Crystal-structure determination and Hirshfeld surface analysis of two new thiophene derivatives: (*E*)-*N*-{2-[2-(benzo[*b*]thiophen-2-yl)ethenyl]-5fluorophenyl}benzenesulfonamide and (*E*)-*N*-{2-[2-(benzo[*b*]thiophen-2-yl)ethenyl]-5-fluorophenyl}-*N*-(but-2-yn-1-yl)benzenesulfonamide

S. Madhan, $^{\rm a}$ M. Nizam Mohideen, $^{\rm a*}$ Vinayagam Pavunkumar $^{\rm b}$ and Arasam battu K. Mohana Krishnan $^{\rm b}$

^aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India. *Correspondence e-mail: mnizam.new@gmail.com

In the title compounds, $C_{22}H_{16}FNO_2S_2$ (I) and $C_{26}H_{20}FNO_2S_2$ (II), the benzothiophene rings are essentially planar with maximum deviations of 0.009 (1) and 0.001 (1) Å for the carbon and sulfur atom in compounds I and II, respectively. In I, the thiophene ring system is almost orthogonal to the phenyl ring attached to the sulfonyl group, with a dihedral angle of 77.7 (1)°. In compound I, the molecular structure is stabilized by weak $C-H\cdots O$ intramolecular interactions formed by the sulfone oxygen atoms, which generate two S(5) ring motifs. In the crystal of I, $N-H\cdots O$ hydrogen bonds link the molecules into $R_2^2(8)$ rings, which are connected into a C(10) chain via $C-H\cdots F$ hydrogen bonds. Intermolecular $C-H\cdots\pi$ interactions are also observed. In compound II, the molecules are linked via $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonding, generating infinite C(11) and C(13) chains running parallel to [010].

1. Chemical context

Thiophene, C₄H₄S, belongs to a class of aromatic fivemembered heterocycles comprising one S heteroatom. Thiophene derivatives possess pharmacological and biological activities including antibacterial (Mishra et al., 2012), antiallergic (Gillespie et al., 1985), anti-cancer and anti-toxic (Gewald et al., 1966), analgesic (Laddi et al., 1998; Chen et al., 2008), anti-inflammatory (Ferreira et al., 2006), antioxidant (Jarak et al., 2005), antitumor (Gadad et al., 1994), antimicrobial (Abdel-Rahman et al., 2003), antihypertensive (Monge Vega et al., 1980), anti-diabetes mellitus (Abdelhamid et al., 2009), gonadotropin releasing hormone antagonist (Sabins et al., 1944) and they are building blocks in many agrochemicals (Ansary & Omar, 2001). Thiophene possesses promising pharmacological activities, such as anti-HIV PR inhibitor (Bonini et al., 2005) and anti-breast cancer (Brault et al., 2005). Benzothiophenes are biologically energetic molecules. One of the most significant drugs based on the benzothiophene structure is Raloxifine, used to treat osteoporosis in postmenopausal women (Jordan, 2003). Benzothiophenes are also present in luminescent components used in organic materials (Russell & Press, 1996). Thiophene derivatives have a wide variety of applications in optical and

Received 8 May 2023 Accepted 10 July 2023

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela

Keywords: crystal structure; thiophene; benzothiophene; flurophenyl; phenylsulfonamide hydrogen bonding; Hirshfeld surface analysis.

CCDC references: 2280606; 2280605

Supporting information: this article has supporting information at journals.iucr.org/e

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

research communications

electronic systems (Gather *et al.*, 2008; He *et al.*, 2009) and are used extensively in solar cells (Justin Thomas *et al.*, 2008), organic light-emitting diodes (OLEDs) (Mazzeo *et al.*, 2003), organic field-effect transistors (OFETs) (Zhan *et al.*, 2007) and as NLO devices (Bedworth *et al.*, 1996; Raposo *et al.*, 2011). Thieno-pyridine products are used in medicine as allosteric adenosine receptors and in the treatment of adenosinesensitive cardiac arrhythmias (Tumey *et al.*, 2008; Grunewald *et al.*, 2008). Recognizing the importance of such compounds in drug discovery and our ongoing research into the construction of novel thiophene has prompted us to investigate the title thiophene derivatives and we report herein their synthesis, crystal structures and Hirshfeld surface analysis.

2. Structural commentary

The molecular structure of compound I, $C_{22}H_{16}FNO_2S_2$ (Fig. 1), comprises a benzothiophene ring system (S1/C1-C8) attached to an N-(5-fluoro-2-vinylphenyl)benzenesulfonamide (C7-C22/N1/S2/O1/O2/F1) while compound II, $C_{26}H_{20}FNO_2S_2$ (Fig. 2), comprises a benzothiophene ring system (S1/C1-C8) attached to an N-but-2-yn-1-yl-N-(5fluoro-2-vinvlphenvl)benzenesulfonamide (C9-C15/N1/S2/ O1/O2). In both compounds, the benzothiophene ring systems (S1/C1-C8) are essentially planar with maximum deviations of 0.009 (1) and 0.001 (1) Å for atom C8 and S1 in compounds I and II, respectively. The mean planes of the thiophene ring system in I make dihedral angles of 1.2 (2), 2.3 (2), 77.7 (2) $^{\circ}$ with the C1-C6, C11-C16 and C17-C22 phenyl rings. The mean planes of the thiophene ring system in **II** make dihedral angles of 0.3 (2), 33.3 (2), 25.2 (2) $^{\circ}$, respectively, with the C1–

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$\begin{array}{c} C15 - H15 \cdots O1 \\ C10 - H10 \cdots O2^{i} \\ N1 - H1N \cdots O2^{i} \\ C22 - H22 \cdots F1^{ii} \end{array}$	0.93 0.93 0.83 (2) 0.93	2.30 2.51 2.21 (2) 2.44	2.980 (3) 3.383 (3) 3.001 (2) 3.116 (3)	130 157 161 (2) 130

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

C6, C11–C16 and C17–C22 phenyl rings, The benzothiophene ring system in **I** is almost orthogonal to the C17–C22 ring attached to sulfonyl group with dihedral angle of 77.7 (1)° in **I**. For both compounds, the bond lengths and angles are close to those observed for similar structures (Madhan *et al.*, 2022, 2023).

In both compounds, the tetrahedral configuration is distorted around atom S1. The increase in the O2-S2-O1 angle [118.64 (9) in I and 120.6 (2) $^{\circ}$ in II], with a simultaneous decrease in the N1-S2-C17 angle [106.35 (9) in I and $108.3 (2)^{\circ}$ in **II**] from the ideal tetrahedral value (109.5°) are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interaction between the two short S=O bonds. In compound II, the N1-C23 = 1.483 (6) and N1-C16 = 1.450 (5) Å bond lengths in the molecule are longer than the mean $Nsp^2 - Csp^2$ bondlength value of 1.355 (14) Å [Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016]. The elongation observed may be due to the electron-withdrawing character of the phenylsulfonyl group. In compound II, the sum of the bond angles around N1 (354.1°) indicates sp^2 hybridization.

In compound (I), the molecular structure is stabilized by weak $C15-H15\cdots O1$ intramolecular interactions formed by the sulfone oxygen atoms, which generate two S(5) ring motifs (Fig. 1).

3. Supramolecular features

In the crystal of **I**, the C10-H10···O2ⁱ hydrogen bond generates an inversion dimer with an $R_2^2(14)$ ring motif; within

Figure 1

The molecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Table 2					
Hydrogen-bond	geometry	(Å,	°)	for	II.

*Cg*1 is the centroid of the C1–C6 ring.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2-H2\cdots O1^{i}$	0.93	2.59	3.483 (7)	162
$C4-H4\cdots F1^{ii}$	0.93	2.52	3.188 (6)	130
$C18-H18\cdots S1^{iii}$	0.93	3.01	3.744 (6)	137
C23-H23 A ··· $Cg1^{iv}$	0.93	2.69	3.566 (6)	151

Symmetry codes: (i) x, y, z - 1; (ii) x - 1, y, z - 2; (iii) x, y, z + 1; (iv) x + 1, y, z + 1.

the ring, N1–H1N···O2ⁱⁱ hydrogen bonds link the molecules into $R_2^2(8)$ ring motifs (Fig. 3 and Table 1). These rings are linked by the C(10) chain formed via the C22–H22···F1ⁱⁱⁱ hydrogen bonds. No significant C–H··· π interactions with centroid distances of less than 4Å are observed in the structure.

