Received 8 May 2023
Accepted 27 July 2023

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; phenol; amine; ether; aminebis(phenol).

CCDC reference: 2067395

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS
Published under a CC BY 4.0 licence

Crystal structure of bis(3,5-dichloro-2-hydroxy-benzyl)(2-methoxyethyl)amine

Bradley M. Wile, ${ }^{\text {a* }}$ Claire L. Griffith ${ }^{\text {a }}$ and Adam R. Johnson ${ }^{\text {b }}$

${ }^{\text {a }}$ The Donald J. Bettinger Department of Chemistry and Biochemistry, The School of Science, Technology, and Mathematics, Ohio Northern University, 525 S. Main Street, Ada, OH 45810, USA, and ${ }^{\mathbf{b}}$ Harvey Mudd College, Chemistry, 301 Platt Blvd., Claremont, CA 91711, USA. *Correspondence e-mail: b-wile@onu.edu

The title compound, systematic name $4,4^{\prime}, 6,6^{\prime}$-tetrachloro- $2,2^{\prime}-\{[(2-m e t h o x y-$ ethyl)azanediyl]bis(methylene) $\}$ diphenol $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{4} \mathrm{NO}, \mathbf{1}\right)$, was prepared via a modified Mannich reaction between 2-methoxyethylamine, 2,4-dichlorophenol, and aqueous formaldehyde. The resulting amine bis(phenol) provides an interesting comparison to related species as a result of the electron-withdrawing substituents on the phenol rings, in combination with similar steric parameters. One of the Cl atoms was modeled as a two-component disorder with partial occupancies of 0.49 (3) and 0.51 (3), while the pendant ether group was modeled as a two-component disorder with partial occupancies of 0.867 (3) and 0.133 (3). A comparison of metrical parameters for the title compound and closely related structures provides insight into the use of these species as ligands to support transition-metal complexes for applications as homogeneous catalysts.

1. Chemical context

Complexes of early transition- and rare-earth metals featuring diaminebis(phenols) have been employed as efficient catalysts for the polymerization of olefins and cyclic esters (Tshuva et al., 2000; Carpentier et al., 2015), while those of late transition metals have been shown to be effective at promoting crosscoupling (Hasan et al., 2011; Qian et al., 2011; Reckling et al., 2011). Several reports have noted that the coordination mode and donor-atom identity play an important role in the activity of the resulting complexes (Tshuva et al., 2001; Qian et al., 2011; Chard et al., 2014). We have previously observed both κ^{2} and κ^{3} coordination modes for $\mathrm{Pd}^{\mathrm{II}}$ complexes of related aminebis(phenols), in which steric parameters of the phenolate moiety played a significant role in the coordination behavior (Graziano, Collins et al., 2019; Graziano, Wile et al., 2019).

Diaminebis(phonols) may be readily prepared via a Mannich reaction (Tshuva et al., 2000, 2001; Kasting et al., 2015), and the ligand framework may be modified by altering the steric or electronic parameters of the commercially available reaction components. Both bridging and pendant diamine variants are known, depending on whether the ligand precursor is prepared using an N, N - or $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted amine. Prior reports of $\mathrm{Fe}^{\mathrm{II}}$ complexes supported by halogenated aminebis(phenols) bearing an alkyl ether donor group suggest poorer catalytic activity when compared with ligands bearing bulky alkyl-substituted phenols (Hasan et al., 2011; Reckling et al., 2011). However, it is speculated that the inferior catalytic activity is related to the air sensitivity of these Fe complexes, and potential catalyst decomposition

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{Cl} 1$	$0.82(2)$	$2.58(2)$	$3.0455(12)$	$117.4(17)$
O2-H2 $\cdots \mathrm{N} 1$	$0.87(2)$	$1.83(2)$	$2.6365(16)$	$153(2)$
O1-H1 $^{\mathrm{O}} \mathrm{O}^{\mathrm{i}}$	$0.82(2)$	$2.01(2)$	$2.7709(14)$	$152.5(19)$

Symmetry code: (i) $-x+2,-y+2,-z+1$.
pathways under the conditions employed for this Kumada coupling. Based on these reports and our interest in extending the range of aminebis(phenols) suitable for use as ligands, we prepared the title compound $\mathbf{1}$ and obtained single crystals suitable for X-ray diffraction studies. It was speculated that a direct comparison of the metrical parameters for $\mathbf{1}$ with those of related aminebis(phenols) with pendant ether groups would provide insight into the choice of halogenated phenols in the design of this ligand, for use in combination with late transition metals.

