l = -12 \rightarrow 10$ 

16 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0325P)^2 + 1.2491P]$ where  $P = (F_o^2 + 2F_c^2)/3$ 

#### Acta Cryst. (2023). E79, 1028-1032

# $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|         | x           | v           | 7.                      | Uice*/Uce                 | Occ. (<1) |
|---------|-------------|-------------|-------------------------|---------------------------|-----------|
| <br>Cu1 | 0 10927 (5) | 0.86193 (5) | 0 40925 (4)             |                           |           |
| Br1     | -0.08547(4) | 0.86001(3)  | 0.65801(3)              | 0.03213(12)<br>0.02641(9) |           |
| N1      | -0.0555(3)  | 0.8695(3)   | 0.03001(3)<br>0.2873(2) | 0.0281(5)                 |           |
| C1      | 0.0113 (5)  | 0.8330 (6)  | 0.1631(4)               | 0.0727(16)                |           |
| HI      | 0.143170    | 0.783182    | 0.139491                | 0.087*                    |           |
| C2      | -0.1003(5)  | 0.8634(7)   | 0.0665 (4)              | 0.0795 (17)               |           |
| H2      | -0.044548   | 0.834750    | -0.020707               | 0.095*                    |           |
| C3      | -0.2928(4)  | 0.9353 (3)  | 0.0968 (3)              | 0.0311 (6)                |           |
| C4      | -0.3642(4)  | 0.9700 (3)  | 0.2276 (3)              | 0.0253(5)                 |           |
| H4      | -0.496090   | 1.017358    | 0.255058                | 0.030*                    |           |
| C5      | -0.2425 (4) | 0.9356 (3)  | 0.3180 (3)              | 0.0244 (5)                |           |
| Н5      | -0.294996   | 0.960275    | 0.407184                | 0.029*                    |           |
| C6      | -0.4080(4)  | 0.9702 (3)  | -0.0088(3)              | 0.0329 (6)                |           |
| H6      | -0.342795   | 0.947368    | -0.097537               | 0.039*                    |           |
| N11     | 0.3736 (3)  | 0.7409 (2)  | 0.4259 (2)              | 0.0234 (4)                |           |
| C11     | 0.4923 (4)  | 0.6648 (3)  | 0.3305 (3)              | 0.0269 (5)                |           |
| H11     | 0.445587    | 0.666766    | 0.252948                | 0.032*                    |           |
| C12     | 0.6785 (4)  | 0.5838 (3)  | 0.3389 (3)              | 0.0284 (5)                |           |
| H12     | 0.755308    | 0.529594    | 0.269785                | 0.034*                    |           |
| C13     | 0.7539 (3)  | 0.5816 (3)  | 0.4487 (3)              | 0.0242 (5)                |           |
| C14     | 0.6307 (4)  | 0.6606 (3)  | 0.5484 (3)              | 0.0261 (5)                |           |
| H14     | 0.674801    | 0.662599    | 0.625570                | 0.031*                    |           |
| C15     | 0.4447 (3)  | 0.7359 (3)  | 0.5344 (3)              | 0.0258 (5)                |           |
| H15     | 0.362545    | 0.786845    | 0.604744                | 0.031*                    |           |
| C16     | 0.9534 (4)  | 0.4976 (3)  | 0.4555 (3)              | 0.0266 (5)                |           |
| H16     | 1.020879    | 0.435330    | 0.391822                | 0.032*                    |           |
| N21     | 0.3823 (9)  | 0.5175 (8)  | -0.0098 (6)             | 0.0499 (14)               | 0.5       |
| C21     | 0.493 (2)   | 0.4013 (17) | 0.062 (3)               | 0.051 (4)                 | 0.5       |
| H21     | 0.443905    | 0.323171    | 0.111592                | 0.061*                    | 0.5       |
| C22     | 0.6762 (13) | 0.3836 (8)  | 0.0708 (7)              | 0.0514 (19)               | 0.5       |
| H22     | 0.748525    | 0.295564    | 0.123189                | 0.062*                    | 0.5       |
| C23     | 0.7524 (10) | 0.4965 (8)  | 0.0020 (7)              | 0.0494 (17)               | 0.5       |
| C24     | 0.6363 (12) | 0.6207 (7)  | -0.0705 (7)             | 0.0495 (18)               | 0.5       |
| H24     | 0.680607    | 0.701567    | -0.119425               | 0.059*                    | 0.5       |
| C25     | 0.455 (2)   | 0.6270 (18) | -0.071 (3)              | 0.044 (3)                 | 0.5       |
| H25     | 0.377125    | 0.715220    | -0.119266               | 0.052*                    | 0.5       |
| C26     | 0.9471 (15) | 0.4575 (12) | 0.0265 (10)             | 0.0280 (18)               | 0.3       |

