

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 7 August 2023
Accepted 25 August 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: 8-Aminoquinoline; intermolecular interactions; crystal structure; hydrogen bonding; $\pi-\pi$ stacking; Hirshfeld surface.

CCDC reference: 2290822

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure and Hirshfeld surface analysis of 8-azaniumylquinolinium tetrachloridozincate(II)

Gulnora A. Umirova, ${ }^{\text {a }}$ Khayit Kh. Turaev, ${ }^{\text {a }}$ Bekmurod Kh. Alimnazarov, ${ }^{\text {a }}$ Sherzod A. Kasimov, ${ }^{\text {a }}$ Abdulakhat T. Djalilov, ${ }^{\text {b }}$ Bakhtiyar T. Ibragimov ${ }^{\text {c }}$ and Jamshid M. Ashurov ${ }^{\text {c* }}$

${ }^{\text {a }}$ Termez State University, Barkamol avlod street 43, Termez city, Uzbekistan, ${ }^{\mathbf{b}}$ Tashkent Scientific Research Institute of Chemical Technology, Township Shura-bazar, District of Zangiata, Tashkent 111116, Uzbekistan, and ${ }^{\mathrm{c}}$ Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan.
*Correspondence e-mail: ashurovjamshid1@gmail.com

The reaction of 8-aminoquinoline, zinc chloride and hydrochloric acid in ethanol yielded the title salt, $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$, which consists of a planar 8-azaniumylquinolinium dication and a tetrahedral tetrachlorozincate dianion. The 8 -aminoquinoline moiety is protonated at both the amino and the ring N atoms. In the crystal, the cations and anions are connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming sheets parallel to (001). Adjacent sheets are linked through $\pi-\pi$ interactions involving the pyridine and arene rings of the 8 -azaniumylquinolinium dication. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $\mathrm{H} \cdots \mathrm{Cl}(48.1 \%), \mathrm{H} \cdots \mathrm{H}(19.9 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(14.3 \%)$ (involving the cations) and $\mathrm{H} \cdots \mathrm{Cl}(82.6 \%)$ (involving the anions) interactions.

1. Chemical context

Quinoline and its derivatives comprise an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties, such as antimalarial (Shiraki et al., 2011; Singh et al., 2011; Murugan et al., 2022), antibacterial (Upadhayaya et al., 2009; Zeleke et al., 2020), antimicrobial (Teja et al., 2016), anti-inflammatory (Guirado et al., 2012), anticancer (Abbas et al., 2015), antidiabetic (Kulkarni et al., 2012) and antihistaminic activities (Sridevi et al., 2010). The quinoline moiety is found in many drugs and is useful in the rational design of novel bioactive molecules in medicinal chemistry. The interest in 8 -aminoquinoline, which contains functional groups commonly involved in hydrogen bonding, is related to its genotoxic activities, such as mutagenicity (Takahashi et al., 1987), and to its unusually low protonacceptor ability in solution. Quinolines are also strongly fluorescent and have been employed in the analytical study of heavy metals (Fritsch et al., 2006). They have also been used to prepare highly conducting copolymers (Li et al., 2005). As a ligand, 8 -aminoquinoline usually binds in a bidentate fashion via the two N -atom positions (Setifi et al., 2016; Mao et al., 2018; Yang et al., 2019), although examples of bridgingbinding modes are also known (Schmidbaur et al., 1991). In addition, 8 -aminoquinoline can form $\pi-\pi$ stacking interactions with (other) aromatic rings, thus controlling the intergrowth of interpenetrating networks (Khelfa et al., 2021; Rahmati et al., 2018). Zinc, an essential component of life, is an abundant ion in living organisms (Andreini et al., 2006; Cuajungco et al., 2021). A bioinformatics study found that over 50% of zincbound proteins are enzymes, and in the vast majority of them,

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 11$	$0.88(1)$	$2.31(1)$	$3.1309(16)$	$154(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.89(1)$	$2.39(1)$	$3.1747(17)$	$148(2)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 3^{\text {ii }}$	$0.88(2)$	$2.48(2)$	$3.2415(16)$	$145(2)$
N2-H2 $\cdots \mathrm{Cl} 4$	$0.86(2)$	$2.25(2)$	$3.0958(16)$	$166(2)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.93	2.71	$3.584(2)$	157

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
the metal plays a catalytic role (Andreini \& Bertini, 2012). About 20% of them feature zinc as a structural component (Banci et al., 2002; Andreini \& Bertini, 2012). Zinc complexes exhibit a wide range of coordination numbers and coordination spheres, with tetrahedral (Ashurov et al., 2018; Petrus et al., 2020) and octahedral (Ashurov et al., 2011) environments being the most frequently observed.

