

Synthesis, crystal structure and Hirshfeld surface analysis of a copper(II) complex involving 3-methylbenzoate and 2,2'-bipyridine ligands

Adnan Qadir*

Department of Chemistry, College of Science, Salahaddin University, Erbil 44001, Iraq. *Correspondence e-mail: adnan.qadir@su.edu.krd

3-Methylbenzoic acid (3-mbH) and 2,2'-bipyridine (bipy) reacted with a copper(II) salt forming a new mixed ligand complex, $aqua(2,2'-bipyridine-\kappa^2N,N')$ bis(3-methylbenzoato)- $\kappa^2O,O';\kappa O$ -copper(II) 0.68-hydrate, [Cu(C₈H₇O₂)₂-(C₁₀H₈N₂)(H₂O)]·0.68H₂O or [Cu(3-mb)₂(bipy)(H₂O)]·0.68H₂O. The coordination environment of Cu^{II} is a distorted octahedron. The metal atom is attached to two 3-mb moieties, which bind in monodentate and bidentate fashions. One of the 3-mb units is disordered. The coordination environment is completed by one bipy ligand and a water molecule. A second water molecule is outside the coordination sphere of the Cu^{II} atom and its occupancy refined to 0.68. The structure consists of chains along the *b*-axis direction formed by complex units joined *via* hydrogen bonds between the coordinated water molecule and an O atom of a coordinated 3-mb unit. Hirshfeld surface analysis indicates that the most abundant contacts are H···H (56.8%), H···C/C···H (21.7%) and H···O/O···H (13.7%).

1. Chemical context

The coordination chemistry of mixed-ligand copper(II) complexes continues to be of interest. Copper is an important part of various metalloenzymes. It takes part in many metabolic processes such as iron metabolism, mitochondrial oxidative phosphorylation and catecholamine production (Chen et al., 2020; De Freitas et al., 2003). Mixed-ligand copper(II) carboxylates containing nitrogen donor ligands have been reported to display a variety of pharmacological and superoxide dismutase activities. For example, the bis-(acetato)bis(imidazole)copper(II) complex exhibits antitumor activity (Tamura et al., 1987) and copper(II) salicylate with imidazoles have dismutase activities (Abuhijleh, 2010). Incorporating nitrogen donor ligands in metal complexes has resulted in enhancement of the biological activity of these complexes (Patel et al., 2012). It has been reported that the steric effect of a substituent on the phenyl group of carboxylate ligands in metal complexes affects the coordination number of the metal, the geometry of the complex and the coordination mode of the ligand (Saini et al., 2015). In our previous contribution, the Cu^{II} complex with 3-mb and N.N.N. N-tetramethylethylenediamine (tmeda), $[Cu(3-mb)_2(tmeda) (H_2O)_2$], was prepared and characterized by single-crystal X-ray diffraction. The complex was octahedral with 3-mb acting as monodentate (Kansız et al., 2021). In view of the above information, a new Cu^{II} carboxylate containing 2,2'bipyridine was synthesized, characterized by X-ray crystallographic analysis and studied by Hirshfeld surface analysis.

Received 24 January 2023 Accepted 5 August 2023

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela

Keywords: crystal structure; coordination compound; Hirshfeld surface analysis; 3methylbenzoate.

CCDC reference: 2117143

Supporting information: this article has supporting information at journals.iucr.org/e

2. Structural commentary

Complex 1 (Fig. 1) crystallizes in the monoclinic system in the $P2_1/c$ space group. The Cu^{II} atom has a distorted octahedral environment with the central copper atom coordinated by N₂O₄ donor sets. The Cu–N bond lengths range from 2.0071 (18) to 2.0131 (18) Å and the N1–Cu1–N2 angle is 80.58 (7)° (Table 1). The Cu1–O_{carboxylate} distances are 1.842 (17)–2.2988 (18) Å. The Cu–O and Cu–N values are very close to those reported for copper(II) complexes involving benzoate (BZA) as a ligand, for example [Cu(BZA) ₂(bipy)(H₂O)] [Cu–O = 1.9951 (12)–1.9633 (12) Å and Cu–N = 2.0064 (14)–2.0111 (13) Å; Devereux *et al.*, 2007]. This indicates that the presence of the methyl substituent has little or no effect on the Cu–O and Cu–N bond lengths. The 3-mb ligand defined by O3/O4/C9–C16 is disordered over two orientations related by an approximately 180° rotation.

Figure 1

Molecular structure of complex ${\bf 1}$ with ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown.

Table 1	
Hydrogen-bond geometry (Å	., °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O5-H5A\cdots O2$	0.85	1.93	2.643 (3)	140
$O5-H5B\cdots O4^{ai}$	0.85	2.09	2.694 (10)	128
C20−H20···O4 ^{aii}	0.93	2.40	3.324 (10)	171
C23−H23····O4 ^{aii}	0.93	2.51	3.405 (7)	163
C18−H18···O2 ⁱⁱⁱ	0.93	2.51	3.371 (4)	154
$C24 - H24 \cdots O6^{ii}$	0.93	2.36	3.200 (5)	151
$C26-H26\cdots O3^{a}$	0.93	2.48	2.984 (13)	115
C17−H17···O1	0.93	2.59	3.093 (3)	115
$C7 - H7 \cdots O6$	0.93	2.72	3.405 (6)	131

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 2, -z + 1.

