research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, characterization and crystal structure of methyl 2-(2-oxo-2H-chromen-4-yl­amino)­benzoate

crossmark logo

aChemistry Department, Pontifical Catholic University of Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil, and bChemistry Institute, Federal Fluminense Universidade, Niteroi, 24020-141 Rio de Janeiro, Brazil
*Correspondence e-mail: liviablescobar@puc-rio.br

Edited by J. T. Mague, Tulane University, USA (Received 19 July 2023; accepted 21 August 2023; online 29 August 2023)

Methyl 2-(2-oxo-2H-chromen-4-yl­amino)­benzoate, C17H13NO4 (1), was pre­pared by condensation between 4-hy­droxy­coumarin and methyl 2-amino­benzoate. It crystallizes in the ortho­rhom­bic space group Pca21 at 300 K. The mol­ecule of compound 1 consists of the 2H-chromen-2-one part connected by an amine moiety (–NH–) to the methyl benzoate ring. The supra­molecular array is formed by hydrogen bonds between the aromatic ring and the O atoms of the lactone and ester portions. The structural details match the spectroscopic data acquired from NMR and IR spectroscopy.

1. Chemical context

Coumarins are an important class of lactones composed of benzene fused to an α-pyrone ring (Fig. 1[link]). These structures have two pharmacophoric groups: the aromatic ring, which can promote hydro­phobic inter­actions, such as π-inter­actions, and the lactone group, which is a hydrogen-bond acceptor with receptors such as enzymes (Yildirim et al., 2023[Yildirim, M., Poyraz, S. & Ersatir, M. (2023). Med. Chem. Res. 32, 617-642.]).

[Figure 1]
Figure 1
The main structure of coumarins.

These compounds are widely distributed in nature, especially as secondary metabolites of vascular plants. Coumarin was first isolated from tonka beans (Dipteryx odorata Wild; Fabaceae family) by Vogel in 1820. Since then, more than 1300 coumarins have been identified from natural sources (Bor et al., 2016[Bor, T., Aljaloud, S. O., Gyawali, R. & Ibrahim, S. A. (2016). Fruits, Vegetables, and Herbs: Bioactive Foods in Health Promotion, edited by R. R. Watson & V. R. Preedy. pp. 551-578. New York: Academic Press.]).

Their versatile scaffold also brings a wide range of applications, such as biocides, phytochemicals, pharmacological agents and flavorings, widely used in different industries. In medicinal chemistry, a widely used coumarin drug is warfarin, an anti­coagulant that has made it possible for thrombosis treatment to be done orally (Annunziata et al., 2020[Annunziata, F., Pinna, C., Dallavalle, S., Tamborini, L. & Pinto, A. (2020). Int. J. Mol. Sci. 21, 1-83.]). In addition, multiple biological activities are well known, including anti-inflammatory (Bansal et al., 2013[Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049-3060.]), anti­microbial (Regal et al., 2020[Regal, M. K. A., Shaban, S. S. & El-Metwally, S. A. (2020). J. Heterocycl. Chem. 57, 1368-1378.]), anti­oxidant (Rosa et al., 2021[Rosa, W. C., Rocha, I. O., Schmitz, B. F., Martins, M. A. P., Zanatta, N., Tisoco, I., Iglesias, B. A. & Bonacorso, H. G. (2021). J. Fluor. Chem. 248, 109822.]), anti-allergic (Liu et al., 2019[Liu, Q. M., Zhang, Y. F., Gao, Y. Y., Liu, H., Cao, M. J., Yang, X. W., Su, W. J. & Liu, G. M. (2019). Food Funct. 10, 6767-6778.]), anti-HIV (Xu et al., 2021[Xu, Z., Chen, Q., Zhang, Y. & Liang, C. (2021). Fitoterapia, 150, 104863.]), anti­cancer (Emam et al., 2023[Emam, S. H., Hassan, R. A., Osman, E. O., Hamed, M. I. A., Abdou, A. M., Kandil, M. M., Elbaz, E. M. & Mikhail, D. S. (2023). Drug Dev. Res. 84, 433-457.]) and anti­viral (Sharapov et al., 2023[Sharapov, A. D., Fatykhov, R. F., Khalymbadzha, I. A., Zyryanov, G. V., Chupakhin, O. N. & Tsurkan, M. V. (2023). Int. J. Mol. Sci. 24, 2839.]) activities.

