CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 July 2023
Accepted 7 August 2023

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structure; nickel; zinc; cyclam; tetraiodocadmate.

CCDC references: 2281090; 2281091

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS
Published under a CC BY 4.0 licence

Crystal structures of the complexes containing macrocyclic cations $[M(\text { cyclam })]^{2+}(M=N i, Z n)$ and tetraiodidocadmate(2-) anion

Irina L. Andriichuk, ${ }^{\text {a }}$ Sergiu Shova ${ }^{\text {b }}$ and Yaroslaw D. Lampeka ${ }^{\text {a* }}$

${ }^{\text {a }}$ L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028, Kiev, Ukraine, and ${ }^{\text {b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea }}$ Grigore Ghika Voda 41A, RO-700487 lasi, Romania. *Correspondence e-mail: lampeka@adamant.net

The asymmetric units of the isostructural compounds (1,4,8,11-tetraazacyclo-tetradecane- $\kappa^{4} N$)nickel(II) tetraiodidocadmate(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{CdI}_{4}\right]$ (I), and triiodido- $1 \kappa^{3} I$ - μ-iodido-(1,4,8,11-tetraazacyclotetradecane- $2 \kappa^{4} N$)cadmium(II)$\operatorname{zinc}($ II $),\left[\mathrm{CdZnI}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]$ (II) $\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}=1,4,8,11\right.$-tetraazacyclotetradecane, cyclam, L), consist of the centrosymmetric macrocyclic cation $[M(L)]^{2+}[M=$ $\mathrm{Ni}^{\mathrm{II}}$ or $\mathrm{Zn}^{\mathrm{II}}$] with the metal ion lying on a twofold screw axis, and the tetraiodocadmate anion $\left[\mathrm{CdI}_{4}\right]^{2-}$ located on the mirror plane. In \mathbf{I}, the anion acts as an uncoordinated counter-ion while in II it is bound to the $\mathrm{Zn}^{\text {II }}$ atom via one of the iodide atoms, thus forming an electroneutral heterobimetallic complex $\left[\mathrm{Zn}(L)\left(\mathrm{CdI}_{4}\right)\right]$. The $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\text {II }}$ ions are coordinated in a square-planar manner by the four secondary N atoms of the macrocyclic ligand L, which adopts the most energetically stable trans-III conformation. The $\left[\mathrm{CdI}_{4}\right]^{2-}$ anions in I and II are structurally very similar and represent slightly deformed tetrahedrons with average $\mathrm{Cd}-\mathrm{I}$ bond lengths and $\mathrm{I}-\mathrm{Cd}-\mathrm{I}$ angles of $c a 2.79 \AA$ and 109.6°, respectively. The supramolecular organization of the complexes under consideration in the crystals is very similar and is determined by the hydrogen-bonding interactions between the secondary amino groups of the ligand L in the $[M(L)]^{2+}$ cations and iodide atoms of the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion. In particular, the alternating cations and anions form chains running along the b axis direction that are arranged into di-periodic sheets oriented parallel to the (101) and ($\overline{1} 01$) planes. Because both kinds of sheets are built from the same cations and anions, this feature provides the three-dimensional coherence of the crystals of I and II.

1. Chemical context

Iodocadmates are one of the representatives of organicinorganic hybrid perovskites that have been studied intensively recently. They are characterized by a number of specific electric and optical properties (Rok et al., 2021) that are dependent on the structure of the complex anions $\left[\mathrm{Cd}_{m} \mathrm{I}_{n}\right]^{(n-2 m)-}$ which, in turn, is determined by the structure of the organic or metallocomplex cation that is used as a structure-directing agent during the synthesis. Depending on this agent, in addition to the most common mononuclear $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion, several types of oligonuclear $\left\{\left[\mathrm{Cd}_{2} \mathrm{I}_{6}\right]^{2-}\right.$ (Park et al., 2018), $\left[\mathrm{Cd}_{3} \mathrm{I}_{7}\right]^{-}$(Bao et al., 2013), $\left[\mathrm{Cd}_{4} \mathrm{I}_{10}\right]^{2-}$ (Park et al., 2014), $\left[\mathrm{Cd}_{4} \mathrm{I}_{12}\right]^{4-}$ (Lee et al., 2016), $\left[\mathrm{Cd}_{6} \mathrm{I}_{16}\right]^{4-}$ (Bach et al., 1997)\} and polymeric (Dobrzycki \& Wózniak, 2009; Sharutin et al., 2012; Rok et al., 2021) iodocadmates have been structurally characterized. In some cases, octahedral complexes of penta- and hexadentate macrocyclic ligands have been used as the structure-directing agents in $\mathrm{Cd}^{\mathrm{II}}$-iodide systems (Lee et al., 2016; Park et al., 2018). At the same time, square-planar

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

\mathbf{I}		II	
Ni1-N1	$1.940(4)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$2.157(4)$
$\mathrm{Ni} 1-\mathrm{N} 2$	$1.943(4)$	$\mathrm{Zn} 1-\mathrm{N} 2$	$2.169(4)$
		$\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.027(4)$
		$\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.053(4)$
		$\mathrm{Zn} 1-\mathrm{I} 1$	$2.8957(11)$
$\mathrm{Cd} 1-\mathrm{I} 1$	$2.7825(4)$	$\mathrm{Cd} 1-\mathrm{I} 1$	$2.8208(5)$
$\mathrm{Cd} 1-\mathrm{I} 2$	$2.8024(7)$	$\mathrm{Cd} 1-\mathrm{I} 2$	$2.7756(8)$
$\mathrm{Cd} 1-\mathrm{I} 3$	$2.7615(7)$	$\mathrm{Cd} 1-\mathrm{I} 3$	$2.7442(7)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$86.35(16)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$83.73(17)$
		$\mathrm{N} 1 \mathrm{i}-\mathrm{Zn} 1-\mathrm{N} 2$	$83.43(17)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$	$93.65(16)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$97.02(18)$
		$\mathrm{N} 1 \mathrm{i}-\mathrm{Zn} 1-\mathrm{N} 2 \mathrm{i}$	$89.93(16)$
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\mathrm{ii}}$	$108.39(2)$	$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\mathrm{ii}}$	$106.04(2)$
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 2$	$106.608(15)$	$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 2$	$107.978(16)$
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 3$	$111.407(15)$	$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 3$	$110.135(17)$
$\mathrm{I} 2-\mathrm{Cd} 1-\mathrm{I} 3$	$112.16(2)$	$\mathrm{I} 2-\mathrm{Cd} 1-\mathrm{I} 3$	$114.22(3)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{3}{2}, z$.
cations formed by the tetraazamacrocyclic ligand cyclam (cyclam $=1,4,8,11$-tetraazacyclotetradecane, $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}, L$), which is the most suitable for binding of $3 d$ transition-metal ions (Yatsimirskii \& Lampeka, 1985) were never exploited in this respect, though the fruitfulness of such an approach was shown formerly during the preparation of iodoplumbate hybrids containing the $[\mathrm{Ni}(\mathrm{TMC})]^{2+}$ cation $(\mathrm{TMC}=1,4,8,11-$ tetramethyl-1,4,8,11-tetraazacyclotetradecane) (Zhang et al., 2019).