In the context given above, we report here the synthesis, crystal structure and Hirshfeld surface analysis of the organicinorganic hybride salt $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$.

2. Structural commentary

The title salt crystallizes with one $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2+}$ dication and one $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion in the asymmetric unit (Fig. 1). The cation consists of an 8 -aminoquinoline moiety that is protonated at both the amino and the ring N atoms. Protonation of the amino group results in a lengthening of the $\mathrm{C}-\mathrm{N}\left(s p^{3}\right)$ bond from $1.377(3) \AA\left(s p^{2} \mathrm{~N}\right)$ in 8 -aminoquinoline (Van

Figure 1
View of the asymmetric unit of the title salt, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as dashed lines.

Figure 2
The formation of $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1, \mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{i}}, \mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 3^{\text {ii }}$, $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 4$ and $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{\text {iii }}$ hydrogen bonds (dashed blue lines) in the crystal structure, leading to $R_{2}^{2}(9)$ and $R_{4}^{3}(11)$ graph-set motifs. The symmetry codes are as in Table 1.

Meervelt et al., 1997) to 1.464 (2) A. This reflects the loss of the conjugation between the aromatic ring and the lone-pair electrons of the amino N atom when the latter is protonated. The quinoline ring system (atoms $\mathrm{C} 1-\mathrm{C} 9 / \mathrm{N} 2$) is essentially planar; the r.m.s. deviation for the non-H atoms is 0.017 (2) \AA, with a maximum deviation from the mean plane of 0.022 (2) \AA for the C 7 atom. The azaniumyl N atom is almost coplanar with the quinoline plane, deviating from it by only 0.033 (2) A. The coordination environment of the Zn atom in the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion is slightly distorted tetrahedral $\left(\tau^{4}=0.91\right.$; Yang et al., 2007). The mean value of the $\mathrm{Zn}-\mathrm{Cl}$ bond lengths of the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion is $2.279 \AA$, which is in good agreement with the literature value [2.268 (4) \AA; Harrison, 2005]. The $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ bond angles in the dianion indicate distortions from a regular tetrahedron $\left(109.5^{\circ}\right)$, with a spread of values

Figure 3
The crystal packing viewed along [100]. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are shown as blue dashed lines, while the $\pi-\pi$ stacking interactions are shown as red dashed lines.
between 103.058 (19) and 117.08 (2) ${ }^{\circ}$. The most acute angle of $103.058(19)^{\circ}$ within the tetrachloridozincate dianion is subtended by atoms Cl 1 and Cl 4 . These atoms are associated with the relatively long $\mathrm{Zn}-\mathrm{Cl}$ bond lengths, which, in turn, are correlated with the most relevant intermolecular interactions in the structure; atom Cl 4 is involved in the shortest and most linear $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (see Section 3) and thus represents the most distant ligand in the anion.

3. Supramolecular features and Hirshfeld surface analysis

Each $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion is connected to four neighbouring organic cations through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions involving all the Cl atoms (Table 1). Thus, the $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1, \quad \mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 4$ and $\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl}^{\text {ii }}$ hydrogen bonds generate $R_{2}^{2}(9)$ ring motifs (Bernstein et al., 1995) and link the dications and anions into chains parallel to [100] (Fig. 2). These chains are interconnected by
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$ and $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{\text {iii }}$ hydrogen bonds, which generate $R_{4}^{3}(11)$ ring motifs, forming sheets parallel to (001) (Fig. 2). In addition, the molecules are linked by pairs of $\pi-\pi$ interactions between the pyridine and arene rings of neighbouring dications. The molecules stack along [001] to consolidate the triperiodic supramolecular network (Fig. 3). The relevant centroid-to-centroid distance for $\pi-\pi$ stacking interaction between Cg 1 (the centroid of pyridine ring C5-C7/N2/ $\mathrm{C} 8 / \mathrm{C} 9$) and Cg 2 (the centroid of arene ring $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 8$) is $C g 1 \cdots C g 2^{i}=3.7784$ (11) $\AA \quad[$ symmetry code: (i) $-x+1$, $-y+1,-z+1]$, with a slippage of $1.613 \AA$.