3. Supramolecular features

In the crystal, hydrogen bonding between H atoms of the coordinated water molecule and the O atoms of the coordinated 3-mb (O5-H5B···O4) leads to the formation of a linear chain in the *b*-axis direction (Fig. 2 and Table 1). The chains interdigitate with other chains related by a screw-axis, connected *via* C-H···O interactions between O atoms of the 3-mb ligand and H atoms of the bipy ligand (Table 1), further consolidating the crystal. The occupancy of the solvent water (H6A-O6-H6B) refined to 0.68, which seems to be due to water escaping the crystal through the channels that run along the *b*-axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; Groom *et al.*, 2016) for compounds containing only Cu, O, N, C, and H resulted in 634 compounds containing bipy and 15 compounds containing 3-mb. In both lists, a dimeric compound containing bipy and 3-mb was identified (refcode PIGZAH; Li *et al.*, 2007). Other related compounds are AJEFEB (Wen, 2009), DUDYIN (He *et al.*, 2019), FERCOV (Wang *et al.*, 2005), GELXAX (Stephenson & Hardie, 2006), LEBOR (Tian *et al.*, 2011), QETNEJ (Chen *et al.*, 2006) and TOFZIZ (Gopalakrishnan *et al.*, 2014).

Figure 2

Partial view of the packing arrangement in compound 1 showing $O-H\cdots O$ interactions along the *b*-axis direction.

research communications

Hirshfeld surface map for the title complex.

5. Hirshfeld surface analysis

CrystalExplorer (Turner et al., 2017) was used for Hirshfeld surface analysis and to generate the fingerprint plots. The

Figure 4

Fingerprint plot of the title compound showing all interactions and delineated into the most important intermolecular contacts.

Table 2Experimental details.	
Crystal data	
Chemical formula	$\begin{array}{c} [Cu(C_8HH_7O_2)_2(C_{10}H_8N_2) - \\ (H_2O)] \cdot 0.68H_2O \end{array}$
$M_{\rm r}$	520.26
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.754 (3), 7.0021 (12), 22.103 (4)
β (°)	106.522 (6)
$V(Å^3)$	2485.9 (8)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.92
Crystal size (mm)	$0.20 \times 0.15 \times 0.12$
Data collection	
Diffractometer	Bruker APEXII CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	63716, 6171, 4874
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.670
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.106, 1.09
No. of reflections	6171
No. of parameters	418
No. of restraints	347
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.30, -0.40

Computer programs: APEX2 (Bruker, 2013), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and Mercury (Macrae et al., 2020).

purpose of using Hirshfeld surfaces, mapped onto d_{norm} , is to provide additional insight into intermolecular interactions. Close contacts shorter than van der Waals radii are shown as red spots on the surface. The closest contacts are responsible for directional supramolecular interactions. The blue areas in the surface map represent weak contacts that are longer than the sum of the van der Waals radii. The Hirshfeld surface mapped onto d_{norm} , is presented in Fig. 3. It displays several red spots due to O-H···O and C-H···O contacts. The intense spot near the coordinated water molecule in the complex is assigned to the O5-H5···O hydrogen bond, as confirmed by the X-ray analysis (Table 1). Fingerprint plots for the contacts are shown in Fig. 4. The contributions of the H···H (Fig. 4b), H···C/C···H (Fig. 4c) and H···O/O···H (Fig. 4d) contacts are 56.8, 21.7 and 13.7%, respectively.

6. Synthesis and crystallization

3-Methylbenzoic acid (4 mmol, 0.54 g) and sodium hydroxide (4 mmol, 0.16 g) in water (20 ml) were added to a solution of $Cu(NO_3)_2$ ·3H₂O (2 mmol, 0.48 g) in water (20 ml) under stirring. A solution of 2,2'-bipyridine (2 mmol, 0.3 g) in EtOH (25 ml) was added and the color changed from greenish blue to blue. The precipitate was filtered off, washed with water and dried. Blue single crystals of the title complex suitable for X-ray diffraction studies were obtained after evaporation of an ethanol solution after several days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. One of the 3-methylbenzoates (O3/O4/C9–C16) is disordered over two positions related by a 180° rotation. The occupancies of the two components refined to 0.664 (4):0.336 (4). The occupancy of the water molecule H6A–O6–H6B refined to 0.680 (10). The coordinates of the ordered water atom were refined with $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were positioned geometrically and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(parent atom)$.

Acknowledgements

The author acknowledges the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker APEXII CCD diffractometer.

Funding information

Funding for this research was provided by: Salahaddin University-Erbil.

References

- Abuhijleh, A. L. (2010). J. Mol. Struct. 980, 201-207.
- Bruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Chen, J., Jiang, Y., Shi, H., Peng, Y., Fan, X. & Li, C. (2020). Eur. J. Physiol. 472, 1415–1429.
- Chen, P.-K., Che, Y.-X. & Zheng, J. M. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue) 25, 1427-1430.