In theorystal of **II**, molecules are linked *via* C2–H2···O1ⁱ and C4···H4···F1ⁱⁱ intermolecular hydrogen bonding, which generates infinite C(11) and C(13) chains running parallel to [010] (Bernstein *et al.*, 1995). In addition, the crystal packing features intermolecular C–H··· π (C23–H23A···Cg1ⁱⁱⁱ) interactions, where the Cg1 is the centroid of the C1–C6 ring (Table 2, Fig. 4). No significant π ··· π interactions with intercentroid distances of less than 4Å are observed in either structure.

Figure 3

A view along the a axis of the crystal packing of compound I. The hydrogen bonds (Table 1) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

Figure 4

A view along the b axis of the crystal packing of compound **II**. The hydrogen bonds (Table 2) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan *et al.*, 2019) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007), to analyse intermolecular contacts in crystals. The various calculations (d_{norm} , curvedness and shape index and 2D fingerprint plots) were performed with *CrystalExplorer17* (Turner *et al.*, 2017).

The Hirshfeld surfaces of compounds **I** and **II** mapped over d_{norm} are given in Fig. 5, and the intermolecular contacts are illustrated in Fig. 6*a* for **I** and Fig. 7*a* for **II**. They are colour-mapped with the normalized contact distance, d_{norm} , from red (distances shorter than the sum of the van der Waals radii)

Figure 6

The Hirshfeld surfaces for visualizing the intermolecular contacts of compound **I**: (a) d_{norm} of compound **I**, showing the various intermolecular contacts in the crystal, (b) shape index, (d) curvedness and (e) fragment patches.

Figure 7

The Hirshfeld surfaces for visualizing the intermolecular contacts of compound II: (a) d_{norm} of compound II, showing the various intermolecular contacts in the crystal, (b) shape index, (d) curvedness and (e) fragment patches.

through white to blue (distances longer than the sum of the van der Waals radii). The d_{norm} surface was mapped over a fixed colour scale of -0.434 (red) to 1.449 (blue) for compound I and -0.119 (red) to 1.765 (blue) for compound II, where the red spots indicate the intermolecular contacts involved in the hydrogen bonding. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartee–Fock level of theory (Spackman *et al.*, 2008; Jayatilaka *et al.*, 2005). The presence of interactions is indicated by a red and blue colour on the shape-index surface (Fig. 6b for I and 7b for II). Areas on the Hirshfeld surface

Figure 8

The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into (b) H···H, (c) O···H/H···O, (d) C···H/H···C, (e) C···C and (f) N···H/H···N contacts.

with high curvedness tend to divide the surface into contact patches with each neighbouring molecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 6c for I and Fig. 7c for II). The nearest neighbour coordination environment of a molecule is identified from the colour patches on the Hirshfeld surface depending on their closeness to adjacent molecules (Fig. 6d for I and Fig. 7d for II).

The fingerprint plots are given in Figs. 8 and 9. For compound **I**, they reveal that the principal intermolecular contacts are H···H contacts at 36.9% (Fig. 8*b*), H···C/C···H contacts at 26.1% (Fig. 8*c*), O···H/H···O at 15.1% (Fig. 8*d*), F···H/H···F at 9.2% (Fig. 8*e*), C···C at 6.7% (Fig. 8*f*), S···C/C···S at 2.2% (Fig. 8*g*), S···H/H···S contacts at 0.9% (Fig. 8*i*), F···C/C···F at 0.8% (Fig. 8*j*), N···C/C···N at 0.7% (Fig. 8*k*) and N···H/H···N contacts at 0.3% (Fig. 8*l*).

For compound **II**, they reveal a similar trend, with the principal intermolecular contacts being $H \cdots H/H \cdots H$ at 41.4% (Fig. 9*b*), $H \cdots C/C \cdots H$ contacts at 25.1% (Fig. 9*c*), $O \cdots H/H \cdots O$ at 12.1% (Fig. (9*d*), $F \cdots H/H \cdots F$ at 8.1% $C \cdots C$ at 4.6% (Fig. 9*e*), $C \cdots C$ at 4.7% (Fig. 9*f*), $S \cdots H/H \cdots S$ contacts at 4.5% (Fig. 9*g*), $S \cdots C/C \cdots S$ contacts at 2.1% (Fig. 9*h*), $C \cdots O/O \cdots C$ contacts at 1.0% (Fig. 9*i*), $F \cdots S/S \cdots F$ at 0.9% (Fig. 9*j*) and $O \cdots O$ contacts at 0.3 (Fig. 9*k*). In both compounds, the $H \cdots H$ intermolecular contacts predominate, followed by the $C \cdots H/H \cdots C$ and $O \cdots H/H \cdots O$ contacts.

5. Synthesis and crystallization

Compound I: To a solution of (E)-2-(2-(benzo[*b*]thiophen-2-yl)vinyl)-5-fluorobenzenaminium chloride (1.2 g, 3.934 mmol) in dry DCM (10 mL), pyridine (0.47 mL, 5.901 mmol) and PhSO₂Cl (0.6 mL, 4.721 mmol) were added and stirred at

Figure 9

The full two-dimensional fingerprint plot for compound **II**, and fingerprint plots delineated into $(b) \ C \cdots C$, $(c) \ C \cdots H/H \cdots C$, $(d) \ C \cdots N/N \cdots C$, $(e) \ C \cdots O/O \cdots C$, $(f) \ H \cdots H$, $(g) \ N \cdots H/H \cdots N$, $(h) \ O \cdots H/H \cdots O$ and (I) $S \cdots H/H \cdots S$ contacts.

Table 3Experimental details.

	I	П
Crystal data		
Chemical formula	$C_{22}H_{16}FNO_2S_2$	$C_{26}H_{20}FNO_2S_2$
М.	409.48	461.55
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	297	297
a, b, c (Å)	7.9588 (1), 25.9840 (4), 9.5178 (2)	9.3517 (3), 31.7075 (11), 8.6063 (3)
β (°)	96.853 (1)	115.179 (2)
$V(A^3)$	1954.23 (6)	2309.45 (14)
Z	4	4
Radiation type	Cu Κα	Cu Κα
$\mu (\text{mm}^{-1})$	2.70	2.35
Crystal size (mm)	$0.15 \times 0.10 \times 0.08$	$0.11 \times 0.07 \times 0.02$
Data collection		
Diffractometer	Bruker D8 Venture Diffractometer	Bruker D8 Venture Diffractometer
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
$T_{\min}, \tilde{T}_{\max}$	0.589, 0.753	0.604, 0.753
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	44325, 3597, 2964	39443, 4270, 2098
R _{int}	0.049	0.155
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.604	0.605
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.115, 1.03	0.066, 0.232, 1.00
No. of reflections	3597	4270
No. of parameters	272	291
No. of restraints	11	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.21, -0.28	0.33, -0.38

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXS2018/3 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2020), publCIF (Westrip, 2010) and PLATON (Spek, 2020).

room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with DCM (2 \times 20 mL) then washed with water (2 \times 20 mL) and dried (Na₂SO₄). Removal of solvent *in vacuo* followed by crystallization from diethylether (4 mL) afforded (*E*)-*N*-{2-[2-(benzo[*b*]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulf-onamide as a white solid.

Compound **II**: To a solution of (E)-N-{2-[2-(benzo[b]thiophen-2-yl)vinyl]-5-fluorophenyl}benzenesulfonamide (0.70 g, 1.711 mmol) in CH₃CN (10 mL), K₂CO₃ (0.35 g, 2.567 mmol) and 1-bromobut-2-yne (0.22 mL, 2.567 mmol) were added and stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with ethyl acetate (2 × 20 mL) then washed with water (2 × 20 mL) and dried (Na₂SO₄). Removal of solvent *in vacuo* followed by crystallization from methanol (4 mL) afforded (E)-N-{2-[2-(benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide as a white solid.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For compound **I**, the NH H atoms were located in difference-Fourier maps and freely refined. For compound **II**, they were included in calculated positions and refined as riding: N–H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(N)$. All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C–H = 0.93–0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C$ -methyl) and $1.2U_{eq}(C)$ for other H atoms. In compound I, the thiophene ring is disordered over two positions with a refined occupancy ratio of 0.756 (4):0.244 (3). The geometries were regularized using soft restraints.