The supramolecular interactions were investigated quantitatively and visualized by Hirshfeld surface analysis performed with CrystalExplorer21 (Spackman et al., 2021). It should be noted that the Hirshfeld surfaces and fingerprint plots were calculated separately for the 8 -azaniumylquinolinium dication and the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion. The respective acceptor and donor atoms showing strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular hydrogen bonds (for $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1, \mathrm{~N} 1-\mathrm{H} 1 B \cdots$

Figure 4
View of the three-dimensional Hirshfeld surface for the $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2+}$ dication and the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion plotted over $d_{\text {norm }}$. Parts (a) and (b) show the front and back sides, respectively, of the $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2+}$ dication. Parts (c) and (d) show the front and back sides, respectively, of the $[\mathrm{ZnCl} 4]^{2-}$ dianion.
$\mathrm{Cl}^{2}{ }^{\mathrm{i}}, \mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 3^{\mathrm{ii}}$ and $\left.\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 4\right)$ are indicated as bright-red spots on the Hirshfeld surface (Fig. 4). Classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds correspond to $\mathrm{H} \cdots \mathrm{Cl}$ contacts [with contributions of 82.6 and 48.1% to the Hirshfeld surface for the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion and 8-azaniumylquinolinium dication, respectively; Figs. $5(f)$ and $5(b)$]. These interactions can be seen as spikes with a sharp tip. $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{C} \cdots \mathrm{C}$ interactions in the dication, and $\mathrm{C} \cdots \mathrm{Cl}$ and $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions in the dianion follow with contributions of 19.9, 14.3, 6.7, 7.4 and 5.4%, respectively (Fig. 5). Other, minor, contributions are from $\mathrm{C} \cdots \mathrm{Cl}(6.4 \%), \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(2.6 \%)$, $\mathrm{H} \cdots \mathrm{Zn}(0.7 \%), \mathrm{N} \cdots \mathrm{Cl}(0.6 \%)$ and $\mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}(0.1 \%)$ contacts in the dication, and from $\mathrm{Zn} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{Zn}(1.7 \%)$, $\mathrm{Zn} \cdots \mathrm{H}(1.1 \%), \mathrm{N} \cdots \mathrm{Cl}(1.0 \%)$ and $\mathrm{Zn} \cdots \mathrm{C}(0.8 \%)$ contacts in the dianion. The shape-index of the 8 -azaniumylquinolinium

Figure 5
Two-dimensional Hirshfeld surface fingerprint plots for the $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2+}$ dication [panels $(a),(b),(c)$ and $(d)]$ and the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ dianion [panels $(e),(f),(g)$ and $(h)]$. The d_{i} and d_{e} values are the closest internal and external distances (in \AA) from a given point on the Hirshfeld surface.

Figure 6
The Hirshfeld surface of the $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2+}$ dication plotted over shapeindex.
dication is a tool to visualize $\pi-\pi$ stacking by the presence of adjacent red and blue triangles. Fig. 6 gives clear evidence that these interactions exist, as discussed above.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2022.3.0; Groom et al., 2016) revealed 114 compounds involving the 8 -aminoquinoline moiety. Among them, 65 are metal complexes and 20 are organic salts and cocrystals. In all of these metal complexes, 8 -aminoquinoline coordinates in a bidentate fashion, although there are examples of bridgingbinding (CSD refcode VIZBIP; Schmidbaur et al., 1991) and monodentate (MUDNEG; Xu et al., 2015) modes. Only in the structure of 8 -azaniumylquinolinium dichloride (PENHAR; Yan et al., 1998) are both the amino group and the ring N atom protonated.