- De Freitas, J., Wintz, H., Hyoun Kim, J., Poynton, H., Fox, T. & Vulpe, C. (2003). *BioMetals*, **16**, 185–197.
- Devereux, M., O'Shea, D., O'Connor, M., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). *Polyhedron*, **26**, 4073–4084.
- Gopalakrishnan, M., Senthilkumar, K., Rao, P. R., Siva, R. & Palanisami, N. (2014). Inorg. Chem. Commun. 46, 54–59.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- He, X., Chen, F., Zhang, D., Li, Y., Yang, H.-L. & Zhang, X.-Q. (2019). Z. Anorg. Allg. Chem. 645, 1341–1348.
- Kansız, S., Qadir, M. Q., Dege, N. & Faizi, S. H. (2021). J. Mol. Struct. **1230**, 129916–129916.
- Li, W., Li, C.-H., Yang, Y.-Q. & Kuang, Y.-F. (2007). Wuji Huaxue Xuebao, 23, 1264.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Patel, M. N., Dosi, P. A. & Bhatt, B. S. (2012). J. Coord. Chem. 65, 3833–3844.
- Saini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). *Polyhedron*, **100**, 155–163.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stephenson, M. D. & Hardie, M. J. (2006). *Dalton Trans. pp.* 3407–3417.
- Tamura, H., Imai, H., Kuwahara, J. & Sugiura, Y. (1987). J. Am. Chem. Soc. 109, 6870–6871.
- Tian, D., Zhou, Y., Guan, L. & Zhang, H. (2011). J. Coord. Chem. 64, 565–573.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Wang, P., Moorefield, C. N., Panzer, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465–467.
- Wen, G.-L. (2009). Z. Krist. New Cryst. Struct. 224, 495-497.

Acta Cryst. (2023). E79, 804-807 [https://doi.org/10.1107/S2056989023006904]

Synthesis, crystal structure and Hirshfeld surface analysis of a copper(II) complex involving 3-methylbenzoate and 2,2'-bipyridine ligands

Adnan Qadir

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *APEX2* (Bruker, 2013); data reduction: *APEX2* (Bruker, 2013); program(s) used to solve structure: *SHELXT2018/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020).

Aqua(2,2'-bipyridine $\kappa^2 N, N'$)bis(3-methylbenzoato)- $\kappa^2 O, O'; \kappa O$ -copper(II) 0.68-hydrate,

Crystal data

$[Cu(C_8HH_7O_2)_2(C_{10}H_8N_2)(H_2O)] \cdot 0.68H_2O$ $M_r = 520.26$ Monoclinic, $P2_1/c$ a = 16.754 (3) Å b = 7.0021 (12) Å c = 22.103 (4) Å $\beta = 106.522$ (6)° V = 2485.9 (8) Å ³ Z = 4	F(000) = 1079 $D_x = 1.390 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9233 reflections $\theta = 2.5-26.6^{\circ}$ $\mu = 0.92 \text{ mm}^{-1}$ T = 293 K Block, blue $0.20 \times 0.15 \times 0.12 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans 63716 measured reflections 6171 independent reflections 4874 reflections with $I > 2\sigma(I)$	$R_{int} = 0.035$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -22 \rightarrow 22$ $k = -9 \rightarrow 9$ $l = -29 \rightarrow 29$
Refinement	
Refinement on F^2	Hydrogen site location: mixed

