

Received 29 May 2023 Accepted 4 July 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; enamine; 3-formyl-acetylacetone; Schiff base.

CCDC references: 2279192; 2279191; 2279190

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structures of three Schiff bases derived from 3-formylacetylacetone and benzyl-, *tert*-butyl- and (S)-methylbenzylamine

Jan Henrik Halz, Andreas Hentsch, Christoph Wagner and Kurt Merzweiler*

Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany. *Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Treatment of 3-formylacetylacetone with the amines benzylamine, *tert*-butylamine and (*S*)-methylbenzylamine led to the formation of the corresponding Schiff bases 3-[(benzylamino)methylidene]pentane-2,4-dione, $C_{13}H_{15}NO_2$ (1), 3-[(*tert*-butylamino)methylidene]pentane-2,4-dione, $C_{10}H_{17}NO_2$ (2) and 3-{[(*S*)benzyl(methyl)amino]methylidene}pentane-2,4-dione, $C_{14}H_{17}NO_2$ (3). The molecules of all three compounds exist as enamine tautomers that contain a nearly planar amino-methylene-pentane-2,4-dione core with a strong intramolecular $N-H\cdots O$ hydrogen bridge. The *R* group attached to the enamine N atom has no significant influence on the bond lengths and angles of the amino-methylenepentane-2,4-dione core. The supramolecular structures in 1–3 are mainly based on weak $C-H\cdots O$ hydrogen bonds.

1. Chemical context

3-Formylacetylacetone reacts with primary amines RNH_2 to give enamines with an amino-methylene-pentane-2,4-dione core. The first reference to this type of Schiff base compound dates back to Claisen, who used ethoxylideneacetylacetone as synthetic alternative to 3-formylacetylacetone. 3-Aminomethylene-pentane-2,4-dione, which may be regarded as the parent compound, was reported as early as 1893 (Claisen, 1893), and its crystal structure was reported in 2006 (Gróf et al., 2006a), almost simultaneously with that of the methylamino derivative (Gróf et al., 2006b). In 1966, Wolf & Jäger. successfully used the deprotonation of 3-aminomethylenepentane-2,4-dione type Schiff bases to generate β -iminoenolate chelate ligands, with special focus on tetradentate salen-type ligands (Wolf & Jäger, 1966). In particular, these salen-type ligands have found broad application in the synthesis of Fe^{II} complexes exhibiting spin-crossover effects (Dürrmann et al., 2021). Moreover, the coordination properties of the iminoenolate ligands are conveniently modified by the introduction of additional donor groups. This is easily done by the reaction of 3-formylacetylacetone with a suitably functionalized amine, e.g. in form of α -amino acids (Hentsch et al., 2014) or o-diphenylphosphinoaniline (Halz et al., 2021).

In the current communication, we focus on some structural aspects of three derivatives, namely 3-[(benzylamino)methylene]pentane-2,4-dione (1), 3-[(*tert*-butylamino)methylen]pentane-2,4-dione (2) and 3-{[(S)-methylbenzylamino]methylen}pentane-2,4-dione (3). Formally, all three compounds can be derived from 3-[(methylamino)methylene]pentane-2,4-dione by partial or complete replacement of the methyl H

research communications

atoms with other residues (Me, Ph). It can thus be expected that the main structural differences between compounds 1-3 will arise from conformational aspects regarding the orientation of the CH₂Ph, CH(CH₃)Ph and C(CH₃)₃ moieties with respect to the 3-aminomethylene-pentane-2,4-dione core. In order to get some insight into the differences between solidstate and (theoretical) gas phase structures, compounds 1-3 were also characterized by DFT calculations.

$R = CH_{2}Ph \mathbf{1}, tBu \mathbf{2}, CHCH_{3}Ph \mathbf{3}$

From the synthetic point of view it is worth mentioning that compounds 1 and 2 are also accessible by the ethoxylideneacetylacetone route (Zhou, 1997). Originally, compound 2 was obtained from a formimidoylation of acetylacetone with a substituted imidazole (Ito et al., 1974).

2. Structural commentary

Compounds 1 and 2 crystallize in the monoclinic system, space group $P2_1/c$ with Z = 4. Compound **3** forms monoclinic crystals in space group $P2_1$ with Z = 4. Both independent molecules in the asymmetric unit of **3** exhibit nearly identical bond lengths and angles.

Compounds 1-3 (Figs. 1-3) exist as enamine tautomers that contain nearly planar amino-methylene-pentane-2,4-dione cores. The largest deviation from the least-squares plane through the core atoms C1-C7, O1, O2 and N is found for C1

in compound 2 with 0.3252 (9) Å. The enamine double bonds C3=C6 vary from 1.399 (4) to 1.407 (2) Å and the enamine C6=N bonds are in the range 1.308 (2) to 1.321 (4) Å (Tables 1-3). These values are close to those found in the parent compound amino-methylene-pentane-2,4-dione (1.397 and 1.304 Å, respectively; Gróf et al., 2006a) and in the related NMe derivative (1.405 and 1.309 Å, respectively; Gróf et al., 2006b). The same holds for the corresponding Schiff bases derived from isomeric o-, m- and p-aminobenzoic acids (Halz et al., 2022), a amino acids (Hentsch et al., 2014) or o-diphenylphosphinoaniline (Halz et al., 2021). In summary, these observations clearly indicate that the R group attached to the enamine N atom has no significant influence on the bond lengths and angles of the amino-methylene-pentane-2.4-dione moiety. This holds also for the characteristic $S_1^1(6)$ type intramolecular $N-H8\cdots O1$ hydrogen bonds that change only marginally $[D \cdots A]$ distances between 2.597 (4) and 2.6322 (16) Å; Tables 4-7].

Regarding the conformational aspects, 3-[(methylamino)methylene]pentane-2,4-dione may serve as a reference. In this

Figure 2

Molecular structure of 2 showing the labeling scheme. Displacement ellipsoids drawn at the 50% probability level.

Figure 1

Molecular structure of 1 showing the labeling scheme. Displacement ellipsoids drawn at the 50% probability level.

Molecular structure of 3 showing the labeling scheme. Displacement ellipsoids drawn at the 50% probability level.

Table 1Selected geometric parameters (Å, $^{\circ}$) for 1.

C1-C2	1.511 (2)	C7-N	1.462 (2)
C2-O1	1.245 (2)	C7-C8	1.519 (2)
C2-C3	1.456 (2)	C8-C13	1.384 (2)
C3-C6	1.404 (2)	C8-C9	1.393 (2)
C3-C4	1.469 (2)	C9-C10	1.384 (2)
C4-O2	1.2350 (19)	C10-C11	1.379 (3)
C4-C5	1.512 (3)	C11-C12	1.388 (3)
C6-N	1.316 (2)	C12-C13	1.386 (2)
C8-C7-N-C6	-94.4 (2)		

Table 2

Selected geometric parameters (Å, °) for 2.

C1-C2	1.5042 (13)	C4-O2	1.2287 (12)
C2-O1	1.2419 (12)	C4-C5	1.5135 (15)
C2-C3	1.4502 (14)	C7-C8	1.5197 (14)
C3-C6	1.4043 (12)	C7-C9	1.5235 (14)
C3-C4	1.4578 (13)	C7-C10	1.5237 (14)
C8-C7-N-C6 C9-C7-N-C6	-14.03 (14) -134.31 (11)	C10-C7-N-C6	107.27 (11)

Table 3

Selected geometric parameters (Å, $^{\circ}$) for 3.