2. Structural commentary

Compound $\mathbf{1}$ exhibits bond lengths and angles consistent with the depiction as an aliphatic amine with ether and phenol moieties depicted in Fig. 1. $\mathrm{C}-\mathrm{N}$ bond lengths [1.472 (2), 1.475 (2), and 1.476 (2) \AA] , $\mathrm{C}-\mathrm{O}_{\text {phenol }}$ bond lengths [1.354 (1) and 1.346 (2) \AA] , and $\mathrm{C}-\mathrm{Cl}$ bond lengths [1.734 (1), 1.732 (1), 1.728 (1), and 1.732 (9) Å] are not significantly different from

Figure 1
Labeled depiction of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table 2
Comparison of bond lengths (\AA) and sum of angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and related structures.

	$\mathbf{1}$	CAKDUP	ZAVTEX	SOJBIE	SOJBUQ
$\mathrm{C}-\mathrm{O}$ (phenol)	$1.352(2)$	$1.370(1)$	$1.369(3)$	$1.369(2)$	$1.368(3)$
	$1.348(3)$	$1.375(2)$	$1.370(3)$	$1.370(2)$	$1.370(3)$
$\mathrm{C}-\mathrm{O}-\mathrm{C}$	$112.0(3)$	$112.5(1)$	$114.5(2)$	$112.2(1)$	$112.1(2)$
$\Sigma \mathrm{C}-\mathrm{N}-\mathrm{C}$	337.7	334.0	334.2	333.5	333.4

one another, within ± 3 esd. The sum of $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles about N 1 is 337.7°, representing a deviation of 0.41093 (1) \AA from the plane defined by $\mathrm{C} 1 / \mathrm{C} 8 / \mathrm{C} 15$. This extent of pyramidalization is consistent with an $s p^{3}$-hybridized (tertiary) amine, and is influenced by the presence of an intramolecular $\mathrm{O} 2-$ $\mathrm{H} 2 \cdots \mathrm{~N} 1$ hydrogen bond (Table 1). This hydrogen-bonding interaction generates a six-membered ring with an $S(6)$ graphset descriptor, consistent with our prior observations for similar molecules (Bowser et al., 2016). The ether fragment was modeled as a two-component disorder involving $\mathrm{C} 16, \mathrm{O} 3$, and C 17 , with a $\mathrm{C} 16-\mathrm{O} 3-\mathrm{C} 17$ bond angle of $112.0(3)^{\circ}$. The methylene $[\mathrm{C} 16-\mathrm{O} 3,1.405$ (3) Å] and methyl [C17-O3, 1.413 (4) \AA] C-O bond lengths are not significantly different from one another, within ± 3 esd. Atom Cl 2 was also modeled as having two-component disorder.

Compound $\mathbf{1}$ is chemically similar to the related ligands featuring alkyl substituents in place of the Cl substituents in $\mathbf{1}$. A comparison of bond lengths and angles for compound $\mathbf{1}$ and CAKDUP (Hasan et al., 2011), ZAVTEX (Dean et al., 2012), SOJBIE and SOJBUQ (Chapurina et al., 2014) is presented in Table 2. Despite the differences in space group, all compounds exhibit similar metrical parameters. The most notable differences between these structures are the shorter $\mathrm{C}-\mathrm{O}_{\text {phenol }}$ bond lengths for compound $\mathbf{1}$ [1.354 (1) and 1.346 (2) \AA], consistent with the electron-withdrawing effect of the Cl substituents on the phenol rings. In contrast, compounds containing electron-donating alkyl substituents exhibit slightly longer $\mathrm{C}-\mathrm{O}_{\text {phenol }}$ bond lengths. Bond lengths for other moieties are more similar between $\mathbf{1}$ and these previously reported structures. The sum of $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles and the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond angles indicate a similar electronic environment for the amine and ether donors of all compounds. This supports the hypothesis that compound $\mathbf{1}$ would have similar steric parameters to closely related ligands, but function as a more electrophilic donor.

3. Supramolecular features

The hydrogen-bond geometry is noted in Table 1. A short contact was noted between O 2 and N1 [2.6365 (14) Å], consistent with a hydrogen bond between the phenol and tertiary amine moieties, $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$. By refining the position of H 2 , the $\mathrm{H} 2 \cdots \mathrm{~N} 1$ distance was found to be 1.83 (2) \AA, suggesting a strong hydrogen-bonding interaction that supports the observed pyramidalization of the tertiary amine. Hydrogen bonding is also observed between $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\prime}$ (and conversely $\mathrm{O}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O} 2$), resulting in the formation of

Figure 2
Depiction of the centrosymmetric dimer formed as a result of hydrogen bonding. See Table 1 for symmetry codes.
a centrosymmetric dimer with an $R_{2}^{2}(20)$ graph-set descriptor, as shown in Fig. 2. The H1 $\cdots \mathrm{O} 2^{\prime}$ distance $[2.01$ (2) \AA] suggests a strong hydrogen-bonding interaction.

