

Received 17 October 2022 Accepted 10 July 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; nickel; coordination polymer.

CCDC reference: 2280450

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and luminescence spectrum of a one-dimensional nickel(II) coordination polymer incorporating 1,4-bis[(2-methylimidazol-1-yl)methyl]benzene and adamantane-1,3-dicarboxylate coligands

Yong Zhang,^a* Hongni Qin^a and Bing Wu^b

^aSuzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, Jiangsu, People's Republic of China, and ^bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China. *Correspondence e-mail: zhangyong@siso.edu.cn

An Ni^{II} coordination polymer, namely, poly[(μ_2 -adamantane-1,3-dicarboxylato- $\kappa^4 O^1, O^{1'}: O^3, O^{3'}$)[μ_2 -1,4-bis(2-methyl-imidazol-1-ylmethyl)benzene- $\kappa^2 N^3: N^{3'}$]-nickel(II)], [Ni(C₁₂H₁₄O₄)(C₁₆H₁₈N₄)]_n or [Ni(adc)(bmib)]_n, (I) [adc = adamantane-1,3-dicarboxylate, C₁₂H₁₄O₄²⁻ and bmib = 1,4-bis(2-methyl-imidazol-1-ylmethyl)benzene, C₁₆H₁₈N₄] was synthesized and characterized. It exhibits a one-dimensional extended structure built up from alternating [Ni₂(bmib)₂] 26-membered rings and [Ni₂(adc)₂] 16-membered rings. The nickel atom lies on a crystallographic twofold axis and both ligands are completed by mirror symmetry. The solid-state luminescence spectra of (I) and the bmib ligand show strong emissions at 442 and 410 nm, respectively.

1. Chemical context

Coordination polymers have been widely studied because of their diverse and interesting structures (Bao et al., 2019; Zhang & Lin 2014; Wang et al., 2020; Parmar et al., 2021) and potential applications in sorption (Fan et al., 2021), luminescent materials (Zhou et al., 2021), magnetism (Yang et al., 2021a), catalytic splitting of water (Li et al., 2019), catalytic degrading of pollutants (Jiang et al., 2018) and battery materials (Yang et al., 2021b; Bao et al., 2019). In the construction of coordination polymers, N-donor (imidazole or triazole ligands) and O-donor (polycarboxylate ligands) co-ligand systems lead to various interesting networks (Yang et al., 2014; Sun et al., 2013; Zhang et al., 2021a,b). 1,4-Bis(2-methylimidazol-1-ylmethyl)benzene (C₁₆H₁₈N₄; bmib) is a semiflexible bidentate N-donor ligand and is widely used in the construction of different coordination polymers (Yang et al., 2014; Sun et al., 2013). Four Ni-bmib coordination polymers are documented: $[Ni(bcpb)(bmib)_{0.5}]_n$ (H₂bcpb = 3,5-bis(4carboxyphenyl)pyridine) has a (3,4)-connected three-dimensional amd network, with the point symbol of $(6^{2.8})(6^{3.8}\cdot10^2)$ (Fan *et al.*, 2014*a*). {[Ni(tptc)_{0.5}(bmib)] $\cdot 0.25H_2O$]_n (H₄tptc = terphenyl-2.5.2'.5'-tetracarboxylic acid) shows a (4.4)-coordinated three-dimensional network with a point symbol of (4^{.6}^{4.8²})₂(4^{2.8⁴}) (Fan *et al.*, 2014*b*). [Ni(bmib)(bpda)] (H₂bpda = biphenyl-3,4'-dicarboxylic acid) exhibits a threefold interpenetrated ($6^{5.8}$) network (Sun *et al.*, 2013). {[Ni₂(glu)₂(b $mib)_2(H_2O)_2]\cdot H_2O_n$ (glu = glutarate) exhibits a 4-connected three-dimensional framework with point symbol 6⁶, but is not

a typical dia network (Zhao *et al.*, 2020). The adamantane-1,3dicarboxylate dianion ($C_{12}H_{14}O_4^{2-}$; adc) is a good O-donor bridging ligand for constructing coordination polymers (Zhao *et al.*, 2017). In this work, the title Ni^{II} coordination polymer [Ni(adc)(bmib)]_n, (I), was synthesized and its crystal structure was determined.