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.106$ S = 1.09 6171 reflections 418 parameters 347 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 1.6967P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.34763 (2)	0.84495 (4)	0.31767 (2)	0.03879 (9)	
01	0.32781 (10)	0.7602 (3)	0.39681 (8)	0.0519 (4)	
O2	0.26638 (14)	1.0161 (2)	0.42229 (9)	0.0664 (5)	
N1	0.47164 (11)	0.8619 (2)	0.35426 (8)	0.0391 (4)	
N2	0.38047 (11)	0.8817 (2)	0.23762 (8)	0.0377 (4)	
C1	0.27773 (13)	0.8419 (3)	0.42213 (10)	0.0392 (4)	
C2	0.23017 (13)	0.7151 (3)	0.45422 (9)	0.0372 (4)	
C3	0.18273 (14)	0.7973 (3)	0.48953 (10)	0.0422 (5)	
H3	0.182368	0.929463	0.493519	0.051*	
C4	0.13590 (17)	0.6878 (4)	0.51900 (12)	0.0563 (6)	
C5	0.1379 (2)	0.4918 (5)	0.51221 (15)	0.0735 (9)	
Н5	0.107167	0.415128	0.531672	0.088*	
C6	0.1844 (2)	0.4077 (4)	0.47736 (17)	0.0801 (10)	
H6	0.184782	0.275525	0.473485	0.096*	
C7	0.23037 (18)	0.5186 (4)	0.44812 (13)	0.0571 (6)	
H7	0.261503	0.461430	0.424335	0.069*	
C8	0.0844 (2)	0.7820 (6)	0.55660 (18)	0.0969 (12)	
H8A	0.113429	0.775074	0.600751	0.145*	
H8B	0.031860	0.717351	0.548780	0.145*	
H8C	0.074998	0.913325	0.544171	0.145*	
O3	0.2315 (6)	0.7725 (11)	0.2675 (5)	0.0456 (16)	0.664 (4)
O4	0.2993 (4)	0.4976 (13)	0.2761 (4)	0.0443 (13)	0.664 (4)
C9	0.2338 (3)	0.5930 (10)	0.2581 (4)	0.0401 (12)	0.664 (4)
C10	0.1531 (2)	0.4981 (6)	0.2230 (2)	0.0427 (9)	0.664 (4)
C11	0.0787 (3)	0.5949 (7)	0.21325 (19)	0.0493 (9)	0.664 (4)
H11	0.079230	0.717697	0.229388	0.059*	0.664 (4)
C12	0.0028 (3)	0.5143 (9)	0.1799 (2)	0.0644 (12)	0.664 (4)
C13	0.0051 (3)	0.3318 (9)	0.1573 (3)	0.0746 (14)	0.664 (4)
H13	-0.044531	0.273815	0.135003	0.090*	0.664 (4)
C14	0.0781 (3)	0.2330 (8)	0.1666 (2)	0.0792 (13)	0.664 (4)
H14	0.077331	0.110027	0.150537	0.095*	0.664 (4)
C15	0.1529 (3)	0.3148 (7)	0.1996 (2)	0.0616 (11)	0.664 (4)
H15	0.202420	0.247440	0.206067	0.074*	0.664 (4)
C16	-0.0769 (3)	0.6241 (10)	0.1687 (3)	0.099 (2)	0.664 (4)
H16A	-0.100922	0.642619	0.124164	0.148*	0.664 (4)
H16B	-0.065780	0.745972	0.189242	0.148*	0.664 (4)
H16C	-0.115080	0.553947	0.185422	0.148*	0.664 (4)
O3′	0.2373 (12)	0.789 (2)	0.2796 (10)	0.040 (2)	0.336 (4)
O4′	0.2799 (8)	0.498 (3)	0.2621 (9)	0.047 (3)	0.336 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C9′	0.2241 (6)	0.618 (2)	0.2594 (9)	0.042 (2)	0.336 (4)
C10′	0.1349 (5)	0.5677 (11)	0.2262 (4)	0.0430 (16)	0.336 (4)
C11′	0.1173 (5)	0.3862 (12)	0.2021 (4)	0.0552 (16)	0.336 (4)
H11′	0.160250	0.298071	0.207060	0.066*	0.336 (4)
C12′	0.0359 (6)	0.3330 (15)	0.1703 (6)	0.068 (2)	0.336 (4)
C13′	-0.0260 (6)	0.4669 (14)	0.1651 (5)	0.067 (2)	0.336 (4)
H13′	-0.080912	0.432829	0.145436	0.081*	0.336 (4)
C14′	-0.0089(5)	0.6484 (14)	0.1879 (4)	0.0641 (19)	0.336 (4)
H14′	-0.051704	0.737327	0.182021	0.077*	0.336 (4)
C15′	0.0720 (4)	0.7003 (13)	0.2197 (4)	0.0503 (16)	0.336 (4)
H15′	0.083741	0.822434	0.236369	0.060*	0.336 (4)
C16′	0.0144 (7)	0.1356 (13)	0.1463 (5)	0.090 (3)	0.336 (4)
H16D	-0.002135	0.136810	0.101007	0.135*	0.336 (4)
H16E	-0.030539	0.088314	0.160979	0.135*	0.336 (4)
H16F	0.062117	0.054395	0.161428	0.135*	0.336 (4)
C17	0.51321 (16)	0.8587 (4)	0.41546 (12)	0.0524 (6)	
H17	0.483401	0.844910	0.444839	0.063*	
C18	0.59886 (18)	0.8753 (4)	0.43692 (14)	0.0647 (7)	
H18	0.626326	0.873196	0.479876	0.078*	
C19	0.64208 (17)	0.8947 (4)	0.39341 (15)	0.0650 (8)	
H19	0.699777	0.905457	0.406664	0.078*	
C20	0.60063 (14)	0.8983 (3)	0.33014 (13)	0.0507 (6)	
H20	0.629658	0.911990	0.300250	0.061*	
C21	0.51485 (13)	0.8811 (3)	0.31178 (11)	0.0369 (4)	
C22	0.46312 (13)	0.8851 (3)	0.24534 (10)	0.0370 (4)	
C23	0.49461 (16)	0.8923 (3)	0.19373 (12)	0.0492 (6)	
H23	0.551776	0.893392	0.199385	0.059*	
C24	0.4399 (2)	0.8979 (4)	0.13391 (13)	0.0593 (7)	
H24	0.459856	0.901430	0.098753	0.071*	
C25	0.35603 (19)	0.8982 (4)	0.12654 (12)	0.0591 (7)	
H25	0.318396	0.904644	0.086519	0.071*	
C26	0.32842 (16)	0.8888 (3)	0.17930 (11)	0.0501 (6)	
H26	0.271393	0.887348	0.174260	0.060*	
05	0.33408 (13)	1.1632 (2)	0.33836 (11)	0.0676 (5)	
H5A	0.311059	1.174260	0.367935	0.101*	
H5B	0.299885	1.215072	0.306576	0.101*	
06	0.4289 (3)	0.4219 (8)	0.4465 (3)	0.119 (2)	0.680 (10)
H6A	0.441 (6)	0.309 (10)	0.446 (4)	0.178*	0.680 (10)
H6B	0.435 (6)	0.490 (13)	0.478 (4)	0.178*	0.680 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03652 (14)	0.03638 (15)	0.04663 (16)	0.00129 (11)	0.01693 (11)	0.00307 (11)
O1	0.0532 (9)	0.0548 (10)	0.0559 (10)	0.0099 (8)	0.0286 (8)	0.0131 (8)
02	0.1003 (15)	0.0395 (10)	0.0768 (13)	0.0003 (9)	0.0534 (12)	0.0043 (9)
N1	0.0404 (9)	0.0344 (9)	0.0418 (10)	-0.0003(7)	0.0107 (8)	-0.0015 (7)
N2	0.0392 (9)	0.0334 (9)	0.0409 (9)	-0.0016 (7)	0.0118 (7)	0.0026 (7)