An additional short contact was noted between O 1 and Cl 1 [$3.0459(12) \AA$] with a corresponding $\mathrm{H} 1 \cdots \mathrm{Cl} 1$ distance of 2.58 (2) A , suggesting a weak interaction. Close contacts between $\mathrm{Cl} 1 \cdots \mathrm{Cl} 4^{\prime}\left[3.468\right.$ (3) \AA] and $\mathrm{Cl} 1 \cdots \mathrm{O}^{\prime}{ }^{\prime}[3.266$ (2) \AA] centers are inconsistent with weak halogen bonding, and instead are attributed to packing effects. Further evidence is provided by the small observed angles around Cl1 (104.10° for $\mathrm{C} 4-\mathrm{Cl} 1 \cdots \mathrm{O} 2^{\prime}$ and 72.24° for $\mathrm{C} 4-\mathrm{Cl} 1 \cdots \mathrm{Cl} 4^{\prime}$) and Cl 4 (147.46° for $\mathrm{C} 13-\mathrm{Cl} 4 \cdots \mathrm{Cl} 1^{\prime}$) compared with 180° expected for a halogen bond.

4. Database survey

A search of the Cambridge Structural Database (CSD, update of November 2022; Groom et al., 2016) for related amine bis(phenols) featuring a pendant ether moiety returned 19 results, all featuring alkyl or hydrogen substituents on the phenol. Of these, the most closely related were reported by Kozak and co-workers, and feature 2,4-dimethyl or 2-tert-butyl-4-methyl phenol substituents in place of the Cl substituents reported in this work. These include CSD refcodes CAKDUP (Hasan et al., 2011), HITHIC (Chowdhury et al., 2008), and ZAVTEX (Dean et al., 2012). Structures XAQWUL, XAQXAS, XARCOM, XARCUS, XARDAZ, and XARHOR (Fazekas et al., 2021) are derived from various amino-acid ethyl esters and feature 2,4-dimethyl or 2,4-di-tertbutyl substituents. TIDLIC (Safaei et al., 2007) features a similar 2,4-di-tert-butyl substitution pattern in combination with a pendant methyl-tetrahydrofuranyl amine substituent. Structure UZOZOA (Kuźnik et al., 2019) contains a diethoxyethyl amine moiety as well as otherwise unsubstituted 2-naphthol donors as a synthetic precursor to the target ligand. Structures SOJBIE and SOJBUQ (Chapurina et al., 2014) featuring bulky cumyl substituents were reported as synthetic precursors to the corresponding Sc and Y complexes.

A series of compounds featuring amino phenols as part of a larger structure or macrocycle have been reported. KEWFUP, KEWGAW, and KEWGEA (Riisiö et al., 2012) feature two amine-bis(phenol) moieties connected by an ethyl-bis(ethoxyethyl) linkage and exhibit significant hydrogen bonding in the solid state. Two related macrocycles featuring an ethylbis(ethoxyethyl) PEXNOY (Takemura et al., 2018) or disulfide MEQFUJ (Ito et al., 2000) bridge have been reported. Entry TAXLIN (Hampton et al., 1996) is a tri-aza-calix[3]arene featuring a glycine-derived amino ester moiety.