5. Synthesis and crystallization

Commercially available starting materials were used without further purification. 8-Aminoquinoline ($0.144 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in 10 ml of an ethanol/ HCl mixture $(9: 1 \mathrm{v} / \mathrm{v})$ and added to a solution of $\mathrm{ZnCl}_{2}(0.136 \mathrm{~g}, 1 \mathrm{mmol})$ in 10 ml of the same ethanol $/ \mathrm{HCl}$ mixed solvent. The mixture was heated under reflux and stirred for 30 min . A pale-yellow crystalline product was obtained at room temperature after 6 d by slow solvent evaporation [yield: 80%; elemental analysis calculated (\%) for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{Zn}$: C 30.59, H 2.85, N 7.93; found: C 30.43, H 2.79, N 7.89].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions and refined using the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms. Both the amino and the ring N -bound H

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$
M_{r}	353.36
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	566
$a, b, c(\AA)$	$7.52646(6), 13.40703(12)$,
$\beta\left({ }^{\circ}{ }^{\circ}\right)$	$12.65801(11)$
$V\left(\AA^{3}\right)$	$92.8635(8)$
Z	$1275.69(2)$
Radiation type	4
$\mu\left(\mathrm{~mm}^{-1}\right)$	Cu K α
Crystal size (mm)	10.16
	$0.24 \times 0.21 \times 0.15$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy single
	source diffractometer with a
	HyPix3000 detector
Absorption correction	Multi-scan $(C r y s A l i s ~ P R O ;$ Rigaku
	OD, 2020)
$T_{\text {min }}, T_{\text {max }}$	$0.491,1.000$
No. of measured, independent and	$11239,2474,2341$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.037
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.615
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.023,0.065,1.06$
No. of reflections	2474
No. of parameters	162
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	refinement

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
atoms were located in a difference Fourier map and refined with bond-length restraints of 0.89 (1) and $0.86(1) \AA$, respectively.

Acknowledgements

The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.

References

Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. \& Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560-6572.
Andreini, C. \& Bertini, I. (2012). J. Inorg. Biochem. 111, 150-156.
Andreini, I., Banci, L., Bertini, I. \& Rosato, A. (2006). J. Proteome Res. 5, 3173-3178.
Ashurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. \& Ibragimov, B. (2011). Acta Cryst. E67, m432.
Ashurov, J. M., Ibragimov, A. B. \& Ibragimov, B. T. (2018). IUCrData, 3, x181250.
Banci, L., Bertini, I., Ciofi-Baffoni, S., Finney, L. A., Outten, C. E. \& O'Halloran, T. V. (2002). J. Mol. Biol. 323, 883-897.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cuajungco, M. P., Ramirez, M. S. \& Tolmasky, M. E. (2021). Biomedicines, 9, 208.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Fritsch, J. M., Thoreson, K. A. \& McNeill, K. (2006). Dalton Trans. pp. 4814-4820.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. \& Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87-94.
Harrison, W. T. A. (2005). Acta Cryst. E61, m1951-m1952.
Khelfa, S., Touil, M., Setifi, Z., Setifi, F., Al-Douh, M. H. \& Glidewell, C. (2021). IUCrData, 6, x210568.

Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. \& Hugar, M. H. (2012). Med. Chem. Res. 21, 663-671.

Li, X.-G., Hua, Y.-M. \& Huang, M.-R. (2005). Chem. Eur. J. 11, 42474256.

Mao, R., Frey, A., Balon, J. \& Hu, X. (2018). Nat. Catal. 1, 120-126.
Murugan, K., Panneerselvam, C., Subramaniam, J., Paulpandi, M., Rajaganesh, R., Vasanthakumaran, M., Madhavan, J., Shafi, S. S., Roni, M., Portilla-Pulido, J. S., Mendez, S. C., Duque, J. E., Wang, L., Aziz, A. T., Chandramohan, B., Dinesh, D., Piramanayagam, S. \& Hwang, J.-S. (2022). Sci. Rep. 12, 4765.
Petrus, R., Chomiak, K., Utko, J., Wilk-Kozubek, M., Lis, T., Cybińska, J. \& Sobota, P. (2020). Inorg. Chem. 59, 8108-8120.
Rahmati, Z., Mirzaei, M., Chahkandi, M. \& Mague, J. T. (2018). Inorg. Chim. Acta, 473, 152-159.
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Schmidbaur, H., Mair, A., Müller, G., Lachmann, J. \& Gamper, S. (1991). Z. Naturforsch. Teil B, 46, 912-918.

Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. \& Touzani, R. (2016). Acta Cryst. E72, 1488-1491.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shiraki, H., Kozar, M. P., Melendez, V., Hudson, T. H., Ohrt, C., Magill, A. J. \& Lin, A. J. (2011). J. Med. Chem. 54, 131-142.
Singh, B., Chetia, D., Puri, S. K., Srivastava, K. \& Prakash, A. (2011). Med. Chem. Res. 20, 1523-1529.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Sridevi, C. H., Balaji, K., Naidu, A. \& Sudhakaran, R. (2010). E-J. Chem. 7, 524124.
Takahashi, K., Kaiya, T. \& Kawazoe, Y. (1987). Mutat. Res./Genet. Toxicol. 187, 191-197.
Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. \& Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387-S392.

Upadhayaya, R. S., Vandavasi, J. K., Vasireddy, N. R., Sharma, V., Dixit, S. S. \& Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 2830-2841.
Van Meervelt, L., Goethals, M., Leroux, N. \& Zeegers-Huyskens, T. (1997). J. Phys. Org. Chem. 10, 680-686.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xu, H., Xue, Ch. \& Huang, R.-Y. (2015). Synth. React. Inorg. Met.Org. Nano-Met. Chem. 45, 1565-1569.
Yan, Y. K., Goh, N. K. \& Khoo, L. E. (1998). Acta Cryst. C54, 13221324.

Yang, F.-L., Chen, X., Wu, W.-H., Zhang, J.-H., Zhao, X.-M., Shi, Y.-H. \& Shen, F. (2019). Dalton Trans. 48, 231-241.

Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

Zeleke, D., Eswaramoorthy, R., Belay, Z. \& Melaku, Y. (2020). J. Chem. 2020, 1324096.

supporting information

Crystal structure and Hirshfeld surface analysis of 8-azaniumylquinolinium tetrachloridozincate(II)

Gulnora A. Umirova, Khayit Kh. Turaev, Bekmurod Kh. Alimnazarov, Sherzod A. Kasimov, Abdulakhat T. Djalilov, Bakhtiyar T. Ibragimov and Jamshid M. Ashurov
\section*{Computing details}

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

8-Azaniumylquinolinium tetrachloridozincate(II)

Crystal data

$\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=353.36$
Monoclinic, $P 2_{1} / n$
$a=7.52646$ (6) \AA
$b=13.40703$ (12) \AA
$c=12.65801$ (11) \AA
$\beta=92.8635$ (8$)^{\circ}$
$V=1275.69(2) \AA^{3}$
$Z=4$

Data collection

Rigaku XtaLAB Synergy single source diffractometer with a HyPix3000 detector
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.065$
$S=1.06$
2474 reflections
162 parameters
4 restraints
$F(000)=704$
$D_{\mathrm{x}}=1.840 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 8253 reflections
$\theta=3.3-71.4^{\circ}$
$\mu=10.16 \mathrm{~mm}^{-1}$
$T=566 \mathrm{~K}$
Block, pale yellow
$0.24 \times 0.21 \times 0.15 \mathrm{~mm}$

$$
T_{\min }=0.491, T_{\max }=1.000
$$

11239 measured reflections
2474 independent reflections
2341 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=71.4^{\circ}, \theta_{\text {min }}=4.8^{\circ}$
$h=-9 \rightarrow 7$
$k=-16 \rightarrow 16$
$l=-15 \rightarrow 15$

Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0362 P)^{2}+0.3283 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