## supporting information

| H26  | 0.997754  | 0.365000  | 0.084446     | 0.034*    | 0.3 |
|------|-----------|-----------|--------------|-----------|-----|
| C26′ | 0.930 (3) | 0.546 (2) | -0.0285 (15) | 0.038 (4) | 0.2 |
| H26′ | 0.934250  | 0.638394  | -0.085763    | 0.045*    | 0.2 |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|------|--------------|--------------|--------------|---------------|---------------|---------------|
| Cu1  | 0.0218 (2)   | 0.0507 (3)   | 0.0213 (2)   | -0.00529 (17) | -0.00852 (15) | -0.00798 (17) |
| Br1  | 0.02694 (14) | 0.02953 (15) | 0.01730 (14) | -0.00214 (10) | -0.00306 (10) | -0.00738 (10) |
| N1   | 0.0224 (10)  | 0.0430 (13)  | 0.0183 (11)  | -0.0073 (9)   | -0.0066 (8)   | -0.0076 (9)   |
| C1   | 0.0211 (14)  | 0.156 (5)    | 0.0325 (19)  | 0.005 (2)     | -0.0076 (13)  | -0.049 (2)    |
| C2   | 0.0277 (16)  | 0.170 (5)    | 0.0333 (19)  | 0.006 (2)     | -0.0089 (14)  | -0.055 (3)    |
| C3   | 0.0258 (13)  | 0.0462 (16)  | 0.0215 (13)  | -0.0083 (11)  | -0.0067 (10)  | -0.0096 (11)  |
| C4   | 0.0238 (12)  | 0.0261 (12)  | 0.0248 (13)  | -0.0044 (9)   | -0.0073 (9)   | -0.0062 (10)  |
| C5   | 0.0269 (12)  | 0.0240 (11)  | 0.0227 (12)  | -0.0050 (9)   | -0.0071 (9)   | -0.0075 (9)   |
| C6   | 0.0273 (13)  | 0.0525 (17)  | 0.0200 (13)  | -0.0077 (11)  | -0.0053 (10)  | -0.0153 (12)  |
| N11  | 0.0221 (10)  | 0.0265 (10)  | 0.0212 (10)  | -0.0063 (8)   | -0.0053 (8)   | -0.0057 (8)   |
| C11  | 0.0295 (13)  | 0.0280 (12)  | 0.0238 (13)  | -0.0040 (10)  | -0.0093 (10)  | -0.0090 (10)  |
| C12  | 0.0298 (13)  | 0.0290 (13)  | 0.0244 (13)  | -0.0044 (10)  | -0.0035 (10)  | -0.0110 (10)  |
| C13  | 0.0233 (12)  | 0.0207 (11)  | 0.0269 (13)  | -0.0048 (9)   | -0.0047 (9)   | -0.0056 (9)   |
| C14  | 0.0241 (12)  | 0.0304 (12)  | 0.0257 (13)  | -0.0061 (10)  | -0.0079 (10)  | -0.0092 (10)  |
| C15  | 0.0223 (11)  | 0.0308 (13)  | 0.0243 (13)  | -0.0049 (10)  | -0.0041 (9)   | -0.0109 (10)  |
| C16  | 0.0245 (12)  | 0.0240 (12)  | 0.0295 (14)  | -0.0038 (9)   | -0.0031 (10)  | -0.0102 (10)  |
| N21  | 0.048 (3)    | 0.067 (5)    | 0.037 (3)    | -0.017 (3)    | -0.002 (3)    | -0.020 (3)    |
| C21  | 0.068 (10)   | 0.035 (7)    | 0.035 (8)    | -0.011 (8)    | 0.011 (7)     | -0.014 (6)    |
| C22  | 0.065 (5)    | 0.049 (4)    | 0.024 (3)    | 0.006 (4)     | -0.009 (3)    | -0.015 (3)    |
| C23  | 0.046 (4)    | 0.073 (5)    | 0.035 (4)    | -0.012 (3)    | 0.005 (3)     | -0.039 (4)    |
| C24  | 0.071 (5)    | 0.046 (4)    | 0.031 (3)    | -0.032 (4)    | 0.016 (3)     | -0.016 (3)    |
| C25  | 0.054 (8)    | 0.032 (6)    | 0.025 (4)    | 0.000 (6)     | -0.003 (6)    | -0.001 (5)    |
| C26  | 0.036 (6)    | 0.026 (6)    | 0.014 (4)    | -0.003 (4)    | -0.003 (4)    | -0.003 (4)    |
| C26′ | 0.061 (13)   | 0.030 (9)    | 0.008 (6)    | -0.009 (8)    | -0.006 (7)    | 0.007 (6)     |