5. Synthesis and crystallization

Compound $\mathbf{1}$ was prepared using a method analogous to that reported for related compounds (Graziano, Collins et al., 2019; Reckling et al., 2011). This reaction scheme is shown in Fig. 3. 2,4-Dichlorophenol ($1.957 \mathrm{~g}, 12.0 \mathrm{mmol}, 2$ eq.) and a $37 \mathrm{wt} . \%$ aqueous solution of formaldehyde $(0.974 \mathrm{~g}$, $12.0 \mathrm{mmol}, 2$ eq.) were added to a 20 mL scintillation vial containing 5.0 mL of methanol and a PTFE-coated magnetic stir bar. 2-Methoxyethylamine ($0.521 \mathrm{~mL}, 6.00 \mathrm{mmol}, 1 \mathrm{eq}$.) was added, and the vial was immediately capped and placed in an aluminum heating block maintained at 343 K . The clear colorless solution turned bright yellow within 1 h of heating, and maintained this appearance for 18 h , at which time the vial was removed from the heating block. The reaction mixture was poured into cold water (20 mL), and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated in vacuo to yield a yellow oil. The product was purified using an automated column chromatography system with an ethyl acetate/hexanes gradient ($0 \% \mathrm{EtOAc}$ hold $1 \mathrm{~min} \rightarrow 20 \% \mathrm{EtOAc}$ in 2 min , hold 4 min $\rightarrow 100 \%$ EtOAc in 4 min , hold 2 min). The desired product was isolated as a yellow oil $\left(0.594 \mathrm{~g}, 1.40 \mathrm{mmol}, 23 \%, R_{\mathrm{f}}=0.40\right.$ in $40 \% \mathrm{EtOAc}$) that generated single crystals suitable for X-ray diffraction studies upon standing.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Atoms H 1 and H 2 were located in difference-Fourier maps and freely refined. All other hydrogen atoms were placed at calculated positions (aromatic: $0.93 \AA$, methylene: $0.97 \AA$, methyl: $0.96 \AA$) using suitable HFIX commands and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(\mathrm{C})$. The methyl group was refined as an idealized rotating group. Cl 2 was modeled as a two-component disorder with partial occupancies of 0.49 (3) and 0.51 (3). The pendant ether group was modeled as a two-component disorder with

Figure 3
Reaction scheme.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{4} \mathrm{NO}_{3}$
M_{r}	425.11
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	293
$a, b, c(\AA)$	$9.4912(2), 10.0464(2), 11.1169(3)$
$\alpha, \beta, \gamma\left(^{\circ}\right)$	$103.930(2), 113.048(2), 90.543(2)$
$V\left(\AA^{3}\right)$	$940.32(4)$
Z	2
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.65
Crystal size (mm)	$0.56 \times 0.36 \times 0.31$
Data collection	XtaLAB Mini II
Diffractometer	Analytical $(C r y s A l i s ~ P R O ;$ Rigaku
Absorption correction	OD, 2019)
	$0.886,0.940$
$T_{\text {min }}, T_{\text {max }}$	$56643,5724,4418$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.056
$R_{\text {int }}$	0.722
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.035,0.100,1.05$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	5724
No. of reflections	274
No. of parameters	71
No. of restraints	H atoms treated by a mixture of
H -atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.34,-0.25$

Computer programs: CrysAlis PRO 1.171.40.55a (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), OLEX2 1.3-ac4 (Dolomanov et al., 2009), PLATON (Spek, 2020).
partial occupancies of 0.867 (3) and 0.133 (3). Atomic displacement parameters were restrained using SIMU with a sigma of 0.01 for internal and 0.02 for terminal atoms. The atoms within the disordered group were restrained to have similar bond distances. Cl 2 was modeled as a two-component disorder with partial occupancies of 0.52 (4) and 0.48 (4).

Acknowledgements

The authors acknowledge ongoing support for research from the Getty College of Arts and Sciences at Ohio Northern University.

Funding information

Funding for this research was provided by: American Chemical Society Petroleum Research Fund (grant No. 56549UR3 to Bradley Wile).

References

Bowser, A. K., Anderson-Wile, A. M., Johnston, D. H. \& Wile, B. M. (2016). Appl. Organomet. Chem. 30, 32-39.

Carpentier, J.-F. (2015). Organometallics, 34, 4175-4189.
Chapurina, Y., Klitzke, J., Casagrande, O. de L. Jr, Awada, M., Dorcet, M., Kirillov, V. \& Carpentier, J.-F. (2014). Dalton Trans. 43, 14322-14333.
Chard, E. F., Thompson, J. R., Dawe, L. N. \& Kozak, C. M. (2014). Can. J. Chem. 92, 758-764.
Chowdhury, R. R., Crane, A. K., Fowler, C., Kwong, P. \& Kozak, C. M. (2008). Chem. Commun. pp. 94-96.

Dean, R. K., Fowler, C. I., Hasan, K., Kerman, K., Kwong, P., Trudel, S., Leznoff, D. B., Kraatz, H.-B., Dawe, L. N. \& Kozak, C. M. (2012). Dalton Trans. 41, 4806-4816.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Fazekas, E., Jenkins, D. T., Forbes, A. A., Gallagher, B., Rosair, G. M. \& McIntosh, R. D. (2021). Dalton Trans. 50, 17625-17634.
Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. \& Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.
Graziano, B. J., Wile, B. M. \& Zeller, M. (2019). Acta Cryst. E75, 1265-1269.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hampton, P. D., Tong, W., Wu, S. \& Duesler, E. N. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1127-1130.
Hasan, K., Dawe, L. N. \& Kozak, C. M. (2011). Eur. J. Inorg. Chem. pp. 4610-4621.
Ito, K., Yamamori, Y., Ohta, T. \& Ohba, Y. (2000). J. Org. Chem. 65, 8361-8366.
Kasting, B. J., Bowser, A. K., Anderson-Wile, A. M. \& Wile, B. M. (2015). J. Chem. Educ. 92, 1103-1109.