Acta Cryst. (2023). E79, 804-807

C1	0.0423 (11)	0.0412 (12)	0.0339 (10)	0.0002 (9)	0.0105 (8)	0.0004 (9)
C2	0.0405 (11)	0.0386 (11)	0.0321 (10)	-0.0017 (9)	0.0095 (8)	-0.0013 (8)
C3	0.0492 (12)	0.0418 (12)	0.0359 (11)	0.0028 (10)	0.0126 (9)	-0.0023 (9)
C4	0.0593 (15)	0.0674 (18)	0.0479 (14)	-0.0020 (13)	0.0244 (12)	-0.0018 (12)
C5	0.088 (2)	0.0661 (19)	0.080(2)	-0.0222 (16)	0.0450 (17)	0.0024 (16)
C6	0.120 (3)	0.0390 (14)	0.097 (2)	-0.0164 (16)	0.056 (2)	-0.0061 (15)
C7	0.0755 (17)	0.0394 (13)	0.0652 (16)	-0.0015 (12)	0.0343 (14)	-0.0083 (12)
C8	0.104 (3)	0.112 (3)	0.102 (3)	0.003 (2)	0.073 (2)	-0.006 (2)
O3	0.0315 (18)	0.047 (2)	0.055 (4)	0.0020 (17)	0.007 (2)	0.005 (2)
O4	0.035 (3)	0.0400 (18)	0.057 (4)	0.002 (2)	0.011 (2)	0.006 (2)
C9	0.038 (2)	0.044 (2)	0.044 (2)	-0.006 (2)	0.0222 (19)	0.007 (2)
C10	0.0408 (19)	0.051 (2)	0.0411 (17)	-0.0051 (17)	0.0202 (15)	0.0005 (18)
C11	0.0437 (19)	0.063 (2)	0.0424 (18)	-0.005 (2)	0.0149 (15)	-0.0017 (19)
C12	0.049 (2)	0.092 (3)	0.049 (2)	-0.014 (2)	0.0094 (19)	-0.002 (2)
C13	0.066 (3)	0.096 (3)	0.058 (3)	-0.029 (3)	0.011 (2)	-0.010 (2)
C14	0.088 (3)	0.077 (3)	0.072 (3)	-0.023 (3)	0.023 (2)	-0.022 (2)
C15	0.064 (2)	0.059 (2)	0.065 (2)	-0.010 (2)	0.024 (2)	-0.0119 (19)
C16	0.041 (2)	0.159 (6)	0.085 (3)	0.001 (3)	0.000(2)	-0.008 (4)
O3′	0.035 (4)	0.046 (4)	0.041 (5)	-0.001 (3)	0.015 (3)	-0.006 (3)
O4′	0.032 (5)	0.050 (4)	0.054 (7)	0.001 (4)	0.005 (4)	0.010 (4)
C9′	0.036 (3)	0.048 (4)	0.044 (3)	0.000 (3)	0.018 (3)	0.005 (3)
C10′	0.038 (3)	0.053 (4)	0.043 (3)	-0.007 (3)	0.020 (3)	0.000 (3)
C11′	0.051 (3)	0.065 (3)	0.053 (3)	-0.009 (3)	0.021 (3)	-0.003 (3)
C12′	0.058 (4)	0.084 (4)	0.060 (4)	-0.019 (4)	0.016 (3)	-0.005 (3)
C13′	0.054 (4)	0.089 (4)	0.055 (4)	-0.024 (4)	0.010 (3)	-0.002 (4)
C14′	0.046 (3)	0.087 (4)	0.058 (4)	-0.002 (4)	0.012 (3)	0.000 (4)
C15′	0.038 (3)	0.066 (4)	0.048 (3)	-0.002 (3)	0.014 (2)	-0.003 (3)
C16′	0.088 (6)	0.093 (7)	0.084 (6)	-0.028 (5)	0.017 (5)	-0.025 (5)
C17	0.0596 (15)	0.0513 (14)	0.0447 (13)	-0.0019 (12)	0.0123 (11)	-0.0024 (11)
C18	0.0619 (16)	0.0594 (17)	0.0576 (16)	-0.0058 (13)	-0.0075 (13)	-0.0029 (13)
C19	0.0416 (13)	0.0574 (16)	0.085 (2)	-0.0084 (12)	0.0003 (13)	0.0048 (15)
C20	0.0394 (12)	0.0397 (12)	0.0741 (17)	-0.0039 (9)	0.0179 (12)	0.0059 (11)
C21	0.0387 (10)	0.0227 (9)	0.0512 (12)	-0.0009 (8)	0.0160 (9)	0.0010 (8)
C22	0.0446 (11)	0.0198 (9)	0.0494 (12)	-0.0021 (8)	0.0177 (9)	0.0015 (8)
C23	0.0557 (14)	0.0368 (12)	0.0641 (16)	-0.0040 (10)	0.0312 (12)	-0.0008 (11)
C24	0.094 (2)	0.0431 (13)	0.0502 (15)	-0.0102 (13)	0.0362 (15)	-0.0023 (11)
C25	0.0802 (19)	0.0492 (14)	0.0423 (13)	-0.0130 (13)	0.0084 (13)	0.0026 (11)
C26	0.0501 (13)	0.0444 (13)	0.0507 (14)	-0.0057 (10)	0.0061 (11)	0.0054 (10)
05	0.0899 (14)	0.0395 (9)	0.0894 (14)	0.0115 (9)	0.0516 (12)	0.0108 (9)
06	0.103 (3)	0.113 (4)	0.157 (5)	0.023 (3)	0.064 (3)	0.043 (4)