Geometric parameters (Å, °)

| Cu1—Br1              | 2.5441 (5) | C14—C15                | 1.381 (3)  |
|----------------------|------------|------------------------|------------|
| Cu1—Br1 <sup>i</sup> | 2.6424 (5) | C15—H15                | 0.9500     |
| Cu1—N1               | 1.988 (2)  | C16—C16 <sup>iii</sup> | 1.331 (5)  |
| Cu1—N11              | 1.979 (2)  | C16—H16                | 0.9500     |
| N1-C1                | 1.330 (4)  | N21—N21 <sup>iv</sup>  | 1.781 (13) |
| N1C5                 | 1.336 (3)  | N21—C21                | 1.319 (13) |
| C1—H1                | 0.9500     | N21—C21 <sup>iv</sup>  | 1.386 (18) |
| C1—C2                | 1.382 (4)  | N21—C22 <sup>iv</sup>  | 1.019 (9)  |
| С2—Н2                | 0.9500     | N21—C23 <sup>iv</sup>  | 1.081 (9)  |
| C2—C3                | 1.381 (4)  | N21—C24 <sup>iv</sup>  | 1.428 (10) |
| C3—C4                | 1.385 (4)  | N21—C25 <sup>iv</sup>  | 1.701 (16) |
| С3—С6                | 1.468 (4)  | N21—C25                | 1.337 (15) |
| C4—H4                | 0.9500     | C21—H21                | 0.9500     |
| C4—C5                | 1.382 (3)  | C21—C22                | 1.385 (13) |
|                      |            |                        |            |