Kuźnik, N., Wyskocka, M., Jarosz, M., Oczek, L., Goraus, S., Komor, R., Krawczyk, T. \& Kempka, M. (2019). Arab. J. Chem. 12, 14241435.

Qian, X., Dawe, L. N. \& Kozak, C. M. (2011). Dalton Trans. 40, 933943.

Reckling, A. M., Martin, D., Dawe, L. N., Decken, A. \& Kozak, C. M. (2011). J. Organomet. Chem. 696, 787-794.

Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Riisiö, A., Hänninen, M. M. \& Sillanpää, R. (2012). CrystEngComm, 14, 7258-7263.
Safaei, E., Weyhermuller, T., Bothe, E., Wieghardt, K. \& Chaudhuri, P. (2007). Eur. J. Inorg. Chem. pp. 2334-2344.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Takemura, H., Sako, K., Iwanaga, T., Tatsumi, A., Mogami, Y., Watanabe, H., Aoki, M., Yûki, S., Hayano, Y. \& Itaka, M. (2018). Tetrahedron, 74, 1991-2001.
Tshuva, E. Y., Goldberg, I. \& Kol, M. (2000). J. Am. Chem. Soc. 122, 10706-10707.
Tshuva, E. Y., Goldberg, I., Kol, M. \& Goldschmidt, Z. (2001). Organometallics, 20, 3017-3028.

supporting information

Acta Cryst. (2023). E79, 782-785 [https://doi.org/10.1107/S2056989023006564]
Crystal structure of bis(3,5-dichloro-2-hydroxybenzyl)(2-methoxyethyl)amine

Bradley M. Wile, Claire L. Griffith and Adam R. Johnson

Computing details

Data collection: CrysAlis PRO 1.171.40.55a (Rigaku OD, 2019); cell refinement: CrysAlis PRO 1.171.40.55a (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.55a (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Olex2 1.3-ac4 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009), PLATON (Spek, 2020).

2,4-Dichloro-6-(\{[(3,5-dichloro-2-hydroxyphenyl)methyl](2-methoxyethyl)amino\}methyl)phenol

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{4} \mathrm{NO}_{3}$
$M_{r}=425.11$
Triclinic, $P \overline{1}$
$a=9.4912$ (2) Å
$b=10.0464$ (2) \AA
$c=11.1169(3) \AA$
$\alpha=103.930(2)^{\circ}$
$\beta=113.048(2)^{\circ}$
$\gamma=90.543(2)^{\circ}$
$V=940.32(4) \AA^{3}$

Data collection

XtaLAB Mini II
diffractometer
Detector resolution: 10.0000 pixels mm^{-1}
ω scans
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2019)
$T_{\text {min }}=0.886, T_{\text {max }}=0.940$
56643 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.100$
$S=1.05$
5724 reflections
274 parameters
71 restraints
Primary atom site location: dual

$$
Z=2
$$

$F(000)=436$
$D_{\mathrm{x}}=1.501 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 18216 reflections
$\theta=2.1-29.4^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, light yellow
$0.56 \times 0.36 \times 0.31 \mathrm{~mm}$