> Extinction correction: SHELXL (Sheldrick, $2015 \mathrm{~b}), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$ Extinction coefficient: $0.00359(19)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Zn1	$0.92145(3)$	$0.41694(2)$	$0.17409(2)$	$0.02862(11)$
C 4	$0.66523(6)$	$0.36967(4)$	$0.07893(3)$	$0.03361(13)$
C 11	$0.84550(6)$	$0.56627(3)$	$0.24448(4)$	$0.03547(13)$
C 2	$0.95542(7)$	$0.31035(3)$	$0.31521(4)$	$0.03674(14)$
$\mathrm{Cl3}$	$1.16765(6)$	$0.41294(4)$	$0.08236(4)$	$0.03691(14)$
N 2	$0.4715(2)$	$0.39322(11)$	$0.28755(12)$	$0.0269(3)$
N 1	$0.4398(2)$	$0.58098(12)$	$0.17865(12)$	$0.0296(4)$
C1	$0.3676(2)$	$0.56492(13)$	$0.28262(13)$	$0.0245(4)$
C8	$0.3848(2)$	$0.47086(13)$	$0.33164(13)$	$0.0228(3)$
C9	$0.3120(2)$	$0.45601(14)$	$0.43180(14)$	$0.0275(4)$
C4	$0.2233(2)$	$0.53608(16)$	$0.47875(15)$	$0.0340(4)$
H4	0.173175	0.526950	0.543724	0.041^{*}
C2	$0.2837(2)$	$0.64101(14)$	$0.33141(16)$	$0.0320(4)$
H2A	0.274830	0.703201	0.299033	0.038^{*}
C7	$0.4940(3)$	$0.30526(14)$	$0.33447(16)$	$0.0335(4)$
H7	0.556834	0.255296	0.301634	0.040^{*}
C5	$0.3326(3)$	$0.36147(16)$	$0.47933(15)$	$0.0357(4)$
H5	0.282864	0.349307	0.543880	0.043^{*}
C6	$0.4245(3)$	$0.28736(16)$	$0.43198(17)$	$0.0391(5)$
H6	0.440294	0.225711	0.464797	0.047^{*}
C3	$0.2103(3)$	$0.62624(16)$	$0.43029(16)$	$0.0367(5)$
H3	0.152643	0.678533	0.462586	0.044^{*}
H1A	$0.5529(15)$	$0.5639(17)$	$0.179(2)$	$0.042(7)^{*}$
H1B	$0.434(3)$	$0.6446(9)$	$0.160(2)$	$0.056(8)^{*}$
H1C	$0.381(3)$	$0.5492(16)$	$0.1272(14)$	$0.039(6)^{*}$
H2	$0.518(3)$	$0.3968(17)$	$0.2270(11)$	$0.040(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.02863(16)$	$0.02727(16)$	$0.03004(16)$	$0.00008(9)$	$0.00209(11)$	$-0.00273(9)$
C 4	$0.0300(2)$	$0.0444(3)$	$0.0265(2)$	$-0.00244(18)$	$0.00214(17)$	$-0.00831(18)$
C 11	$0.0422(3)$	$0.0237(2)$	$0.0402(3)$	$0.00109(18)$	$-0.0005(2)$	$-0.00495(17)$
C 12	$0.0478(3)$	$0.0272(2)$	$0.0354(2)$	$0.00672(19)$	$0.0037(2)$	$0.00296(17)$
Cl 3	$0.0301(2)$	$0.0450(3)$	$0.0360(3)$	$-0.00615(18)$	$0.00597(19)$	$-0.00603(19)$
N 2	$0.0301(8)$	$0.0249(7)$	$0.0258(7)$	$-0.0017(6)$	$0.0042(6)$	$-0.0003(6)$

N1	$0.0371(9)$	$0.0273(9)$	$0.0244(8)$	$-0.0017(7)$	$0.0025(7)$	$0.0033(6)$
C1	$0.0261(8)$	$0.0257(8)$	$0.0216(8)$	$-0.0030(7)$	$0.0006(7)$	$0.0003(6)$
C8	$0.0233(8)$	$0.0249(9)$	$0.0203(8)$	$-0.0030(7)$	$-0.0001(6)$	$-0.0014(6)$
C9	$0.0261(8)$	$0.0333(10)$	$0.0231(8)$	$-0.0076(7)$	$0.0009(7)$	$0.0000(7)$
C4	$0.0305(9)$	$0.0469(12)$	$0.0250(9)$	$-0.0049(8)$	$0.0058(7)$	$-0.0074(8)$
C2	$0.0340(10)$	$0.0265(9)$	$0.0352(10)$	$0.0004(7)$	$-0.0006(8)$	$-0.0025(7)$
C7	$0.0315(10)$	$0.0242(9)$	$0.0445(11)$	$-0.0002(7)$	$-0.0007(8)$	$0.0014(8)$
C5	$0.0367(10)$	$0.0440(11)$	$0.0266(9)$	$-0.0092(9)$	$0.0020(8)$	$0.0100(8)$
C6	$0.0394(11)$	$0.0345(10)$	$0.0428(11)$	$-0.0054(9)$	$-0.0041(9)$	$0.0161(9)$
C3	$0.0337(10)$	$0.0391(11)$	$0.0376(11)$	$0.0012(8)$	$0.0053(8)$	$-0.0129(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