Recent work has demonstrated the importance of cou­marins in the design of small-mol­ecule fluorescent chemosensors (Cao et al., 2019[Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S. & Lin, W. (2019). Chem. Rev. 119, 10403-10519.]). Here we report the synthesis and characterization of methyl 2-(2-oxo-2H-chromen-4-yl­amino)­benzoate, 1 (Fig. 2[link]), by condensation between 4-hy­droxy­coumarin and methyl 2-amino­benzoate, according to the literature (Carneiro et al., 2021[Carneiro, L. S. A., Almeida-Souza, F., Lopes, Y. S. C., Novas, R. C. V., Santos, K. B. A., Ligiero, C. B. P., Calabrese, K. D. S. & Buarque, C. D. (2021). Bioorg. Chem. 114, 105141.]). The principal purpose of producing this compound was to investigate its biological properties because coumarin derivatives are potential candidates for anti­leishmaniasis drugs (Carneiro et al., 2021[Carneiro, L. S. A., Almeida-Souza, F., Lopes, Y. S. C., Novas, R. C. V., Santos, K. B. A., Ligiero, C. B. P., Calabrese, K. D. S. & Buarque, C. D. (2021). Bioorg. Chem. 114, 105141.]). Also, studies involving the complexation of this mol­ecule with metal ions, such as CuII and GdIII, are in progress in our laboratory for future contributions.

[Figure 2]
Figure 2
Chemical structure of 1.

2. Structural commentary

Compound 1 was synthesized via a reaction of the precursor coumarin and the corresponding aniline (Scheme 1[link]). The resulting compound was recrystallized from di­methyl­formamide to yield yellow single crystals. Compound 1 crystallizes in the ortho­rhom­bic space group Pca21, with the asymmetric unit consisting of one methyl 2-(2-oxo-2H-chromen-4-yl­amino)­benzoate mol­ecule (Fig. 3[link]). The absolute structure could not be established with certainty.

[Scheme 1]
[Figure 3]
Figure 3
The asymmetric unit of 1, with the numbering scheme and 50% probability displacement ellipsoids.

The average C—C bond distance in the aromatic portion of the coumarin is 1.374 (7) Å, while the C9—C13, C9—C10 and C10—C11 bond lengths in the lactone portion are 1.450 (7), 1.353 (7) and 1.412 (7) Å, respectively, because of the partial localization of π-bonding within the ring. The C11—O3 and C12—O3 bond lengths are equivalent at 1.374 (7) and 1.373 (7) Å, respectively, while the C11=O4 distance is 1.204 (7) Å. The sum of the angles about N1 is 359 (3)°, implicating involvement of its lone pair in N—C π-bonding. This is supported by the N1—C9 and N1—C4 distances of 1.351 (6) and 1.391 (6) Å, respectively. Similar geometrical parameters are found in closely related structures (see Database survey section), although the C4—N1—C9 angle at 130.9 (4)° is about 7° larger than in those mol­ecules, presumably due to the intra­molecular N1—H1⋯O2 hydrogen bond (Table 1[link]). In the C3–C8 ring, the average C—C bond distance is 1.379 (8) Å, with the ester portion bond lengths of C2=O2 = 1.203 (6), C2—O1 = 1.316 (7) and C1—O1 = 1.440 (8) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O4i 0.96 2.52 3.232 (8) 131
C7—H7⋯O4ii 0.93 2.47 3.387 (6) 167
N1—H1⋯O2 0.84 (6) 1.92 (6) 2.631 (6) 141 (5)
Symmetry codes: (i) [x-1, y, z]; (ii) [x-{\script{1\over 2}}, -y+2, z].

The dihedral angle between the mean plane which contains the main structure of the coumarin and the mean plane containing the aromatic ester portion is 31.21 (10)°.