e	1	·	
C1-C2	1.504 (5)	C15-C16	1.510 (5)
C2-O1	1.246 (4)	C16-O3	1.236 (4)
C2-C3	1.453 (4)	C16-C17	1.455 (4)
C3-C6	1.399 (4)	C17-C20	1.396 (4)
C3-C4	1.472 (5)	C17-C18	1.468 (4)
C4-O2	1.224 (4)	C18-O4	1.228 (4)
C4-C5	1.517 (5)	C18-C19	1.518 (5)
C6-N1	1.311 (4)	C20-N2	1.321 (4)
C7-N1	1.470 (4)	C21-N2	1.463 (4)
C7-C8	1.522 (4)	C21-C28	1.524 (5)
C7-C14	1.527 (5)	C21-C22	1.534 (4)
C8-C7-N1-C6	-119.2 (3)	C22-C21-N2-C20	-112.8(3)
C14-C7-N1-C6	115.5 (4)	C28-C21-N2-C20	122.4 (3)

case, the N-bound CH₃ group exhibits H-C-N-C_{enamine} torsion angles of 1.5 (2), -118.4 (2) and 121.6 (2)° (Gróf et al., 2006a). This indicates a nearly ideal syn-periplanar orientation of one of the hydrogen atoms and anti-periplanar positions for the remaining hydrogen atoms. The formal replacement of one H atom by a phenyl group in the structure of **1** leads to an approximately 26° clockwise rotation of the CH₂Ph unit along the N-C7 bond. As a result, the hydrogen atoms are now moved to syn-periplanar and anti-periplanar positions (H9- $C7-N-C6 = 27.2^{\circ}$, $H10-C7-N-C6 = 144.0^{\circ}$) and the phenyl carbon atom C8 is in an *anti*-clinal position [C8-C7- $N-C6 = -94.4 (2)^{\circ}$]. In the case of the 'Bu derivative 2, the presence of three equivalent methyl groups leads to a conformation similar to that of the methyl derivative with synperiplanar orientation of one methyl group [C8-C7-N-C6 = $-4.03 (14)^{\circ}$] and an *anti*-clinal arrangement for the remaining methyl groups $[C9-C7-N-C6 = -134.31 (11)^{\circ}]$ $C10-C7-N-C6 = 107.27 (11)^{\circ}$]. In the structure of **3**, both the methyl and the phenyl carbon atoms are moved to anticlinal positions $[C14-C7-N1-C6 = 115.5 (4)^{\circ}; 122.4 (3)^{\circ} \text{ for}$ the second molecule], $C8-C7-N1-C6 = -119.2 (3)^{\circ}$; 112.8 $(3)^{\circ}$ for second molecule] and the hydrogen atom resides

Hydrogen-bond geometry (Å, °) for 1.

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N-H8···O1	0.87	1.97	2.6177 (18)	130
$C6-H7\cdots O2^i$	0.94	2.57	3.434 (2)	154

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Table 5

				-	-
Hudrogen bond	acomoterr	(A	01	for	-
nvorogen-bond	geomeny	LA.	•	101	Z .
ing alogen cond	Securety	· · · ·			

10((0))
136 (2) 163 (2)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, -y, -z + 1.

Table 6

Hydrogen-bond geometry ([Å, °) for 3
--------------------------	-------	---------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H8···O1	0.88	1.94	2.597 (4)	131
N2-H25···O3	0.88	1.95	2.603 (4)	130
$C14-H15\cdots O2^{i}$	0.98	2.55	3.532 (5)	175
C14-H17···O4	0.98	2.66	3.482 (5)	142
$C28-H32\cdots O4^{i}$	0.98	2.54	3.512 (5)	173

Symmetry code: (i) x - 1, y, z.

in a nearly ideal *syn*-periplanar position (H9-C7-N-C6 = -1.47° ; 5.16° for the second molecule).

In order to get some insight into how the observed conformations are influenced by crystal packing, the gas phase molecular structures of **1–3** were optimized by DFT methods using the *Gaussian 16* program package (Frisch *et al.*, 2016) at the B3LYP/TZVP/GD3BJ level of theory (Becke, 1993) with the implemented def2-TZVP basis set (Weigand & Ahlrichs, 2005) and dispersion correction GD3BJ (Grimme *et al.*, 2011).

Bond lengths and angles of the calculated structures are in good agreement with the experimetal data. In Fig. 4, an overlay of the experimetal (blue) and the calculated structures (red) is shown. Obviously, the planar amino-methylenepentane-2,4-dione cores fit very well and most of the differences between experimental and theoretical structures are due

Figure 4

Molecule structure overlay of the experimental (blue) and the calculated structures (red) in **1** (*a*), **2** (*b*) and **3** (*c*), created with *Mercury* (Macrae *et al.*, 2020).

research communications

Table 7 Comparison of torsion angles in the crystal structures of 1–3 and from theoretical DFT calculations.

Compound	Torsion angle	Crystal structure determination	DFT calculation
1	C8-C7-N-C6	-94.4 (1)	-107.8
2	C8-C7-N-C6	-14.03(14)	0.0
	C9-C7-N-C6	-134.31 (11)	-120.8
	C10-C7-N-C6	107.27 (11)	120.8
3	C8-C7-N1-C6	-119.2 (4); -112.8 (3)*	-43.3
	C14-C7-N1-C6	115.5 (4); 122.4 (3)*	-167.3

*Values for the comparable bond in the second molecule.

to the conformations of the organyl groups attached to the enamine nitrogen atom.

Table 7 represents a comparison of experimental and calculated torsion angles at the C7-N bond. In the case of compounds 1 and 2, there is only a moderate increase of the torsion angles with respect to the theoretical values. Addi-

Figure 5

View of the Hirshfeld surface of **1** mapped over d_{norm} in the range -0.712 to 0.973 au, showing intermolecular hydrogen bonds as green dashed lines.

Figure 6

View of the Hirshfeld surface of **2** mapped over d_{norm} in the range -0.712 to 0.973 au, showing intermolecular hydrogen bonds as green dashed lines.

Figure 7

View of the Hirshfeld surface of molecule 1 of compound **3** mapped over d_{norm} in the range -0.712 to 0.973 au, showing intermolecular hydrogen bonds as green dashed lines.

tionally, compound **1** exhibits a small change in the orientation of the phenyl group (Fig. 4*a*). In the case of compound **3**, the conformational effects are more pronounced and the torsion angles are increased by around 73° . Moreover, the orientation of the phenyl group is also affected (Fig. 4*c*).

3. Supramolecular features

In order to identify the most significant intermolecular interactions, Hirshfeld surface analyses (Spackman *et al.*, 2009) for compounds **1–3** (Figs. 5–7) were carried out with *Crystal*-*Explorer* (Spackman *et al.*, 2021).

In the case of compound 1 there is a C11 (5) type C-H···O hydrogen bridge between the enamine CH group (C6–H7) and the acetyl O atom (O2) of of a neighboring molecule (Table 4, Fig. 8). This leads to helical chains that propagate in the direction of the *c* axis. Moreover, the packing of the helices is supported by weak π – π interactions [3.8747 (12) Å between the centroids of the phenyl groups, 3.79 Å between C3 of the (amino)methylene-pentane-2,4-dione unit and the centroid of the phenyl ring and 3.42 Å between neighboring (amino)methylene-pentane-2,4-dione units]. As a result, ribbons extending parallel to [001] are formed, Figs. 9, 10.

The Hirshfeld plot of compound **2** reveals that each molecule is involved in four $C-H\cdots O$ hydrogen bridges between *t*-butyl groups and acetyl oxygen atoms of neighboring molecules (Fig. 6). Formally, this can be considered as a formation

Figure 8

Section of the crystal structure of **1** showing the hydrogen bond. [Symmetry codes: (i) $x, \frac{3}{2} - y, -\frac{1}{2} + z$; (ii) $x, \frac{3}{2} - y, \frac{1}{2} + z$.]

research communications

Figure 9

Stacking of molecules in **1** resulting in a layered arrangement parallel to (110). Bold dashed lines show the closest contacts with neighboring phenyl and pentane-2,4-dione planes.

Figure 10

Helical chains of **1** stabilized by hydrogen bonds (thin dashed lines) and $\pi - \pi$ interactions.

Figure 11 Stacking of the molecules in 2 along the [001] direction.

of dimers based on the complementary hydrogen bridges C8– H11····O2' to give a $R_2^2(16)$ motif. Additionally, the dimers are catenated by $C_1^1(6)$ type hydrogen bridges along the *a* axis (Table 5, Fig. 11).

Compound **3** exhibits two major types of interactions that are based on $C-H\cdots O$ hydrogen bridges (Table 6) and C- $H\cdots \pi$ contacts with an $H\cdots Cg$ (phenyl) distance of 2.68 Å. The $C-H\cdots O$ hydrogen bridges are formed between methyl and phenyl groups of the methylbenzyl residue as donors and acetyl oxygen atoms of neighboring molecules as acceptors (Fig. 12). In the case of the $C-H\cdots \pi$ interaction, the benzyl CH fragment and a neighboring phenyl group are involved (Fig. 13, for molecule 1).

Section of the crystal structure of **3** showing the hydrogen bonds (dashed lines). [Symmetry codes: (i) 1 - x, $-\frac{1}{2} + y$, -z; (ii) 1 - x, y, z; (iii) -x, $\frac{1}{2} + y$, 1 - z; (iv) 1 - x, $\frac{1}{2} + y$, -z; (v) 1 + x, y, z; (vi) -x, $-\frac{1}{2} + y$, 1 - z; (vii) 1 + x, y z.]

Figure 13

Section of the crystal structure of 3 showing the C-H+++ π interaction (thick dashed line).