5724 independent reflections
4418 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=30.9^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-15 \rightarrow 15$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0501 P)^{2}+0.1137 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cl 1	1.01005 (4)	1.16885 (4)	0.82889 (4)	0.05322 (11)	
Cl 3	1.22323 (4)	0.61557 (4)	0.38567 (4)	0.05383 (11)	
C14	0.84093 (5)	0.14540 (4)	0.20134 (5)	0.06363 (13)	
O1	0.82934 (14)	1.03365 (11)	0.52755 (11)	0.0510 (3)	
H1	0.900 (2)	1.097 (2)	0.568 (2)	0.069 (6)*	
O2	0.96180 (11)	0.74608 (9)	0.42712 (10)	0.0400 (2)	
H2	0.872 (2)	0.774 (2)	0.414 (2)	0.074 (6)*	
N1	0.66091 (12)	0.74842 (10)	0.34291 (10)	0.0318 (2)	
C1	0.57399 (14)	0.84027 (13)	0.40526 (13)	0.0367 (3)	
H1A	0.474597	0.791182	0.382398	0.044*	
H1B	0.555600	0.919147	0.367423	0.044*	
C2	0.65628 (14)	0.89107 (12)	0.55747 (13)	0.0341 (2)	
C3	0.78319 (14)	0.99260 (12)	0.61437 (13)	0.0354 (3)	
C4	0.85263 (14)	1.04400 (13)	0.75464 (14)	0.0376 (3)	
C5	0.80028 (16)	0.99664 (15)	0.83826 (14)	0.0435 (3)	
H5	0.848114	1.031911	0.931918	0.052*	
C6	0.67633 (16)	0.89655 (16)	0.78049 (15)	0.0466 (3)	
C7	0.60415 (15)	0.84369 (14)	0.64163 (14)	0.0418 (3)	
H7	0.520189	0.775990	0.604414	0.050*	
C8	0.66952 (14)	0.61504 (12)	0.37752 (13)	0.0320 (2)	
H8A	0.569909	0.559766	0.327692	0.038*	
H8B	0.694307	0.631215	0.473573	0.038*	
C9	0.79009 (13)	0.53710 (12)	0.34387 (11)	0.0300 (2)	
C10	0.93273 (14)	0.60756 (12)	0.37335 (12)	0.0314 (2)	
C11	1.04486 (14)	0.53163 (14)	0.34808 (13)	0.0358 (3)	
C12	1.01851 (15)	0.38994 (14)	0.29476 (13)	0.0405 (3)	
H12	1.094355	0.340736	0.277973	0.049*	
C13	0.87734 (16)	0.32319 (13)	0.26702 (13)	0.0394 (3)	
C14	0.76347 (14)	0.39528 (12)	0.29014 (12)	0.0348 (3)	
H14	0.668492	0.348467	0.269575	0.042*	
C15	0.60508 (17)	0.73494 (15)	0.19605 (13)	0.0430 (3)	
H15A	0.659421	0.666455	0.159482	0.052*	0.867 (3)
H15B	0.633807	0.822342	0.184310	0.052*	0.867 (3)
H15C	0.690386	0.713498	0.170147	0.052*	0.133 (3)
H15D	0.579251	0.824618	0.181553	0.052*	0.133 (3)
Cl2A	0.5985 (10)	0.8517 (9)	0.8845 (5)	0.0813 (12)	0.49 (3)
O3	0.38914 (17)	0.56244 (17)	0.11430 (15)	0.0620 (5)	0.867 (3)
C16	0.4335 (2)	0.6951 (2)	0.11144 (19)	0.0510 (5)	0.867 (3)
H16A	0.376368	0.761397	0.146831	0.061*	0.867 (3)

H16B	0.409768	0.696484	0.018604	0.061^{*}	$0.867(3)$
C17	$0.2289(4)$	$0.5234(5)$	$0.0411(4)$	$0.0727(10)$	$0.867(3)$
H17A	0.203010	0.508710	-0.054032	0.109^{*}	$0.867(3)$
H17B	0.174109	0.595322	0.070034	0.109^{*}	$0.867(3)$
H17C	0.200589	0.439687	0.057594	0.109^{*}	$0.867(3)$
C12B	$0.6178(8)$	$0.8240(12)$	$0.8838(5)$	$0.0852(13)$	$0.51(3)$
O3A	$0.3455(10)$	$0.6544(11)$	$0.1361(8)$	$0.058(2)$	$0.133(3)$
C16A	$0.4692(13)$	$0.6306(17)$	$0.1002(12)$	$0.055(3)$	$0.133(3)$
H16C	0.441195	0.637306	0.008277	0.066^{*}	$0.133(3)$
H16D	0.496146	0.538240	0.103566	0.066^{*}	$0.133(3)$
C17A	$0.215(3)$	$0.552(3)$	$0.065(3)$	$0.090(7)$	$0.133(3)$
H17D	0.159714	0.561535	-0.024522	0.135^{*}	$0.133(3)$
H17E	0.148807	0.563079	0.112909	0.135^{*}	$0.133(3)$
H17F	0.249224	0.461729	0.060152	0.135^{*}	$0.133(3)$