The NMR spectra are shown in Figs. 4[link] and 5[link]. The characterization by 1H and 13C NMR confirms the product as methyl 2-(2-oxo-2H-chromen-4-yl­amino)­benzoate. In the 1H NMR spectrum, there is a singlet at δ 3.74 ppm attributable to the meth­oxy group of the ester, the coumarin vinylic H atom appears at δ 5.31 ppm and a singlet is seen at δ 9.67 which can be assigned to N—H. In addition, there are eight aromatic H atoms between δ 7.44 and 8.14 ppm. In the 13C NMR spectrum, the meth­oxy group appears at δ 52.47 ppm, the two carbonyl C atoms at δ 166.50 and 161.40, and the vinylic and aromatic C atoms between δ 114 and 154 ppm.

[Figure 4]
Figure 4
NMR-H: 1H NMR (400 MHz, DMSO-d6) δ 9.67 (s, 1H), 8.14 (dd, J = 8.1, 1.2 Hz, 1H), 8.01 (dd, J = 7.9, 1.5 Hz, 1H), 7.76–7.66 (m, 2H), 7.62 (d, J = 7.4 Hz, 1H), 7.44 (ddd, J = 15.4, 9.8, 4.6 Hz, 3H), 5.31 (s, 1H), 3.76 (d, J = 7.7 Hz, 3H).
[Figure 5]
Figure 5
NMR-C: 13C NMR (101 MHz, DMSO-d6) δ 166.50 (s) 161.40 (s), 153.38 (s), 151.84 (s), 138.85 (s), 133.93 (s), 132.60 (s), 131.42 (s), 126.29 (s), 125.97 (s), 124.07 (d, J = 4.0 Hz), 122.33 (s), 117.24 (s), 114.61 (s), 85.58 (s), 52.47 (s).

3. Supra­molecular features

The supra­molecular array is formed by hydrogen bonds between the H atoms of the methyl group and the O atom of the lactone portion (C1—H1B⋯O4i) and the H atom from the aromatic ring (C7—H7⋯O4ii) (Table 1[link]). These build corrugated chains two mol­ecules wide extending along the a-axis direction (Fig. 6[link]). The crystal packing (Fig. 7[link]) involves layers of chains parallel to the ab plane which stack along the c-axis direction, all associated through van der Waals inter­actions.

[Figure 6]
Figure 6
Supra­molecular array of 1. [Symmetry codes: (i) x − [{1\over 2}], −y + 2, z; (ii) x − 1, y, z; (iii) x + [{1\over 2}], −y + 2, z.]
[Figure 7]
Figure 7
Packing viewed along the a-axis direction. The C—H⋯O hydrogen bonds are depicted by dashed lines and non-inter­acting H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to March 2023) yielded a substantial number of hits for chromenes having a nitro­gen-containing substituent in the 3-position of the lactone ring but relatively few with this substituent in the 4-position. Most of the latter also contained a second substituent in the 3-position, such as 4-[(4-bromo­phen­yl)amino]-3-(phenyl­selan­yl)-2H-chromen-2-one (OFIHOE; Belladona et al., 2023[Belladona, A. L., Cardoso Dilelio, M., Cargnelutti, R., Barcellos, T., Cruz Silveira, C. & Schumacher, R. F. (2023). ChemistrySelect, 8, 202300377.]), but only three are directly comparable to 1. These are 4-(propyl­amino)-2H-chromen-2-one (HIDYEB; Kumar et al., 2018[Kumar, K., Ramulu, M. S. & Kumar, N. P. (2018). New J. Chem. 42, 11276-11279.]), 4-[(pyridin-3-ylmeth­yl)amino]-2H-chromen-2-one (TUWLUV; Ait-Ram­dane-Terbouche et al., 2020[Ait-Ramdane-Terbouche, C., Abdeldjebar, H., Terbouche, A., Lakhdari, H., Bachari, K., Roisnel, T. & Hauchard, D. (2020). J. Mol. Struct. 1222, 128918.]) and 4-(benzyl­amino)-2H-chromen-2-one (ZOKVIE; Campbell et al., 1995[Campbell, J. L. E., Barton, R. J., Gear, J. R., Conlin, G. M. & Robertson, B. E. (1995). J. Chem. Crystallogr. 25, 245-248.]). All three have structural parameters very similar to those of 1, including essentially planar chromene portions and some localization of π-bonding in the lactone portion. The largest difference is seen for the exocyclic C—N—C angles which are around 123°.