A comparison of the calculated gas phase structures and the experimentally determined structures reveals that the effect of crystal packing is only marginal for compounds 1 and 2, *i.e.* only minor adjustments of the molecular conformations are required for optimum intermolecular interactions. In contrast to these compounds, 3 requires a stronger molecular reorganization in the solid state and presumably this is in particular due to $C-H \cdot \cdot \pi$ interactions.

4. Database survey

Currently the Cambridge Structural Database (CSD, version 2020.3, Groom *et al.*, 2016) contains 22 entries for Schiff bases with amino-methylene-pentane-2,4-dione cores. In all cases, enamine tautomers are observed.

5. Synthesis and crystallization

3-Formylacetylacetone (3.00 g, 23.4 mmol) and the corresponding amine [1.76 g of benzylamine for 1, 2.57 g of *tert*butylamine for 2 and 2.91 g of (S)-methyl-benzylamine for 3, 24.0 mmol] were dissolved in methanol (50 ml) and heated under reflux for one h. After removal of the volatiles *in vacuo*, the residue was washed twice with cold *n*-pentane and afterwards dried *in vacuo*.

Yield: 2.5 g (77%) for 1, 2.7g (85%) for 2 and 4.3 g (77%) for 3 based on 3-formylacetylacetone. Compounds 1-3 were obtained as yellow air-stable powders that are soluble in polar solvents such as methanol or CHCl₃ and less soluble in toluene or *n*-hexane.

Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the solvent from solutions in methanol (compounds 1 and 3) or diethyl ether (compound 2).

Compound 1: m.p. = 368 K. Elemental Analysis for $C_{13}H_{15}NO_2$: Calculated: C 77.72, H 7.36, N 6.06%. Found: C 77.22, H 7.22, N 5.90%.

IR: 2971 (*m*), 1618 (*vs*), 1570 (*vs*), 1494 (*m*), 1446 (*w*), 1390 (*s*), 1349 (*m*), 1308 (*s*), 1242 (*s*), 1201 (*w*), 1119 (*m*), 1070 (*w*), 1023 (*m*), 975 (*s*), 927 (*m*), 816 (*s*), 755 (*s*), 705 (*s*), 620 (*s*), 552 (*m*), 508 (*m*), 444 (*w*) cm⁻¹.

¹H-NMR (CDCl₃, 400 MHz) δ = 2.22 (*s*, 3 H, CO–*CH*₃), 2.47 (*s*, 3 H, CO–*CH*₃), 4.51 (*d* ³*J* = 5.9 Hz, 2 H, CH₂), 7.22– 7.38 (*m*, 5 H, CH_{aromatic}), 7.77 (*d*, ³*J* = 13,1 Hz, 1 H, CH), 11.28 (*s*, 1 H, N*H*) ppm,

¹³C-NMR (CDCl₃, 100 MHz) δ = 27.2 (-CH₃), 31.8 (-CH₃), 53.7 (-CH₂), 111.9 [C(O) - C - C(O)], 127.2 (CH_{aromatic}), 128.3 (CH_{aromatic}), 129.0 (CH_{aromatic}), 135.9 (CH_{aromatic}), 159.6, (CH-NH), 194.2 (CO), 200.3 (CO) ppm.

Compound 2: m.p. = 355 K. Elemental Analysis for $C_{10}H_{17}NO_2$: Calculated: C 65.54, H 9.35, N 7.64%. Found: C 64.78, H 9.26, N 7.33%.

IR: 2970 (*m*), 1649 (*w*), 1608 (*m*), 1578 (*vs*), 1470 (*w*), 1400 (*m*), 1382 (*m*), 1321 (*m*), 1281 (*s*), 1240 (*m*), 1205 (*m*), 1025 (*m*), 990 (*m*), 975 (*s*), 944 (*w*), 928 (*m*), 827 (*s*), 646 (*w*), 626 (*s*), 567 (*s*), 500 (*w*), 474 (*w*), 413 (*w*), 333 (*m*), 305 (*w*), 272 (*w*) cm⁻¹.

¹H-NMR (CDCl₃, 400 MHz) δ = 1.31 [*s*, 9 H, C(CH₃)], 2.25 (*s*, 3 H, CH₃), 2.45 (*s*, 3 H, CH₃), 7.85 (*d*, ³*J* = 13.7 Hz, 1 H, CH), 11.39 (*s*, 1 H, NH) ppm.

¹³C-NMR (CDCl₃, 100 MHz) $\delta = 27.4$ (-*C*H₃), 29.8 [-*C*(*C*H₃)₃], 31.8 (-*C*H₃), 53.6 [-*C*(*C*H₃)₃], 111.2 [*C*(O)-*C*--*C*(O)], 155.2, (*C*H-NH), 194.2 (*C*O), 199.8 (*C*O) ppm.

Compound 3: m.p. = 335 K. Elemental Analysis for $C_{14}H_{17}NO_2$: Calculated: C 72.70, H 7.41, N 6.06%. Found: C 72.22, H 7.22, N 5.90%.

IR: 2971 (*m*), 1618 (*vs*), 1570 (*vs*), 1494 (*m*), 1446 (*w*), 1390 (*s*), 1349 (*m*), 1308 (*s*), 1242 (*s*), 1201 (*w*), 1119 (*m*), 1070 (*w*), 1023 (*m*), 975 (*s*), 927 (*m*), 816 (*s*), 755 (*s*), 705 (*s*), 620 (*s*), 552 (*m*), 508 (*m*), 444 (*w*) cm⁻¹.

¹H-NMR (CDCl₃, 400 MHz) δ = 1.62 (*d*, 3 H, NCCH₃), 2.15 (*s*, 3 H,CH₃), 2.47 (*s*, 3 H, (CH₃), 4.56 (*dq*, ³*J* = 6.9 Hz, ³*J* = 7.0 Hz, 1 H, CH), 7.25–7.37 (*m*, 5 H, CH_{aromatic}), 7.72 (*d*, ³*J* = 6.9 Hz, 1 H, CH), 11.40 (*s*, 1 H, NH) ppm.

¹³C-NMR (CDCl₃, 100 MHz) δ = 23.4 (NCCH₃), 27.2 (-*C*H₃),31.9 (-*C*H₃), 59.1 (N*C*CH₃), 111.7 [C(O)-*C*--C(O)], 126.0 (*C*H_{aromatic}), 128.2 (*C*H_{aromatic}), 129.1 (*C*H_{aromatic}), 141.7 (*C*H_{aromatic}), 158.2 (*C*H-NH), 194.3 (*C*O,) 200.3 (*C*O) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8. Hydrogen atoms were positioned geometrically (C-H = 0.95–0.98 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH and NH hydrogen atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ hydrogen atoms. The investigated crystal of **3** was twinned by non-merohedry and treated as a two-domain crystal with a refined BASF factor of 0.1151.

Funding information

We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.

Table 8Experimental details.

	1	2	3
Crystal data			
Chemical formula	$C_{13}H_{15}NO_2$	$C_{10}H_{17}NO_2$	$C_{14}H_{17}NO_2$
M _r	217.26	183.24	231.28
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1$
Temperature (K)	213	170	170
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.7356 (14), 9.2401 (8), 11.3970 (14)	9.8226 (7), 9.8323 (6), 11.2700 (8)	10.0459 (9), 8.1011 (5), 15.7052 (13)
β (°)	113.148 (14)	108.171 (5)	103.372 (7)
$V(Å^3)$	1136.4 (2)	1034.16 (12)	1243.48 (17)
Ζ	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09	0.08	0.08
Crystal size (mm)	$0.33 \times 0.15 \times 0.12$	$0.32 \times 0.28 \times 0.21$	$0.44 \times 0.21 \times 0.14$
Data collection			
Diffractometer	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2T
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7396, 2159, 1414	7337, 2774, 2126	11343, 11343, 9181
R _{int}	0.078	0.033	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.616	0.685	0.688
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.097, 0.94	0.036, 0.104, 1.03	0.048, 0.131, 1.05
No. of reflections	2159	2774	11343
No. of parameters	147	123	315
No. of restraints	0	0	1
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.18, -0.17	0.30, -0.14	0.27, -0.28
Absolute structure	-	_	Classical Flack method preferred over Parsons because s.u. lower.
Absolute structure parameter	_	_	2.9 (7)

Computer programs: X-AREA WinXpose (Stoe, 2016), X-AREA Recipe (Stoe, 2015), X-AREA (Stoe, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 2019) and OLEX2 (Dolomanov et al., 2009).