2. Structural commentary

The structural motif of the title coordination polymer (I) is a one-dimensional chain. The Ni^{II} atom in (I) lies on a crystallographic twofold axis and adopts a distorted cis-NiN₂O₄ octahedral coordination geometry arising from four oxygen atoms from two carboxylate groups in two adc ligands [Ni1-O1 = 2.179 (3) Å; Ni1-O2 = 2.096 (3) Å] and two nitrogen atoms of two bmib ligands [Ni1-N2 = 2.050 (3) Å] (Table 1, Fig. 1). Atoms O1 and O1ⁱ lie opposite to each other with the bond angle O1-Ni1-O1ⁱ [symmetry code: (i) 1 - x, y, -z] = 142.26 (15)°. These Ni–O and Ni–N bond lengths are typical and show no deviations from those in other distorted octahedral Ni^{II} coordination polymers (Fan et al., 2014a,b). The other bond angles are in the range $61.20(11)-156.75(13)^{\circ}$ (Fan et al., 2014a,b). The dihedral angle between the imidazole and benzene rings of the bmib molecule is $78.8 (2)^{\circ}$ and that between the imidazole rings is 67.1 (2)°. The bmib ligand exhibits a gauche conformation and the torsion angle N1-C4-C1-C3 is $-117.9 (5)^{\circ}$. In the extended structure, two bmib ligands bridge two Ni^{II} atoms and construct a [Ni₂(bmib)₂] 26-membered ring with an Ni···Ni distance of 12.100 (2) Å. Two carboxylate groups of one adc ligand exhibit an O,O-chelating mode such that two adc ligands link two Ni^{II} atoms and construct an [Ni₂(adc)₂] 16-membered ring with

Figure 1

A view of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) -x + 1, y, -z; (ii) x, -y + 1, z; (iii) x, -y, z.

Table 1	
Selected geometric parameters (Å, °).	

Ni1-O1 2.179 (3) Ni1-N2 2.050 Ni1-O2 2.096 (3)	
2.000 (5)	0 (3)
$\begin{array}{ccccccc} 01-Ni1-O1^{i} & 142.26 (15) & N2-Ni1-O1 & 95.55\\ 02-Ni1-O1 & 61.20 (11) & N2-Ni1-O2^{i} & 91.42\\ 02-Ni1-O1^{i} & 91.22 (12) & N2-Ni1-O2 & 156.75\\ 02-Ni1-O2^{i} & 89.19 (18) & N2-Ni1-N2^{i} & 97.01\\ N2-Ni1-O1^{i} & 109.38 (12) & \end{array}$	(12) (13) (13) (19)

Symmetry code: (i) -x + 1, y, -z.

 $Ni \cdots Ni = 8.0978$ (16) Å. The Ni^{II} atoms are alternately connected by the bridging bmib and adc moieties, resulting in a chain containing alternative $[Ni_2(bmib)_2]$ and $[Ni_2(adc)_2]$ loops propagating along the *b*-axis direction (Fig. 2).

3. Supramolecular features

Each $[Ni(bmib)(adc)]_n$ chain is surrounded by six further chains (Fig. 3). There are no C-H···O hydrogen bond interactions or aromatic π - π stacking interactions between the rings, thus the three-dimensional supramolecular architecture of (I) must therefore be established by van der Waals interactions.

4. Luminescence properties

The solid-state luminescence spectra of (I) and the bmib ligand were measured at room temperature (Fig. 4).

Figure 2 The one-dimensional supramolecular structure of (I).