5. Synthesis and crystallization

The reaction was carried out according to the literature (Carneiro et al., 2021[Carneiro, L. S. A., Almeida-Souza, F., Lopes, Y. S. C., Novas, R. C. V., Santos, K. B. A., Ligiero, C. B. P., Calabrese, K. D. S. & Buarque, C. D. (2021). Bioorg. Chem. 114, 105141.]) (Scheme 1). A mixture of A and the aniline B (2 equiv.) was heated in a 50 ml Becher at 453 K for 1 h. A solution comprised of 30 ml of hot methanol and 30 ml of aqueous NaOH (1 mol l−1) was then added to the solid. This mixture was stirred for 30 min at 333 K and then filtered. The solid was washed with water, dried and used without further purification.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13NO4
Mr 295.28
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 298
a, b, c (Å) 12.7698 (16), 14.9212 (18), 7.1087 (8)
V3) 1354.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.39 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.666, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 35019, 2328, 2096
Rint 0.102
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.158, 1.08
No. of reflections 2328
No. of parameters 204
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.37
Absolute structure Flack x determined using 771 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (7)
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

Methyl 2-(2-oxo-2H-chromen-4-yl)benzoate top
Crystal data top
C17H13NO4Dx = 1.448 Mg m3
Mr = 295.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2328 reflections
a = 12.7698 (16) Åθ = 2.1–25.0°
b = 14.9212 (18) ŵ = 0.10 mm1
c = 7.1087 (8) ÅT = 298 K
V = 1354.5 (3) Å3Prismatic, yellow
Z = 40.39 × 0.08 × 0.06 mm
F(000) = 616
Data collection top
Bruker D8 Venture
diffractometer
2096 reflections with I > 2σ(I)
φ and ω scansRint = 0.102
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.666, Tmax = 0.745h = 1515
35019 measured reflectionsk = 1717
2328 independent reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0648P)2 + 1.5253P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2328 reflectionsΔρmax = 0.25 e Å3
204 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack x determined using 771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.2 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4084 (3)0.8237 (3)0.3512 (7)0.0553 (12)
O20.5181 (3)0.7166 (2)0.4363 (8)0.0536 (12)
O31.0000 (3)0.6344 (3)0.4928 (7)0.0527 (12)
O41.0759 (3)0.7520 (3)0.3698 (9)0.0669 (15)
N10.7132 (3)0.7623 (3)0.5069 (7)0.0364 (11)
H10.664 (4)0.725 (4)0.502 (8)0.032 (15)*
C10.3280 (5)0.7569 (5)0.3295 (12)0.067 (2)