The present work describes the preparation and structural characterization of two representatives of iodocadmate hybrids formed under the structure-directing influence of the $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ cyclam complexes, namely (1,4,8,11-tetraaza-cyclotetradecane- $\kappa^{4} N$)nickel(II) tetraiodidocadmate(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{CdI}_{4}\right] \quad$ (I), and triiodido- $1 \kappa^{3} I$ - μ-iodido-(1,4,8,11-tetraazacyclotetradecane- $2 \kappa^{4} N$)cadmium(II)zinc(II), $\left[\mathrm{CdZnI}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right](\mathbf{I I})$.

2. Structural commentary

The asymmetric units of the isostructural compounds I and II involve the centrosymmetric macrocyclic cation $[M(L)]^{2+}[M$ $=\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$, respectively] with the metal ions lying on a twofold screw axis and the tetraiodocadmate anion $\left[\mathrm{CdI}_{4}\right]^{2-}$. The latter acts as an uncoordinated counter-ion in I but is coordinated to the $\mathrm{Zn}^{\mathrm{II}}$ in II, thus forming an electroneutral heterobimetallic complex $\left[\mathrm{Zn}(L)\left(\mathrm{CdI}_{4}\right)\right]$ in which the I 1 atom plays a μ_{2}-bridging function (Fig. 1). The Cd1, I2 and I3 atoms

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for \mathbf{I}.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{I} 1$	0.91	3.22	$3.829(4)$	127
N2-H2 $\cdots \mathrm{I} 1$	0.91	3.15	$3.768(4)$	126
N1-H1 2 I 2	0.91	3.03	$3.742(4)$	137
N2-H2 \cdots I3 ${ }^{\mathrm{i}}$	0.91	3.14	$3.881(4)$	140

Symmetry code: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2}$.
of the tetraiodocadmate anions in I and II are located on the mirror plane. The $\left[\mathrm{CdI}_{4}\right]^{2-}$ moieties as a whole represent slightly deformed tetrahedrons with $\mathrm{Cd}-\mathrm{I}$ bond lengths and $\mathrm{I}-\mathrm{Cd}-\mathrm{I}$ angles varying in the narrow ranges not exceeding $0.08 \AA$ and 8.2°, respectively (Table 1).

The $\mathrm{Ni}^{\mathrm{II}}$ ion in \mathbf{I} is coordinated by the four secondary N atoms of the macrocycle L (Fig. 1a) and the centrosymmetry of the cation ensures the strict planarity of the $\mathrm{Ni}\left(\mathrm{N}_{4}\right)$ coordination environment. The $\mathrm{Ni}-\mathrm{N}$ bond lengths of $c a$ $1.94 \AA$ (Table 1) are typical of four-coordinated low-spin square-planar $d^{8} \mathrm{Ni}^{\mathrm{II}}$ complexes with macrocyclic 14-membered tetraamine ligands and are much shorter than those (ca $2.05 \AA$) observed in the high-spin six-coordinated tetragonalbipyramidal macrocyclic species (Yatsimirskii \& Lampeka, 1985). The macrocyclic ligand L in the complex cations of \mathbf{I} adopts the most common and energetically favorable trans-III (R, R, S, S) conformation (Bosnich et al., 1965a; Barefield et al., 1986). Its five- and six-membered chelate rings are present in gauche and chair conformations with the bite angles of ca 87 and 93°, respectively (Table 1).

The bifurcating hydrogen-bonding interaction between the I1 atom of the anion and the secondary amino groups of the macrocyclic ligand of the cation as well as the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{I} 2$ contact (Fig. 1a, for parameters of the hydrogen bonds see Table 2) in \mathbf{I} arrange the $\left[\mathrm{CdI}_{4}\right]^{2-}$ fragment in such a way that its I1 atom is located just above the $\mathrm{Ni}\left(\mathrm{N}_{4}\right)$ plane in a potential axial position of the coordination sphere of the $\mathrm{Ni}^{\mathrm{II}}$ ion (the deviation of the mean angles $\mathrm{N}-\mathrm{Ni} 1-\mathrm{I} 1$ from 90° do not exceed 4°). However, the very long distance between the metal ion and this iodide [3.3618 (3) A] allows a coordinative interaction between them to be excluded. This is in agreement with the $\mathrm{Ni}-\mathrm{N}$ bond lengths typical of the square-planar $\mathrm{Ni}^{\mathrm{II}}$ species (see Database survey).

Figure 1
View of the molecular structures of I and II showing the atom-labeling scheme, with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding interactions are shown as dotted lines. Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{3}{2}, z$.

Table 3
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$ for II.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{I} 2$	0.91	2.95	$3.714(4)$	142
N2-H2 $\cdots{ }^{\mathrm{i}}$	0.91	3.11	$3.871(4)$	143

Symmetry code: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$.

The molecular structure of II is shown in Fig. 1b. Similarly to the $\mathrm{Ni}^{\mathrm{II}}$ atom in \mathbf{I}, the $\mathrm{Zn}^{\text {II }}$ ion in the macrocyclic cation is coordinated by the four secondary N atoms of the macrocycle L but is displaced by 0.336 (1) \AA from the N_{4} plane towards the apically coordinated I1 atom. Because the $[\mathrm{Zn}(L)]$ unit is centrosymmetric, the metal ion was found to be disordered around a center of inversion and thus was refined with half occupancy.