References

- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Brandenburg, K. (2019). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Claisen, L. R. (1893). Ber. Dtsch. Chem. Ges. 26, 2729-2735.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Dürrmann, A., Hörner, G., Wagner, S., Breuning, M. & Weber, B. (2021). Z. Anorg. Allg. Chem. 647, 2088–2097.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16. Gaussian Inc. Wallingford CT.
- Grimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456–1465.

- Gróf, M., Milata, V. & Kožíšek, J. (2006a). Acta Cryst. E62, 04464-04465.
- Gróf, M., Milata, V., Kožíšek, J. & Tokarčík, M. (2006b). Acta Cryst. E62, 04060–04061.
- Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922–930.
- Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2022). Acta Cryst. E78, 54–59.
- Hentsch, A., Wagner, C. & Merzweiler, K. (2014). Z. Anorg. Allg. Chem. 640, 339–346.
- Ito, Y., Inubushi, Y. & Saegusa, T. (1974). Tetrahedron Lett. 15, 1283– 1286.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Stoe (2015). X-AREA Recipe. Stoe & Cie, Darmstadt, Germany.
- Stoe (2016). X-AREA and X-AREA WinXpose. Stoe & Cie, Darmstadt, Germany.
- Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.
- Wolf, L. & Jäger, E.-G. (1966). Z. Anorg. Allg. Chem. 346, 76-91.
- Zhou, J.-C. (1997). Magn. Reson. Chem. 35, 432-440.

Acta Cryst. (2023). E79, 707-713 [https://doi.org/10.1107/S205698902300587X]

Synthesis and crystal structures of three Schiff bases derived from 3-formylacetylacetone and benzyl-, *tert*-butyl- and (*S*)-methylbenzylamine

Jan Henrik Halz, Andreas Hentsch, Christoph Wagner and Kurt Merzweiler

Computing details

For all structures, data collection: *X-AREA* WinXpose (Stoe, 2016); cell refinement: *X-AREA* Recipe (Stoe, 2015); data reduction: *X-AREA* (Stoe, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 2019); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

3-[(Benzylamino)methylidene]pentane-2,4-dione (1)

Crystal data C₁₃H₁₅NO₂ F(000) = 464 $M_r = 217.26$ $D_{\rm x} = 1.270 {\rm ~Mg} {\rm ~m}^{-3}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å *a* = 11.7356 (14) Å Cell parameters from 7396 reflections b = 9.2401 (8) Å $\theta = 2.9 - 26.0^{\circ}$ c = 11.3970 (14) Å $\mu = 0.09 \text{ mm}^{-1}$ $\beta = 113.148 (14)^{\circ}$ T = 213 KV = 1136.4 (2) Å³ Block, clear yellow $0.33 \times 0.15 \times 0.12 \text{ mm}$ Z = 4Data collection **STOE IPDS 2** $R_{\rm int} = 0.078$ $\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$ diffractometer rotation scans $h = -13 \rightarrow 13$ 7396 measured reflections $k = -11 \rightarrow 11$ 2159 independent reflections $l = -13 \rightarrow 13$ 1414 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.097$ S = 0.942159 reflections 147 parameters 0 restraints Primary atom site location: iterative Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.29032 (19)	0.4837 (2)	1.16212 (15)	0.0391 (5)	
H1	0.2334	0.4136	1.1724	0.059*	
H2	0.2718	0.5790	1.1858	0.059*	
H3	0.3747	0.4574	1.2165	0.059*	
C2	0.27629 (16)	0.48567 (19)	1.02452 (14)	0.0284 (4)	
C3	0.34838 (15)	0.58355 (17)	0.98050 (14)	0.0239 (4)	
C4	0.43034 (16)	0.69625 (18)	1.06114 (14)	0.0265 (4)	
C5	0.4992 (2)	0.7943 (2)	1.00520 (17)	0.0404 (5)	
H4	0.4405	0.8413	0.9294	0.061*	
H5	0.5571	0.7374	0.9827	0.061*	
H6	0.5442	0.8670	1.0676	0.061*	
C6	0.34363 (15)	0.56658 (17)	0.85623 (14)	0.0244 (4)	
H7	0.3949	0.6277	0.8324	0.029*	
C7	0.27877 (17)	0.45955 (19)	0.64354 (14)	0.0297 (4)	
H9	0.2677	0.3573	0.6186	0.036*	
H10	0.3610	0.4890	0.6492	0.036*	
C8	0.18161 (16)	0.54814 (17)	0.53978 (14)	0.0235 (4)	
C9	0.15894 (17)	0.51739 (19)	0.41290 (15)	0.0307 (4)	
H11	0.2017	0.4412	0.3935	0.037*	
C10	0.07407 (18)	0.5979 (2)	0.31512 (15)	0.0353 (5)	
H12	0.0588	0.5754	0.2298	0.042*	
C11	0.01179 (18)	0.7110 (2)	0.34239 (16)	0.0363 (5)	
H13	-0.0444	0.7670	0.2760	0.044*	
C12	0.03245 (19)	0.7418 (2)	0.46829 (17)	0.0394 (5)	
H14	-0.0108	0.8178	0.4873	0.047*	
C13	0.11704 (17)	0.66035 (19)	0.56594 (16)	0.0329 (4)	
H15	0.1307	0.6816	0.6511	0.040*	
Ν	0.27486 (14)	0.47394 (15)	0.76962 (11)	0.0290 (4)	
H8	0.2245	0.4184	0.7884	0.035*	
01	0.20370 (13)	0.39610 (15)	0.95112 (11)	0.0439 (4)	
02	0.44589 (13)	0.71536 (15)	1.17367 (10)	0.0418 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0467 (13)	0.0475 (12)	0.0277 (9)	-0.0032 (10)	0.0196 (9)	0.0032 (8)
C2	0.0266 (10)	0.0345 (10)	0.0231 (8)	0.0034 (8)	0.0087 (7)	0.0020 (7)
C3	0.0247 (10)	0.0277 (9)	0.0173 (7)	0.0044 (7)	0.0063 (7)	0.0020 (6)
C4	0.0271 (10)	0.0277 (9)	0.0220 (8)	0.0066 (7)	0.0068 (7)	-0.0002 (7)

C5	0.0527 (14)	0.0324 (10)	0.0329 (9)	-0.0132 (9)	0.0135 (9)	-0.0055 (8)
C6	0.0246 (10)	0.0226 (8)	0.0234 (8)	0.0020 (7)	0.0066 (7)	0.0039 (7)
C7	0.0372 (11)	0.0319 (9)	0.0194 (8)	0.0020 (8)	0.0104 (7)	-0.0029 (7)
C8	0.0253 (10)	0.0253 (8)	0.0197 (8)	-0.0045 (7)	0.0087 (7)	-0.0024 (6)
C9	0.0364 (11)	0.0335 (10)	0.0230 (8)	0.0026 (8)	0.0125 (7)	-0.0022 (7)
C10	0.0423 (12)	0.0435 (11)	0.0186 (8)	-0.0020 (9)	0.0105 (8)	0.0006 (8)
C11	0.0345 (12)	0.0358 (11)	0.0311 (9)	0.0005 (8)	0.0049 (8)	0.0089 (8)
C12	0.0378 (12)	0.0376 (11)	0.0389 (10)	0.0106 (9)	0.0107 (9)	-0.0035 (8)
C13	0.0345 (11)	0.0383 (10)	0.0239 (8)	0.0019 (8)	0.0092 (8)	-0.0076 (7)
Ν	0.0351 (9)	0.0317 (8)	0.0184 (7)	-0.0059 (7)	0.0087 (6)	-0.0007 (6)
01	0.0468 (9)	0.0559 (9)	0.0285 (7)	-0.0222 (7)	0.0145 (6)	-0.0036 (6)
O2	0.0464 (9)	0.0535 (8)	0.0232 (6)	-0.0082 (7)	0.0111 (6)	-0.0115 (6)

Geometric parameters (Å, °)