Figure 3

The stacking of [010] chains in the crystal structure of (I). The bonds of one chain are shown in blue and the bonds of six adjacent chains are shown in purple.

research communications

Figure 4

Solid-state luminescence spectra of (I) and the bmib ligand at room temperature.

Compound (I) and bmib exhibit strong emissions at 442 nm and 410 nm, respectively, upon excitation at 340 nm. The emissions can be attributed to an intraligand charge-transfer transition (Yang *et al.*, 2014).

5. Database survey

The bmib ligand is widely used in coordination chemistry but for Ni–bmib compounds, a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom *et al.*, 2016) revealed only the four coordination polymers noted in the *Chemical context* section.

6. Synthesis and crystallization

A mixture of bmib (0.22 mmol), Ni(NO₃)₂·6H₂O (0.28 mmol), H₂adc (0.22 mmol), NaOH (0.38 mmol) and H₂O (14.0 ml) was added to a 20.0 ml Teflon-lined stainless steel autoclave, which was then sealed and heated to 393 K for 5 d. Green crystals of (I) were obtained when the mixture was cooled to room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms (CH, CH₂, CH₃ groups) were placed geometrically (C–H = 0.93–0.98 Å) and refined using a riding model with $U_{\rm iso}$ (H) = 1.2 $U_{\rm eq}$ (C) for CH and CH₂ or 1.5 $U_{\rm eq}$ (C) for CH₃ groups.

Funding information

The authors thank Suzhou Industrial Park Institute of Services Outsourcing for financial support.

able 2 Experimental details.	
Crystal data	
Chemical formula	$[Ni(C_{12}H_{14}O_4)(C_{16}H_{18}N_4)]$
1 _r	547.28
Crystal system, space group	Monoclinic, C2/m
Cemperature (K)	293
, <i>b</i> , <i>c</i> (Å)	14.489 (3), 20.198 (4), 10.741 (2)
B (°)	127.46 (3)
$V(Å^3)$	2495.2 (12)
	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.82
Crystal size (mm)	$0.60\times0.20\times0.10$
Data collection	
Diffractometer	Rigaku Mercury CCD
Absorption correction	Multi-scan (Jacobson, 1998)
T_{\min}, T_{\max}	0.639, 0.922
To. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12149, 2343, 1975
Aint Contraction of the second s	0.060
$\sin \theta / \lambda _{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.148, 1.15
lo. of reflections	2343
lo. of parameters	174
I-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.39, -0.42

Computer programs: CrysAlis PRO (Rigaku OD, 2021), OLEX2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

References

F

- Bao, S. S., Shimizu, G. K. H. & Zheng, L. M. (2019). Coord. Chem. Rev. 378, 577–594.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701–6710.
- Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144–2157.
- Fan, L. M., Zhao, D. S., Zhang, H. H., Wang, F., Li, B., Yang, L. L., Deng, Y. X. & Zhang, X. T. (2021). *Microporous Mesoporous Mater.* 326, 111396.
- Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Jiang, D., Xu, P., Wang, H., Zeng, G., Huang, D., Chen, M., Lai, C., Zhang, C., Wan, J. & Xue, W. (2018). Coord. Chem. Rev. 376, 449– 466.
- Li, G., Huang, J., Xue, C., Chen, J., Deng, Z., Huang, Q., Liu, Z., Gong, C., Guo, W. & Cao, R. (2019). *Cryst. Growth Des.* **19**, 3584– 3591.
- Parmar, B., Bisht, K. K., Rajput, G. & Suresh, E. (2021). Dalton Trans. 50, 3083–3108.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763–771.
- Wang, H. P., Wang, H. L. & Li, B. L. (2020). Chin. J. Struct. Chem. 39, 1835–1840.
- Yang, G. P., Luo, X. X., Liu, Y. F., Li, K. & Wu, X. L. (2021b). Appl. Mater. Interfaces, 13, 46902–46908.
- Yang, T. H., Wang, S. F., Lin, C. L., Wang, X., Zhu, B. & Wu, D. (2021a). Dalton Trans. 50, 1293–1299.