The weak coordination of the iodide atom in the axial position of the macrocyclic cation ($\mathrm{Zn} 1-\mathrm{I} 1$ bond length ca $2.9 \AA$, Table 1) is reinforced by the hydrogen-bonding interaction $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{I} 2$ (Table 3) and results in the deformed square-pyramidal coordination environment of the $\mathrm{Zn}^{\mathrm{II}}$ ion. Though the $\mathrm{Zn}-\mathrm{I}-\mathrm{Cd}$ angle $\left[119.79(4)^{\circ}\right]$ and the mean $\mathrm{Ni} \cdots \mathrm{I}-\mathrm{Cd}$ angle $\left[120.13(2)^{\circ}\right]$ are practically identical, the displacement of the $\mathrm{Zn}^{\mathrm{II}}$ ion from the mean N 4 plane of the macrocycle and a shorter distance between $\mathrm{Zn}^{\mathrm{II}}$ and the apical iodide than for $\mathrm{Ni}^{\mathrm{II}}$ leads to the reduction of the $M^{\mathrm{II}} \ldots \mathrm{Cd}^{\mathrm{II}}$ distance in II as compared to I [5.332 (1) and 4.945 (1) \AA, respectively].

Similar deformed square-pyramidal coordination polyhedra (in some cases with disordering of the metal ion) have also been observed in several other five-coordinate complexes containing the $[\mathrm{Zn}(L) X]$ moiety ($X=$ axial ligand) but were never found in complexes involving the $[\mathrm{Ni}(L)]$ fragment (see Database survey). The reasons for such differences have been considered in detail during analysis of the structure of the fivecoordinate macrocyclic $\mathrm{Zn}^{\mathrm{II}}$ complex with $X=$ tetrathioantimonato axial ligand and were explained mainly by preferable ligand field stabilization energy for the $d^{8} \mathrm{Ni}^{\mathrm{II}}$ electronic configuration as compared that for $d^{10} \mathrm{Zn}^{\text {II }}$ (Näther et al., 2022).

In general, the structure of the coordination polyhedron of the $\mathrm{Zn}^{\text {II }}$ ion in II has much in common with that discussed recently in detail for the $[\mathrm{Zn}(L) \mathrm{I}] \mathrm{I}_{3}$ complex (Gavrish et al., 2021). In both compounds, the macrocyclic ligand L adopts the

Figure 2
View of the two possible coordination modes of the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion in II. Symmetry code: (i) $x,-y+\frac{3}{2}, z$.
energetically favorable trans-III R, R, S, S) conformation (Bosnich et al., 1965a; Barefield et al., 1986), though with some peculiarities connected with the displacement of the $\mathrm{Zn}^{\mathrm{II}}$ ion from the mean N_{4} plane of the macrocycle donor atoms toward the coordinated iodide ion $[0.336$ (1) \AA in II and $0.381 \AA$ in triiodide complex]. In particular, the fivemembered rings in II adopt gauche-envelope conformations with very similar bite angles [average value $c a 83.5^{\circ}$ (Table 1)]. The six-membered chelate rings in II are present in a chair conformation and differ from each other more significantly, both from the point of view of the $\mathrm{Zn}-\mathrm{N}$ bond lengths and bite angles. So, the chelate ring in which the hydrogen atoms of the secondary amino groups have the same orientation as the displacement of the metal ion is characterized by smaller values of the $\mathrm{Zn}-\mathrm{N}$ coordination bond lengths (average value $2.041 \AA$) and bite angle (ca 90°) as compared to the ring with the opposite orientation of the hydrogen atoms (average value $2.163 \AA$ and $c a 97^{\circ}$, respectively; Table 1). Similarly to [$\mathrm{Zn}(L)$ $I] I_{3}$, a flattening of the former six-membered chelate ring at the Zn side is observed.

It should also be mentioned that the $\mathrm{Zn}-\mathrm{I} 1$ distance to the symmetry-related $\mathrm{I} 1(-x+1,-y+1,-z+1)$ atom on the other side of the N_{4} plane is 3.579 (1) \AA and this value seems to be too long for it to be considered as a coordination bond. This means that each component of the disordered $\mathrm{Zn}^{\mathrm{II}}$ ion is truly five-coordinate. Therefore, the connectivity within the crystal is not uniquely defined and, in principle, the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anions can interact either with one or two $[\mathrm{Zn}(L)]^{2+}$ cations (Fig. 2).

3. Supramolecular features

The $\mathrm{N} 1-\mathrm{H} \cdots$ I2 interactions in both I and II together with either $\mathrm{N} 1-\mathrm{H} / \mathrm{N} 2-\mathrm{H} \cdots \mathrm{I} 1$ hydrogen-bonding in \mathbf{I} or $\mathrm{Zn}-\mathrm{I} 1$ coordination in II determine close similarity in the mutual spatial arrangements of the cation and anion in both compounds (Fig. 1). As expected, the supramolecular organization of the complexes under consideration is also very similar and is determined by the hydrogen-bonding interactions between the secondary amino groups of the ligand L in

Figure 3
Nearest surrounding of the macrocyclic cation (a) and the anion (b) in I formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding (black dashed lines). Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z+\frac{3}{2}$; (iii) $-x+1$, $y-\frac{1}{2},-z+1$; (iv) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$; (v) $x,-y+\frac{3}{2}, z ;(\mathrm{vi})-x+1, y+\frac{1}{2}$, $-z+\frac{1}{3}$; (vii) $x-\frac{1}{2},-y+\frac{3}{2},-z+\frac{3}{2}$; (viii) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$; (ix) $x-\frac{1}{2}, y$, $-z+\frac{3}{2}$.
the $[M(L)]^{2+}$ cations as the proton donors and I2 and I3 atoms of the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anions as the proton acceptors (Tables 2 and 3). Therefore, only complex I will be used for further illustration.

As a result of the hydrogen bonds $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{I} 2$ and $\mathrm{N} 2-\mathrm{H} \cdots \mathrm{I} 3$, each macrocyclic cation $[M(L)]^{2+}$ in II and II is surrounded by four $\left[\mathrm{CdI}_{4}\right]^{2-}$ anions (Fig. 3a). In turn, each of these iodide atoms forms two bonds with different macrocyclic cations, thus resulting in binding of four cations by a single anion (Fig. 3b).