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

- Abdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680-686.
- Abdel-Rahman, A. E., Bakhite, A. E. & Al-Taifi, E. A. (2003). *Pharmazie*, **58**, 372–377.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19.
- Ansary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.
- Bassindale, A. (1984). *The Third Dimension in Organic Chemistry*, ch. 1, p. 11. New York: John Wiley and Sons.
- Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242–2246.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

research communications

- Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). *Tetrahedron*, 61, 6580–6589.
- Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). *Eur. J. Med. Chem.* 40, 757–763.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H. J., Wang, W., I Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). *Med. Chem.* 3, 1316–1321.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). *Bioorg. Med. Chem. Lett.* 16, 1384–1387.
- Gadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298–301.
- Gather, M. C., Heeney, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). *Chem. Commun.* pp. 1079–1081.
- Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99-100.
- Gillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Grunewald, G. L., Seim, M. R., Bhat, S. R., Wilson, M. E. & Criscione, K. R. (2008). *Bioorg. Med. Chem.* 16, 542–559.
- He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938.
- Jarak, I., Kralj, M. S., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I. Z., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360.
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Jordan, V. C. (2003). J. Med. Chem. 46, 1081-1111.
- Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). *Chem. Mater.* 20, 1830– 1840.
- Laddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). *Indian Drugs*, **35**, 509–513.

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.
- Madhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana-Krishnan, A. K. (2023). Acta Cryst. E79, 521–525.
- Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.
- Monge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). *Heterocycl. Chem.* 17, 77–80.
- Nathan Tumey, L., Boschelli, D. H., Lee, J. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 4420–4423.
- Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). *Dyes Pigments*, **91**, 62–73.
- Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.
- Sabins, R. W. (1944). Sulfur Rep. 16, 1.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008).
- CrystEngComm, 10, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.* University of Western Australia. http://hirshfeldsurface.net
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). *J. Am. Chem. Soc.* **129**, 7246–7247.

supporting information

Acta Cryst. (2023). E79, 741-746 [https://doi.org/10.1107/S2056989023006096]

Crystal-structure determination and Hirshfeld surface analysis of two new thiophene derivatives: (*E*)-*N*-{2-[2-(benzo[*b*]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide and (*E*)-*N*-{2-[2-(benzo[*b*]thiophen-2-yl)ethenyl]-5-fluorophenyl}-*N*-(but-2-yn-1-yl)benzenesulfonamide

S. Madhan, M. NizamMohideen, Vinayagam Pavunkumar and Arasambattu K. MohanaKrishnan

Computing details

For both structures, data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXS2018/3* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *publCIF* (Westrip, 2010) and *PLATON* (Spek, 2020).

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I)

Crystal data

 $\begin{array}{l} C_{22}H_{16}FNO_{2}S_{2}\\ M_{r}=409.48\\ Monoclinic, P2_{1}/c\\ a=7.9588~(1)~\text{\AA}\\ b=25.9840~(4)~\text{\AA}\\ c=9.5178~(2)~\text{\AA}\\ \beta=96.853~(1)^{\circ}\\ V=1954.23~(6)~\text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Bruker D8 Venture Diffractometer Radiation source: micro focus sealed tube ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2016) $T_{\min} = 0.589, T_{\max} = 0.753$ 44325 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.115$ F(000) = 848 $D_x = 1.392 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9457 reflections $\theta = 3.4-68.6^{\circ}$ $\mu = 2.70 \text{ mm}^{-1}$ T = 297 KBlock, brown $0.15 \times 0.10 \times 0.08 \text{ mm}$

3597 independent reflections 2964 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 68.7^\circ, \ \theta_{min} = 3.4^\circ$ $h = -9 \rightarrow 9$ $k = -31 \rightarrow 31$ $l = -11 \rightarrow 11$