C1—C2	1.511 (2)	С7—С8	1.519 (2)
C1—H1	0.9700	С7—Н9	0.9800
C1—H2	0.9700	C7—H10	0.9800
С1—Н3	0.9700	C8—C13	1.384 (2)
C2—O1	1.245 (2)	C8—C9	1.393 (2)
C2—C3	1.456 (2)	C9—C10	1.384 (2)
C3—C6	1.404 (2)	C9—H11	0.9400
C3—C4	1.469 (2)	C10—C11	1.379 (3)
C4—O2	1.2350 (19)	C10—H12	0.9400
C4—C5	1.512 (3)	C11—C12	1.388 (3)
С5—Н4	0.9700	C11—H13	0.9400
С5—Н5	0.9700	C12—C13	1.386 (2)
С5—Н6	0.9700	C12—H14	0.9400
C6—N	1.316 (2)	C13—H15	0.9400
С6—Н7	0.9400	N—H8	0.8700
C7—N	1.462 (2)		
C2-C1-H1	109.5	С8—С7—Н9	108.7
C2-C1-H2	109.5	N-C7-H10	108.7
H1—C1—H2	109.5	C8—C7—H10	108.7
С2—С1—Н3	109.5	H9—C7—H10	107.6
H1—C1—H3	109.5	C13—C8—C9	118.63 (16)
H2—C1—H3	109.5	C13—C8—C7	122.88 (14)
O1—C2—C3	121.22 (14)	C9—C8—C7	118.47 (15)
O1—C2—C1	117.12 (16)	C10—C9—C8	120.64 (17)
C3—C2—C1	121.60 (15)	C10—C9—H11	119.7
C6—C3—C2	118.70 (15)	C8—C9—H11	119.7
C6—C3—C4	117.82 (15)	C11—C10—C9	120.23 (16)
C2—C3—C4	123.44 (14)	C11—C10—H12	119.9
O2—C4—C3	122.95 (16)	C9—C10—H12	119.9
O2—C4—C5	117.85 (16)	C10-C11-C12	119.73 (17)
C3—C4—C5	119.20 (14)	C10-C11-H13	120.1
С4—С5—Н4	109.5	C12—C11—H13	120.1

C4—C5—H5 H4—C5—H5 C4—C5—H6 H4—C5—H6 H5—C5—H6 N—C6—C3 N—C6—H7 C3—C6—H7 N—C7—C8 N—C7—H9	109.5 109.5 109.5 109.5 126.77 (16) 116.6 116.6 114.34 (15) 108.7	C13—C12—C11 C13—C12—H14 C11—C12—H14 C8—C13—C12 C8—C13—H15 C12—C13—H15 C6—N—C7 C6—N—H8 C7—N—H8	119.84 (18) 120.1 120.1 120.91 (16) 119.5 119.5 123.33 (16) 118.3 118.3
$\begin{array}{c} 01 - C2 - C3 - C6 \\ C1 - C2 - C3 - C6 \\ 01 - C2 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C6 - C3 - C4 - 02 \\ C2 - C3 - C4 - 02 \\ C6 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C2 - C3 - C6 - N \\ C4 - C3 - C6 - N \\ N - C7 - C8 - C13 \end{array}$	-5.9 (2) 171.41 (17) 176.69 (17) -6.0 (3) -176.37 (17) 1.1 (3) 3.8 (2) -178.77 (16) 3.6 (3) -178.82 (15) 16.1 (2)	N - C7 - C8 - C9 $C13 - C8 - C9 - C10$ $C7 - C8 - C9 - C10$ $C8 - C9 - C10 - C11$ $C9 - C10 - C11 - C12$ $C10 - C11 - C12 - C13$ $C9 - C8 - C13 - C12$ $C7 - C8 - C13 - C12$ $C11 - C12 - C13 - C8$ $C3 - C6 - N - C7$ $C8 - C7 - N - C6$	-165.58 (16) 0.3 (3) -178.03 (17) 0.8 (3) -1.5 (3) 1.1 (3) -0.7 (3) 177.57 (18) 0.0 (3) -177.67 (16) -94.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N—H8…O1	0.87	1.97	2.6177 (18)	130
C6—H7···O2 ⁱ	0.94	2.57	3.434 (2)	154

Symmetry code: (i) x, -y+3/2, z-1/2.

3-[(tert-Butylamino)methylidene]pentan-2,4-dione (2)

Crystal data	
$C_{10}H_{17}NO_2$ $M_r = 183.24$ Monoclinic, $P2_1/c$ a = 9.8226 (7) Å b = 9.8323 (6) Å c = 11.2700 (8) Å	F(000) = 400 $D_x = 1.177 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2011 reflections $\theta = 3.7-29.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$
$\beta = 108.171 (5)^{\circ}$ $V = 1034.16 (12) Å^{3}$ Z = 4 Data collection	T = 170 K Block, colourless $0.32 \times 0.28 \times 0.21 \text{ mm}$
STOE IPDS 2 diffractometer rotation scans 7337 measured reflections 2774 independent reflections 2126 reflections with $I > 2\sigma(I)$	$R_{int} = 0.033$ $\theta_{max} = 29.1^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -11 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.1178P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
2774 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
123 parameters	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
Primary atom site location: iterative	
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.83575 (10)	0.46662 (12)	0.88153 (11)	0.0344 (2)
H1	0.8632	0.4892	0.9706	0.052*
H2	0.8823	0.5299	0.8392	0.052*
Н3	0.8660	0.3735	0.8715	0.052*
C2	0.67575 (9)	0.47771 (10)	0.82522 (10)	0.0268 (2)
C3	0.60104 (9)	0.41294 (10)	0.70726 (9)	0.0247 (2)
C4	0.67422 (10)	0.36658 (10)	0.62027 (10)	0.0274 (2)
C5	0.59161 (12)	0.28835 (12)	0.50456 (10)	0.0351 (2)
H4	0.5154	0.3460	0.4516	0.053*
Н5	0.5493	0.2070	0.5290	0.053*
H6	0.6567	0.2614	0.4582	0.053*
C6	0.45217 (10)	0.39420 (10)	0.67456 (9)	0.0245 (2)
H7	0.4075	0.3445	0.6003	0.029*
C7	0.21415 (9)	0.41512 (10)	0.71095 (9)	0.0242 (2)
C8	0.14674 (10)	0.35776 (12)	0.58053 (9)	0.0305 (2)
Н9	0.1901	0.2694	0.5740	0.046*
H10	0.1632	0.4206	0.5189	0.046*
H11	0.0435	0.3463	0.5647	0.046*
C9	0.14777 (11)	0.55234 (11)	0.72323 (12)	0.0355 (2)
H12	0.0449	0.5409	0.7097	0.053*
H13	0.1622	0.6154	0.6609	0.053*
H14	0.1935	0.5891	0.8071	0.053*
C10	0.19622 (11)	0.31624 (12)	0.80911 (10)	0.0324 (2)
H15	0.0940	0.3027	0.7973	0.049*
H16	0.2428	0.3535	0.8926	0.049*
H17	0.2403	0.2289	0.8006	0.049*
Ν	0.36968 (8)	0.43920 (9)	0.73734 (8)	0.02652 (19)
H8	0.4115	0.4898	0.8030	0.032*
01	0.60963 (7)	0.53863 (9)	0.88675 (8)	0.0377 (2)
O2	0.80125 (8)	0.39082 (10)	0.63547 (8)	0.0414 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0207 (4)	0.0420 (6)	0.0379 (6)	-0.0005 (4)	0.0056 (4)	-0.0040 (5)
C2	0.0207 (4)	0.0270 (5)	0.0328 (5)	-0.0015 (3)	0.0084 (4)	-0.0005 (4)
C3	0.0202 (4)	0.0253 (4)	0.0296 (5)	-0.0003 (3)	0.0092 (3)	0.0014 (4)
C4	0.0250 (4)	0.0272 (5)	0.0326 (5)	0.0005 (4)	0.0126 (4)	0.0039 (4)
C5	0.0353 (5)	0.0404 (6)	0.0342 (6)	-0.0024 (4)	0.0174 (4)	-0.0044 (4)
C6	0.0217 (4)	0.0265 (4)	0.0255 (4)	-0.0005 (3)	0.0078 (3)	0.0008 (4)
C7	0.0172 (4)	0.0296 (4)	0.0259 (5)	-0.0008 (3)	0.0068 (3)	-0.0009 (4)
C8	0.0230 (4)	0.0421 (6)	0.0250 (5)	-0.0027 (4)	0.0056 (4)	-0.0015 (4)
С9	0.0263 (5)	0.0335 (5)	0.0477 (7)	0.0026 (4)	0.0131 (4)	-0.0034 (5)
C10	0.0310 (5)	0.0387 (6)	0.0288 (5)	-0.0018 (4)	0.0109 (4)	0.0020 (4)
N	0.0177 (3)	0.0336 (4)	0.0279 (4)	-0.0015 (3)	0.0065 (3)	-0.0055 (3)
01	0.0239 (3)	0.0462 (5)	0.0420 (5)	-0.0017 (3)	0.0089 (3)	-0.0172 (4)
02	0.0270 (4)	0.0555 (5)	0.0479 (5)	-0.0069 (3)	0.0207 (3)	-0.0060 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.5042 (13)	C7—N	1.4815 (11)
C1—H1	0.9800	С7—С8	1.5197 (14)
C1—H2	0.9800	С7—С9	1.5235 (14)
С1—Н3	0.9800	C7—C10	1.5237 (14)
C2—O1	1.2419 (12)	С8—Н9	0.9800
C2—C3	1.4502 (14)	C8—H10	0.9800
С3—С6	1.4043 (12)	C8—H11	0.9800
C3—C4	1.4578 (13)	С9—Н12	0.9800
C4—O2	1.2287 (12)	С9—Н13	0.9800
C4—C5	1.5135 (15)	C9—H14	0.9800
С5—Н4	0.9800	C10—H15	0.9800
С5—Н5	0.9800	C10—H16	0.9800
С5—Н6	0.9800	C10—H17	0.9800
C6—N	1.3079 (12)	N—H8	0.8800
С6—Н7	0.9500		
C2—C1—H1	109.5	C8—C7—C9	110.29 (8)
C2—C1—H2	109.5	N	107.56 (8)
H1—C1—H2	109.5	C8—C7—C10	110.56 (8)
С2—С1—Н3	109.5	C9—C7—C10	110.45 (8)
H1-C1-H3	109.5	С7—С8—Н9	109.5
H2—C1—H3	109.5	C7—C8—H10	109.5
O1—C2—C3	121.36 (8)	H9—C8—H10	109.5
O1—C2—C1	117.32 (9)	C7—C8—H11	109.5
C3—C2—C1	121.22 (8)	H9—C8—H11	109.5
С6—С3—С2	119.08 (8)	H10—C8—H11	109.5
C6—C3—C4	118.29 (9)	C7—C9—H12	109.5
C2—C3—C4	122.63 (8)	С7—С9—Н13	109.5
O2—C4—C3	122.54 (10)	H12—C9—H13	109.5