Geometric parameters (Å, °)

Cu1—O3'	1.842 (17)	C16—H16A	0.9600	
Cu1—O1	1.9628 (16)	C16—H16B	0.9600	
Cu1—N1	2.0072 (18)	C16—H16C	0.9600	
Cu1—O3	2.011 (8)	O3′—C9′	1.275 (8)	
Cu1—N2	2.0131 (18)	O4′—C9′	1.248 (8)	

Cu1—O5	2.2988 (18)	C9′—C10′	1.509 (7)
O1—C1	1.269 (3)	C10′—C11′	1.377 (8)
O2—C1	1.235 (3)	C10′—C15′	1.381 (8)
N1—C17	1.334 (3)	C11'—C12'	1.396 (9)
N1—C21	1.346 (3)	C11'—H11'	0.9300
N2—C26	1.336 (3)	C12'—C13'	1.378 (9)
N2—C22	1.346 (3)	C12'—C16'	1.488 (10)
C1—C2	1.499 (3)	C13'—C14'	1.367 (10)
C2—C7	1.382 (3)	С13'—Н13'	0.9300
C2—C3	1.387 (3)	C14′—C15′	1.387 (8)
C3—C4	1.385 (3)	C14'—H14'	0.9300
С3—Н3	0.9300	С15'—Н15'	0.9300
C4—C5	1.382 (4)	C16′—H16D	0.9600
C4—C8	1.510 (4)	C16′—H16E	0.9600
C5—C6	1.373 (4)	C16′—H16F	0.9600
С5—Н5	0.9300	C17—C18	1.382 (4)
C6—C7	1.377 (4)	С17—Н17	0.9300
С6—Н6	0.9300	C18—C19	1 365 (4)
C7—H7	0.9300	C18—H18	0.9300
C8—H8A	0.9600	C19-C20	1.373(4)
C8—H8B	0.9600	C19—H19	0.9300
C8—H8C	0.9600	C20—C21	1.383(3)
03-C9	1 277 (5)	$C_{20} - H_{20}$	0.9300
04-C9	1.277(5) 1.250(5)	C_{21} C_{22} C_{21} C_{22}	1.478(3)
C_{9}	1.508 (5)	C^{22}	1.470(3) 1 387(3)
C10-C11	1.380 (5)	$C_{22} = C_{23}$	1.307(3) 1 379(4)
C10-C15	1.384 (5)	C23_H23	0.9300
$C_{11} - C_{12}$	1 395 (6)	$C_{23} = 1123$	1.367(4)
C11_H11	0.9300	$C_{24} = C_{23}$	0.9300
C_{12} C_{13}	0.9300 1 377 (7)	$C_{24} = 1124$	1.373(A)
C12 C16	1.377(7) 1 400 (7)	C25 H25	0.0300
$C_{12} = C_{10}$	1.499(7)	C25—H25	0.9300
$C_{13} = C_{14}$	0.0300	O5 H5A	0.9300
C_{13}	1 282 (6)	05 H5P	0.0517
C14 - C13	1.383 (0)		0.0313 0.82(7)
C14—H14	0.9300		0.02(7)
С15—Н15	0.9300	Оо—нов	0.82(7)
$03' - C_{11} - 01$	86.6 (7)	C10-C15-H15	120.4
O3' - Cu1 - N1	1704(5)	C12-C16-H16A	109.5
01— $Cu1$ — $N1$	94 41 (7)	C12 - C16 - H16B	109.5
01 - Cu1 - 03	91.9(4)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
N1 - Cu1 - O3	164.9(3)	C12-C16-H16C	109.5
$O_{3'} - C_{11} = N_{2}^{2}$	96.6(7)	$H_{16} - C_{16} - H_{16} C_{16}$	109.5
01 - Cu1 - N2	168 42 (7)	H16B_C16_H16C	109.5
N1— $Cu1$ — $N2$	80 58 (7)	C9' - 03' - C11	114 1 (12)
Ω_{3} Ω_{1} N_{2}	90.7 (3)	04' - 09' - 03'	1245(12)
03' - Cu1 - 05	98.8 (5)	04' - 09' - 00'	110 3 (0)
01 - 01 = 05	93.60(3)	$O_{1}^{2} = O_{2}^{2} = O_{10}^{2}$	116.1 (0)
01-01-0J	JJ.UJ (1)	0 - 0 - 0 - 0 = 0 = 0	110.1 (7)