In the crystal, the alternating cations and anions form chains running along the b-axis direction that are arranged in twodimensional sheets oriented parallel to the (101) and ($\overline{1} 01$) planes (Fig. 4). Since these sheets are built from the same cations and anions, this feature provides the three-dimensional coherence of crystals I and II.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.44; Groom et al., 2016) indicated that more than 20 compounds containing low-spin square-planar $[\mathrm{Ni}(L)]^{2+}$ cation have been characterized crystallographically. For all of them, relatively short $\mathrm{Ni}-\mathrm{N}$ bond lengths in the equatorial planes typically not exceeding $1.97 \AA$ and the absence of potential donor atoms in the axial positions of the $\mathrm{Ni}^{\mathrm{II}}$ ion at distances shorter than $3.2 \AA$ are inherent. Among them, several complexes containing a non-coordinated iodide anion as the counter-ion have also been described [CAFHUM (Prasad \& McAuley, 1983); JIZTUH (Adam et al., 1991); JIZTUH01-JIZTUH08 (Horii et al., 2020)]. In general, the structural parameters of these compounds, in particular, the

Figure 4
Fragment of the two-dimensional sheet in I parallel to the (101) plane as viewed along the c axis. Iodide atoms involved in the formation of sheets parallel to the ($\overline{1} 01$) plane are shown in red. Hydrogen-bonding interactions are shown as dotted lines.
equatorial $\mathrm{Ni}-\mathrm{N}$ bond lengths (1.93-1.96 \AA) and $\mathrm{Ni} \cdots \mathrm{I}$ distances in the axial directions (3.29-3.34 \AA) are very similar to those observed in I. Interestingly, there are two complexes formed by the $[\mathrm{Ni}(L)]^{2+}$ cation and tetrahedral chlorometalate anions $\left[M C l_{4}\right]^{2-}$ with $M=\mathrm{Zn}^{\mathrm{II}}$ (FAGWAL; Barefield et al., 1986) and $\mathrm{Ni}^{\mathrm{II}}$ (QASKOO; Heinemann et al., 2022) that also demonstrate rather weak (if any) interaction of the $[\mathrm{Ni}(L)]^{2+}$ cation with the halide [the $\mathrm{Ni}-\mathrm{Cl}$ distances are 2.835 (average) and $3.305 \AA$, respectively].

In eight of the more than forty compounds containing the $[\mathrm{Zn}(L)]^{2+}$ cation that are present in the CSD, the $\mathrm{Zn}^{\mathrm{II}}$ ion is five-coordinated in a square-pyramidal manner with different axial ligands including hexacyanoferrate(III) (NEPYUC; Colacio et al., 2001), thiolate (ICUFES and ICUFIW; Notni et al., 2006), thioantimonate [GALPUI (Danker et al., 2021) and KECVIB (Näther et al., 2022)] as well as iodide [HEGNOW (Porai-Koshits et al., 1994); JALBIL and JALBOR (Gavrish et al., 2021)]. In all these five-coordinate complexes, the $\mathrm{Zn}^{\text {II }}$ atom is displaced from the mean N_{4} plane of the donor atoms of the macrocycle toward the axial ligand. Additionally, in some compounds (GALPUI, KECVIB and JALBOR), similar to II, some kind of disorder of the metal ion is also present. The $\mathrm{Zn}-\mathrm{I}$ axial bond lengths of 2.66-2.77 \AA observed in the iodide complexes are shorter than that found in II [2.8957 (11) Å].

A search of the CSD gives more than 90 hits related to the structural characterization of compounds containing the $\left[\mathrm{CdI}_{4}\right]^{2-}$ anion. Like I, the majority of them are ionic species in which the charge of the anion is compensated by organic (ca 60 hits) or metalocomplex (ca 30 hits) cations. Besides, similarly to II, in three compounds that include the complex cations formed by $\mathrm{Cd}^{\text {II }}$ [ITAFAL (Satapathi et al., 2011) and MATKUO (Seitz et al., 2005)] or $\mathrm{Cu}^{\mathrm{II}}$ (NEZXAS; Yu et al., 2007), the tetraiodocadmate anion displays the μ_{2}-bridging function with the $M-\mathrm{I}$ coordination bonds shorter than $3.0 \AA$ (ca $2.83,2.97$ and $2.76 \AA$, respectively). In general, regardless the nature of the cation and whether the $\left[\mathrm{CdI}_{4}\right]^{2-}$ moiety is coordinated to the $M^{\text {II }}$ ion, it demonstrates a slightly distorted tetrahedral shape similar to that observed in I and II.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma-Aldrich and were used without further purification. The complex $[\mathrm{Ni}(L)]\left(\mathrm{ClO}_{4}\right)_{2}$ was prepared from ethanol solutions as described in the literature (Bosnich et al., 1965b). The complex $[\mathrm{Zn}(L)]\left(\mathrm{ClO}_{4}\right)_{2}$ was prepared analogously by mixing of equimolar amounts of L and zinc perchlorate hexahydrate in ethanol.
$\left[\mathrm{Ni}(L)\left(\mathrm{CdI}_{4}\right)\right]$, \mathbf{I}, was prepared as follows. $[\mathrm{Ni}(L)]\left(\mathrm{ClO}_{4}\right)_{2}$ ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in 60 ml of an $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} /$ DMF mixture ($7: 3: 20$ by volume). $\mathrm{CdI}_{2}(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ and KI ($36 \mathrm{mg}, 0.22 \mathrm{mmol}$) dissolved in 20 ml of an $\mathrm{EtOH} /$ $\mathrm{H}_{2} \mathrm{O}$ mixture (1:9 by volume) were added dropwise to this solution. Brown crystals formed in several days, were filtered off, washed with ethanol and dried in air. Yield: $22 \mathrm{mg}(23 \%)$.

Table 4
Experimental details.

	I	II
Crystal data		
Chemical formula	$\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{CdI}_{4}\right]$	$\left[\mathrm{CdZnI}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right.$]
$M_{\text {r }}$	879.04	885.70
Crystal system, space group	Orthorhombic, Pnma	Orthorhombic, Pnma
Temperature (K)	200	293
$a, b, c(\AA)$	15.4317 (3), 17.2945 (3), 7.98733 (15)	15.6013 (3), 17.2644 (3), 8.1099 (2)
$V\left(\AA^{3}\right)$	2131.69 (7)	2184.38 (8)
Z	4	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	7.67	7.72
Crystal size (mm)	$0.1 \times 0.05 \times 0.03$	$0.15 \times 0.1 \times 0.1$
Data collection		
Diffractometer	Rigaku Xcalibur Eos	Rigaku Xcalibur Eos
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2022)	Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
$T_{\text {min }}, T_{\text {max }}$	0.573, 1.000	0.426, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	16993, 2644, 2204	9158, 2582, 2096
	0.044	0.031
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.667	0.666
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.031, 0.064, 1.06	$0.032,0.065,1.04$
No. of reflections	2644	2582
No. of parameters	97	100
H -atom treatment	H-atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	2.57, -1.23	1.36, -0.94