## supporting information

| C5 115                     | 0.0500            | C22 1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0500     |
|----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                            | 0.9500            | C22—H22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| $C6-C6^n$                  | 1.305 (5)         | C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.389 (11) |
| С6—Н6                      | 0.9500            | C23—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.381 (10) |
| N11—C11                    | 1.341 (3)         | C23—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.484 (12) |
| N11—C15                    | 1.349 (3)         | C23—C26′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.55 (2)   |
| C11—H11                    | 0.9500            | C24—H24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| C11—C12                    | 1 379 (4)         | C24—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 382 (14) |
| $C_{12}$ $H_{12}$          | 0.9500            | C25 H25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| $C_{12}$ $C_{12}$ $C_{12}$ | 1 202 (4)         | $C_{25} = 1125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20(2)    |
|                            | 1.395 (4)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30(2)    |
| C13—C14                    | 1.397 (3)         | C26—H26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| C13—C16                    | 1.469 (3)         | C26′—C26′ <sup>v</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.29 (3)   |
| C14—H14                    | 0.9500            | C26'—H26'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500     |
| Br1—Cu1—Br1 <sup>i</sup>   | 96.351 (16)       | $C22^{iv}$ N21 N21 $iv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115.6 (9)  |
| N1 $C_{\mu}1$ $Br1^{i}$    | 90.06(7)          | $C22^{iv}$ N21 C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 166.0(9)   |
| N1 = Cu1 = Dr1             | 108 16 (6)        | $\begin{array}{c} C22i \\ C22iv \\ N121 \\ C21iv \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.2(8)    |
| NII C I Duli               | 100.10(0)         | $C_{22} = N_2 I = C_{21} V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.3(0)    |
| NII—CuI—Brl                | 109.28 (6)        | $C_{22} = N_2 I = C_{23} V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.7 (8)   |
| NII—CuI—BrI                | 107.21 (6)        | $C22^{iv} - N21 - C24^{iv}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147.8 (9)  |
| N11—Cu1—N1                 | 131.18 (9)        | $C22^{iv}$ —N21—C25 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160.5 (10) |
| Cu1—Br1—Cu1 <sup>i</sup>   | 83.649 (16)       | C22 <sup>iv</sup> —N21—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.4 (8)   |
| C1—N1—Cu1                  | 123.56 (19)       | $C23^{iv}$ —N21—N21 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161.7 (9)  |
| C1—N1—C5                   | 116.2 (2)         | C23 <sup>iv</sup> —N21—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.2 (9)  |
| C5—N1—Cu1                  | 119.41 (17)       | C23 <sup>iv</sup> —N21—C21 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151.1 (10) |
| N1—C1—H1                   | 118.1             | $C23^{iv}$ —N21—C24 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65.1 (6)   |
| N1 - C1 - C2               | 1237(3)           | $C_{23iv} N_{21} C_{25iv}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116 6 (9)  |
| $C_2 - C_1 - H_1$          | 118.1             | $C_{23iv} N_{21} C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 134.0(10)  |
| $C_1 C_2 H_2$              | 120.0             | $C24^{iv}$ N21 N21 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 154.0(10)  |
| $C_1 = C_2 = C_1$          | 120.0             | $C_{24} = N_{21} = N_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0(0)    |
| $C_{3}$                    | 120.0 (3)         | $C_24^{\circ}$ N21 $C_23^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.5 (6)   |
| C3—C2—H2                   | 120.0             | C25—N21—N21 <sup>w</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64.3 (7)   |
| C2—C3—C4                   | 116.5 (2)         | $C25^{IV}$ —N21—N21 <sup>IV</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.1 (6)   |
| C2—C3—C6                   | 119.2 (3)         | C25—N21—C21 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.3 (9)   |
| C4—C3—C6                   | 124.3 (2)         | C25—N21—C24 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160.9 (9)  |
| C3—C4—H4                   | 120.2             | C25—N21—C25 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.4 (8)  |
| C5—C4—C3                   | 119.7 (2)         | N21—C21—H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.3      |
| C5—C4—H4                   | 120.2             | N21—C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125.5 (12) |
| N1-C5-C4                   | 123.8 (2)         | C22—C21—H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.3      |
| N1-C5-H5                   | 118.1             | $C_{21} - C_{22} - H_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5      |
| C4—C5—H5                   | 118.1             | $C_{21} - C_{22} - C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1191(10)   |
| $C_3 C_6 H_6$              | 117.2             | $C_{23}^{23} C_{22}^{22} H_{22}^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.5      |
|                            | 117.2<br>125.7(2) | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 120.3      |
|                            | 123.7 (3)         | N21 = C23 = C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.3 (0)   |
| C6 <sup>n</sup> —C6—H6     | 117.2             | $N21^{n}$ $C23$ $C22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.7(6)    |
| CII—NII—Cul                | 123.12 (17)       | N21 <sup>w</sup> —C23—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.7 (7)   |
| C11—N11—C15                | 116.7 (2)         | $N21^{v}$ —C23—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157.5 (9)  |
| C15—N11—Cu1                | 120.17 (17)       | N21 <sup>1v</sup> —C23—C26′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 168.7 (10) |
| N11—C11—H11                | 118.2             | C22—C23—C21 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.0 (6)   |
| N11—C11—C12                | 123.5 (2)         | C22—C23—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.8 (8)  |
| C12—C11—H11                | 118.2             | C22—C23—C26′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 144.6 (9)  |
| C11—C12—H12                | 120.0             | C24—C23—C21 <sup>iv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.5 (6)   |