S = 1.033597 reflections 272 parameters 11 restraints

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0496P)^2 + 0.7846P]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.7141 (2)	0.64416 (6)	0.53276 (16)	0.0782 (7)	
C2	0.6743 (3)	0.69557 (7)	0.5055 (2)	0.1055 (10)	
H2	0.611424	0.704923	0.420704	0.127*	
C3	0.7286 (3)	0.73300 (5)	0.6050(3)	0.1127 (11)	
H3	0.701996	0.767393	0.586823	0.135*	
C4	0.8226 (3)	0.71902 (7)	0.7318 (2)	0.1109 (11)	
H4	0.858902	0.744059	0.798407	0.133*	
C5	0.8623 (3)	0.66761 (8)	0.75906 (17)	0.1018 (9)	
H5	0.925238	0.658254	0.843872	0.122*	
C6	0.8081 (2)	0.63018 (5)	0.65953 (18)	0.0788 (7)	
S1′	0.8669 (7)	0.56832 (19)	0.7105 (5)	0.0855 (14)	0.243 (4)
C7′	0.709 (3)	0.5902 (6)	0.4679 (19)	0.103 (8)	0.243 (4)
H7′	0.649984	0.584659	0.378833	0.124*	0.243 (4)
C8′	0.790 (5)	0.5504 (7)	0.539 (2)	0.051 (5)	0.243 (4)
S1	0.6512 (2)	0.59509 (5)	0.41950 (14)	0.0758 (4)	0.757 (4)
C7	0.8282 (9)	0.5758 (2)	0.6526 (7)	0.0900 (18)	0.757 (4)
H7	0.893320	0.557894	0.724278	0.108*	0.757 (4)
C8	0.7498 (15)	0.5511 (3)	0.5389 (9)	0.067 (3)	0.757 (4)
C9	0.7644 (3)	0.49638 (9)	0.5064 (3)	0.0754 (6)	
H9	0.808242	0.474482	0.579001	0.090*	
C10	0.6922 (3)	0.47259 (9)	0.3953 (3)	0.0741 (6)	
H10	0.632873	0.492988	0.325994	0.089*	
C11	0.6936 (3)	0.41711 (8)	0.3671 (2)	0.0673 (6)	
C12	0.7752 (4)	0.38326 (10)	0.4678 (3)	0.0976 (9)	
H12	0.829122	0.396833	0.551708	0.117*	
C13	0.7790 (5)	0.33108 (10)	0.4481 (3)	0.1019 (10)	
H13	0.835045	0.309475	0.516146	0.122*	
C14	0.6980 (4)	0.31212 (9)	0.3256 (3)	0.0837 (7)	
C15	0.6143 (3)	0.34215 (8)	0.2231 (3)	0.0711 (6)	
H15	0.557999	0.327509	0.141557	0.085*	
C16	0.6145 (3)	0.39533 (7)	0.2428 (2)	0.0578 (5)	
C17	0.6983 (2)	0.40434 (7)	-0.0853 (2)	0.0545 (5)	
C18	0.8053 (3)	0.44596 (9)	-0.0912 (3)	0.0739 (6)	
H18	0.770751	0.478886	-0.069161	0.089*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C19	0.9636 (3)	0.43766 (13)	-0.1303 (3)	0.0927 (8)
H19	1.037422	0.465199	-0.134587	0.111*
C20	1.0139 (3)	0.38892 (15)	-0.1632 (3)	0.0947 (9)
H20	1.121259	0.383777	-0.189882	0.114*
C21	0.9072 (4)	0.34806 (12)	-0.1569 (3)	0.0888 (8)
H21	0.942294	0.315210	-0.179119	0.107*
C22	0.7481 (3)	0.35538 (9)	-0.1179 (2)	0.0689 (6)
H22	0.675016	0.327657	-0.113642	0.083*
N1	0.5283 (2)	0.42741 (6)	0.1368 (2)	0.0616 (4)
01	0.40697 (18)	0.36642 (5)	-0.05058 (18)	0.0706 (4)
O2	0.42235 (19)	0.45927 (5)	-0.09632 (17)	0.0674 (4)
F1	0.6977 (3)	0.26050 (5)	0.3036 (2)	0.1171 (6)
S2	0.49738 (6)	0.41360 (2)	-0.03136 (6)	0.05557 (17)
H1N	0.545 (3)	0.4587 (6)	0.147 (2)	0.067*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0989 (18)	0.0723 (15)	0.0687 (14)	-0.0213 (13)	0.0318 (13)	-0.0024 (12)
C2	0.132 (3)	0.0839 (19)	0.103 (2)	-0.0145 (18)	0.0231 (19)	0.0204 (17)
C3	0.135 (3)	0.0621 (16)	0.149 (3)	-0.0154 (17)	0.052 (3)	-0.0014 (19)
C4	0.135 (3)	0.081 (2)	0.126 (3)	-0.0312 (19)	0.054 (2)	-0.0337 (19)
C5	0.124 (2)	0.099 (2)	0.0829 (18)	-0.0240 (19)	0.0139 (17)	-0.0201 (16)
C6	0.0929 (17)	0.0706 (15)	0.0766 (16)	-0.0123 (13)	0.0252 (13)	-0.0080 (12)
S1′	0.104 (3)	0.077 (2)	0.074 (3)	-0.0128 (19)	0.004 (2)	-0.0059 (19)
C7′	0.127 (16)	0.121 (16)	0.059 (10)	-0.069 (13)	0.001 (8)	-0.016 (10)
C8′	0.045 (12)	0.060 (8)	0.050 (8)	-0.004 (5)	0.017 (5)	0.001 (6)
S 1	0.1095 (10)	0.0607 (5)	0.0576 (8)	-0.0079 (5)	0.0109 (6)	-0.0006 (4)
C7	0.111 (4)	0.077 (3)	0.076 (4)	0.003 (2)	-0.010 (3)	0.000 (3)
C8	0.065 (6)	0.067 (3)	0.071 (3)	-0.009(2)	0.017 (2)	-0.003(2)
C9	0.0896 (17)	0.0647 (14)	0.0712 (14)	0.0018 (12)	0.0068 (12)	0.0001 (11)
C10	0.1028 (18)	0.0551 (12)	0.0632 (13)	-0.0022 (12)	0.0055 (12)	0.0060 (10)
C11	0.0864 (15)	0.0516(11)	0.0647 (13)	0.0000 (10)	0.0123 (11)	0.0086 (10)
C12	0.142 (3)	0.0674 (16)	0.0772 (17)	-0.0011 (16)	-0.0111 (17)	0.0139 (13)
C13	0.141 (3)	0.0651 (16)	0.095 (2)	0.0093 (16)	-0.0046 (19)	0.0296 (15)
C14	0.114 (2)	0.0459 (12)	0.0930 (19)	0.0051 (12)	0.0186 (16)	0.0146 (12)
C15	0.0888 (16)	0.0472 (11)	0.0783 (15)	0.0022 (11)	0.0142 (12)	0.0065 (10)
C16	0.0645 (12)	0.0457 (10)	0.0658 (12)	0.0025 (9)	0.0186 (10)	0.0083 (9)
C17	0.0545 (10)	0.0502 (10)	0.0561 (11)	-0.0008(8)	-0.0041 (8)	-0.0033 (8)
C18	0.0654 (13)	0.0673 (14)	0.0871 (16)	-0.0139 (11)	0.0014 (12)	-0.0091 (12)
C19	0.0671 (15)	0.116 (2)	0.0935 (19)	-0.0253 (16)	0.0020 (14)	-0.0039 (17)
C20	0.0562 (14)	0.147 (3)	0.0796 (17)	0.0120 (17)	0.0026 (12)	-0.0036 (18)
C21	0.0794 (17)	0.096 (2)	0.0904 (19)	0.0269 (15)	0.0098 (14)	-0.0087 (15)
C22	0.0724 (14)	0.0582 (12)	0.0752 (14)	0.0077 (10)	0.0049 (11)	-0.0050 (11)
N1	0.0745 (11)	0.0401 (8)	0.0700 (11)	0.0070 (8)	0.0081 (9)	0.0009 (8)
01	0.0613 (8)	0.0459 (7)	0.1008 (12)	-0.0087 (6)	-0.0061 (8)	-0.0028 (7)
O2	0.0711 (9)	0.0437 (7)	0.0826 (10)	0.0098 (6)	-0.0111 (7)	0.0015 (7)
F1	0.1731 (17)	0.0454 (8)	0.1300 (14)	0.0126 (9)	0.0067 (12)	0.0189 (8)

supporting information

S2	0.0546 (3)	0.0379 (2)	0.0718 (3)	0.00112 (18)	-0.0029 (2)	-0.0018 (2)	
Geom	etric parameters (1	Å, °)					
C1—C	22	1.390	0	C11—C12		1.402 (3)	
C1-C	C6	1.390	0	C12—C13		1.369 (4)	
C1-C	C7′	1.531	(14)	C12—H12		0.9300	
C1—5	51	1.705	8 (18)	C13—C14		1.356 (4)	
C2—C	23	1.390	0	C13—H13		0.9300	
C2—H	-12	0.930	0	C14—F1		1.358 (3)	
С3—С	C4	1.390	0	C14—C15		1.360 (3)	
С3—Н	-13	0.930	0	C15—C16		1.394 (3)	
C4—C	25	1.390	0	C15—H15		0.9300	
C4—H	-14	0.930	0	C16—N1		1.421 (3)	
С5—С	C6	1.390	0	C17—C22		1.379 (3)	
С5—Н	45	0.930	0	C17—C18		1.381 (3)	
C6—C	27	1.426	(6)	C17—S2		1.754 (2)	
C6—5	517	1.727	(5)	C18—C19		1.373 (4)	
S1′—0	C8′	1.738	(17)	C18—H18		0.9300	
C7′—	C8′	1.356	(18)	C19—C20		1.375 (4)	
C7′—	H7′	0.930	0	C19—H19		0.9300	
C8′—	С9	1.446	(17)	C20—C21		1.365 (4)	
S1—C	28	1.732	(7)	C20—H20		0.9300	
С7—С	C8	1.345	(8)	C21—C22		1.375 (4)	
С7—Н	H7	0.930	0	C21—H21		0.9300	
C8—C	C9	1.463	(7)	C22—H22		0.9300	
С9—С	C10	1.298	(3)	N1—S2		1.6301 (19)	
С9—Н	-19	0.930	0	N1—H1N		0.828 (16)	
C10-	-C11	1.467	(3)	O1—S2		1.4222 (14)	
C10—	-H10	0.930	0	O2—S2		1.4348 (14)	
C11—	-C16	1.393	(3)				
C2—C	C1—C6	120.0		C16—C11—C10		122.8 (2)	
C2—C	C1—C7′	144.2	(7)	C12—C11—C10		120.3 (2)	
С6—С	C1—C7′	95.5 (7)	C13—C12—C11		122.9 (3)	
C2—C	C1—S1	123.8	8 (12)	C13—C12—H12		118.5	
С6—С	C1—S1	116.1	1 (12)	C11—C12—H12		118.5	
С3—С	C2—C1	120.0		C14—C13—C12		117.5 (3)	
С3—С	С2—Н2	120.0		C14—C13—H13		121.3	
C1-C	С2—Н2	120.0		C12—C13—H13		121.3	
C2—C	C3—C4	120.0		C13—C14—F1		118.9 (2)	
C2—C	С3—Н3	120.0		C13—C14—C15		123.4 (2)	
C4—C	С3—Н3	120.0		F1—C14—C15		117.7 (3)	
С5—С	C4—C3	120.0		C14—C15—C16		118.6 (2)	
С5—С	С4—Н4	120.0		C14—C15—H15		120.7	
С3—С	С4—Н4	120.0		C16—C15—H15		120.7	
C4—C	С5—С6	120.0		C11—C16—C15		120.7 (2)	
C4—C	С5—Н5	120.0		C11—C16—N1		119.74 (18)	

