

Received 14 August 2023 Accepted 22 August 2023

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: crystal structure; *E* configuration; weak C—H···O interactions; face-to-face π – π stacking interactions; Hirshfeld surface analysis.

CCDC reference: 2290092

Supporting information: this article has supporting information at journals.iucr.org/e

Mehmet Akkurt,^a Farid N. Naghiyev,^b Victor N. Khrustalev,^{c,d} Khammed A. Asadov,^b Ali N. Khalilov,^{e,b} Ajaya Bhattarai^f* and Ibrahim G. Mamedov^b

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, ^bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan, ^cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, ^dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^e'Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan, and ^fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{16}H_{13}BrO$, the planes of the aromatic rings are inclined at an angle of 23.49 (15)°, and the configuration about the C==C bond is *E*. In the crystal, the molecules are linked into chains by weak C-H···O interactions along the *b* axis. Successive chains form a zigzag structure along the *c* axis, and these chains are connected to each other by *face-to-face* π - π stacking interactions along the *a* axis. These layers, parallel to the (001) plane, are linked by van der Waals interactions, thus consolidating the crystal structure. Hirshfeld surface analysis showed that the most significant contacts in the structure are $H \cdot \cdot \cdot H$ (43.1%), $C \cdot \cdot \cdot H/H \cdot \cdot C$ (17.4%), $Br \cdot \cdot \cdot H/H \cdot \cdot \cdot Br$ (14.9%), $C \cdot \cdot C$ (11.9%) and $O \cdot \cdot H/H \cdot \cdot O$ (9.8%).

1. Chemical context

Diverse C-C, C-N, C-S and C-O bond formations are fundamental and valuable conversions in modern organic chemistry (Gurbanov et al., 2017; Afkhami et al., 2019; Mahmoudi *et al.*, 2021). Chalcones are α,β -unsaturated ketones containing aryl-aryl or aryl-alkyl groups at both ends. They belong to the flavonoid family, and they possess a wide variety of biological activities. Many natural chalcones, such as echinatin, naringenin, isoliquiritigenin, butein, 4-hydroxyderricin, 4-hydroxylonchocarpin, derricin, xanthoangelol, lonchocarpin, licochalcone A, licochalcone E, humulusol, munsericin, flavokawain A, isobavachalcone, mallotophilippen C, D and E, broussochalcone A, crotaorixin, pedicinin and nardoaristolone A have been isolated from plants (Rozmer & Perjési, 2016; Celik et al., 2023; Chalkha et al., 2023). Moreover, the enone moiety is a widespread structural motif often found in biologically active compounds possessing enzyme inhibitory, anticancer and antimicrobial activity (Poustforoosh et al., 2022; Tapera et al., 2022; Sarkı et al., 2023). Herein, in continuation to our recent investigations (Gurbanov et al., 2022a,b), we report the crystal structure and Hirshfeld surface analysis of (2E)-1-(4-bromophenyl)-3-(2-methylphenyl)prop-2-en-1-one.

research communications

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2

View of the C-H···O hydrogen bonds and *face-to-face* π - π stacking interactions in the title compound along the *c* axis.

2. Structural commentary

The title compound (Fig. 1) is composed of two aromatic rings, *i.e.* 2-methylphenyl (C4–C9) and 4-bromophenyl (C11–C16), which are linked by a -CO-CH=CH-E-configured enone bridge. The molecule is approximately planar, as indicated by the torsion angles C10-C5-C4-C3 = 1.9 (5)°, C9-C4-C4

Table 1		
Undrogon	bond	apom

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots O1^{i}$	0.95	2.58	3.200 (3)	124
	1	. 1		

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

I GOIC A										
-	-									
Summory	of	chort	interatomic	contacts	(A)	in	tho	titla	comr	ound
Summary	U1	snort	micratomic	contacts	(n)	1111	unc	uuc	com	ounu.