| C11—C12—C13                       | 120.0 (2)  | C24—C23—C22                  | 116.4 (7)  |
|-----------------------------------|------------|------------------------------|------------|
| C13—C12—H12                       | 120.0      | C24—C23—C26                  | 132.8 (8)  |
| C12—C13—C14                       | 116.7 (2)  | C24—C23—C26′                 | 99.0 (9)   |
| C12—C13—C16                       | 119.7 (2)  | C26—C23—C21 <sup>iv</sup>    | 164.2 (8)  |
| C14—C13—C16                       | 123.6 (2)  | C23—C24—H21 <sup>iv</sup>    | 164.4 (16) |
| C13—C14—H14                       | 120.1      | C23—C24—H24                  | 120.1      |
| C15—C14—C13                       | 119.8 (2)  | C23—C24—C25                  | 119.7 (8)  |
| C15—C14—H14                       | 120.1      | H24—C24—H21 <sup>iv</sup>    | 74.4       |
| N11—C15—C14                       | 123.3 (2)  | C25—C24—H21 <sup>iv</sup>    | 46.1 (18)  |
| N11—C15—H15                       | 118.3      | C25—C24—H24                  | 120.1      |
| C14—C15—H15                       | 118.3      | N21-C25-H21 <sup>iv</sup>    | 158 (2)    |
| C13—C16—H16                       | 117.6      | N21—C25—C24                  | 124.6 (12) |
| C16 <sup>iii</sup> —C16—C13       | 124.8 (3)  | N21—C25—H25                  | 117.7      |
| C16 <sup>iii</sup> —C16—H16       | 117.6      | C24—C25—H21 <sup>iv</sup>    | 34.3 (10)  |
| C21—N21—N21 <sup>iv</sup>         | 50.5 (8)   | С24—С25—Н25                  | 117.7      |
| $C21^{iv}$ —N21—N21 <sup>iv</sup> | 47.2 (6)   | H25—C25—H21 <sup>iv</sup>    | 83.9       |
| C21—N21—C21 <sup>iv</sup>         | 97.7 (9)   | С23—С26—Н26                  | 118.0      |
| $C21^{iv}$ —N21—C24 <sup>iv</sup> | 143.8 (8)  | C26 <sup>v</sup> —C26—C23    | 124.0 (14) |
| $C21$ — $N21$ — $C24^{iv}$        | 46.2 (8)   | C26 <sup>v</sup> —C26—H26    | 118.0      |
| C21—N21—C25                       | 114.7 (10) | С23—С26'—Н26'                | 121.9      |
| $C21^{iv}$ —N21—C25 <sup>iv</sup> | 92.3 (8)   | C26' <sup>v</sup> —C26'—C23  | 116 (2)    |
| $C21$ — $N21$ — $C25^{iv}$        | 5.9 (13)   | C26' <sup>v</sup> —C26'—H26' | 121.9      |
|                                   |            |                              |            |

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x-1, -y+2, -z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x+2, -y+1, -z.

### Hydrogen-bond geometry (Å, °)

| D—H···A                         | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|---------------------------------|-------------|-------|--------------|-------------------------|
| C4—H4···Br1 <sup>vi</sup>       | 0.95        | 2.97  | 3.919 (3)    | 175                     |
| C5—H5…Br1                       | 0.95        | 3.12  | 3.759 (2)    | 126                     |
| C24—H24···Br1 <sup>vii</sup>    | 0.95        | 2.93  | 3.816 (7)    | 156                     |
| C26—H26····Br1 <sup>viii</sup>  | 0.95        | 2.96  | 3.861 (12)   | 159                     |
| C26'—H26'····Br1 <sup>vii</sup> | 0.95        | 2.87  | 3.751 (17)   | 154                     |
|                                 |             |       |              |                         |

Symmetry codes: (vi) -x-1, -y+2, -z+1; (vii) x+1, y, z-1; (viii) -x+1, -y+1, -z+1.