- Yang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24–28.
- Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982-5993.
- Zhang, Y., Qian, H. N., Li, B. L. & Wu, B. (2021a). Chin. J. Struct. Chem. 40, 595–602.
- Zhang, Y., Wang, Z. X., Qin, H. N., Zha, M., Li, B. L. & Li, H. Y. (2021b). J. Coord. Chem. 74, 2617–2630.
- Zhao, F.-H., Li, Z.-L., Zhang, S.-F., Han, J.-H., Zhang, M., Han, J., Lin, Y.-W. & You, J.-M. (2020). *Acta Cryst.* C**76**, 148–158.
- Zhao, S., Zheng, T. R., Zhang, Y. Q., Lv, X. X., Li, B. L. & Zhang, Y. (2017). *Polyhedron*, **121**, 148–158.
- Zhou, T., Liu, S., Guo, X., Wang, Q., Fu, L., Mi, S., Gao, P., Su, Q. & Guo, H. (2021). *Cryst. Growth Des.* **21**, 5108–5115.

supporting information

Acta Cryst. (2023). E79, 722-725 [https://doi.org/10.1107/S2056989023006059]

Crystal structure and luminescence spectrum of a one-dimensional nickel(II) coordination polymer incorporating 1,4-bis[(2-methylimidazol-1-yl)methyl]-benzene and adamantane-1,3-dicarboxylate co-ligands

Yong Zhang, Hongni Qin and Bing Wu

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: *olex2.solve* (Bourhis *et al.*, 2015); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

Poly[(μ_2 -adamantane-1,3-dicarboxylato- $\kappa^4 O^1, O^1$ ': O^3, O^3)[μ_2 -1,4-bis(2-methyl-imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: N^3]nickel(II)]

Crystal data

[Ni(C₁₂H₁₄O₄)(C₁₆H₁₈N₄)] $M_r = 547.28$ Monoclinic, C2/m a = 14.489 (3) Å b = 20.198 (4) Å c = 10.741 (2) Å $\beta = 127.46$ (3)° V = 2495.2 (12) Å³ Z = 4

Data collection

Rigaku Mercury CCD diffractometer Graphite monochromator Detector resolution: 7.31 pixels mm⁻¹ ω scans Absorption correction: multi-scan (Jacobson, 1998) $T_{\min} = 0.639, T_{\max} = 0.922$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.148$ S = 1.152343 reflections F(000) = 1152 $D_x = 1.457 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4170 reflections $\theta = 3.1-25.3^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 293 KBlock, green $0.60 \times 0.20 \times 0.10 \text{ mm}$

12149 measured reflections 2343 independent reflections 1975 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -17 \rightarrow 17$ $k = -20 \rightarrow 24$ $l = -12 \rightarrow 12$