N1—Cu1—O5	90.69 (7)	C11′—C10′—C15′	120.5 (7)
O3—Cu1—O5	102.7 (2)	C11′—C10′—C9′	118.6 (7)
N2—Cu1—O5	96.79 (7)	C15′—C10′—C9′	120.9 (7)
C1—O1—Cu1	123.87 (15)	C10'—C11'—C12'	120.8 (8)
C17—N1—C21	118.7 (2)	C10′—C11′—H11′	119.6
C17—N1—Cu1	126.13 (17)	C12'—C11'—H11'	119.6
C21—N1—Cu1	115.18 (14)	C13'—C12'—C11'	117.7 (8)
C26—N2—C22	119.2 (2)	C13'—C12'—C16'	120.1 (8)
C26—N2—Cu1	125.89 (16)	C11′—C12′—C16′	122.0 (9)
C22—N2—Cu1	114.78 (14)	C14′—C13′—C12′	121.9 (8)
O2—C1—O1	124.6 (2)	C14′—C13′—H13′	119.1
O2—C1—C2	118.7 (2)	C12'—C13'—H13'	119.1
O1—C1—C2	116.66 (19)	C13'—C14'—C15'	120.1 (8)
C7—C2—C3	119.0 (2)	C13'—C14'—H14'	119.9
C7—C2—C1	121.8 (2)	C15'—C14'—H14'	119.9
C3—C2—C1	119.2 (2)	C10'—C15'—C14'	118.9 (8)
C4—C3—C2	121.8 (2)	C10'—C15'—H15'	120.5
С4—С3—Н3	119.1	C14′—C15′—H15′	120.5
С2—С3—Н3	119.1	C12′—C16′—H16D	109.5
C5—C4—C3	117.6 (2)	С12′—С16′—Н16Е	109.5
C5—C4—C8	121.9 (3)	H16D—C16′—H16E	109.5
C3—C4—C8	120.4 (3)	C12'—C16'—H16F	109.5
C6—C5—C4	121.5 (3)	H16D—C16′—H16F	109.5
С6—С5—Н5	119.3	H16E—C16'—H16F	109.5
С4—С5—Н5	119.3	N1—C17—C18	122.6 (3)
C5—C6—C7	120.2 (3)	N1—C17—H17	118.7
С5—С6—Н6	119.9	C18—C17—H17	118.7
С7—С6—Н6	119.9	C19—C18—C17	118.3 (3)
C6—C7—C2	119.9 (2)	C19—C18—H18	120.9
С6—С7—Н7	120.1	C17—C18—H18	120.9
С2—С7—Н7	120.1	C18—C19—C20	120.2 (2)
C4—C8—H8A	109.5	C18—C19—H19	119.9
C4—C8—H8B	109.5	С20—С19—Н19	119.9
H8A—C8—H8B	109.5	C19—C20—C21	118.7 (2)
C4—C8—H8C	109.5	С19—С20—Н20	120.7
H8A—C8—H8C	109.5	C21—C20—H20	120.7
H8B—C8—H8C	109.5	N1-C21-C20	121.6 (2)
C9—O3—Cu1	105.6 (6)	N1—C21—C22	114.54 (18)
O4—C9—O3	122.6 (5)	C20—C21—C22	123.8 (2)
O4—C9—C10	120.4 (5)	N2—C22—C23	121.0 (2)
O3—C9—C10	117.0 (5)	N2-C22-C21	114.65 (18)
C11—C10—C15	119.4 (4)	C23—C22—C21	124.4 (2)
C11—C10—C9	120.1 (4)	C24—C23—C22	119.0 (2)
C15—C10—C9	120.5 (4)	С24—С23—Н23	120.5
C10-C11-C12	122.1 (5)	С22—С23—Н23	120.5
C10-C11-H11	119.0	C25—C24—C23	119.7 (2)
C12—C11—H11	119.0	C25—C24—H24	120.2
C13—C12—C11	116.9 (5)	C23—C24—H24	120.2