C3···H10B	2.85	x + 1, y, z
$Br1 \cdot \cdot \cdot H7$	3.17	$-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$
$O1 \cdot \cdot \cdot H12$	2.58	$-x + \tilde{1}, y + \frac{1}{2}, -z + \frac{1}{2}$
H15···H9	2.45	$-x+2, y+\frac{1}{2}, -z+\frac{1}{2}$
$C10 \cdot \cdot \cdot H10A$	3.10	$x + \frac{1}{2}, -y + \frac{3}{2}, -z + \hat{1}$

 $C3-C2 = -4.4 (5)^{\circ}$, $C4-C3-C2-C1 = -176.3 (3)^{\circ}$, $C3-C2-C1-C11 = -168.2 (3)^{\circ}$, $C2-C1-C11-C12 = 15.9 (4)^{\circ}$ and $Br1-C14-C15-C16 = 178.5 (2)^{\circ}$. The dihedral angle between the planes of the 2-methylphenyl and 4-bromophenyl rings is 23.49 (15)°.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, the molecules are linked into C(5) chains (Bernstein *et al.*, 1995) by weak C-H···O interactions (Table 1 and Fig. 2) along the *a* axis. Successive chains form a zigzag structure along the *b* axis (Fig. 3) and these chains are connected to each other along the *c* axis by *face-to-face* π - π stacking interactions $[Cg1\cdots Cg1^a = 3.942 (2) \text{ Å}, \text{ slippage} =$ $1.890 \text{ Å}; Cg2\cdots Cg2^a = 3.9420 (18) \text{ Å}, \text{ slippage} = 1.942 \text{ Å};$ symmetry code: (*a*) x - 1, *y*, *z*; *Cg*1 and *Cg*2 are the centroids of the 2-methylphenyl (C4–C9) and 4-bromophenyl (C11– C16) rings, respectively]. They form layers parallel to the (001) plane through van der Waals interactions, thus consolidating the crystal structure.

CrystalExplorer17.5 (Spackman *et al.*, 2021) was used to compute the Hirshfeld surfaces and the two-dimensional fingerprints of the title molecule. The d_{norm} mappings for the title compound were performed in the range from -0.0627 to +1.1373 a.u., on the d_{norm} surfaces, allowing the location of the C-H···O interactions (Tables 1 and 2).

Figure 3 Zigzag packing of the title compound along the b axis.

Table 3	
Experimental	details.

Crystal data	
Chemical formula	C ₁₆ H ₁₃ BrO
$M_{ m r}$	301.17
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	3.942, 11.5915 (2), 28.0387 (4)
$V(Å^3)$	1281.19 (3)
Z	4
Radiation type	Cu <i>Kα</i>
$\mu \text{ (mm}^{-1})$	4.23
Crystal size (mm)	$0.35 \times 0.09 \times 0.07$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
Tmin. Tmax	0.251, 1.000
No. of measured, independent and	14537, 2657, 2627
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.025
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.632
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.052, 1.14
No. of reflections	2657
No. of parameters	165
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.51, -0.42
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.53 (2)
*	

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

The fingerprint plots (Fig. 4) show that $H \cdots H$ [Fig. 4(*b*); 43.1%], $C \cdots H/H \cdots C$ [Fig. 4(*c*); 17.4%], $Br \cdots H/H \cdots Br$ [Fig. 4(*d*); 14.9%], $C \cdots C$ [Fig. 4(*e*); 11.9%] and $O \cdots H/H \cdots O$ [Fig. 4(*f*); 9.8%] interactions contribute the most to the surface contacts. The crystal packing is additionally influenced by $Br \cdots C/C \cdots Br$ (2.0%), $Br \cdots Br$ (0.8%), $N \cdots N$ (2.6%) and $O \cdots C/C \cdots O$ (0.2%) contacts. The Hirshfeld surface study confirms the significance of H-atom interactions in the packing formation. The large number of $H \cdots H$, $C \cdots H/H \cdots C$, $Br \cdots H/H$ $H \cdots Br$, $C \cdots C$ and $O \cdots H/H \cdots O$ interactions indicates that van der Waals interactions and hydrogen bonding are important in the crystal packing (Hathwar *et al.*, 2015).