174 parameters0 restraintsPrimary atom site location: iterativeHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.058P)^2 + 5.3646P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.500000	0.20046 (3)	0.000000	0.0398 (3)	
01	0.3442 (2)	0.16556 (13)	-0.0328 (3)	0.0482 (7)	
02	0.5165 (3)	0.12656 (14)	0.1494 (4)	0.0516 (8)	
N1	0.3458 (3)	0.32448 (17)	-0.3947 (4)	0.0485 (9)	
N2	0.4156 (3)	0.26772 (16)	-0.1800(4)	0.0443 (8)	
C1	0.3348 (4)	0.4311 (2)	-0.5188 (5)	0.0451 (10)	
C2	0.4275 (5)	0.4655 (3)	-0.4023 (7)	0.107 (3)	
H2	0.492752	0.442846	-0.320417	0.129*	
C3	0.2413 (4)	0.4653 (2)	-0.6326 (6)	0.0684 (15)	
H3	0.175274	0.442626	-0.712964	0.082*	
C4	0.3337 (5)	0.3562 (2)	-0.5266 (5)	0.0570 (12)	
H4A	0.261252	0.341958	-0.623726	0.068*	
H4B	0.396716	0.341706	-0.528253	0.068*	
C5	0.4370 (4)	0.28896 (19)	-0.2772 (5)	0.0435 (10)	
C6	0.3077 (4)	0.2912 (2)	-0.2387 (6)	0.0532 (12)	
H6	0.270297	0.284149	-0.193745	0.064*	
C7	0.2632 (4)	0.3262 (2)	-0.3714 (6)	0.0593 (13)	
H7	0.191169	0.347080	-0.433802	0.071*	
C8	0.5450 (4)	0.2746 (3)	-0.2605 (6)	0.0625 (13)	
H8A	0.540177	0.295302	-0.344794	0.094*	
H8B	0.611035	0.291763	-0.162159	0.094*	
H8C	0.553297	0.227662	-0.263841	0.094*	
C9	0.3562 (3)	0.06300 (18)	0.0957 (4)	0.0350 (9)	
C10	0.2234 (3)	0.06224 (19)	-0.0132 (5)	0.0437 (10)	
H10A	0.194962	0.063122	-0.121488	0.052*	
H10B	0.194416	0.101283	0.005507	0.052*	
C11	0.4003 (4)	0.06176 (19)	0.2666 (5)	0.0449 (10)	
H11A	0.374414	0.101241	0.288638	0.054*	
H11B	0.484678	0.061300	0.336412	0.054*	
C12	0.4004 (5)	0.000000	0.0664 (6)	0.0355 (12)	
H12A	0.484704	0.000000	0.135236	0.043*	
H12B	0.374053	0.000001	-0.041030	0.043*	
C13	0.1788 (5)	0.000000	0.0159 (7)	0.0460 (15)	
H13	0.093556	-0.000001	-0.054721	0.055*	