04 05 HE	1000		110 (())
С6—С5—Н5	120.0	C15—C16—N1	119.6 (2)
C5—C6—C1	120.0	C22—C17—C18	121.2 (2)
C5—C6—C7	134.3 (3)	C22—C17—S2	119.30 (17)
C1—C6—C7	105.7 (3)	C18—C17—S2	119.49 (17)
C5—C6—S1'	114.1 (2)	C19—C18—C17	118.5 (2)
C1—C6—S1′	125.9 (2)	C19—C18—H18	120.7
C6—S1′—C8′	86.1 (6)	C17—C18—H18	120.7
C8′—C7′—C1	120.6 (13)	C18—C19—C20	120.5 (3)
C8'—C7'—H7'	119.7	С18—С19—Н19	119.7
C1—C7′—H7′	119.7	С20—С19—Н19	119.7
C7′—C8′—C9	126.0 (15)	C21—C20—C19	120.5 (3)
C7'—C8'—S1'	110.9 (13)	С21—С20—Н20	119.8
C9—C8′—S1′	119.1 (13)	C19—C20—H20	119.8
$C_1 = S_1 = C_8$	90.1 (2)	C_{20} C_{21} C_{22}	120.1 (3)
C_{8} C_{7} C_{6}	1177(6)	$C_{20} = C_{21} = H_{21}$	119.9
C8-C7-H7	121.1	$C_{22} = C_{21} = H_{21}$	119.9
C6-C7-H7	121.1	C_{21} C_{22} C_{12} C_{12}	119.9 119.2(2)
$C_7 C_8 C_9$	121.1	$C_{21} = C_{22} = C_{17}$	119.2 (2)
$C_{7} = C_{8} = C_{9}$	120.3(0)	$C_{21} = C_{22} = H_{22}$	120.4
$C_{1} = C_{2} = C_{1}$	110.1(5)	C17 - C22 - 1122	120.4
$C_{9} = C_{0} = C_{10}$	122.9(3)	C16 N1 U1N	124.83(14)
C10 - C9 - C8	132.4(6)	C10-N1-H1N	110.0(10)
C10 - C9 - C8	126.6 (4)	S2—NI—HIN	109.5 (16)
С10—С9—Н9	113.8	01 - 82 - 02	118.64 (9)
С8′—С9—Н9	113.8	01—S2—N1	109.32 (10)
C9—C10—C11	127.2 (2)	O2—S2—N1	104.32 (9)
C9—C10—H10	116.4	O1—S2—C17	108.01 (9)
C11—C10—H10	116.4	O2—S2—C17	109.55 (10)
C16—C11—C12	116.8 (2)	N1—S2—C17	106.35 (9)
C6—C1—C2—C3	0.0	C8'-C9-C10-C11	171 (2)
C7'—C1—C2—C3	-171.5 (14)	C8—C9—C10—C11	-174.3 (7)
S1—C1—C2—C3	178.91 (16)	C9—C10—C11—C16	-178.7 (3)
C1—C2—C3—C4	0.0	C9—C10—C11—C12	2.1 (4)
C2—C3—C4—C5	0.0	C16—C11—C12—C13	-0.1 (5)
C3—C4—C5—C6	0.0	C10-C11-C12-C13	179.2 (3)
C4—C5—C6—C1	0.0	C11—C12—C13—C14	-0.7 (5)
C4—C5—C6—C7	178.8 (4)	C12—C13—C14—F1	-179.2(3)
C4—C5—C6—S1'	-179.6(2)	C12—C13—C14—C15	-0.1 (5)
$C_2 - C_1 - C_6 - C_5$	0.0	C13—C14—C15—C16	1.5 (4)
C7' - C1 - C6 - C5	175.0 (8)	F1-C14-C15-C16	-1793(2)
\$1-01-06-05	-178.99(15)	C_{12} C_{11} C_{16} C_{15}	16(4)
C_{2} C_{1} C_{6} C_{7}	-1791(3)	C10-C11-C16-C15	-1777(2)
S1_C1_C6_C7	19(3)	C12-C11-C16 N1	1795(2)
$C_{1} C_{1} C_{6} S_{1'}$	1.9 (3)	C10-C11-C16 N1	179.3(2)
$C_2 = C_1 = C_0 = S_1$	-5.5(8)	$C_{10} - C_{11} - C_{10} - C_{10}$	-2 2 (4)
$C_{1} = C_{1} = C_{0} = S_{1}$	-171.8(12)	C14 C15 C16 N1	2.3(4)
$C_{1} = C_{0} = C_{1} = C_{0}$	-1/1.0(13)	$C_{14} - C_{13} - C_{10} - N_1$	1/9.8(2)
$C_1 = C_0 = S_1 = C_0^{21}$	0.7 (14)	$\begin{array}{c} 122 \\$	-0.1(4)
C2—C1—C/′—C8′	1/1(2)	S2-C17-C18-C19	1/8.41 (19)

C6—C1—C7′—C8′	-2 (3)	C17—C18—C19—C20	0.2 (4)
C1—C7′—C8′—C9	165 (2)	C18—C19—C20—C21	-0.2 (4)
C1—C7′—C8′—S1′	8 (4)	C19—C20—C21—C22	0.2 (4)
C6—S1′—C8′—C7′	-8 (2)	C20—C21—C22—C17	-0.1 (4)
C6—S1′—C8′—C9	-167 (3)	C18—C17—C22—C21	0.0 (4)
C2-C1-S1-C8	-178.8 (5)	S2-C17-C22-C21	-178.48 (19)
C6—C1—S1—C8	0.1 (5)	C11—C16—N1—S2	153.99 (18)
C5—C6—C7—C8	177.3 (7)	C15—C16—N1—S2	-28.1 (3)
C1—C6—C7—C8	-3.8 (9)	C16—N1—S2—O1	58.1 (2)
C6—C7—C8—C9	175.1 (8)	C16—N1—S2—O2	-174.05 (17)
C6—C7—C8—S1	4.0 (11)	C16—N1—S2—C17	-58.28 (19)
C1—S1—C8—C7	-2.2 (8)	C22—C17—S2—O1	-8.2 (2)
C1—S1—C8—C9	-173.7 (9)	C18—C17—S2—O1	173.24 (18)
C7'—C8'—C9—C10	15 (5)	C22—C17—S2—O2	-138.77 (17)
S1'—C8'—C9—C10	170.8 (10)	C18—C17—S2—O2	42.7 (2)
C7—C8—C9—C10	-178.3 (8)	C22—C17—S2—N1	109.03 (18)
S1—C8—C9—C10	-8.4 (13)	C18—C17—S2—N1	-69.51 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C15—H15…O1	0.93	2.30	2.980 (3)	130
C10—H10…02 ⁱ	0.93	2.51	3.383 (3)	157
N1— $H1N$ ···O2 ⁱ	0.83 (2)	2.21 (2)	3.001 (2)	161 (2)
C22—H22…F1 ⁱⁱ	0.93	2.44	3.116 (3)	130

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, -y+1/2, z-1/2.

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II)