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Alternatively, complex I can be obtained using the chloride salt of $\mathrm{Cd}^{\mathrm{II}}$. To 50 ml of an aqueous solution of $\mathrm{CdCl}_{2}(20 \mathrm{mg}$, 0.11 mmol) were added 0.4 ml of 57% aqueous HI and this mixture was added dropwise to a solution of $[\mathrm{Ni}(L)]\left(\mathrm{ClO}_{4}\right)_{2}$ $\left(50 \mathrm{mg}, 0.11 \mathrm{mmol}\right.$) in 40 ml of an $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ mixture ($3: 1$ by volume). Brown crystals formed in 5 days, were filtered off, washed with ethanol and dried in air. Yield: 35 mg (36%). Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{CdI}_{4} \mathrm{~N}_{4} \mathrm{Ni}$: C 13.66, H $2.75, \mathrm{~N}$ 6.37%. Found: C 13.78, H 2.60 , N 6.42%.
$\left[\mathrm{Zn}(L)\left(\mathrm{CdI}_{4}\right)\right]$, II, was prepared similarly to \mathbf{I}. $[\mathrm{Zn}(L)]\left(\mathrm{ClO}_{4}\right)_{2}(52 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in 32 ml of an $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ mixture ($7: 1$ by volume). $\mathrm{CdI}_{2}(24 \mathrm{mg}$, $0.07 \mathrm{mmol})$ and $\mathrm{KI}(20 \mathrm{mg}, 0.13 \mathrm{mmol})$ dissolved in 12 ml of an $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ mixture ($1: 9$ by volume) were added dropwise to this solution. Colorless crystals formed in several days, were filtered off, washed with ethanol and dried in air. Yield: 26 mg (46\%). Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{CdI}_{4} \mathrm{~N}_{4} \mathrm{Zn}$: C 13.56, H 2.73 , N 6.33%. Found: C 13.69, H 2.80, N 6.39%. Single crystals of II suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of methylene H atoms of $0.97 \AA$ (in I) or $0.99 \AA$ (in II) and $\mathrm{N}-\mathrm{H}$ distance of $0.91 \AA$ with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ of the parent atoms.

References

Adam, K. R., Antolovich, M., Brigden, L. G., Leong, A. J., Lindoy, L. F., Baillie, P. J., Uppal, D. K., McPartlin, M., Shah, B., Proserpio, D., Fabbrizzi, L. \& Tasker, P. A. (1991). J. Chem. Soc. Dalton Trans. pp. 2493-2501.
Bach, A., Hoyer, M. \& Hartl, H. (1997). Z. Naturforsch. B: Chem. Sci. 52, 1497-1500.
Bao, X., Liu, W., Liu, J.-L., Gómez-Coca, S., Ruiz, E. \& Tong, M.-L. (2013). Inorg. Chem. 52, 1099-1107.

Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. \& Van Derveer, D. G. (1986). Inorg. Chem. 25, 41974202.

Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965a). Inorg. Chem. 4, 11021108.

Bosnich, B., Tobe, M. L. \& Webb, G. A. (1965b). Inorg. Chem. 4, 1109-1112.
Colacio, E., Ghazi, M., Stoeckli-Evans, H., Lloret, F., Moreno, J. M. \& Pérez, C. (2001). Inorg. Chem. 40, 4876-4883.
Danker, F., Engesser, T. A., Broich, D., Näther, C. \& Bensch, W. (2021). Dalton Trans. 50, 18107-18117.

Dobrzycki, L. \& Woźniak, K. (2009). J. Mol. Struct. 921, 18-33.
Gavrish, S. P., Shova, S. \& Lampeka, Y. D. (2021). Acta Cryst. E77, 1185-1189.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Heinemann, F. W., Schickaneder, C. \& Alsfasser, R. (2022). CSD Communication (refcode QASKOO). CCDC, Cambridge, England.
Horii, Y., Kanegae, Y., Takahashi, K., Fuyuhiro, A., Noguchi, M., Suzuki, H. \& Nakano, M. (2020). Inorg. Chem. 59, 5418-5423.
Lee, H.-H., Lee, E., Ju, H., Kim, S., Park, I.-H. \& Lee, S. S. (2016). Inorg. Chem. 55, 2634-2640.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Näther, C., Danker, F. \& Bensch, W. (2022). Acta Cryst. E78, 490-495.

Notni, J., Gorls, H. \& Anders, E. (2006). Eur. J. Inorg. Chem. pp. 1444-1455.
Park, I.-H., Kang, Y., Lee, E., Ju, H., Kim, S., Seo, S., Jung, J. H. \& Lee, S. S. (2018). IUCrJ, 5, 45-53.

Park, I.-H., Kim, J.-Y., Kim, K. \& Lee, S. S. (2014). Cryst. Growth Des. 14, 6012-6023.
Porai-Koshits, M. A., Antsyshkina, A. S., Shevchenko, Yu. N., Yashina, N. I. \& Varava, F. B. (1994). Zh. Neorg. Khim. 39, 435-445. Prasad, L. \& McAuley, A. (1983). Acta Cryst. C39, 1175-1177.
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Rok, M., Zarychta, B., Bil, A., Trojan-Piegza, J., Medycki, W., Miniewicz, A., Piecha-Bisiorek, A., Ciżman, A. \& Jakubas, R. (2021). J. Mater. Chem. C. 9, 7665-7676.
Satapathi, S., Roy, S., Bhar, K., Ghosh, R., Srinivasa Rao, A. \& Ghosh, B. K. (2011). Struct. Chem. 22, 605-613.

Seitz, M., Kaiser, A., Stempfhuber, S., Zabel, M. \& Reiser, O. (2005). Inorg. Chem. 44, 4630-4636.
Sharutin, V. V., Senchurin, V. S., Klepikov, N. N. \& Sharutina, O. K. (2012). Russ. J. Inorg. Chem. 57, 922-929.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yatsimirskii, K. B. \& Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)
Yu, J.-H., Ye, L., Bi, M.-H., Hou, Q., Zhang, X. \& Xu, J.-Q. (2007). Inorg. Chim. Acta, 360, 1987-1994.
Zhang, L., Tang, C., Zheng, W., Jiang, W. \& Jia, D. (2019). Eur. J. Inorg. Chem. pp. 237-244.

supporting information

Crystal structures of the complexes containing macrocyclic cations $[M \text { (cyclam) }]^{2+}(M=N i, Z n)$ and tetraiodidocadmate(2-) anion