O2—C4—C5	117.84 (9)	C7—C9—H14	109.5
C3—C4—C5	119.61 (8)	H12—C9—H14	109.5
C4—C5—H4	109.5	H13—C9—H14	109.5
С4—С5—Н5	109.5	С7—С10—Н15	109.5
H4—C5—H5	109.5	С7—С10—Н16	109.5
С4—С5—Н6	109.5	H15—C10—H16	109.5
Н4—С5—Н6	109.5	C7—C10—H17	109.5
Н5—С5—Н6	109.5	H15—C10—H17	109.5
N—C6—C3	125.72 (9)	H16—C10—H17	109.5
N—C6—H7	117.1	C6—N—C7	127.69 (8)
С3—С6—Н7	117.1	C6—N—H8	116.2
N—C7—C8	111.38 (8)	C7—N—H8	116.2
N—C7—C9	106.50 (8)		
01—C2—C3—C6	-13.30 (15)	C2—C3—C4—C5	174.41 (9)
C1—C2—C3—C6	163.02 (9)	C2—C3—C6—N	5.34 (15)
O1—C2—C3—C4	166.44 (10)	C4—C3—C6—N	-174.40(9)
C1—C2—C3—C4	-17.25 (15)	C3—C6—N—C7	-175.98 (9)
C6—C3—C4—O2	172.63 (10)	C8—C7—N—C6	-14.03 (14)
C2—C3—C4—O2	-7.11 (15)	C9—C7—N—C6	-134.31 (11)
C6—C3—C4—C5	-5.85 (14)	C10—C7—N—C6	107.27 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N—H8…O1	0.90 (2)	1.90 (2)	2.6322 (16)	136 (2)
C5—H4···O1 ⁱ	0.97 (2)	2.69 (2)	3.630(2)	163 (2)
C8—H11…O2 ⁱⁱ	0.98 (2)	2.67 (2)	3.642 (2)	174 (1)

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y, -z+1.

3-{[(S)-Benzyl(methyl)amino]methylidene}pentane-2,4-dione (3)

Crystal data	
$C_{14}H_{17}NO_2$	F(000) = 496
$M_r = 231.28$	$D_{\rm x} = 1.235 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1$	Mo Ka radiation, $\lambda = 0.71073$ Å
a = 10.0459 (9) Å	Cell parameters from 17500 reflections
b = 8.1011 (5) Å	$\theta = 2.5 - 29.7^{\circ}$
c = 15.7052 (13) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 103.372 (7)^{\circ}$	T = 170 K
$V = 1243.48(17) \text{ Å}^3$	Block, colourless
Z = 4	$0.44 \times 0.21 \times 0.14 \text{ mm}$
Data collection	
STOE IPDS 2T	$R_{\rm int} = 0.042$
diffractometer	$\theta_{\text{max}} = 29.3^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
rotation scans	$h = -13 \rightarrow 13$
11343 measured reflections	$k = -11 \rightarrow 11$
11343 independent reflections	$l = -21 \rightarrow 21$
9181 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 0.3675P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.048$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.131$	$\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.05	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
11343 reflections	Extinction correction: SHELXL-2018/3
315 parameters	(Sheldrick 2014,
1 restraint	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
Primary atom site location: iterative	Extinction coefficient: 0.044 (6)
Hydrogen site location: inferred from	Absolute structure: Classical Flack method
neighbouring sites	preferred over Parsons because s.u. lower.
H-atom parameters constrained	Absolute structure parameter: 2.9 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.1723 (4)	0.7494 (5)	0.1031 (3)	0.0494 (10)	
H1	1.2297	0.7243	0.1610	0.074*	
H2	1.1712	0.8689	0.0932	0.074*	
H3	1.2093	0.6937	0.0581	0.074*	
C2	1.0289 (3)	0.6899 (4)	0.0981 (2)	0.0307 (6)	
C3	0.9990 (3)	0.5183 (4)	0.1133 (2)	0.0300 (6)	
C4	1.1060 (4)	0.3913 (4)	0.1369 (2)	0.0364 (7)	
C5	1.0664 (4)	0.2163 (5)	0.1548 (3)	0.0455 (9)	
H4	1.1492	0.1519	0.1788	0.068*	
Н5	1.0161	0.1655	0.1002	0.068*	
H6	1.0083	0.2183	0.1971	0.068*	
C6	0.8627 (3)	0.4704 (4)	0.1047 (2)	0.0309 (6)	
H7	0.8465	0.3569	0.1137	0.037*	
C7	0.6134 (3)	0.5100 (4)	0.0761 (2)	0.0315 (6)	
H9	0.6158	0.3879	0.0856	0.038*	
C8	0.5280 (3)	0.5433 (4)	-0.0157 (2)	0.0289 (6)	
C9	0.5840 (3)	0.6073 (4)	-0.0821 (2)	0.0335 (7)	
H10	0.6787	0.6336	-0.0698	0.040*	
C10	0.5044 (4)	0.6331 (5)	-0.1654 (2)	0.0373 (7)	
H11	0.5446	0.6774	-0.2096	0.045*	
C11	0.3657 (4)	0.5946 (5)	-0.1849 (2)	0.0379 (7)	
H12	0.3109	0.6116	-0.2421	0.045*	
C12	0.3084 (3)	0.5308 (4)	-0.1193 (2)	0.0349 (7)	
H13	0.2138	0.5040	-0.1319	0.042*	
C13	0.3882 (3)	0.5062 (4)	-0.0357 (2)	0.0310 (6)	
H14	0.3475	0.4635	0.0085	0.037*	