Crystal data

$C_{26}H_{20}FNO_2S_2$	F(000) = 960
$M_r = 461.55$	$D_{\rm x} = 1.327 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu Ka radiation, $\lambda = 1.54178$ Å
a = 9.3517(3) Å	Cell parameters from 3616 reflections
b = 31.7075(11) Å	$\theta = 2.8 - 65.4^{\circ}$
c = 8.6063 (3) Å	$\mu = 2.35 \text{ mm}^{-1}$
$\beta = 115.179(2)^{\circ}$	T = 297 K
V = 2309.45 (14) Å ³	Solid, white
<i>Z</i> = 4	$0.11 \times 0.07 \times 0.02 \text{ mm}$
Data collection	
Bruker D8 Venture Diffractometer	4270 independent reflections
Radiation source: micro focus sealed tube	2098 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{\rm int} = 0.155$
Absorption correction: multi-scan	$\theta_{\text{max}} = 68.8^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$
(SADABS; Bruker, 2016)	$h = -11 \rightarrow 11$
$T_{\min} = 0.604, T_{\max} = 0.753$	$k = -37 \rightarrow 38$
39443 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.1325P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.066$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.232$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.00	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
4270 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
291 parameters	Extinction correction: SHELXL-2018/3
0 restraints	(Sheldrick 2015),
Hydrogen site location: inferred from	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
neighbouring sites	Extinction coefficient: 0.0040 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.2549 (6)	0.32808 (15)	-0.0285 (6)	0.0669 (12)
C2	0.2360 (6)	0.33934 (17)	-0.1918 (6)	0.0778 (14)
H2	0.311900	0.355578	-0.207042	0.093*
C3	0.1029 (7)	0.32600 (17)	-0.3309 (7)	0.0825 (15)
H3	0.089065	0.333320	-0.441041	0.099*
C4	-0.0110 (6)	0.30184 (16)	-0.3096 (6)	0.0763 (14)
H4	-0.100010	0.293249	-0.405677	0.092*
C5	0.0054 (6)	0.29044 (15)	-0.1498 (6)	0.0722 (13)
Н5	-0.071951	0.274308	-0.137015	0.087*
C6	0.1408 (5)	0.30337 (14)	-0.0042 (5)	0.0626 (11)
C7	0.1836 (6)	0.29535 (14)	0.1732 (6)	0.0673 (12)
H7	0.122120	0.279321	0.212083	0.081*
C8	0.3227 (5)	0.31338 (13)	0.2798 (5)	0.0609 (11)
C9	0.3969 (6)	0.31034 (15)	0.4648 (6)	0.0682 (12)
H9	0.350312	0.292242	0.514847	0.082*
C10	0.5265 (6)	0.33107 (14)	0.5712 (6)	0.0633 (12)
H10	0.571084	0.350331	0.523168	0.076*
C11	0.6030 (5)	0.32555 (13)	0.7581 (5)	0.0586 (11)
C12	0.5852 (6)	0.28800 (14)	0.8336 (6)	0.0659 (12)
H12	0.521274	0.266825	0.763600	0.079*
C13	0.6595 (6)	0.28137 (15)	1.0084 (6)	0.0702 (13)
H13	0.646816	0.256223	1.056735	0.084*
C14	0.7527 (6)	0.31322 (16)	1.1085 (6)	0.0718 (13)
C15	0.7743 (6)	0.35085 (15)	1.0435 (6)	0.0694 (13)
H15	0.836300	0.371959	1.115842	0.083*
C16	0.7016 (5)	0.35672 (13)	0.8677 (5)	0.0585 (11)
C17	0.6526 (6)	0.45543 (14)	0.9821 (6)	0.0688 (13)
C18	0.5818 (8)	0.43930 (18)	1.0789 (7)	0.0899 (17)

H18	0.505581	0.418355	1.033546	0.108*
C19	0.6226 (9)	0.4539 (2)	1.2444 (9)	0.106 (2)
H19	0.574503	0.442786	1.310278	0.128*
C20	0.7344 (9)	0.4848 (2)	1.3093 (9)	0.109 (2)
H20	0.762946	0.494415	1.420623	0.131*
C21	0.8042 (9)	0.5017 (2)	1.2151 (9)	0.109 (2)
H21	0.878624	0.523052	1.260868	0.130*
C22	0.7647 (7)	0.48710 (16)	1.0491 (7)	0.0872 (16)
H22	0.812980	0.498474	0.983836	0.105*
C23	0.8877 (6)	0.40504 (16)	0.8143 (7)	0.0763 (14)
H23A	0.925473	0.380835	0.773623	0.092*
H23B	0.882648	0.428675	0.740500	0.092*
C24	1.0039 (6)	0.41494 (15)	0.9891 (7)	0.0764 (14)
C25	1.0953 (7)	0.42202 (17)	1.1328 (8)	0.0886 (17)
C26	1.2031 (8)	0.4310 (2)	1.3114 (8)	0.117 (2)
H26A	1.143024	0.438114	1.374590	0.175*
H26B	1.270375	0.454214	1.315234	0.175*
H26C	1.266516	0.406545	1.361637	0.175*
N1	0.7255 (4)	0.39583 (10)	0.7947 (5)	0.0613 (10)
01	0.4505 (4)	0.41733 (11)	0.7156 (4)	0.0851 (11)
O2	0.6400 (5)	0.46681 (11)	0.6790 (5)	0.0949 (12)
S1	0.40923 (16)	0.34048 (5)	0.16627 (16)	0.0776 (5)
S2	0.60508 (16)	0.43535 (4)	0.77698 (15)	0.0715 (4)
F1	0.8245 (4)	0.30760 (10)	1.2817 (3)	0.0982 (10)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.060 (3)	0.078 (3)	0.063 (3)	-0.003 (2)	0.026 (2)	-0.005 (2)
0.073 (3)	0.097 (4)	0.066 (3)	-0.005 (3)	0.033 (3)	0.000 (3)
0.080 (4)	0.107 (4)	0.059 (3)	0.005 (3)	0.029 (3)	-0.003 (3)
0.074 (3)	0.089 (3)	0.062 (3)	0.001 (3)	0.025 (3)	-0.013 (2)
0.063 (3)	0.079 (3)	0.066 (3)	-0.008 (2)	0.019 (2)	-0.013 (2)
0.060 (3)	0.071 (3)	0.056 (2)	-0.001 (2)	0.024 (2)	-0.008 (2)
0.065 (3)	0.072 (3)	0.065 (3)	-0.015 (2)	0.028 (2)	-0.005 (2)
0.063 (3)	0.064 (2)	0.057 (2)	-0.005 (2)	0.027 (2)	-0.003 (2)
0.068 (3)	0.071 (3)	0.061 (3)	-0.007 (2)	0.023 (2)	-0.004 (2)
0.064 (3)	0.065 (3)	0.059 (2)	-0.001 (2)	0.025 (2)	0.000 (2)
0.057 (3)	0.061 (2)	0.057 (2)	0.000 (2)	0.024 (2)	0.0004 (19)
0.068 (3)	0.064 (3)	0.066 (3)	-0.003 (2)	0.029 (2)	0.000 (2)
0.076 (3)	0.070 (3)	0.067 (3)	0.000 (3)	0.034 (3)	0.007 (2)
0.079 (3)	0.081 (3)	0.049 (2)	0.007 (3)	0.021 (2)	0.009 (2)
0.070 (3)	0.070 (3)	0.060 (3)	-0.001 (2)	0.020 (2)	-0.001 (2)
0.062 (3)	0.056 (2)	0.057 (2)	0.002 (2)	0.025 (2)	0.0017 (18)
0.076 (3)	0.063 (3)	0.070 (3)	0.003 (2)	0.033 (3)	-0.001 (2)
0.107 (5)	0.085 (3)	0.081 (4)	-0.009 (3)	0.044 (3)	-0.010 (3)
0.132 (6)	0.106 (4)	0.096 (5)	0.003 (4)	0.063 (4)	-0.003 (4)
0.134 (6)	0.110 (5)	0.079 (4)	0.016 (5)	0.042 (4)	-0.019 (4)
	U^{11} 0.060 (3) 0.073 (3) 0.080 (4) 0.074 (3) 0.063 (3) 0.063 (3) 0.065 (3) 0.065 (3) 0.068 (3) 0.064 (3) 0.057 (3) 0.068 (3) 0.076 (3) 0.070 (3) 0.070 (3) 0.070 (3) 0.076 (3) 0.107 (5) 0.132 (6) 0.134 (6)	U^{11} U^{22} $0.060(3)$ $0.078(3)$ $0.073(3)$ $0.097(4)$ $0.080(4)$ $0.107(4)$ $0.074(3)$ $0.089(3)$ $0.063(3)$ $0.079(3)$ $0.060(3)$ $0.071(3)$ $0.065(3)$ $0.072(3)$ $0.063(3)$ $0.071(3)$ $0.063(3)$ $0.071(3)$ $0.063(3)$ $0.072(3)$ $0.064(3)$ $0.071(3)$ $0.064(3)$ $0.064(2)$ $0.068(3)$ $0.071(3)$ $0.057(3)$ $0.061(2)$ $0.068(3)$ $0.064(3)$ $0.070(3)$ $0.070(3)$ $0.079(3)$ $0.081(3)$ $0.070(3)$ $0.070(3)$ $0.070(3)$ $0.070(3)$ $0.076(3)$ $0.063(3)$ $0.107(5)$ $0.085(3)$ $0.132(6)$ $0.110(5)$	U^{11} U^{22} U^{33} $0.060(3)$ $0.078(3)$ $0.063(3)$ $0.073(3)$ $0.097(4)$ $0.066(3)$ $0.080(4)$ $0.107(4)$ $0.059(3)$ $0.074(3)$ $0.089(3)$ $0.062(3)$ $0.063(3)$ $0.079(3)$ $0.066(3)$ $0.060(3)$ $0.071(3)$ $0.056(2)$ $0.065(3)$ $0.072(3)$ $0.065(3)$ $0.063(3)$ $0.072(3)$ $0.065(3)$ $0.063(3)$ $0.071(3)$ $0.065(3)$ $0.063(3)$ $0.071(3)$ $0.061(3)$ $0.064(3)$ $0.065(3)$ $0.057(2)$ $0.068(3)$ $0.071(3)$ $0.059(2)$ $0.057(3)$ $0.061(2)$ $0.057(2)$ $0.068(3)$ $0.064(3)$ $0.066(3)$ $0.076(3)$ $0.070(3)$ $0.067(3)$ $0.079(3)$ $0.081(3)$ $0.049(2)$ $0.070(3)$ $0.056(2)$ $0.057(2)$ $0.076(3)$ $0.063(3)$ $0.070(3)$ $0.070(3)$ $0.063(3)$ $0.070(3)$ $0.076(3)$ $0.063(3)$ $0.070(3)$ $0.107(5)$ $0.085(3)$ $0.081(4)$ $0.132(6)$ $0.110(5)$ $0.079(4)$	U^{11} U^{22} U^{33} U^{12} 0.060 (3)0.078 (3)0.063 (3) $-0.003 (2)$ 0.073 (3)0.097 (4)0.066 (3) $-0.005 (3)$ 0.080 (4)0.107 (4)0.059 (3)0.005 (3)0.074 (3)0.089 (3)0.062 (3)0.001 (3)0.063 (3)0.079 (3)0.066 (3) $-0.008 (2)$ 0.060 (3)0.071 (3)0.056 (2) $-0.001 (2)$ 0.065 (3)0.072 (3)0.065 (3) $-0.015 (2)$ 0.063 (3)0.064 (2)0.057 (2) $-0.007 (2)$ 0.068 (3)0.071 (3)0.061 (3) $-0.007 (2)$ 0.068 (3)0.061 (2)0.057 (2) $-0.001 (2)$ 0.057 (3)0.061 (2)0.057 (2) $-0.003 (2)$ 0.068 (3)0.064 (3)0.066 (3) $-0.003 (2)$ 0.076 (3)0.070 (3)0.067 (3)0.000 (3)0.079 (3)0.081 (3)0.049 (2)0.007 (3)0.070 (3)0.056 (2)0.057 (2)0.002 (2)0.076 (3)0.063 (3)0.070 (3)0.003 (2)0.076 (3)0.063 (3)0.070 (3)0.003 (2)0.107 (5)0.085 (3)0.081 (4) $-0.009 (3)$ 0.132 (6)0.106 (4)0.096 (5)0.003 (4)0.134 (6)0.110 (5)0.079 (4)0.016 (5)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.060 (3)0.078 (3)0.063 (3) $-0.003 (2)$ 0.026 (2)0.073 (3)0.097 (4)0.066 (3) $-0.005 (3)$ 0.033 (3)0.080 (4)0.107 (4)0.059 (3)0.005 (3)0.029 (3)0.074 (3)0.089 (3)0.062 (3)0.001 (3)0.025 (3)0.063 (3)0.079 (3)0.066 (3) $-0.008 (2)$ 0.019 (2)0.060 (3)0.071 (3)0.056 (2) $-0.001 (2)$ 0.024 (2)0.065 (3)0.072 (3)0.065 (3) $-0.015 (2)$ 0.028 (2)0.063 (3)0.064 (2)0.057 (2) $-0.007 (2)$ 0.023 (2)0.068 (3)0.071 (3)0.061 (3) $-0.007 (2)$ 0.025 (2)0.068 (3)0.061 (2)0.057 (2) $-0.001 (2)$ 0.025 (2)0.057 (3)0.061 (2)0.057 (2) $0.000 (2)$ $0.024 (2)$ 0.068 (3)0.061 (2)0.057 (2) $0.000 (2)$ $0.024 (2)$ 0.068 (3)0.061 (2)0.057 (2) $0.000 (2)$ $0.024 (2)$ 0.076 (3)0.064 (3) $0.066 (3)$ $-0.001 (2)$ $0.029 (2)$ 0.076 (3)0.070 (3) $0.067 (3)$ $0.000 (3)$ $0.034 (3)$ 0.079 (3)0.081 (3) $0.049 (2)$ $0.007 (3)$ $0.021 (2)$ 0.062 (3) $0.056 (2)$ $0.057 (2)$ $0.002 (2)$ $0.025 (2)$ $0.076 (3)$ $0.063 (3)$ $0.070 (3)$ $0.033 (3)$ $0.107 (5)$ $0.085 (3)$ $0.081 (4)$ $-0.009 (3)$ $0.044 (3)$