Atomic displacement parameters (A^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0519 (2)	0.03981 (18)	0.0515 (2)	-0.01450 (15)	0.01056 (17)	0.00156 (15)
Cl3	0.03336 (16)	0.0688 (3)	0.0631 (2)	0.00036 (16)	0.02120 (16)	0.02153 (19)
C14	0.0699 (3)	0.03300 (18)	0.0738 (3)	0.00873 (17)	0.0259 (2)	-0.00547 (17)
O1	0.0605 (7)	0.0419 (5)	0.0461 (6)	-0.0170 (5)	0.0224 (5)	0.0031 (5)
O2	0.0371 (5)	0.0301 (4)	0.0494 (5)	-0.0045 (4)	0.0169 (4)	0.0057 (4)
N1	0.0347 (5)	0.0278 (5)	0.0325 (5)	0.0036 (4)	0.0138 (4)	0.0067 (4)
C1	0.0330 (6)	0.0336 (6)	0.0383 (6)	0.0054 (5)	0.0122 (5)	0.0042 (5)
C2	0.0310 (6)	0.0287 (5)	0.0387 (6)	0.0051 (5)	0.0139 (5)	0.0023 (5)
C3	0.0373 (6)	0.0274 (5)	0.0401 (6)	0.0030 (5)	0.0170 (5)	0.0044 (5)
C4	0.0344 (6)	0.0285 (6)	0.0425 (7)	0.0001 (5)	0.0125 (5)	0.0017 (5)
C5	0.0391 (7)	0.0475 (8)	0.0369 (7)	0.0012 (6)	0.0129 (6)	0.0034 (6)
C6	0.0402 (7)	0.0570 (9)	0.0432 (7)	-0.0030 (6)	0.0194 (6)	0.0103 (6)
C7	0.0334 (6)	0.0435 (7)	0.0441 (7)	-0.0033 (5)	0.0156 (6)	0.0044 (6)
C8	0.0326 (5)	0.0292 (5)	0.0344 (6)	0.0015 (4)	0.0145 (5)	0.0071 (5)
C9	0.0309 (5)	0.0290 (5)	0.0282 (5)	0.0015 (4)	0.0110 (4)	0.0060 (4)
C10	0.0314 (5)	0.0315 (6)	0.0280 (5)	-0.0004 (4)	0.0094 (4)	0.0068 (4)
C11	0.0293 (5)	0.0450 (7)	0.0330 (6)	0.0029 (5)	0.0121 (5)	0.0111 (5)
C12	0.0378 (6)	0.0477 (7)	0.0341 (6)	0.0128 (6)	0.0143 (5)	0.0079 (5)
C13	0.0448 (7)	0.0308 (6)	0.0354 (6)	0.0065 (5)	0.0119 (5)	0.0035 (5)
C14	0.0346 (6)	0.0305 (6)	0.0337 (6)	-0.0008 (5)	0.0110 (5)	0.0039 (5)
C15	0.0507 (8)	0.0445 (7)	0.0360 (7)	0.0067 (6)	0.0182 (6)	0.0135 (6)
C12A	0.080 (2)	0.106 (2)	0.0540 (16)	-0.0391 (15)	0.0384 (17)	-0.0025 (18)
O3	0.0505 (8)	0.0610 (10)	0.0552 (8)	-0.0033 (7)	0.0030 (6)	0.0130 (7)
C16	0.0561 (12)	0.0518 (11)	0.0344 (8)	0.0134 (9)	0.0077 (8)	0.0103 (8)
C17	0.0510 (13)	0.098 (3)	0.0480 (18)	-0.0115 (16)	0.0108 (11)	-0.0010 (15)
Cl2B	0.0609 (12)	0.139 (3)	0.0544 (16)	-0.0285 (17)	0.0132 (13)	0.042 (2)
O3A	0.053 (4)	0.069 (5)	0.038 (3)	-0.004 (4)	0.014 (3)	-0.001 (3)
C16A	0.054 (5)	0.068 (5)	0.038 (4)	0.010 (5)	0.016 (4)	0.007 (4)
C17A	0.065 (9)	0.102 (10)	0.051 (10)	0.007 (9)	-0.011 (8)	-0.013 (8)

Geometric parameters ($\AA,{ }^{\circ}$)