Irina L. Andriichuk, Sergiu Shova and Yaroslaw D. Lampeka

Computing details

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(1,4,8,11-Tetraazacyclotetradecane- $\kappa^{4} N$)nickel(II) tetraiodidocadmate(II) (I)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{CdI}_{4}\right]$
$M_{r}=879.04$
Orthorhombic, Pnma
$a=15.4317$ (3) \AA
$b=17.2945$ (3) \AA
$c=7.98733(15) \AA$
$V=2131.69(7) \AA^{3}$
$Z=4$
$F(000)=1600$

Data collection

Rigaku Xcalibur Eos
diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1593 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.064$
$S=1.06$
2644 reflections
97 parameters
0 restraints
$D_{\mathrm{x}}=2.739 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5956 reflections
$\theta=2.4-28.8^{\circ}$
$\mu=7.67 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Prism, clear dark orange
$0.1 \times 0.05 \times 0.03 \mathrm{~mm}$
$T_{\min }=0.573, T_{\max }=1.000$
16993 measured reflections
2644 independent reflections
2204 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-19 \rightarrow 19$
$k=-23 \rightarrow 23$
$l=-10 \rightarrow 10$

Primary atom site location: dual
Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0237 P)^{2}+2.5375 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=2.57 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.23$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
I1	$0.38762(2)$	$0.61952(2)$	$0.75107(4)$	$0.02581(10)$
I3	$0.13165(3)$	0.750000	$0.68459(7)$	$0.03244(13)$
I2	$0.34261(3)$	0.750000	$0.27469(6)$	$0.02831(12)$
Cd1	$0.30734(3)$	0.750000	$0.61887(7)$	$0.02466(13)$
Ni1	0.500000	0.500000	0.500000	$0.01715(18)$
N2	$0.6010(2)$	$0.5611(2)$	$0.5599(5)$	$0.0224(8)$
H2	0.577167	0.604133	0.607128	0.027^{*}
N1	$0.4693(2)$	$0.5664(2)$	$0.3133(5)$	$0.0219(8)$
H1	0.448687	0.609197	0.366795	0.026^{*}
C2	$0.6554(3)$	$0.5152(3)$	$0.6750(7)$	$0.0325(12)$
H2A	0.694792	0.549462	0.738857	0.039^{*}
H2B	0.690905	0.477600	0.611403	0.039^{*}
C1	$0.4050(3)$	$0.5265(3)$	$0.2080(7)$	$0.0335(12)$
H1A	0.434068	0.489215	0.132448	0.040^{*}
H1B	0.372638	0.564247	0.139112	0.040^{*}
C5	$0.6550(3)$	$0.5965(3)$	$0.4269(7)$	$0.0316(12)$
H5A	0.682907	0.555079	0.360435	0.038^{*}
H5B	0.701410	0.627786	0.479260	0.038^{*}
C4	$0.6021(4)$	$0.6473(3)$	$0.3119(7)$	$0.0366(13)$
H4A	0.641638	0.675793	0.236207	0.044^{*}
H4B	0.570150	0.685815	0.379726	0.044^{*}
C3	$0.5377(3)$	$0.6012(3)$	$0.2072(6)$	$0.0294(11)$
H3A	0.510613	0.635643	0.123246	0.035^{*}
H3B	0.568819	0.559713	0.146499	0.035^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02646(18)$	$0.02180(17)$	$0.0292(2)$	$0.00438(12)$	$0.00288(13)$	$0.00314(13)$
I3	$0.0221(2)$	$0.0352(3)$	$0.0400(3)$	0.000	$0.0040(2)$	0.000
I2	$0.0290(3)$	$0.0274(2)$	$0.0285(3)$	0.000	$-0.0001(2)$	0.000
Cd1	$0.0227(3)$	$0.0198(2)$	$0.0315(3)$	0.000	$0.0013(2)$	0.000
Ni1	$0.0171(4)$	$0.0164(4)$	$0.0179(4)$	$-0.0020(3)$	$-0.0014(3)$	$0.0013(3)$
N2	$0.018(2)$	$0.021(2)$	$0.029(2)$	$-0.0005(15)$	$0.0024(17)$	$-0.0012(17)$
N1	$0.026(2)$	$0.0195(19)$	$0.020(2)$	$0.0035(16)$	$-0.0001(17)$	$-0.0008(16)$
C2	$0.025(3)$	$0.040(3)$	$0.033(3)$	$-0.003(2)$	$-0.010(2)$	$-0.003(2)$
C1	$0.032(3)$	$0.039(3)$	$0.029(3)$	$0.003(2)$	$-0.010(2)$	$0.003(2)$
C5	$0.023(3)$	$0.029(3)$	$0.042(3)$	$-0.011(2)$	$0.001(2)$	$0.000(2)$
C4	$0.043(3)$	$0.022(3)$	$0.045(3)$	$-0.006(2)$	$0.012(3)$	$0.004(2)$

supporting information

C 3	$0.032(3)$	$0.026(3)$	$0.030(3)$	$-0.001(2)$	$0.008(2)$	$0.007(2)$

Geometric parameters (A, ${ }^{\circ}$)