supporting information

C21	0.119 (5)	0.096 (4)	0.099 (5)	-0.019 (4)	0.034 (4)	-0.035 (4)
C22	0.099 (4)	0.072 (3)	0.088 (4)	-0.016 (3)	0.038 (3)	-0.014 (3)
C23	0.074 (3)	0.076 (3)	0.081 (3)	-0.009 (3)	0.035 (3)	-0.005 (2)
C24	0.068 (3)	0.068 (3)	0.090 (4)	-0.008 (3)	0.031 (3)	-0.005 (3)
C25	0.081 (4)	0.075 (3)	0.101 (4)	-0.008 (3)	0.030 (3)	-0.008 (3)
C26	0.102 (5)	0.123 (5)	0.093 (4)	-0.012 (4)	0.010 (4)	-0.015 (4)
N1	0.064 (2)	0.0555 (19)	0.061 (2)	-0.0017 (17)	0.0238 (18)	0.0022 (16)
01	0.062 (2)	0.084 (2)	0.088 (2)	0.0006 (18)	0.0117 (18)	-0.0075 (18)
O2	0.139 (3)	0.0680 (19)	0.077 (2)	0.000 (2)	0.045 (2)	0.0174 (17)
S1	0.0655 (8)	0.0998 (9)	0.0656 (7)	-0.0180 (7)	0.0261 (6)	-0.0056 (6)
S2	0.0822 (9)	0.0616 (6)	0.0625 (7)	0.0020 (6)	0.0229 (6)	0.0030 (5)
F1	0.114 (2)	0.107 (2)	0.0552 (16)	-0.0063 (19)	0.0187 (16)	0.0166 (15)

Geometric parameters (Å, °)

C1—C2	1.387 (7)	C15—C16	1.382 (6)
C1—C6	1.409 (7)	C15—H15	0.9300
C1—S1	1.729 (5)	C16—N1	1.450 (5)
C2—C3	1.376 (7)	C17—C18	1.365 (7)
С2—Н2	0.9300	C17—C22	1.387 (7)
C3—C4	1.386 (7)	C17—S2	1.747 (5)
С3—Н3	0.9300	C18—C19	1.388 (8)
C4—C5	1.367 (7)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.368 (9)
C5—C6	1.411 (6)	С19—Н19	0.9300
С5—Н5	0.9300	C20—C21	1.349 (9)
C6—C7	1.426 (6)	C20—H20	0.9300
C7—C8	1.358 (6)	C21—C22	1.394 (8)
С7—Н7	0.9300	C21—H21	0.9300
C8—C9	1.444 (6)	C22—H22	0.9300
C8—S1	1.738 (5)	C23—C24	1.467 (7)
C9—C10	1.340 (6)	C23—N1	1.483 (6)
С9—Н9	0.9300	C23—H23A	0.9700
C10—C11	1.466 (6)	C23—H23B	0.9700
C10—H10	0.9300	C24—C25	1.188 (7)
C11—C12	1.400 (6)	C25—C26	1.464 (8)
C11—C16	1.406 (6)	C26—H26A	0.9600
C12—C13	1.378 (6)	C26—H26B	0.9600
C12—H12	0.9300	C26—H26C	0.9600
C13—C14	1.372 (7)	N1—S2	1.648 (4)
С13—Н13	0.9300	O1—S2	1.431 (4)
C14—F1	1.361 (5)	O2—S2	1.431 (4)
C14—C15	1.369 (7)		
C2—C1—C6	121.0 (4)	C15—C16—C11	121.1 (4)
C2-C1-S1	128.2 (4)	C15—C16—N1	119.7 (4)
C6—C1—S1	110.8 (3)	C11—C16—N1	119.2 (4)
C3—C2—C1	118.7 (5)	C18—C17—C22	119.6 (5)