Zn1-Cl4	2.3108 (5)	C8-C9	1.420 (2)
$\mathrm{Zn} 1-\mathrm{Cl1}$	2.2759 (5)	C9-C4	1.411 (3)
$\mathrm{Zn} 1-\mathrm{Cl} 2$	2.2919 (5)	C9-C5	1.408 (3)
$\mathrm{Zn} 1-\mathrm{Cl} 3$	2.2360 (5)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
N2-C8	1.362 (2)	$\mathrm{C} 4-\mathrm{C} 3$	1.357 (3)
N2-C7	1.327 (2)	C2-H2A	0.9300
N2-H2	0.860 (10)	C2-C3	1.407 (3)
N1-C1	1.464 (2)	C7-H7	0.9300
N1-H1A	0.882 (10)	C7-C6	1.385 (3)
N1-H1B	0.884 (10)	C5-H5	0.9300
N1-H1C	0.877 (10)	C5-C6	1.366 (3)
C1-C8	1.409 (2)	C6-H6	0.9300
C1-C2	1.364 (3)	C3-H3	0.9300
$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{Cl} 4$	103.058 (19)	C4-C9-C8	118.77 (17)
$\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{Cl} 2$	105.30 (2)	C5-C9-C8	117.93 (18)
$\mathrm{Cl2}-\mathrm{Zn} 1-\mathrm{Cl} 4$	107.04 (2)	C5-C9-C4	123.31 (17)
$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 4$	114.479 (19)	C9-C4-H4	119.6
$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 1$	117.08 (2)	C3-C4-C9	120.82 (18)
$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 2$	109.07 (2)	C3-C4-H4	119.6
C8-N2-H2	123.2 (16)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.7
C7-N2-C8	123.26 (16)	C1-C2-C3	120.58 (18)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2$	113.6 (16)	C3-C2-H2A	119.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	111.1 (17)	N2-C7-H7	119.8
C1-N1-H1B	111.1 (18)	N2-C7-C6	120.47 (18)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	113.6 (16)	C6-C7-H7	119.8
H1A-N1-H1B	107 (2)	C9-C5-H5	119.5
H1A-N1-H1C	109 (2)	C6-C5-C9	120.96 (18)
H1B-N1-H1C	105 (2)	C6-C5-H5	119.5
C8- $\mathrm{C} 1-\mathrm{N} 1$	119.84 (15)	C7-C6-H6	120.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	119.86 (16)	C5-C6-C7	119.13 (18)
C2-C1-C8	120.31 (17)	C5-C6-H6	120.4
N2-C8-C1	122.61 (15)	C4-C3-C2	120.33 (18)
N2-C8-C9	118.20 (16)	C4-C3-H3	119.8
C1-C8-C9	119.18 (16)	C2-C3-H3	119.8

supporting information

$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$179.45(15)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5$	$-0.5(2)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$0.0(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 2$	$1.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$-179.12(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.65(17)$
$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$0.5(2)$
$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5$	$-179.45(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.5(3)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$1.6(3)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.2(3)$

$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 6$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 6$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 2$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 1$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$
$\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$

$$
\begin{aligned}
& -1.2(3) \\
& 2.0(3) \\
& 0.7(3) \\
& -1.8(3) \\
& -177.92(18) \\
& -178.25(16) \\
& 0.7(3) \\
& 177.61(17) \\
& -1.3(3) \\
& 178.74(18)
\end{aligned}
$$

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl1}$	$0.88(1)$	$2.31(1)$	$3.1309(16)$	$154(2)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl2}$				
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 3^{\mathrm{ii}}$	$0.89(1)$	$2.39(1)$	$3.1747(17)$	$148(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl4}$	$0.88(2)$	$2.48(2)$	$3.2415(16)$	$145(2)$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.86(2)$	$2.25(2)$	$3.0958(16)$	$166(2)$

Symmetry codes: (i) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (ii) $x-1, y, z$; (iii) $-x+3 / 2, y-1 / 2,-z+1 / 2$.