H1A0.3496170.7135810.2374470.101*
H1B0.2642820.7850390.2888040.101*
H1C0.3163340.7274070.4477240.101*
C20.5005 (4)0.7946 (4)0.4076 (9)0.0405 (13)
C30.5768 (4)0.8683 (3)0.4321 (8)0.0367 (13)
C40.6811 (4)0.8507 (3)0.4842 (8)0.0326 (11)
C50.7468 (4)0.9226 (3)0.5221 (8)0.0387 (13)
H50.8146130.9122150.5645200.046*
C60.7126 (5)1.0084 (4)0.4974 (10)0.0477 (15)
H60.7580401.0558010.5208190.057*
C70.6125 (5)1.0258 (3)0.4388 (11)0.0539 (17)
H70.5905621.0845580.4195500.065*
C80.5454 (4)0.9566 (4)0.4089 (10)0.0476 (15)
H80.4769770.9686580.3721700.057*
C90.8095 (4)0.7251 (3)0.5005 (8)0.0325 (11)
C100.8978 (4)0.7656 (3)0.4380 (9)0.0385 (13)
H100.8940450.8251200.3999510.046*
C110.9952 (4)0.7211 (4)0.4284 (10)0.0469 (15)
C120.9119 (4)0.5900 (4)0.5527 (9)0.0401 (13)
C130.8153 (4)0.6322 (3)0.5592 (8)0.0342 (12)
C140.7308 (4)0.5799 (3)0.6151 (8)0.0371 (13)
H140.6644470.6056210.6190640.045*
C150.7421 (6)0.4924 (4)0.6640 (9)0.0467 (14)
H150.6842230.4588720.7008020.056*
C160.8405 (5)0.4536 (4)0.6587 (10)0.0549 (17)
H160.8489640.3940160.6940650.066*
C170.9249 (5)0.5021 (4)0.6022 (11)0.058 (2)
H170.9909000.4758340.5971780.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.033 (2)0.047 (2)0.086 (3)0.0037 (19)0.006 (2)0.004 (2)
O20.034 (2)0.034 (2)0.093 (4)0.0002 (17)0.001 (2)0.001 (2)
O30.034 (2)0.039 (2)0.085 (3)0.0077 (16)0.006 (2)0.011 (2)
O40.031 (2)0.053 (3)0.117 (4)0.009 (2)0.014 (2)0.020 (3)
N10.028 (2)0.024 (2)0.057 (3)0.0006 (18)0.001 (2)0.004 (2)
C10.034 (3)0.073 (5)0.095 (6)0.006 (3)0.002 (4)0.000 (4)
C20.028 (3)0.038 (3)0.055 (4)0.008 (2)0.008 (3)0.001 (3)
C30.032 (3)0.031 (3)0.046 (3)0.006 (2)0.006 (2)0.002 (2)
C40.035 (3)0.032 (2)0.030 (3)0.005 (2)0.003 (2)0.000 (2)
C50.035 (3)0.034 (3)0.047 (3)0.000 (2)0.002 (3)0.002 (3)
C60.054 (4)0.031 (3)0.058 (4)0.004 (2)0.004 (3)0.004 (3)
C70.056 (4)0.025 (3)0.081 (5)0.011 (3)0.005 (4)0.001 (3)
C80.038 (3)0.038 (3)0.066 (4)0.014 (2)0.003 (3)0.004 (3)
C90.032 (3)0.028 (2)0.037 (3)0.002 (2)0.003 (2)0.003 (2)
C100.035 (3)0.029 (3)0.051 (3)0.001 (2)0.002 (3)0.003 (2)
C110.031 (3)0.042 (3)0.068 (4)0.001 (2)0.001 (3)0.021 (3)
C120.034 (3)0.034 (3)0.052 (3)0.003 (2)0.009 (3)0.007 (3)
C130.035 (3)0.028 (3)0.040 (3)0.005 (2)0.006 (2)0.005 (2)
C140.037 (3)0.029 (3)0.045 (3)0.006 (2)0.001 (2)0.001 (2)
C150.057 (4)0.035 (3)0.048 (4)0.005 (3)0.001 (3)0.002 (3)
C160.069 (4)0.032 (3)0.064 (4)0.006 (3)0.018 (4)0.004 (3)
C170.046 (3)0.041 (4)0.087 (5)0.021 (3)0.024 (4)0.007 (3)
Geometric parameters (Å, º) top
O1—C21.316 (7)C6—H60.9300
O1—C11.440 (8)C7—C81.358 (8)
O2—C21.203 (6)C7—H70.9300
O3—C121.373 (7)C8—H80.9300