C14	0.2219 (6)	0.000000	0.1860 (8)	0.0551 (17)	
H14A	0.193036	0.038915	0.205261	0.066*	0.5

supporting information

H14B	0.193036	-0.038915	0.205261	0.066*	0.5
C15	0.3539 (6)	0.000000	0.2952 (7)	0.0476 (15)	
H15	0.381400	0.000000	0.404170	0.057*	
C16	0.4075 (4)	0.12241 (18)	0.0692 (5)	0.0409 (9)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0486 (5)	0.0269 (4)	0.0458 (5)	0.000	0.0297 (4)	0.000
01	0.0517 (17)	0.0344 (15)	0.0601 (19)	0.0081 (13)	0.0348 (16)	0.0121 (14)
O2	0.0451 (18)	0.0369 (16)	0.0623 (19)	-0.0034 (13)	0.0273 (15)	0.0097 (14)
N1	0.067 (2)	0.0355 (19)	0.044 (2)	0.0131 (17)	0.035 (2)	0.0066 (16)
N2	0.056 (2)	0.0316 (18)	0.052 (2)	0.0027 (16)	0.0361 (19)	0.0022 (16)
C1	0.057 (3)	0.037 (2)	0.037 (2)	0.0043 (19)	0.026 (2)	0.0010 (18)
C2	0.075 (4)	0.056 (3)	0.075 (4)	0.015 (3)	-0.014 (3)	0.006 (3)
C3	0.051 (3)	0.039 (2)	0.063 (3)	-0.004(2)	0.008 (2)	-0.004 (2)
C4	0.089 (4)	0.039 (2)	0.044 (3)	0.008 (2)	0.040 (3)	0.003 (2)
C5	0.059 (3)	0.030(2)	0.048 (2)	0.0016 (19)	0.036 (2)	0.0002 (18)
C6	0.064 (3)	0.045 (3)	0.067 (3)	0.013 (2)	0.049 (3)	0.008 (2)
C7	0.062 (3)	0.050(3)	0.069 (3)	0.020 (2)	0.041 (3)	0.011 (2)
C8	0.066 (3)	0.061 (3)	0.073 (3)	0.010 (2)	0.049 (3)	0.018 (3)
C9	0.040 (2)	0.0280 (19)	0.038 (2)	0.0037 (16)	0.0242 (18)	0.0045 (16)
C10	0.044 (2)	0.035 (2)	0.047 (2)	0.0057 (18)	0.026 (2)	0.0032 (18)
C11	0.057 (3)	0.034 (2)	0.046 (2)	0.0007 (19)	0.033 (2)	-0.0039 (18)
C12	0.043 (3)	0.027 (3)	0.037 (3)	0.000	0.025 (3)	0.000
C13	0.032 (3)	0.046 (3)	0.056 (4)	0.000	0.024 (3)	0.000
C14	0.073 (5)	0.044 (3)	0.078 (5)	0.000	0.061 (4)	0.000
C15	0.063 (4)	0.048 (3)	0.040 (3)	0.000	0.036 (3)	0.000
C16	0.050 (3)	0.028 (2)	0.050 (2)	0.0044 (18)	0.033 (2)	0.0029 (19)