C13—C12—C16 C11—C12—C16 C14—C13—C12 C14—C13—H13 C12—C13—H13 C13—C14—C15 C13—C14—H14 C15—C14—H14 C14—C15—C10 C14—C15—H15	122.1 (5) 121.0 (5) 122.0 (5) 119.0 119.0 120.5 (5) 119.8 119.8 119.8 119.2 (5) 120.4	C24—C25—C26 C24—C25—H25 C26—C25—H25 N2—C26—C25 N2—C26—H26 C25—C26—H26 Cu1—O5—H5A Cu1—O5—H5B H5A—O5—H5B H6A—O6—H6B	118.8 (2) 120.6 120.6 122.4 (2) 118.8 118.8 109.4 109.3 104.4 126 (9)
Cu1—01—C1—02	-36.8 (3)	O4'-C9'-C10'-C15'	-176.9 (19)
Cu1—01—C1—C2	143.68 (16)	O3'-C9'-C10'-C15'	-1 (2)
02—C1—C2—C7	170.4 (2)	C15'-C10'-C11'-C12'	0.4 (13)
01—C1—C2—C7	-10.0 (3)	C9'-C10'-C11'-C12'	-179.2 (10)
O2-C1-C2-C3	-7.7 (3)	C10'—C11'—C12'—C13'	-1.1 (17)
O1-C1-C2-C3	171.8 (2)	C10'—C11'—C12'—C16'	-177.2 (10)
C7-C2-C3-C4	0.3 (4)	C11'—C12'—C13'—C14'	2.3 (19)
C1-C2-C3-C4	178.4 (2)	C16'—C12'—C13'—C14'	178.5 (11)
$\begin{array}{c} C2-C3-C4-C5\\ C2-C3-C4-C8\\ C3-C4-C5-C6\\ C8-C4-C5-C6\\ C4-C5-C6\\ C4-C5-C6\\ C4-C5-C6-C7\\ \end{array}$	0.1 (4)	C12'-C13'-C14'-C15'	-2.7(17)
	-179.4 (3)	C11'-C10'-C15'-C14'	-0.7(13)
	-0.2 (5)	C9'-C10'-C15'-C14'	178.9(9)
	179.3 (3)	C13'-C14'-C15'-C10'	1.9(14)
	0.0 (6)	C21-N1-C17-C18	0.3(3)
C5-C6-C7-C2	0.4 (5)	Cu1—N1—C17—C18	$\begin{array}{c} -178.59 (19) \\ -0.3 (4) \\ 0.3 (4) \\ -0.3 (4) \end{array}$
C3-C2-C7-C6	-0.5 (4)	N1—C17—C18—C19	
C1-C2-C7-C6	-178.6 (3)	C17—C18—C19—C20	
Cu1-O3-C9-O4	-2.8 (14)	C18—C19—C20—C21	
Cu1-O3-C9-C10 O4-C9-C10-C11 O3-C9-C10-C11 O4-C9-C10-C15 O3-C9-C10-C15	177.9 (6) 168.3 (9) -12.4 (11) -12.5 (11) 166.7 (0)	C17—N1—C21—C20 Cu1—N1—C21—C20 C17—N1—C21—C22 Cu1—N1—C21—C22 Cu1—C21—C22	-0.3 (3) 178.71 (16) -179.34 (19) -0.3 (2)
C15—C10—C11—C12 C9—C10—C11—C12 C10—C11—C12—C13 C10—C11—C12—C13 C10—C11—C12—C16	-0.5 (7) 178.6 (5) 0.4 (8) -178.6 (5)	C19—C20—C21—N1 C19—C20—C21—C22 C26—N2—C22—C23 Cu1—N2—C22—C23 C26—N2—C22—C21	0.3 (3) 179.3 (2) -1.2 (3) 174.20 (16) 178.66 (18)
C11—C12—C13—C14	-0.2 (9)	Cu1—N2—C22—C21	-5.9 (2)
C16—C12—C13—C14	178.7 (6)	N1—C21—C22—N2	4.1 (2)
C12—C13—C14—C15	0.2 (10)	C20—C21—C22—N2	-174.88 (19)
C13—C14—C15—C10	-0.2 (8)	N1—C21—C22—C23	-175.98 (19)
C11—C10—C15—C14	0.4 (7)	C20-C21-C22-C23	5.0 (3)
C9—C10—C15—C14	-178.7 (5)	N2-C22-C23-C24	0.6 (3)
O1—Cu1—O3'—C9'	-89.7 (18)	C21-C22-C23-C24	-179.2 (2)
N2—Cu1—O3'—C9'	79.1 (18)	C22-C23-C24-C25	0.7 (4)
O5—Cu1—O3'—C9'	177.1 (17)	C23-C24-C25-C26	-1 4 (4)
Cu1—O3'—C9'—O4'	-3 (3)	C22—N2—C26—C25	0.5 (3)
Cu1—O3'—C9'—C10'	-178.4 (11)	Cu1—N2—C26—C25	-174.38 (19)

O4'—C9'—C10'—C11' O3'—C9'—C10'—C11'	3 (2) 178.4 (17)	C24—C25—C26-	—N2	0.8 (4)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
05—H5A…O2	0.85	1.93	2.643 (3)	140
O5—H5B⋯O4 ^{ai}	0.85	2.09	2.694 (10)	128
C20—H20····O4 ^{aii}	0.93	2.40	3.324 (10)	171
C23—H23····O4 ^{aii}	0.93	2.51	3.405 (7)	163
C18—H18…O2 ⁱⁱⁱ	0.93	2.51	3.371 (4)	154
C24—H24…O6 ⁱⁱ	0.93	2.36	3.200 (5)	151
C26—H26…O3ª	0.93	2.48	2.984 (13)	115
C17—H17…O1	0.93	2.59	3.093 (3)	115
С7—Н7…Об	0.93	2.72	3.405 (6)	131

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*+1, -*y*+2, -*z*+1.