4. Database survey

Four related compounds were found as a result of a search for the '(2*E*)-1,3-diphenylprop-2-en-1-one' unit in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016), *viz.* CSD refcodes KOCZUA (Bindya *et al.*, 2019), RUCKIM (Spruce *et al.*, 2020), XOLLOC (Çelikesir *et al.*, 2019) and OBIYUW01 (Atioğlu *et al.*, 2019).

In the crystal of KOCZUA, the shortest intermolecular contacts are Cl···O [3.173 (3) Å]; these link the molecules to form a 2₁ helix propagating along the *b*-axis direction. The helices are linked by offset π - π interactions [intercentroid distance = 3.983 (1) Å], forming layers lying parallel to the *ab*

plane. In the crystal of RUCKIM, the molecules are linked through type II halogen bonds, forming a sheet structure parallel to the *bc* plane. Weak intermolecular $C-H\cdots\pi$ interactions are observed between the sheets. In the crystal of XOLLOC, molecules are linked *via* pairs of $C-H\cdots O$ interactions with an $R_2^2(14)$ ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [101] *via* $C-H\cdots\pi$ interactions. In the crystal of OBIYUW01, molecules are linked by $C-H\cdots\pi$ interactions between the bromophenyl and fluorophenyl rings, resulting in a two-dimensional layered structure parallel to the *ab* plane. The molecular packing is consolidated by weak Br \cdots H and $F\cdots$ H contacts.

5. Synthesis and crystallization

The title compound was synthesized using a reported procedure (Chithiraikumar *et al.*, 2021) and colourless crystals were

Figure 4

The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $C \cdots H/H \cdots C$, (d) $Br \cdots H/H \cdots Br$, (e) $C \cdots C$ and (f) $O \cdots H/H \cdots O$ interactions. d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface.

obtained upon recrystallization from an ethanol/water (3:1 v/v) solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in their geometrically calculated positions and refined using a riding model, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and C-H = 0.98 Å and $U_{iso}(H) =$ $1.5U_{eq}(C)$ for methyl H atoms.

Acknowledgements

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program. Authors contributions are as follows: conceptualization by ANK and IGM; methodology by ANK, FNN and IGM; investigation by ANK, MA and FNN; writing (original draft) by MA and ANK; writing (review and editing of the manuscript) by MA and ANK; visualization by MA, ANK and IGM; funding acquisition by VNK, AB and ANK; resources by AB, VNK and KAA; supervision by ANK and MA.

References

- Afkhami, F. A., Mahmoudi, Gh., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). *Eur. J. Inorg. Chem.* **2019**, 262–270.
- Atioğlu, Z., Bindya, S., Akkurt, M. & Chidan Kumar, C. S. (2019). *Acta Cryst.* E75, 146–149.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bindya, S., Chidan Kumar, C. S., Naveen, S., Siddaraju, B. P., Quah, C. K. & Raihan, M. A. (2019). Acta Cryst. E75, 264–267.
- Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.
- Çelikesir, S. T., Sheshadri, S. N., Akkurt, M., Chidan Kumar, C. S. & Veeraiah, M. K. (2019). Acta Cryst. E75, 942–945.

- Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). *J. Mol. Struct.* **1273**, 134255.
- Chithiraikumar, C., Ponmuthu, K. V., Harikrishnan, M., Malini, N., Sepperumal, M. & Siva, A. (2021). *Res. Chem. Intermed.* 47, 895– 909.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). *Dalton Trans.* **51**, 1019–1031.
- Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). *Cryst. Growth Des.* **22**, 3932–3940.
- Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). *Dyes Pigments*, **138**, 107– 111.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). *Inorg. Chim. Acta*, **519**, 120279.
- Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Rozmer, Z. & Perjési, P. (2016). Phytochem. Rev. 15, 87-120.
- Sarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). *Inorg. Chim. Acta*, **545**, 121113.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Spruce, K. J., Hall, C. L., Potticary, J., Pridmore, N. E., Cremeens, M. E., D'ambruoso, G. D., Matsumoto, M., Warren, G. I., Warren, S. D. & Hall, S. R. (2020). Acta Cryst. E76, 72–76.
- Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.