C14	0.5532 (4)	0.5888 (5)	0.1472 (2)	0.0408 (8)
H15	0.4605	0.5463	0.1429	0.061*
H16	0.5496	0.7089	0.1394	0.061*
H17	0.6108	0.5619	0.2049	0.061*
N1	0.7550 (3)	0.5668 (3)	0.08533 (19)	0.0329 (6)
H8	0.7684	0.6724	0.0773	0.039*
01	0.9351 (3)	0.7936 (3)	0.07897 (18)	0.0389 (6)
O2	1.2273 (3)	0.4204 (4)	0.1427 (2)	0.0560 (8)
C15	0.5900 (4)	0.2575 (5)	0.4013 (3)	0.0407 (8)
H18	0.5956	0.1369	0.4063	0.061*
H19	0.6539	0.3075	0.4513	0.061*
H20	0.6138	0.2921	0.3469	0.061*
C16	0.4461 (3)	0.3127 (4)	0.4004 (2)	0.0326 (7)
C17	0.4062 (3)	0.4854 (4)	0.3894 (2)	0.0297 (6)
C18	0.4988 (3)	0.6153 (4)	0.3729 (2)	0.0327 (7)
C19	0.4459 (4)	0.7895 (5)	0.3518 (3)	0.0454 (9)
H21	0.4351	0.8439	0.4055	0.068*
H22	0.3572	0.7854	0.3096	0.068*
H23	0.5111	0.8518	0.3266	0.068*
C20	0.2753 (3)	0.5311 (4)	0.3967 (2)	0.0302 (6)
H24	0.2535	0.6452	0.3909	0.036*
C21	0.0473 (3)	0.4873 (4)	0.4252 (2)	0.0316 (6)
H26	0.0424	0.6097	0.4168	0.038*
C22	0.0360 (3)	0.4507 (4)	0.5191 (2)	0.0280 (6)
C23	0.1422 (3)	0.3812 (4)	0.5812 (2)	0.0323 (6)
H27	0.2249	0.3525	0.5654	0.039*
C24	0.1294 (4)	0.3531 (4)	0.6661 (2)	0.0367 (7)
H28	0.2027	0.3040	0.7076	0.044*
C25	0.0096 (4)	0.3967 (4)	0.6906 (2)	0.0364 (7)
H29	0.0011	0.3790	0.7489	0.044*
C26	-0.0973 (3)	0.4662 (4)	0.6291 (2)	0.0332 (7)
H30	-0.1796	0.4955	0.6453	0.040*
C27	-0.0847 (3)	0.4932 (4)	0.5438 (2)	0.0297 (6)
H31	-0.1586	0.5408	0.5021	0.036*
C28	-0.0694 (4)	0.4104 (5)	0.3571 (2)	0.0371 (7)
H32	-0.1570	0.4518	0.3656	0.056*
H33	-0.0663	0.2901	0.3635	0.056*
H34	-0.0597	0.4400	0.2983	0.056*
N2	0.1787 (3)	0.4311 (3)	0.4108 (2)	0.0341 (6)
H25	0.1944	0.3242	0.4115	0.041*
O3	0.3635 (3)	0.2058 (3)	0.4110 (2)	0.0472 (7)
O4	0.6200 (2)	0.5899 (3)	0.37485 (18)	0.0418 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.032 (2)	0.0401 (19)	0.080 (3)	-0.0035 (15)	0.0196 (19)	-0.002 (2)
C2	0.0263 (15)	0.0337 (16)	0.0336 (15)	-0.0006 (12)	0.0100 (12)	-0.0033 (13)

C3	0.0267 (15)	0.0322 (15)	0.0324 (14)	0.0005 (12)	0.0096 (11)	-0.0028 (13)
C4	0.0285 (16)	0.0407 (18)	0.0424 (17)	0.0043 (14)	0.0132 (13)	0.0039 (15)
C5	0.039 (2)	0.0408 (19)	0.061 (2)	0.0109 (16)	0.0206 (18)	0.0113 (18)
C6	0.0273 (15)	0.0323 (15)	0.0336 (15)	0.0007 (12)	0.0077 (12)	0.0000 (13)
C7	0.0221 (14)	0.0322 (15)	0.0404 (16)	-0.0024 (12)	0.0074 (12)	0.0036 (14)
C8	0.0240 (14)	0.0258 (13)	0.0380 (15)	-0.0005 (11)	0.0093 (12)	-0.0014 (12)
C9	0.0254 (15)	0.0369 (16)	0.0394 (16)	-0.0027 (13)	0.0103 (12)	0.0002 (14)
C10	0.0348 (18)	0.0418 (18)	0.0366 (16)	-0.0046 (14)	0.0112 (14)	0.0006 (15)
C11	0.0349 (17)	0.0395 (17)	0.0367 (16)	-0.0039 (15)	0.0032 (13)	0.0003 (15)
C12	0.0267 (15)	0.0312 (15)	0.0459 (17)	-0.0056 (13)	0.0064 (13)	-0.0012 (14)
C13	0.0250 (14)	0.0281 (14)	0.0417 (16)	-0.0025 (12)	0.0113 (12)	-0.0009 (13)
C14	0.0330 (17)	0.053 (2)	0.0373 (16)	-0.0049 (16)	0.0109 (14)	-0.0009 (16)
N1	0.0231 (13)	0.0320 (13)	0.0425 (14)	-0.0017 (10)	0.0056 (11)	0.0029 (11)
01	0.0307 (13)	0.0320 (12)	0.0555 (15)	0.0020 (10)	0.0129 (11)	0.0031 (11)
O2	0.0260 (13)	0.0546 (16)	0.089 (2)	0.0059 (12)	0.0179 (14)	0.0152 (16)
C15	0.0285 (17)	0.0375 (17)	0.059 (2)	0.0022 (14)	0.0153 (16)	-0.0033 (16)
C16	0.0283 (16)	0.0312 (15)	0.0410 (17)	-0.0016 (12)	0.0134 (13)	-0.0043 (14)
C17	0.0245 (14)	0.0317 (15)	0.0339 (14)	-0.0030 (12)	0.0091 (11)	-0.0019 (13)
C18	0.0267 (15)	0.0382 (16)	0.0345 (15)	-0.0058 (13)	0.0098 (12)	-0.0018 (14)
C19	0.0350 (19)	0.0384 (18)	0.067 (2)	-0.0026 (15)	0.0194 (17)	0.0120 (18)
C20	0.0262 (14)	0.0303 (14)	0.0357 (14)	-0.0023 (12)	0.0107 (12)	0.0010 (12)
C21	0.0227 (14)	0.0301 (15)	0.0442 (16)	0.0031 (12)	0.0123 (12)	0.0020 (14)
C22	0.0217 (13)	0.0239 (13)	0.0385 (15)	-0.0015 (10)	0.0075 (11)	-0.0019 (12)
C23	0.0242 (14)	0.0308 (15)	0.0409 (16)	0.0016 (12)	0.0055 (12)	-0.0029 (13)
C24	0.0342 (17)	0.0321 (15)	0.0389 (16)	0.0004 (13)	-0.0016 (14)	-0.0023 (14)
C25	0.0420 (19)	0.0315 (15)	0.0354 (15)	-0.0029 (14)	0.0085 (14)	-0.0047 (14)
C26	0.0314 (16)	0.0313 (15)	0.0400 (16)	-0.0008 (13)	0.0147 (13)	-0.0022 (14)
C27	0.0243 (14)	0.0277 (13)	0.0379 (15)	0.0013 (11)	0.0088 (11)	0.0005 (13)
C28	0.0285 (16)	0.0476 (19)	0.0355 (16)	0.0029 (14)	0.0079 (13)	-0.0009 (15)
N2	0.0254 (13)	0.0303 (13)	0.0510 (16)	0.0010 (10)	0.0175 (12)	0.0009 (12)
O3	0.0349 (14)	0.0309 (12)	0.082 (2)	-0.0018 (10)	0.0256 (14)	-0.0005 (13)
O4	0.0253 (11)	0.0447 (13)	0.0583 (15)	-0.0045 (10)	0.0152 (11)	0.0020 (13)

Geometric parameters (Å, °)

C1—C2	1.504 (5)	C15—C16	1.510 (5)
C1—H1	0.9800	C15—H18	0.9800
С1—Н2	0.9800	C15—H19	0.9800
С1—Н3	0.9800	C15—H20	0.9800
C2—O1	1.246 (4)	C16—O3	1.236 (4)
C2—C3	1.453 (4)	C16—C17	1.455 (4)
C3—C6	1.399 (4)	C17—C20	1.396 (4)
C3—C4	1.472 (5)	C17—C18	1.468 (4)
C4—O2	1.224 (4)	C18—O4	1.228 (4)
C4—C5	1.517 (5)	C18—C19	1.518 (5)
С5—Н4	0.9800	C19—H21	0.9800
С5—Н5	0.9800	C19—H22	0.9800
С5—Н6	0.9800	С19—Н23	0.9800