С3—С2—Н2	120.6	C18—C17—S2	119.9 (4)
C1—C2—H2	120.6	C22—C17—S2	120.4 (4)
C2—C3—C4	121.1 (5)	C17—C18—C19	120.6 (6)
С2—С3—Н3	119.4	C17—C18—H18	119.7
С4—С3—Н3	119.4	C19—C18—H18	119.7
C5—C4—C3	121.0 (5)	C20—C19—C18	119.1 (7)
С5—С4—Н4	119.5	С20—С19—Н19	120.4
C3—C4—H4	119.5	C18—C19—H19	120.4
C4—C5—C6	119.4 (5)	C21—C20—C19	121.4 (6)
С4—С5—Н5	120.3	C21—C20—H20	119.3
С6—С5—Н5	120.3	С19—С20—Н20	119.3
C1—C6—C5	118.7 (4)	C20—C21—C22	119.9 (6)
C1 - C6 - C7	111 9 (4)	C20—C21—H21	120.0
C_{5} C_{6} C_{7}	129 5 (5)	$C_{22} = C_{21} = H_{21}$	120.0
C_{8} C_{7} C_{6}	1129.5(3)	C17 - C22 - C21	119.3 (6)
C8-C7-H7	173.2	C17 - C22 - C21	120.3
C6 C7 H7	123.2	$C_{11} = C_{22} = H_{22}$	120.3
$C_0 - C_1 - H_1$	125.2	$C_{21} = C_{22} = H_{22}$	120.3
$C_{}C_{-$	120.1 (4)	C_{24} C_{23} N_{122} N_{122}	115.7 (4)
C/-C8-S1	111.7 (3)	C24—C23—H23A	108.3
C9—C8—S1	122.2 (3)	N1-C23-H23A	108.3
C10-C9-C8	126.3 (5)	С24—С23—Н23В	108.3
С10—С9—Н9	116.9	N1—C23—H23B	108.3
С8—С9—Н9	116.9	H23A—C23—H23B	107.4
C9—C10—C11	124.7 (5)	C25—C24—C23	177.7 (6)
С9—С10—Н10	117.7	C24—C25—C26	177.9 (7)
C11—C10—H10	117.7	С25—С26—Н26А	109.5
C12—C11—C16	117.4 (4)	C25—C26—H26B	109.5
C12—C11—C10	120.8 (4)	H26A—C26—H26B	109.5
C16—C11—C10	121.8 (4)	С25—С26—Н26С	109.5
C13—C12—C11	122.1 (4)	H26A—C26—H26C	109.5
C13—C12—H12	118.9	H26B—C26—H26C	109.5
C11—C12—H12	118.9	C16—N1—C23	117.3 (4)
C14—C13—C12	117.6 (4)	C16—N1—S2	117.7 (3)
C14—C13—H13	121.2	$C_{23} = N_{1} = S_{2}$	119.1 (3)
С12—С13—Н13	121.2	C1-S1-C8	92.1 (2)
F1-C14-C15	118 2 (4)	$0^{2}-8^{2}-0^{1}$	120.6(2)
F1 - C14 - C13	118.2(1) 118.5(4)	02 - 82 - 81	105.5(2)
C_{15} C_{14} C_{13}	1233(4)	01 - S2 - N1	105.9(2)
$C_{13} = C_{14} = C_{15}$	123.3(4)	02 S2 C17	103.9(2)
C14 - C15 - C10	110.4 (4)	02 - 52 - 017	108.5(2)
C14—C15—H15	120.8	01 - 52 - 017	107.5 (2)
C16—C15—H15	120.8	NI—S2—C1/	108.3 (2)
C6—C1—C2—C3	0.2 (8)	C10-C11-C16-N1	1.5 (7)
S1—C1—C2—C3	180.0 (4)	C22-C17-C18-C19	-0.9 (9)
C1—C2—C3—C4	0.1 (8)	S2-C17-C18-C19	177.7 (5)
C2—C3—C4—C5	-0.1 (8)	C17—C18—C19—C20	0.3 (10)
C3—C4—C5—C6	-0.2 (8)	C18—C19—C20—C21	0.8 (11)
C2—C1—C6—C5	-0.5 (7)	C19—C20—C21—C22	-1.1 (11)
	× /		· /

S1—C1—C6—C5	179.7 (4)	C18—C17—C22—C21	0.6 (9)
C2-C1-C6-C7	179.8 (5)	S2-C17-C22-C21	-178.0 (5)
S1—C1—C6—C7	-0.1 (5)	C20—C21—C22—C17	0.5 (10)
C4—C5—C6—C1	0.5 (7)	C15-C16-N1-C23	64.9 (6)
C4—C5—C6—C7	-179.8 (5)	C11—C16—N1—C23	-115.9 (5)
C1—C6—C7—C8	0.6 (6)	C15—C16—N1—S2	-87.9 (5)
C5—C6—C7—C8	-179.0 (5)	C11—C16—N1—S2	91.3 (5)
C6—C7—C8—C9	-179.2 (4)	C24—C23—N1—C16	-69.7 (5)
C6—C7—C8—S1	-0.9 (5)	C24—C23—N1—S2	82.7 (5)
C7—C8—C9—C10	-173.6 (5)	C2-C1-S1-C8	179.8 (5)
S1—C8—C9—C10	8.3 (7)	C6-C1-S1-C8	-0.4 (4)
C8—C9—C10—C11	-176.8 (4)	C7—C8—S1—C1	0.7 (4)
C9—C10—C11—C12	24.6 (7)	C9—C8—S1—C1	179.1 (4)
C9—C10—C11—C16	-158.0 (5)	C16—N1—S2—O2	-171.5 (3)
C16—C11—C12—C13	0.5 (7)	C23—N1—S2—O2	36.2 (4)
C10-C11-C12-C13	178.0 (5)	C16—N1—S2—O1	-42.6 (4)
C11—C12—C13—C14	0.2 (7)	C23—N1—S2—O1	165.2 (3)
C12-C13-C14-F1	178.7 (4)	C16—N1—S2—C17	72.5 (4)
C12—C13—C14—C15	0.4 (8)	C23—N1—S2—C17	-79.8 (4)
F1-C14-C15-C16	-180.0 (4)	C18—C17—S2—O2	156.6 (5)
C13—C14—C15—C16	-1.6 (8)	C22—C17—S2—O2	-24.9 (5)
C14-C15-C16-C11	2.4 (7)	C18—C17—S2—O1	24.6 (5)
C14—C15—C16—N1	-178.4 (4)	C22—C17—S2—O1	-156.9 (4)
C12-C11-C16-C15	-1.8 (7)	C18—C17—S2—N1	-89.4 (5)
C10-C11-C16-C15	-179.3 (4)	C22—C17—S2—N1	89.1 (4)
C12—C11—C16—N1	179.0 (4)		

Hydrogen-bond geometry (Å, °)

*Cg*1 is the centroid of the C1–C6 ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C2—H2···O1 ⁱ	0.93	2.59	3.483 (7)	162
C4—H4···F1 ⁱⁱ	0.93	2.52	3.188 (6)	130
C18—H18…S1 ⁱⁱⁱ	0.93	3.01	3.744 (6)	137
C23—H23 A ···Cg1 ^{iv}	0.93	2.69	3.566 (6)	151

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*-1, *y*, *z*-2; (iii) *x*, *y*, *z*+1; (iv) *x*+1, *y*, *z*+1.