Geometric parameters (Å, °)

Nil—Ol	2.179 (3)	C6—C7	1.352 (6)	_
Ni1—O1 ⁱ	2.179 (3)	С7—Н7	0.9300	
Ni1—O2 ⁱ	2.096 (3)	C8—H8A	0.9600	
Ni1—02	2.096 (3)	C8—H8B	0.9600	
Ni1—N2 ⁱ	2.050 (3)	C8—H8C	0.9600	
Ni1—N2	2.050 (3)	C9—C10	1.528 (5)	
O1—C16	1.257 (5)	C9—C11	1.534 (5)	
O2—C16	1.260 (5)	C9—C12	1.540 (5)	
N1-C4	1.465 (5)	C9—C16	1.526 (5)	
N1-C5	1.351 (5)	C10—H10A	0.9700	
N1—C7	1.364 (6)	C10—H10B	0.9700	
N2C5	1.328 (5)	C10—C13	1.530 (5)	
N2C6	1.367 (5)	C11—H11A	0.9700	
C1—C2	1.345 (7)	C11—H11B	0.9700	
C1—C3	1.339 (6)	C11—C15	1.535 (5)	
C1—C4	1.513 (6)	C12—H12A	0.9700	

supporting information

C2—C2 ⁱⁱ	1 395 (11)	C12—H12B	0 9700
C2—H2	0.9300	C13—H13	0.9800
C_{3} C_{3}	1 403 (9)	C13 - C14	1 529 (9)
C3—H3	0.9300	C14—H14A	0.9700
C4—H4A	0.9500	C14—H14B	0.9700
CA HAR	0.9700		1 518 (0)
C_{1}	1.401.(6)	C15 H15	0.0800
C6 H6	0.0300	015—1115	0.9800
0-110	0.9300		
01 N:1 01	142 26 (15)		100 5
$O_2 = N_1 = O_1$	(142.20(13))	$118D - C_0 - 118C$	109.3 100.2(2)
02 Ni1 Oli	01.20(11) 01.22(12)	C10 - C9 - C12	109.2(3)
02 NII 01	91.22(12)	C10 - C9 - C12	100.0(3)
02 Nil Oli	91.22 (12)	C1(-C9-C12)	108.0(3)
02 - N1 - 01	01.20 (11)	C16 - C9 - C10	113.3(3)
02 —NII— 02°	89.19 (18)	C16 - C9 - C11	109.9(3)
N2 - N11 - O1	109.38 (12)	C16 - C9 - C12	107.6 (3)
N2—N11—O1	95.55 (12)	C9—C10—H10A	109.6
N2 ⁱ —N11—O1	109.38 (12)	C9—C10—H10B	109.6
N2 ¹ —N11—O1 ¹	95.55 (12)	C9—C10—C13	110.1 (4)
$N2$ — $Ni1$ — $O2^{1}$	91.42 (13)	H10A—C10—H10B	108.1
N2—Ni1—O2	156.75 (13)	C13—C10—H10A	109.6
$N2^{i}$ — $Ni1$ — $O2^{i}$	156.75 (13)	C13—C10—H10B	109.6
$N2^{i}$ —Ni1—O2	91.42 (13)	C9—C11—H11A	109.7
N2—Ni1—N2 ⁱ	97.01 (19)	C9—C11—H11B	109.7
C5—N1—C4	127.6 (4)	C9—C11—C15	109.8 (4)
C5—N1—C7	108.1 (4)	H11A—C11—H11B	108.2
C7—N1—C4	124.3 (4)	C15—C11—H11A	109.7
C5—N2—Ni1	131.7 (3)	C15—C11—H11B	109.7
C5—N2—C6	105.9 (4)	С9—С12—С9 ^{ііі}	111.4 (4)
C6—N2—Ni1	121.6 (3)	C9 ⁱⁱⁱ —C12—H12A	109.3
C2—C1—C4	122.6 (4)	C9—C12—H12A	109.3
C3—C1—C2	117.8 (4)	C9 ⁱⁱⁱ —C12—H12B	109.3
C3—C1—C4	119.6 (4)	C9—C12—H12B	109.3
C1-C2-C2 ⁱⁱ	121.1 (3)	H12A—C12—H12B	108.0
С1—С2—Н2	119.4	C10-C13-C10 ⁱⁱⁱ	110.5 (5)
C2 ⁱⁱ —C2—H2	119.4	C10-C13-H13	109.4
C1—C3—C3 ⁱⁱ	121.1 (3)	C10 ⁱⁱⁱ —C13—H13	109.4
С1—С3—Н3	119.5	C14—C13—C10	109.1 (3)
C3 ⁱⁱ —C3—H3	119.5	C14—C13—C10 ⁱⁱⁱ	109.1 (3)
N1—C4—C1	113.1 (4)	C14—C13—H13	109.4
N1—C4—H4A	109.0	C13—C14—H14A	109.8
N1—C4—H4B	109.0	C13—C14—H14B	109.8
C1—C4—H4A	109.0	H14A—C14—H14B	108.3
C1—C4—H4B	109.0	C15—C14—C13	109.3 (5)
H4A—C4—H4B	107.8	C15—C14—H14A	109.8
N1—C5—C8	125.0 (4)	C15—C14—H14B	109.8
N2—C5—N1	110.1 (4)	C11—C15—C11 ⁱⁱⁱ	108.7 (5)
N2—C5—C8	124.9 (4)	C11 ⁱⁱⁱ —C15—H15	109.2