C6—N1	1.311 (4)	C20—N2	1.321 (4)
С6—Н7	0.9500	C20—H24	0.9500
C7—N1	1.470 (4)	C21—N2	1.463 (4)
C7—C8	1.522 (4)	C21—C28	1.524 (5)
C7—C14	1.527 (5)	C21—C22	1.534 (4)
С7—Н9	1.0000	C21—H26	1.0000
C8—C9	1.394 (4)	C22—C23	1.387 (4)
C8—C13	1.399 (4)	C22—C27	1.400 (4)
C9—C10	1.383 (5)	C23—C24	1.388 (5)
С9—Н10	0.9500	C23—H27	0.9500
C10—C11	1.392 (5)	C24—C25	1.392 (5)
C10—H11	0.9500	C24—H28	0.9500
C11—C12	1.390 (5)	C25—C26	1.387 (5)
C11—H12	0.9500	C25—H29	0.9500
C12—C13	1 385 (5)	$C_{26}^{}C_{27}^{}$	1 392 (4)
C12—H13	0.9500	C26—H30	0.9500
C13—H14	0.9500	C27—H31	0.9500
C14—H15	0.9800	C28—H32	0.9800
C14H16	0.9800	C28_H33	0.9800
C14 H17	0.9800	C28 H34	0.9800
N1 H8	0.9800	N2 H25	0.9800
111-110	0.8800	1125	0.8800
C2—C1—H1	109.5	C16—C15—H18	109.5
C2—C1—H2	109.5	C16—C15—H19	109.5
H1—C1—H2	109.5	H18—C15—H19	109.5
С2—С1—Н3	109.5	C16—C15—H20	109.5
H1—C1—H3	109.5	H18—C15—H20	109.5
H2—C1—H3	109.5	H19—C15—H20	109.5
01 - C2 - C3	120.7 (3)	O3-C16-C17	121.0(3)
01—C2—C1	117.3 (3)	O3—C16—C15	117.5 (3)
$C_3 - C_2 - C_1$	122.0 (3)	C17—C16—C15	121.5(3)
C6-C3-C2	1190(3)	C_{20} C_{17} C_{16}	1190(3)
C6-C3-C4	119.0(3) 118.1(3)	$C_{20} - C_{17} - C_{18}$	119.0(3) 118.2(3)
$C^2 - C^3 - C^4$	122.9(3)	$C_{16} - C_{17} - C_{18}$	$122 \ 8 \ (3)$
02 - C4 - C3	122.9(3) 122.7(3)	04-C18-C17	122.0(3) 122.8(3)
02 - C4 - C5	1122.7(3)	04-C18-C19	122.0(3) 117.2(3)
C_{3} C_{4} C_{5}	1195(3)	C_{17} C_{18} C_{19}	117.2(3) 1201(3)
C4-C5-H4	109.5	C_{18} C_{19} H_{21}	109.5
C4-C5-H5	109.5	C_{18} C_{19} H_{22}	109.5
H4_C5_H5	109.5	H_{21} C_{19} H_{22}	109.5
C4-C5-H6	109.5	C_{18} C_{19} H_{23}	109.5
H4-C5-H6	109.5	H_{21} $(19 - H_{23})$	109.5
H5 C5 H6	109.5	$H_{22} = C_{10} = H_{23}$	109.5
N1 C6 C3	109.5	$N_{2} = C_{19} = H_{23}$	109.5 126 $A(3)$
N1-C6-H7	116.8	N2 - C20 - C17 N2 - C20 - H24	116.8
C3_C6_H7	116.8	112 - 020 - 112 + 020 - 112 + 020 - 112 + 020 - 112 + 020 - 112 + 020 - 112 + 020 - 020	116.8
N1 C7 C8	111.0 (3)	$N_2 = C_{20} = -1124$	100 8 (2)
N1 = C7 = C14	100.6(3)	$N_2 = C_{21} = C_{20}$	107.0(3)
NI-U/-UI4	107.0 (3)	112 - 021 - 022	111.0(3)

C8—C7—C14	112.8 (3)	C28—C21—C22	112.3 (3)
N1—C7—H9	107.8	N2—C21—H26	107.8
С8—С7—Н9	107.8	C28—C21—H26	107.8
С14—С7—Н9	107.8	C22—C21—H26	107.8
C9—C8—C13	118.0 (3)	C23—C22—C27	118.6 (3)
C9—C8—C7	122.6 (3)	C23—C22—C21	122.6 (3)
C13—C8—C7	119.4 (3)	C27—C22—C21	118.7 (3)
C10—C9—C8	121.3 (3)	C22—C23—C24	121.0 (3)
С10—С9—Н10	119.4	С22—С23—Н27	119.5
C8—C9—H10	119.4	C24—C23—H27	119.5
C9—C10—C11	120.3 (3)	C23—C24—C25	120.1 (3)
C9—C10—H11	119.9	C23—C24—H28	119.9
C11—C10—H11	119.9	C25—C24—H28	119.9
C_{12} C_{11} C_{10}	119.1 (3)	$C_{26} = C_{25} = C_{24}$	119.4 (3)
C12—C11—H12	120.5	C26—C25—H29	120.3
C10—C11—H12	120.5	C24—C25—H29	120.3
C13 - C12 - C11	120.5 (3)	C_{25} C_{26} C_{27}	120.4 (3)
C13—C12—H13	119.8	$C_{25} = C_{26} = H_{30}$	119.8
C11—C12—H13	119.8	C27—C26—H30	119.8
C12—C13—C8	120.9 (3)	C_{26} C_{27} C_{22}	120.4 (3)
C12—C13—H14	119.6	С26—С27—Н31	119.8
C8—C13—H14	119.6	С22—С27—Н31	119.8
C7—C14—H15	109.5	С21—С28—Н32	109.5
C7—C14—H16	109.5	С21—С28—Н33	109.5
H15—C14—H16	109.5	Н32—С28—Н33	109.5
C7—C14—H17	109.5	С21—С28—Н34	109.5
H15—C14—H17	109.5	H32—C28—H34	109.5
H16—C14—H17	109.5	H33—C28—H34	109.5
C6—N1—C7	124.4 (3)	C20—N2—C21	124.0 (3)
C6—N1—H8	117.8	C20—N2—H25	118.0
C7—N1—H8	117.8	C21—N2—H25	118.0
O1—C2—C3—C6	1.2 (5)	O3—C16—C17—C20	4.2 (5)
C1—C2—C3—C6	-177.8 (3)	C15-C16-C17-C20	-174.5 (3)
O1—C2—C3—C4	-179.4 (3)	O3—C16—C17—C18	-177.2 (3)
C1—C2—C3—C4	1.6 (5)	C15-C16-C17-C18	4.1 (5)
C6—C3—C4—O2	177.2 (4)	C20—C17—C18—O4	172.0 (3)
C2—C3—C4—O2	-2.2 (5)	C16—C17—C18—O4	-6.7 (5)
C6—C3—C4—C5	-2.7 (5)	C20-C17-C18-C19	-8.3 (5)
C2—C3—C4—C5	177.8 (3)	C16—C17—C18—C19	173.1 (3)
C2-C3-C6-N1	-1.5 (5)	C16—C17—C20—N2	-1.8 (5)
C4—C3—C6—N1	179.0 (3)	C18—C17—C20—N2	179.5 (3)
N1—C7—C8—C9	4.7 (4)	N2-C21-C22-C23	3.2 (4)
C14—C7—C8—C9	128.1 (3)	C28—C21—C22—C23	126.6 (3)
N1-C7-C8-C13	-176.5 (3)	N2-C21-C22-C27	-178.7 (3)
C14—C7—C8—C13	-53.1 (4)	C28—C21—C22—C27	-55.3 (4)
C13—C8—C9—C10	-0.2 (5)	C27—C22—C23—C24	0.4 (5)
C7—C8—C9—C10	178.7 (3)	C21—C22—C23—C24	178.6 (3)

C8—C9—C10—C11	-0.3 (6)	C22—C23—C24—C25	-0.9 (5)
C9—C10—C11—C12	0.4 (6)	C23—C24—C25—C26	0.9 (5)
C10—C11—C12—C13	0.1 (5)	C24—C25—C26—C27	-0.4 (5)
C11—C12—C13—C8	-0.6 (5)	C25—C26—C27—C22	0.0 (5)
C9—C8—C13—C12	0.6 (5)	C23—C22—C27—C26	0.1 (5)
C7—C8—C13—C12	-178.3 (3)	C21—C22—C27—C26	-178.2 (3)
C3—C6—N1—C7	179.4 (3)	C17—C20—N2—C21	174.6 (3)
C8—C7—N1—C6	-119.2 (3)	C22—C21—N2—C20	-112.8 (3)
C8—C7—N1—C6	-119.2 (3)	C22—C21—N2—C20	-112.8 (3)
C14—C7—N1—C6	115.5 (4)	C28—C21—N2—C20	122.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
N1—H8…O1	0.88	1.94	2.597 (4)	131	
N2—H25…O3	0.88	1.95	2.603 (4)	130	
C14—H15…O2 ⁱ	0.98	2.55	3.532 (5)	175	
C14—H17···O4	0.98	2.66	3.482 (5)	142	
C28— $H32$ ···O4 ⁱ	0.98	2.54	3.512 (5)	173	

Symmetry code: (i) x-1, y, z.