supporting information

Acta Cryst. (2023). E79, 847-851 [https://doi.org/10.1107/S2056989023007387]

Crystal structure and Hirshfeld surface analysis of (2*E*)-1-(4-bromophenyl)-3-(2-methylphenyl)prop-2-en-1-one

Mehmet Akkurt, Farid N. Naghiyev, Victor N. Khrustalev, Khammed A. Asadov, Ali N. Khalilov, Ajaya Bhattarai and İbrahim G. Mamedov

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2022); cell refinement: *CrysAlis PRO* (Rigaku OD, 2022); data reduction: *CrysAlis PRO* (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

(2E)-1-(4-Bromophenyl)-3-(2-methylphenyl)prop-2-en-1-one

Crystal data

C₁₆H₁₃BrO $M_r = 301.17$ Orthorhombic, $P2_12_12_1$ a = 3.942 Å b = 11.5915 (2) Å c = 28.0387 (4) Å V = 1281.19 (3) Å³ Z = 4F(000) = 608

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube φ and ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) $T_{\min} = 0.251, T_{\max} = 1.000$ 14537 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.052$ S = 1.142657 reflections 165 parameters 0 restraints $D_x = 1.561 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 12560 reflections $\theta = 3.8-76.9^{\circ}$ $\mu = 4.23 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.35 \times 0.09 \times 0.07 \text{ mm}$

2657 independent reflections 2627 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 77.1^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -4 \rightarrow 4$ $k = -14 \rightarrow 14$ $l = -35 \rightarrow 34$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0121P)^2 + 1.3924P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.51$ e Å⁻³ $\Delta\rho_{min} = -0.42$ e Å⁻³ Absolute structure: Refined as an inversion twin

Absolute structure parameter: 0.53 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

Remement. Remited as a 2-component inversion twin.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.6338 (7)	0.6732 (2)	0.28488 (10)	0.0156 (6)
C2	0.5186 (8)	0.5849 (3)	0.31975 (11)	0.0179 (6)
H2	0.576288	0.506108	0.315259	0.021*
C3	0.3333 (8)	0.6169 (3)	0.35751 (10)	0.0167 (6)
H3	0.272264	0.696111	0.359037	0.020*
C4	0.2138 (8)	0.5441 (3)	0.39673 (9)	0.0162 (5)
C5	0.0419 (8)	0.5941 (3)	0.43586 (11)	0.0199 (6)
C6	-0.0614 (9)	0.5231 (3)	0.47322 (11)	0.0243 (7)
H6	-0.174643	0.556148	0.499821	0.029*
C7	-0.0025 (9)	0.4050 (3)	0.47241 (12)	0.0260 (8)
H7	-0.075592	0.358302	0.498276	0.031*
C8	0.1629 (10)	0.3552 (3)	0.43386 (11)	0.0244 (7)
H8	0.202810	0.274348	0.433117	0.029*
C9	0.2691 (8)	0.4245 (3)	0.39655 (10)	0.0200 (6)
Н9	0.382068	0.390249	0.370170	0.024*
C10	-0.0317 (9)	0.7216 (3)	0.43748 (12)	0.0225 (7)
H10A	-0.155611	0.739898	0.466828	0.034*
H10B	-0.169550	0.743225	0.409802	0.034*
H10C	0.182210	0.764687	0.436880	0.034*
C11	0.7811 (8)	0.6341 (2)	0.23829 (10)	0.0151 (5)
C12	0.7419 (7)	0.5219 (2)	0.22102 (9)	0.0170 (6)
H12	0.629276	0.465770	0.239962	0.020*
C13	0.8664 (8)	0.4916 (2)	0.17629 (11)	0.0180 (6)
H13	0.839832	0.415359	0.164401	0.022*
C14	1.0295 (8)	0.5750 (3)	0.14959 (10)	0.0170 (6)
C15	1.0768 (8)	0.6869 (3)	0.16597 (11)	0.0178 (6)
H15	1.193503	0.742210	0.147111	0.021*
C16	0.9500 (8)	0.7159 (3)	0.21041 (11)	0.0172 (6)
H16	0.978056	0.792262	0.222085	0.021*
Br1	1.19480 (8)	0.53645 (3)	0.08770 (2)	0.02188 (9)
01	0.6109 (6)	0.77583 (19)	0.29371 (8)	0.0242 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0136 (15)	0.0168 (14)	0.0164 (13)	0.0005 (11)	-0.0014 (11)	0.0006 (11)
C2	0.0207 (16)	0.0164 (14)	0.0165 (14)	0.0013 (12)	0.0014 (12)	-0.0001 (11)

supporting information

C3	0.0164 (13)	0.0177 (13)	0.0160 (13)	0.0015 (13)	-0.0028 (12)	-0.0018 (11)
C4	0.0129 (13)	0.0224 (13)	0.0134 (11)	-0.0004 (13)	-0.0030 (9)	0.0003 (11)
C5	0.0137 (14)	0.0316 (18)	0.0145 (14)	-0.0011 (13)	-0.0031 (12)	-0.0034 (13)
C6	0.0193 (14)	0.040 (2)	0.0142 (13)	-0.0042 (16)	-0.0013 (11)	-0.0015 (14)
C7	0.0249 (18)	0.038 (2)	0.0153 (15)	-0.0111 (15)	-0.0042 (13)	0.0066 (14)
C8	0.0264 (17)	0.0242 (16)	0.0226 (15)	-0.0024 (15)	-0.0079 (15)	0.0043 (12)
C9	0.0205 (17)	0.0229 (14)	0.0166 (13)	0.0004 (12)	-0.0016 (11)	0.0005 (10)
C10	0.0194 (16)	0.0280 (17)	0.0203 (16)	0.0003 (14)	0.0009 (13)	-0.0072 (13)
C11	0.0128 (13)	0.0171 (13)	0.0155 (13)	0.0022 (11)	-0.0008 (11)	0.0023 (10)
C12	0.0162 (15)	0.0178 (14)	0.0170 (12)	-0.0007 (12)	0.0021 (10)	0.0043 (11)
C13	0.0200 (16)	0.0151 (14)	0.0190 (14)	0.0005 (11)	0.0005 (12)	-0.0003 (10)
C14	0.0133 (14)	0.0253 (16)	0.0123 (13)	0.0024 (11)	0.0009 (11)	-0.0012 (11)
C15	0.0160 (14)	0.0194 (15)	0.0181 (14)	-0.0021 (12)	-0.0007 (11)	0.0042 (11)
C16	0.0172 (14)	0.0151 (14)	0.0194 (14)	-0.0023 (12)	-0.0019 (12)	0.0009 (11)
Br1	0.02033 (14)	0.03011 (16)	0.01522 (13)	-0.00038 (13)	0.00375 (12)	-0.00153 (13)
01	0.0303 (14)	0.0171 (11)	0.0252 (11)	0.0010 (9)	0.0064 (10)	-0.0025 (9)

Geometric parameters (Å, °)

C1—01	1.218 (4)	C8—H8	0.9500
C1—C2	1.487 (4)	С9—Н9	0.9500
C1-C11	1.500 (4)	C10—H10A	0.9800
С2—С3	1.339 (4)	C10—H10B	0.9800
С2—Н2	0.9500	C10—H10C	0.9800
C3—C4	1.464 (4)	C11—C12	1.396 (4)
С3—Н3	0.9500	C11—C16	1.398 (4)
C4—C9	1.404 (4)	C12—C13	1.392 (4)
C4—C5	1.414 (4)	C12—H12	0.9500
C5—C6	1.393 (5)	C13—C14	1.381 (4)
C5—C10	1.507 (5)	C13—H13	0.9500
C6—C7	1.388 (5)	C14—C15	1.389 (4)
С6—Н6	0.9500	C14—Br1	1.907 (3)
С7—С8	1.389 (5)	C15—C16	1.384 (4)
С7—Н7	0.9500	C15—H15	0.9500
C8—C9	1.384 (4)	С16—Н16	0.9500
01—C1—C2	121.1 (3)	С4—С9—Н9	119.2
01—C1—C11	120.1 (3)	C5—C10—H10A	109.5
C2-C1-C11	118.9 (3)	C5-C10-H10B	109.5
C3—C2—C1	119.7 (3)	H10A-C10-H10B	109.5
С3—С2—Н2	120.1	C5—C10—H10C	109.5
С1—С2—Н2	120.1	H10A-C10-H10C	109.5
C2—C3—C4	127.6 (3)	H10B—C10—H10C	109.5
С2—С3—Н3	116.2	C12—C11—C16	119.4 (3)
С4—С3—Н3	116.2	C12—C11—C1	122.8 (3)
C9—C4—C5	118.8 (3)	C16—C11—C1	117.8 (3)
C9—C4—C3	121.1 (3)	C13—C12—C11	120.6 (3)
C5—C4—C3	120.1 (3)	C13—C12—H12	119.7

C6—C5—C4	118.8 (3)	C11—C12—H12	119.7
C6—C5—C10	120.0 (3)	C14—C13—C12	118.4 (3)
C4—C5—C10	121.2 (3)	C14—C13—H13	120.8
C7—C6—C5	121.4 (3)	C12—C13—H13	120.8
С7—С6—Н6	119.3	C13—C14—C15	122.5 (3)
С5—С6—Н6	119.3	C13—C14—Br1	119.2 (2)
C6—C7—C8	120.1 (3)	C15—C14—Br1	118.3 (2)
С6—С7—Н7	119.9	C16—C15—C14	118.4 (3)
С8—С7—Н7	119.9	C16—C15—H15	120.8
C9—C8—C7	119.3 (3)	C14—C15—H15	120.8
С9—С8—Н8	120.4	C15—C16—C11	120.7 (3)
С7—С8—Н8	120.4	C15—C16—H16	119.7
C8—C9—C4	121.6 (3)	C11—C16—H16	119.7
С8—С9—Н9	119.2		
O1—C1—C2—C3	12.0 (5)	C3—C4—C9—C8	178.7 (3)
C11—C1—C2—C3	-168.2 (3)	O1—C1—C11—C12	-164.3 (3)
C1—C2—C3—C4	-176.3 (3)	C2-C1-C11-C12	15.9 (4)
C2—C3—C4—C9	-4.4 (5)	O1—C1—C11—C16	12.6 (4)
C2—C3—C4—C5	175.1 (3)	C2-C1-C11-C16	-167.2 (3)
C9—C4—C5—C6	1.1 (5)	C16—C11—C12—C13	-0.6 (4)
C3—C4—C5—C6	-178.4 (3)	C1—C11—C12—C13	176.2 (3)
C9—C4—C5—C10	-178.6 (3)	C11—C12—C13—C14	0.1 (4)
C3—C4—C5—C10	1.9 (5)	C12—C13—C14—C15	0.8 (5)
C4—C5—C6—C7	-0.8(5)	C12-C13-C14-Br1	-178.8(2)
C10-C5-C6-C7	0.0 (0)		()
010 05 00 07	178.9 (3)	C13—C14—C15—C16	-1.1 (5)
C5—C6—C7—C8	178.9 (3) 0.1 (6)	C13-C14-C15-C16 Br1-C14-C15-C16	-1.1 (5) 178.5 (2)
C5-C6-C7-C8 C6-C7-C8-C9	178.9 (3) 0.1 (6) 0.3 (5)	C13-C14-C15-C16 Br1-C14-C15-C16 C14-C15-C16-C11	-1.1 (5) 178.5 (2) 0.6 (5)
C5-C6-C7-C8 C6-C7-C8-C9 C7-C8-C9-C4	178.9 (3) 0.1 (6) 0.3 (5) 0.1 (5)	C13-C14-C15-C16 Br1-C14-C15-C16 C14-C15-C16-C11 C12-C11-C16-C15	-1.1 (5) 178.5 (2) 0.6 (5) 0.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
С3—Н3…О1	0.95	2.45	2.791 (4)	101
C12—H12…O1 ⁱ	0.95	2.58	3.200 (3)	124

Symmetry code: (i) -x+1, y-1/2, -z+1/2.