I1-Cd1	2.7825 (4)	C2-H2A	0.9900
I1-Ni1	3.3618 (3)	C2-H2B	0.9900
I3-Cd1	2.7615 (7)	C2-C1 ${ }^{\text {i }}$	1.504 (7)
12-Cd1	2.8024 (7)	C1-H1A	0.9900
Ni1-N2	1.943 (4)	C1-H1B	0.9900
Ni1-N2 ${ }^{\text {i }}$	1.943 (4)	C5-H5A	0.9900
$\mathrm{Ni} 1{ }^{-} \mathrm{N} 1^{\text {i }}$	1.940 (4)	C5-H5B	0.9900
Ni1-N1	1.940 (4)	C5-C4	1.511 (7)
N2-H2	0.9124	C4-H4A	0.9900
N2-C2	1.477 (6)	C4-H4B	0.9900
N2-C5	1.483 (6)	C4-C3	1.524 (7)
N1-H1	0.9125	C3-H3A	0.9900
N1-C1	1.472 (6)	C3-H3B	0.9900
N1-C3	1.481 (6)		
Cd1-I1-Ni1	120.129 (15)	N2-C2-H2B	110.3
$\mathrm{I}^{1 i}-\mathrm{Cd1}-\mathrm{Il}$	108.39 (2)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}^{\text {i }}$	106.9 (4)
$\mathrm{I} 1{ }^{\text {ii}}-\mathrm{Cd} 1-\mathrm{I} 2$	106.608 (15)	H2A-C2-H2B	108.6
I1-Cd1-I2	106.608 (15)	$\mathrm{Cl}^{\text {i }}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.3
I3-Cd1-I1	111.407 (15)	$\mathrm{C} 1{ }^{\text {i }}$ C2- 2 H2B	110.3
I3-Cd1-I1 ${ }^{\text {ii }}$	111.407 (15)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C}^{\text {i }}$	106.7 (4)
I3-Cd1-I2	112.16 (2)	N1-C1-H1A	110.4
N2-Ni1-I1	86.14 (11)	N1-C1-H1B	110.4
N2 - Ni1-I1	93.86 (11)	C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.4
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 2$	180.0	C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.4
N 1 - Ni 1 - Il	91.78 (11)	H1A-C1-H1B	108.6
N1-Ni1-I1	88.22 (11)	N2-C5-H5A	109.2
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\text {i }}$	86.35 (16)	N2-C5-H5B	109.2
$\mathrm{N} 1^{\mathbf{i}}-\mathrm{Ni} 1-\mathrm{N}^{\text {i }}$	93.65 (16)	N2-C5-C4	111.9 (4)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 2$	86.35 (16)	H5A-C5-H5B	107.9
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$	93.65 (16)	C4-C5-H5A	109.2
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 1$	180.0	C4-C5-H5B	109.2
Ni1-N2-H2	102.8	C5-C4-H4A	109.1
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Ni} 1$	108.5 (3)	C5-C4-H4B	109.1
C2-N2-H2	114.3	C5-C4-C3	112.4 (4)
C2-N2-C5	110.4 (4)	H4A-C4-H4B	107.9
C5-N2-Ni1	119.9 (3)	C3-C4-H4A	109.1
C5-N2-H2	100.7	C3-C4-H4B	109.1
Ni1-N1-H1	101.9	N1-C3-C4	111.3 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	109.0 (3)	N1-C3-H3A	109.4
C1-N1-H1	114.4	N1-C3-H3B	109.4
C1-N1-C3	110.1 (4)	C4-C3-H3A	109.4
C3-N1-Ni1	120.4 (3)	C4-C3-H3B	109.4
C3-N1-H1	100.7	H3A-C3-H3B	108.0

$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$
$\begin{array}{ll}\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}^{\mathrm{i}} & -39.7(5) \\ \mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4 & 55.7(5) \\ \mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}} & 39.1(5) \\ \mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4 & -55.5(5) \\ \mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3 & -67.2(6)\end{array}$

$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$-177.0(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$176.4(4)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$	$-173.1(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	$66.9(5)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$173.2(4)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+3 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{I} 1$	0.91	3.22	$3.829(4)$	127
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{I} 1$	0.91	3.15	$3.768(4)$	126
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{I} 2$	0.91	3.03	$3.742(4)$	137
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots$ I 3 ii	0.91	3.14	$3.881(4)$	140

Symmetry code: (iii) $x+1 / 2, y,-z+3 / 2$.
Triiodido- $1 \kappa^{3} I$ - μ-iodido-(1,4,8,11-tetraazacyclotetradecane- $2 \kappa^{4} N$)cadmium(II)zinc(II) (II)

Crystal data

$\left[\mathrm{CdZnI}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]$
$M_{r}=885.70$
Orthorhombic, Pnma
$a=15.6013$ (3) \AA
$b=17.2644(3) \AA$
$c=8.1099(2) \AA$
$V=2184.38(8) \AA^{3}$
$Z=4$
$F(000)=1608$

Data collection

Rigaku Xcalibur Eos diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1593 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.065$
$S=1.04$
2582 reflections
100 parameters
0 restraints
$D_{\mathrm{x}}=2.693 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3723 reflections
$\theta=2.4-28.5^{\circ}$
$\mu=7.72 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, clear light colourless
$0.15 \times 0.1 \times 0.1 \mathrm{~mm}$
$T_{\text {min }}=0.426, T_{\text {max }}=1.000$
9158 measured reflections
2582 independent reflections
2096 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-20 \rightarrow 18$
$k=-20 \rightarrow 21$
$l=-10 \rightarrow 9$

Primary atom site location: dual
Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0226 P)^{2}+2.0518 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.36 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.94$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. (<1)
I1	$0.60630(2)$	$0.61948(2)$	$0.72972(4)$	$0.04273(11)$	
I2	$0.65629(3)$	0.750000	$0.25522(7)$	$0.04439(14)$	
I3	$0.85889(3)$	0.750000	$0.67325(8)$	$0.04858(15)$	
Cd1	$0.68815(3)$	0.750000	$0.59194(7)$	$0.04059(15)$	0.5
Zn1	$0.50999(12)$	$0.51552(8)$	$0.5195(2)$	$0.0325(4)$	$0.0365(10)$
N1	$0.5302(3)$	$0.5688(2)$	$0.3001(5)$	0.044^{*}	
H1	0.553580	0.612411	0.344223	$0.0382(10)$	
N2	$0.3925(2)$	$0.5640(2)$	$0.5681(5)$	0.046^{*}	$0.0472(14)$
H2	0.413021	0.607917	0.616123	0.057^{*}	0.057^{*}
C1	$0.5928(4)$	$0.5255(3)$	$0.2012(6)$	$0.0504(15)$	
H1A	0.623595	0.560764	0.129340	0.060^{*}	
H1B	0.563348	0.487810	0.132915	0.060^{*}	
C2	$0.3449(3)$	$0.5153(3)$	$0.6856(8)$	$0.0437(13)$	
H2A	0.310992	0.477403	0.626059	0.052^{*}	
H2B	0.306174	0.547248	0.750024	0.052^{*}	
C3	$0.4573(3)$	$0.5993(3)$	$0.2050(6)$	$0.0552(16)$	
H3A	0.427594	0.556651	0.152125	0.066^{*}	
H3B	0.478559	0.633453	0.119263	0.066^{*}	$0.0477(14)$
C4	$0.3943(4)$	$0.6438(3)$	$0.3148(8)$	0.057^{*}	
H4A	0.426472	0.681033	0.379528	0.057^{*}	
H4B	0.355727	0.672860	0.244098		
C5	$0.3405(3)$	$0.5950(3)$	$0.4320(7)$	0.476734	
H5A	0.294530	0.626459	0.371555		
H5B	0.314889	0.552420			