124.9	C11—C15—H15	109.2
110.2 (4)	C14—C15—C11	110.2 (3)
124.9	C14—C15—C11 ⁱⁱⁱ	110.2 (3)
127.1	C14—C15—H15	109.2
105.7 (4)	O1C16Ni1	62.3 (2)
127.1	O1—C16—O2	119.8 (4)
109.5	O1-C16-C9	121.8 (4)
109.5	O2-C16-Ni1	58.5 (2)
109.5	O2—C16—C9	118.4 (3)
109.5	C9—C16—Ni1	167.7 (3)
109.5		
11.1 (4)	C9-C10-C13-C14	60.6 (5)
-166.6 (3)	C9—C11—C15—C11 ⁱⁱⁱ	61.8 (6)
-11.6 (4)	C9-C11-C15-C14	-59.1 (5)
166.2 (3)	C10-C9-C11-C15	58.2 (4)
168.9 (3)	C10—C9—C12—C9 ⁱⁱⁱ	-58.9 (5)
-10.1 (6)	C10-C9-C16-Ni1	-105.9 (14)
-170.2 (3)	C10-C9-C16-O1	0.1 (5)
-0.3 (5)	C10-C9-C16-O2	-177.6 (4)
1.7 (7)	C10-C13-C14-C15	-60.4 (3)
63.2 (7)	C10 ⁱⁱⁱ —C13—C14—C15	60.4 (3)
-1.8 (7)	C11—C9—C10—C13	-59.4 (4)
-117.9 (5)	C11—C9—C12—C9 ⁱⁱⁱ	59.6 (5)
-179.6 (4)	C11—C9—C16—Ni1	131.7 (13)
-0.6 (7)	C11—C9—C16—O1	-122.4 (4)
179.8 (4)	C11—C9—C16—O2	59.9 (5)
177.1 (3)	C12—C9—C10—C13	58.2 (5)
-177.2 (3)	C12—C9—C11—C15	-60.0 (5)
-111.5 (5)	C12-C9-C16-Ni1	14.4 (15)
0.0 (5)	C12—C9—C16—O1	120.3 (4)
0.4 (5)	C12—C9—C16—O2	-57.4 (5)
-0.4 (5)	C13—C14—C15—C11	60.0 (3)
-179.4 (4)	C13—C14—C15—C11 ⁱⁱⁱ	-60.0 (3)
68.7 (6)	C16-C9-C10-C13	177.8 (4)
0.2 (5)	C16—C9—C11—C15	-177.0 (4)
179.2 (4)	C16-C9-C12-C9 ⁱⁱⁱ	178.1 (3)
-59.4 (6)		
	124.9 $110.2 (4)$ 124.9 127.1 $105.7 (4)$ 127.1 109.5 $10.1 (6)$ $-170.2 (3)$ $-0.3 (5)$ $1.7 (7)$ $63.2 (7)$ $-1.8 (7)$ $-117.9 (5)$ $-179.6 (4)$ $-0.6 (7)$ $179.8 (4)$ $177.1 (3)$ $-117.2 (3)$ $-111.5 (5)$ $0.0 (5)$ $0.4 (5)$ $-0.4 (5)$ $-179.4 (4)$ $68.7 (6)$ $0.2 (5)$ $179.2 (4)$ $-59.4 (6)$	124.9 $C11-C15-H15$ 110.2 (4) $C14-C15-C11$ 124.9 $C14-C15-C11^{iii}$ 127.1 $C14-C15-H15$ 105.7 (4) $01-C16-O2$ 109.5 $01-C16-O2$ 109.5 $02-C16-C9$ 109.5 $02-C16-C9$ 109.5 $02-C16-C9$ 109.5 $02-C16-C9$ 109.5 $02-C16-C13-C14$ -166.6 (3) $C9-C11-C15-C11^{iii}$ -11.6 (4) $C9-C11-C15-C14$ 166.2 (3) $C10-C9-C12-C9^{iii}$ -10.1 (6) $C10-C9-C16-O1$ -10.3 (5) $C10-C9-C16-O1$ -10.3 (5) $C10-C9-C16-O2$ 1.7 (7) $C10^{iii}-C13-C14-C15$ -16.8 (7) $C10-C9-C16-O2$ 1.7 (7) $C10^{iii}-C13-C14-C15$ -1.8 (7) $C11-C9-C16-O1$ -17.9 (5) $C11-C9-C16-O1$ -17.9 (6) $C11-C9-C16-O1$ -179.6 (4) $C11-C9-C16-O1$ -179.6 (4) $C11-C9-C16-O1$ -179.6 (4) $C11-C9-C16-O1$ -179.6 (4) $C12-C9-C16-O1$ <

Symmetry codes: (i) -*x*+1, *y*, -*z*; (ii) *x*, -*y*+1, *z*; (iii) *x*, -*y*, *z*.