C11-C4	$1.7284(13)$	C9-C14	$1.3841(16)$
C13-C11	$1.7324(13)$	C10-C11	$1.3927(17)$
C14-C13	$1.7337(13)$	C11-C12	$1.3825(19)$
O1-H1	$0.82(2)$	C12-H12	0.9300
O1-C3	$1.3465(16)$	C12-C13	$1.378(2)$
O2-H2	$0.87(2)$	C13-C14	$1.3789(18)$
O2-C10	$1.3540(14)$	C14-H14	0.9300
N1-C1	$1.4720(15)$	C15-H15A	0.9700
N1-C8	$1.4752(15)$	C15-H15B	0.9700
N1-C15	$1.4763(16)$	C15-H15C	0.9700
C1-H1A	0.9700	C15-H15D	0.9700
C1-H1B	0.9700	C15-C16	$1.518(2)$
C1-C2	$1.5085(17)$	C15-C16A	$1.502(12)$
C2-C3	$1.4002(17)$	O3-C16	$1.405(3)$
C2-C7	$1.3854(19)$	O3-C17	$1.413(4)$
C3-C4	$1.3906(18)$	C16-H16A	0.9700
C4-C5	$1.381(2)$	C16-H16B	0.9700
C5-H5	0.9300	C17-H17A	0.9600
C5-C6	$1.372(2)$	C17-H17B	0.9600
C6-C7	$1.380(2)$	C17-H17C	0.9600
C6-C12A	$1.732(7)$	O3A-C16A	$1.386(13)$
C6-C12B	$1.748(6)$	O3A-C17A	$1.427(16)$
C7-H7	0.9300	C16A-H16C	0.9700
C8-H8A	0.9700	C16A-H16D	0.9700
C8-H8B	0.9700	C17A-H17D	0.9600
C8-C9	$1.5079(16)$	C17A-H17E	0.9600
C9-C10	$1.4015(16)$	C17A-H17F	0.9600
C3-O1-H1			
C10-O2-H2	$111.2(14)$	C13-C12-C11	$118.54(12)$
C1-N1-C8	$105.1(13)$	C13-C12-H12	120.7
C1-N1-C15	$111.85(10)$	C12-C13-C14	$119.75(10)$
C8-N1-C15	$112.00(10)$	C12-C13-C14	$121.22(12)$
N1-C1-H1A	$113.80(10)$	C14-C13-C14	$119.03(11)$
N1-C1-H1B	109.0	C9-C14-H14	119.9
N1-C1-C2	109.0	C13-C14-C9	$120.21(12)$
H1A-C1-H1B	$113.07(10)$	C13-C14-H14	119.9
C2-C1-H1A	107.8	N1-C15-H15A	108.0
C2-C1-H1B	109.0	N1-C15-H15B	108.0
C3-C2-C1	109.0	N1-C15-H15C	107.6
C7-C2-C1	$119.30(12)$	N1-C15-H15D	107.6
C7-C2-C3	$121.13(11)$	N1-C15-C16	$117.22(13)$
O1-C3-C2	$119.50(12)$	N1-C15-C16A	$118.7(6)$
O1-C3-C4	$116.78(12)$	H15A-C15-H15B	107.2
C4-C3-C2	$124.53(12)$	H15C-C15-H15D	107.1
C3-C4-C11	$118.69(12)$	C16-C15-H15A	108.0
	C16-C15-H15B	108.0	

supporting information

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl} 1$	$118.21(10)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.67(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.72(13)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.17(13)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl} 2 \mathrm{~A}$	$118.2(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 12 \mathrm{~B}$	$119.8(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 2 \mathrm{~A}$	$120.2(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 2 \mathrm{~B}$	$118.9(3)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	119.9
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$120.26(13)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.9
$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.4
$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.4
$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 9$	$111.23(10)$
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.0
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.4
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.4
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$119.85(10)$
$\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 8$	$120.31(10)$
$\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 10$	$119.77(11)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$120.78(11)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11$	$120.70(11)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$118.52(11)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{Cl} 3$	$119.57(10)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{Cl} 3$	$118.68(10)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$121.74(11)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.7

C16A-C15-H15C	107.6
C16A-C15-H15D	107.6
C16-O3-C17	$112.0(3)$
C15-C16-H16A	109.6
C15-C16-H16B	109.6
O3-C16-C15	$110.13(15)$
O3-C16-H16A	109.6
O3-C16-H16B	109.6
H16A-C16-H16B	108.1
O3-C17-H17A	109.5
O3-C17-H17B	109.5
O3-C17-H17C	109.5
H17A-C17-H17B	109.5
H17A-C17-H17C	109.5
H17B-C17-H17C	109.5
C16A-O3A-C17A	$115.8(15)$
C15-C16A-H16C	109.7
C15-C16A-H16D	109.7
O3A-C16A-C15	$109.7(10)$
O3A-C16A-H16C	109.7
O3A-C16A-H16D	109.7
H16C-C16A-H16D	108.2
O3A-C17A-H17D	109.5
O3A-C17A-H17E	109.5
O3A-C17A-H17F	109.5
H17D-C17A-H17E	109.5
H17D-C17A-H17F	109.5
H17E-C17A-H17F	109.5

Hydrogen-bond geometry ($A,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}$	$0.82(2)$	$2.58(2)$	$3.0455(12)$	$117.4(17)$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.87(2)$	$1.83(2)$	$2.6365(16)$	$153(2)$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.82(2)$	$2.01(2)$	$2.7709(14)$	$152.5(19)$

Symmetry code: (i) $-x+2,-y+2,-z+1$.