O3—C111.374 (7)C9—C101.353 (7)
O4—C111.204 (7)C9—C131.450 (7)
N1—C91.351 (6)C10—C111.412 (7)
N1—C41.391 (6)C10—H100.9300
N1—H10.84 (6)C12—C171.367 (8)
C1—H1A0.9600C12—C131.385 (7)
C1—H1B0.9600C13—C141.390 (7)
C1—H1C0.9600C14—C151.359 (7)
C2—C31.479 (7)C14—H140.9300
C3—C81.387 (7)C15—C161.385 (10)
C3—C41.407 (7)C15—H150.9300
C4—C51.388 (7)C16—C171.359 (10)
C5—C61.363 (8)C16—H160.9300
C5—H50.9300C17—H170.9300
C6—C71.370 (9)
C2—O1—C1116.2 (5)C7—C8—H8119.3
C12—O3—C11121.5 (4)C3—C8—H8119.3
C9—N1—C4130.9 (4)N1—C9—C10125.8 (5)
C9—N1—H1114 (4)N1—C9—C13115.5 (4)
C4—N1—H1114 (4)C10—C9—C13118.6 (4)
O1—C1—H1A109.5C9—C10—C11122.7 (5)
O1—C1—H1B109.5C9—C10—H10118.7
H1A—C1—H1B109.5C11—C10—H10118.7
O1—C1—H1C109.5O4—C11—O3116.0 (5)
H1A—C1—H1C109.5O4—C11—C10126.3 (6)
H1B—C1—H1C109.5O3—C11—C10117.7 (5)
O2—C2—O1122.5 (5)C17—C12—O3116.3 (5)
O2—C2—C3125.2 (5)C17—C12—C13122.4 (6)
O1—C2—C3112.3 (4)O3—C12—C13121.3 (5)
C8—C3—C4118.8 (5)C12—C13—C14116.5 (5)
C8—C3—C2120.1 (5)C12—C13—C9118.1 (5)
C4—C3—C2121.1 (4)C14—C13—C9125.4 (5)
C5—C4—N1122.2 (5)C15—C14—C13121.9 (6)
C5—C4—C3118.7 (5)C15—C14—H14119.0
N1—C4—C3119.0 (5)C13—C14—H14119.0
C6—C5—C4120.4 (5)C14—C15—C16119.4 (6)
C6—C5—H5119.8C14—C15—H15120.3
C4—C5—H5119.8C16—C15—H15120.3
C5—C6—C7121.1 (5)C17—C16—C15120.3 (6)
C5—C6—H6119.5C17—C16—H16119.8
C7—C6—H6119.5C15—C16—H16119.8
C8—C7—C6119.4 (5)C16—C17—C12119.4 (6)
C8—C7—H7120.3C16—C17—H17120.3
C6—C7—H7120.3C12—C17—H17120.3
C7—C8—C3121.5 (5)
C1—O1—C2—O21.4 (10)C13—C9—C10—C110.2 (9)
C1—O1—C2—C3178.0 (6)C12—O3—C11—O4176.1 (6)
O2—C2—C3—C8174.9 (7)C12—O3—C11—C104.4 (9)
O1—C2—C3—C84.5 (8)C9—C10—C11—O4177.8 (7)
O2—C2—C3—C43.2 (9)C9—C10—C11—O32.7 (9)
O1—C2—C3—C4177.3 (5)C11—O3—C12—C17175.9 (6)
C9—N1—C4—C526.1 (9)C11—O3—C12—C133.2 (8)
C9—N1—C4—C3157.9 (6)C17—C12—C13—C141.4 (9)
C8—C3—C4—C54.0 (8)O3—C12—C13—C14177.6 (6)
C2—C3—C4—C5174.2 (6)C17—C12—C13—C9178.9 (6)
C8—C3—C4—N1179.7 (6)O3—C12—C13—C90.1 (8)
C2—C3—C4—N12.1 (8)N1—C9—C13—C12179.0 (5)
N1—C4—C5—C6179.8 (6)C10—C9—C13—C121.6 (8)
C3—C4—C5—C64.2 (9)N1—C9—C13—C141.7 (8)
C4—C5—C6—C71.4 (10)C10—C9—C13—C14175.7 (5)
C5—C6—C7—C81.6 (11)C12—C13—C14—C151.1 (8)
C6—C7—C8—C31.6 (11)C9—C13—C14—C15178.4 (6)
C4—C3—C8—C71.2 (10)C13—C14—C15—C160.1 (9)
C2—C3—C8—C7177.0 (7)C14—C15—C16—C171.1 (10)
C4—N1—C9—C1011.9 (10)C15—C16—C17—C120.8 (10)
C4—N1—C9—C13171.0 (6)O3—C12—C17—C16178.6 (6)
N1—C9—C10—C11177.3 (6)C13—C12—C17—C160.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4i0.962.523.232 (8)131
C7—H7···O4ii0.932.473.387 (6)167
N1—H1···O20.84 (6)1.92 (6)2.631 (6)141 (5)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+2, z.
 