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0457(2)$	$0.03772(19)$	$0.0448(2)$	$-0.01092(14)$	$-0.00578(17)$	$0.00554(15)$
I2	$0.0440(3)$	$0.0406(3)$	$0.0485(3)$	0.000	$0.0018(2)$	0.000
I3	$0.0348(3)$	$0.0515(3)$	$0.0595(4)$	0.000	$-0.0069(3)$	0.000
Cd1	$0.0354(3)$	$0.0320(3)$	$0.0543(4)$	0.000	$-0.0033(3)$	0.000
Zn1	$0.0297(9)$	$0.0377(11)$	$0.0302(9)$	$0.0088(7)$	$0.0030(7)$	$0.0069(7)$
N1	$0.043(2)$	$0.034(2)$	$0.032(2)$	$-0.0040(18)$	$-0.004(2)$	$0.0008(17)$
N2	$0.032(2)$	$0.036(2)$	$0.046(3)$	$0.0004(17)$	$-0.002(2)$	$-0.0030(19)$
C1	$0.054(3)$	$0.053(3)$	$0.035(3)$	$-0.011(3)$	$0.017(3)$	$-0.002(2)$
C2	$0.035(3)$	$0.050(3)$	$0.066(4)$	$0.000(2)$	$0.016(3)$	$-0.005(3)$
C3	$0.053(3)$	$0.040(3)$	$0.038(3)$	$-0.003(2)$	$-0.010(3)$	$0.010(2)$
C4	$0.062(4)$	$0.038(3)$	$0.066(4)$	$0.011(3)$	$-0.027(3)$	$0.007(3)$

supporting information

C 5	$0.034(3)$	$0.045(3)$	$0.064(4)$	$0.009(2)$	$-0.005(3)$

Geometric parameters (A, ${ }^{\circ}$)

I1-Cd1	2.8208 (5)	C1-H1A	0.9700
$\mathrm{I} 1-\mathrm{Zn} 1$	2.8957 (11)	C1-H1B	0.9700
I2-Cd1	2.7756 (8)	$\mathrm{C} 1-\mathrm{C}^{\text {i }}$	1.512 (8)
I3-Cd1	2.7442 (7)	C2-H2A	0.9700
Zn1-N1	2.027 (4)	C2-H2B	0.9700
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	2.157 (4)	C3-H3A	0.9700
Zn1-N2 ${ }^{\text {i }}$	2.169 (4)	C3-H3B	0.9700
$\mathrm{Zn} 1-\mathrm{N} 2$	2.053 (4)	C3-C4	1.534 (8)
N1-H1	0.9100	C4-H4A	0.9700
N1-C1	1.468 (6)	C4-H4B	0.9700
N1-C3	1.471 (6)	C4- 55	1.522 (8)
N2-H2	0.9101	C5-H5A	0.9700
N2-C2	1.472 (6)	C5-H5B	0.9700
N2-C5	1.470 (6)		
Cd1-I1-Zn1	119.79 (4)	C5-N2-Zn1 ${ }^{1}$	111.8 (3)
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\text {ii }}$	106.04 (2)	C5-N2-H2	102.3
I2-Cd1-I1	107.978 (16)	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 2$	114.5 (4)
I2-Cd1-I11i	107.978 (16)	N1-C1-H1A	109.8
$\mathrm{I} 3-\mathrm{Cd} 1-\mathrm{I} 1^{\text {ii }}$	110.135 (17)	N1-C1-H1B	109.8
I3-Cd1-I1	110.135 (17)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C}^{\text {i }}$	109.5 (4)
I3-Cd1-I2	114.22 (3)	H1A-C1-H1B	108.2
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{Il}$	99.78 (12)	C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.8
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Il}$	98.91 (12)	C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.8
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	161.17 (7)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1^{\text {i }}$	109.5 (4)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N}^{\text {i }}$	83.73 (17)	N2-C2-H2A	109.8
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 2^{\text {i }}$	89.93 (16)	N2-C2-H2B	109.8
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	97.02 (18)	$\mathrm{C} 1{ }^{\text {i }}$ - $2-\mathrm{H} 2 \mathrm{~A}$	109.8
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{Il}$	95.59 (12)	$\mathrm{C} 1{ }^{\text {i }}$ - $2-\mathrm{H} 2 \mathrm{~B}$	109.8
N2 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{I} 1$	102.79 (12)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.2
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	83.43 (17)	N1-C3-H3A	109.3
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} \mathrm{Z}^{\text {i }}$	161.28 (6)	N1-C3-H3B	109.3
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{Zn} 1^{\text {i }}$	18.83 (7)	N1-C3-C4	111.8 (4)
$\mathrm{Zn} 1^{i}-\mathrm{N} 1-\mathrm{H} 1$	114.1	H3A-C3-H3B	107.9
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{H} 1$	95.3	C4-C3-H3A	109.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1^{1}$	102.7 (3)	C4-C3-H3B	109.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	110.6 (3)	C3-C4-H4A	108.3
C1-N1-H1	111.7	C3-C4-H4B	108.3
C1-N1-C3	114.2 (4)	H4A-C4-H4B	107.4
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Zn} 1^{1}$	111.9 (3)	C5-C4-C3	116.0 (4)
C3-N1-Zn1	120.2 (3)	C5-C4-H4A	108.3
C3-N1-H1	102.7	C5-C4-H4B	108.3
$\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{Zn} 1^{\text {i }}$	18.72 (6)	N2-C5-C4	111.5 (4)
$\mathrm{Zn} 1^{\text {i }}$ - $\mathrm{N} 2-\mathrm{H} 2$	114.9	N2-C5-H5A	109.3

supporting information

$\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{H} 2$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Zn} 1^{\mathrm{i}}$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Zn} 1$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Zn} 1$
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$
$\mathrm{Zn} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$
Zn 1 - $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{Zn} 1^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$
$\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$
Zn 1 - $\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$

96.2

101.8 (3)
110.0 (3)
112.1
119.8 (3)
-30.3(5)
-48.2 (4)
63.8 (5)
45.0 (5)
48.1 (5)
30.6 (5)
-64.2 (5)
N2-C5—H5B
109.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$
109.3

C4-C5-H5B
H5A-C5-H5B
109.3
108.0

$\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$-45.3(5)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-71.7(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$180.0(4)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$-179.3(4)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2{ }^{\mathrm{i}}$	$-169.5(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$71.8(6)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$	$168.9(4)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+3 / 2, z$.

Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{I} 2$	0.91	2.95	$3.714(4)$	142
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{I} 3^{\text {iii }}$	0.91	3.11	$3.871(4)$	143

Symmetry code: (iii) $x-1 / 2, y,-z+3 / 2$.