Acknowledgements

The authors would like to acknowledge LDRX (Laboratório Multiusuário de Difração de Raios-X da UFF) for the support with the X-ray diffraction facility (D8-Venture). The authors are also grateful to CAPLH/PUC-Rio for the use of the NMR facilities.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant No. E-26/202.720/2018); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant No. E-26/201.314/2022); Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 304671/2020-7).

References

First citationAit-Ramdane-Terbouche, C., Abdeldjebar, H., Terbouche, A., Lakhdari, H., Bachari, K., Roisnel, T. & Hauchard, D. (2020). J. Mol. Struct. 1222, 128918.  PubMed Google Scholar
First citationAnnunziata, F., Pinna, C., Dallavalle, S., Tamborini, L. & Pinto, A. (2020). Int. J. Mol. Sci. 21, 1–83.  Google Scholar
First citationBansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060.  Web of Science CrossRef CAS Google Scholar
First citationBelladona, A. L., Cardoso Dilelio, M., Cargnelutti, R., Barcellos, T., Cruz Silveira, C. & Schumacher, R. F. (2023). ChemistrySelect, 8, 202300377.  CrossRef Google Scholar
First citationBor, T., Aljaloud, S. O., Gyawali, R. & Ibrahim, S. A. (2016). Fruits, Vegetables, and Herbs: Bioactive Foods in Health Promotion, edited by R. R. Watson & V. R. Preedy. pp. 551–578. New York: Academic Press.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, J. L. E., Barton, R. J., Gear, J. R., Conlin, G. M. & Robertson, B. E. (1995). J. Chem. Crystallogr. 25, 245–248.  CrossRef CAS Google Scholar
First citationCao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S. & Lin, W. (2019). Chem. Rev. 119, 10403–10519.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarneiro, L. S. A., Almeida-Souza, F., Lopes, Y. S. C., Novas, R. C. V., Santos, K. B. A., Ligiero, C. B. P., Calabrese, K. D. S. & Buarque, C. D. (2021). Bioorg. Chem. 114, 105141.  CrossRef PubMed Google Scholar
First citationEmam, S. H., Hassan, R. A., Osman, E. O., Hamed, M. I. A., Abdou, A. M., Kandil, M. M., Elbaz, E. M. & Mikhail, D. S. (2023). Drug Dev. Res. 84, 433–457.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, K., Ramulu, M. S. & Kumar, N. P. (2018). New J. Chem. 42, 11276–11279.  CrossRef CAS Google Scholar
First citationLiu, Q. M., Zhang, Y. F., Gao, Y. Y., Liu, H., Cao, M. J., Yang, X. W., Su, W. J. & Liu, G. M. (2019). Food Funct. 10, 6767–6778.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRegal, M. K. A., Shaban, S. S. & El–Metwally, S. A. (2020). J. Heterocycl. Chem. 57, 1368–1378.  CrossRef CAS Google Scholar
First citationRosa, W. C., Rocha, I. O., Schmitz, B. F., Martins, M. A. P., Zanatta, N., Tisoco, I., Iglesias, B. A. & Bonacorso, H. G. (2021). J. Fluor. Chem. 248, 109822.  CrossRef Google Scholar
First citationSharapov, A. D., Fatykhov, R. F., Khalymbadzha, I. A., Zyryanov, G. V., Chupakhin, O. N. & Tsurkan, M. V. (2023). Int. J. Mol. Sci. 24, 2839.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, Z., Chen, Q., Zhang, Y. & Liang, C. (2021). Fitoterapia, 150, 104863.  CrossRef PubMed Google Scholar
First citationYildirim, M., Poyraz, S. & Ersatir, M. (2023). Med. Chem. Res. 32, 617–642.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds