CRYSTALLOGRAPHIC COMMUNICATIONS

Received 14 April 2023
Accepted 8 June 2023

Edited by A. S. Batsanov, University of Durham, United Kingdom

Keywords: crystal structure; platinum; Pt; caffeine; Hirshfeld surface analysis; hexahalide; $\pi$-stacking.

CCDC reference: 2268577

Supporting information: this article has supporting information at journals.iucr.org/e

# Synthesis, crystal structure and Hirshfeld surface analysis of bis(caffeinium) hexachloridoplatinum(IV) in comparison with some related compounds 

 Grigoriev ${ }^{\mathrm{a}}$ and Konstantin E. German ${ }^{\text {a }}$

${ }^{\text {a Frumkin }}$ Institute of Physical Chemistry and Electrochemistry Russian, Academy, of Sciences, 31 Leninsky Prospekt bldg 4, 119071 Moscow, Russian Federation, 'beoples' Friendship University of Russia (RUDN University), 6 MiklukhoMaklaya, St, 117198, Moscow, Russian Federation, and ${ }^{\text {c }}$ Kyrgyz-Russian Slavic University, 6 Chuy Avenue, Bishkek, Kyrgyzstan. *Correspondence e-mail: den-taranee.92@mail.ru

The molecular and crystal structure of the title compound, $\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left[\mathrm{PtCl}_{6}\right]$, synthesized from hexachloroplatinic acid and caffeine in methanol, was studied by single-crystal X-ray diffraction. The caffeinium cations form a double layer via hydrogen bonds and $\pi$-stacking interactions. The Hirshfeld surface analysis showed that the largest contribution to the crystal packing is made by $\mathrm{H} \cdots \mathrm{H}$ $(31.2 \%), \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}(22.6 \%), \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}(21.9 \%)$ contacts for the cation and $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}(79.3 \%)$ contacts for the anion.

## 1. Chemical context

Caffeine is a biologically active compound involved in a number of biochemical processes (Costa et al., 2010; Santos et al., 2010; Herman \& Herman, 2012). Some sources consider it the most common medicine in the world, constantly used by the population (Knapik et al., 2022). It is known that caffeine compounds are able to exert a strong influence on the action of various pharmaceutical drugs (Traganos et al., 1991). Currently, an active search is underway for platinum-based pharmaceutical drugs, primarily those with antitumor activity (Dilruba \& Kalayda, 2016). In this regard, it seemed important to us to study the interaction of caffeine with the chemical forms of platinum used in the pharmaceutical industry. In addition, platinum is actively used as a catalyst in chemical reactions, including various fields of fine organic synthesis (Blaser \& Studer, 2007; Zhang et al., 2006; Seselj et al., 2015). Study of interaction of $\mathrm{Pt}^{\mathrm{IV}}$ with various heterocyclic organic molecules is of great importance in the context of search for new catalytic reactions and synthetic routes. Studies on the interaction of hexachloroplatinates with various biological organic compounds have been performed before, for example by Novikov et al. $(2021,2022)$.
In this work, the title compound I containing $\left[\mathrm{PtCl}_{6}\right]^{2-}$ anions and caffeinium cations was synthesized by the reaction of caffeine with $\mathrm{H}_{2}\left[\mathrm{PtCl}_{6}\right]$ in methanol and structurally characterized, using Hirshfeld surface analysis to estimate relative contribution of non-covalent intermolecular interactions in comparison with similar compounds, bis(3-carboxypyridinium) hexachloroplatinum RECJAO (II; Novikov et al., 2022)

Table 1
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| $\mathrm{Pt} 1-\mathrm{Cl} 1$ | $2.3153(6)$ | $\mathrm{Pt} 1-\mathrm{Cl} 3$ | $2.3222(6)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Pt} 1-\mathrm{Cl} 2$ | $2.3161(6)$ |  |  |
|  |  |  |  |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$ | $89.97(2)$ | $\mathrm{Cl}^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl} 3$ | $89.93(2)$ |
| $\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl} 2$ | $90.03(2)$ | $\mathrm{Cl}^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl}^{\mathrm{i}}$ | $89.48(3)$ |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 3$ | $90.07(2)$ | $\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{Cl}^{\mathrm{i}}$ | $90.52(3)$ |

Symmetry code: (i) $-x,-y,-z$.
and methylcaffeinium hexafluorophospate AXUQIT (III; Kascatan-Nebioglu et al., 2004).


## 2. Structural commentary

Compound I (Fig.1a) crystallizes in the triclinic space group $P \overline{1}$. The unit cell (Fig. 1b) contains two caffeinium cations and one centrosymmetric hexachloroplatinate anion with a platinum atom in a special position $1 a$. In the imidazole ring of the caffeine molecule, the nitrogen N 1 atom is protonated. The cation, including the methyl groups, has a flat geometry (maximum deviation for non-hydrogen atoms $0.030 \AA$ ). The $\left[\mathrm{PtCl}_{6}\right]^{2-}$ anion has a slightly distorted octahedral geometry with similar $\mathrm{Pt}-\mathrm{Cl}$ bond distances (Table 1).

## 3. Supramolecular features

Hydrogen bonds and $\pi$-stacking play a significant role in the formation of intermolecular interactions in the crystal structure of $\mathbf{I} . \pi$-stacking is observed between the six-membered pyrimidine rings. Pairs of parallel cations related by an inversion centre, are stacked with interplanar separation of 3.404 (3) Å (Fig. 1b).


Figure 1
(a) Molecular structure of the title compound and (b) the unit cell with $\pi$ stacking interactions [symmetry code: (i) $-x,-y,-z$ ].

Table 2
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3^{\mathrm{ii}}$ | $0.85(2)$ | $2.45(2)$ | $3.296(2)$ | $174(3)$ |
| $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ | $0.89(3)$ | $2.81(3)$ | $3.455(3)$ | $131(3)$ |
| $\mathrm{C} 5-\mathrm{H} 5 C \cdots \mathrm{Cl} 2$ | 0.96 | 2.91 | $3.563(3)$ | 127 |
| $\mathrm{C} 7-\mathrm{H} 7 B \cdots 1^{\mathrm{iii}}$ | 0.96 | 2.44 | $3.346(4)$ | 157 |

Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $-x+1,-y,-z+1$.

Similarly, $\pi$-halogen interactions (Lucas et al., 2016; Savastano et al., 2018; Frontera et al., 2011; Novikov et al., 2022) are found between the aromatic ring C6/N4/C8/N3/C2/ C 1 (centroid Cz ) and chlorine atoms Cl 1 and Cl 2 , with $\mathrm{Cz} \cdots$ Cl distances of 3.8643 (11) and 3.7170 (11) $\AA$, respectively, and $\alpha$ angles between the ring plane and the $C z \cdots \mathrm{Cl}$ vector of 61.82 (7) and $62.28(7)^{\circ}$, respectively. It is uncertain whether such an interaction exists with $\mathrm{Cl} 3[\mathrm{Cz} \cdots \mathrm{Cl}=4.1102$ (12) $\AA, \alpha$ $\left.=58.68(8)^{\circ}\right]$.

The crystal packing in I can be represented as cationic and anionic layers parallel to the (001) plane (Fig. 2). The caffeinium cations are linked by $\pi$-stacking interactions and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into double layers, which are connected to the anionic layers by hydrogen bonds of the N $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ types (Table 2), the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{ii}}$ [symmetry code: (ii) $-x+1,-y+1,-z$ ] interaction being the strongest.

## 4. Hirshfeld surface analysis

Crystal Explorer 21 was used to calculate the Hirshfeld surfaces (HS) and two-dimensional fingerprint plots (Figs. 3 and 4). The donor and acceptor groups are visualized using a standard (high) surface resolution and $d_{\text {norm }}$ surfaces are mapped over a fixed colour scale of -0.401 (red) to 1.063 (blue) for cation and -0.402 to 0.934 a.u. for anion, as illus-


Figure 2
Crystal packing of $\mathbf{I}$, showing the pseudo-layered character.


Figure 3
Hirshfeld surface of the caffeinium cation mapped over (a) $d_{\text {norm }}$ and (b) shape-index.
trated in Fig. 3. Additionally, characteristic red and blue triangles indicative of $\pi$-stacking interactions are observed on the shape-index surface (Fig. 3b).

Analysis of intermolecular contacts shows that for the caffeinum cation, the largest contributions are made by $\mathrm{H} \cdots \mathrm{H}, \mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts (Fig. 5), and for the anion, by $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{Cl} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{Cl}$ contacts (Fig. 6). Whereas $\mathrm{H} \cdots \mathrm{H}$ contacts correspond to van der Waals interactions, $\mathrm{O} \cdots \mathrm{H}$ and $\mathrm{Cl} \cdots \mathrm{H}$ contacts can be described as weak hydrogen bonds. Typically, hydrogen bonds are revealed by characteristic discrete 'spikes' in the fingerprint plots - indeed, such features can be observed in Fig. $4 c, d, i$. The structures of II and III show distributions of contacts (Figs. 5 and 6) broadly similar to that of $\mathbf{I}$, if corrected for the different cation-anion ratios (1:1 for I and III, 2:1 for II).


Figure 4
Two-dimensional fingerprint plots for the cations and anions in $\mathbf{I}$.


Figure 5
Percentage contributions of intermolecular interactions for the cations in I and similar compounds.

## 5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016) revealed 13 unique structures with caffeinium cations, but none of them contained anions of $\mathrm{MHal}_{6}$ type. The closest analogues of I found were II and III (see above), the former containing N -protonated 3-carboxypyridine (nicotinic acid) as the cation and $\left[\mathrm{PtCl}_{6}\right]^{2-}$ as the anion, the latter containing a caffeinium cation with a methylated (rather than protonated) N 1 atom and a $\mathrm{PF}_{6}{ }^{-}$anion.

## 6. Synthesis and crystallization

A saturated solution of dried caffeine in 5 mL of methanol was prepared, to which a few drops of a concentrated solution of hexachloroplatinic acid in hydrochloric acid were added. After one week, the yellow crystals of I that formed were extracted from the solution.

## 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Reflections with resolution $>5 \AA$, obscured by the beamstop (beam diameter 0.6 mm ), were excluded from the refinement. The methyl groups $\mathrm{C}_{5} \mathrm{H}_{3}$ and $\mathrm{C}_{7} \mathrm{H}_{3}$ were refined as rigid bodies rotating around $\mathrm{N}-\mathrm{C}$


Figure 6
Percentage contributions of intermolecular interactions for the anions in I and similar compounds.

Table 3
Experimental details.

| Crystal data |  |
| :---: | :---: |
| Chemical formula | $\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left[\mathrm{PtCl}_{6}\right]$ |
| $M_{\text {r }}$ | 798.20 |
| Crystal system, space group | Triclinic, $P \overline{1}$ |
| Temperature (K) | 296 |
| $a, b, c(\AA)$ | 7.8800 (2), 8.1542 (2), 10.5374 (3) |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | 95.784 (2), 91.525 (2), 112.472 (1) |
| $V\left(\AA^{3}\right)$ | 620.92 (3) |
| Z | 1 |
| Radiation type | Mo K $\alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 6.34 |
| Crystal size (mm) | $0.18 \times 0.08 \times 0.02$ |
| Data collection |  |
| Diffractometer | Bruker Kappa APEXII areadetector |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.734, 1.000 |
| No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections | 9764, 3616, 3573 |
| $R_{\text {int }}$ | 0.035 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.703 |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.022, 0.041, 1.04 |
| No. of reflections | 3616 |
| No. of parameters | 173 |
| No. of restraints | 1 |
| H -atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | $0.45,-0.89$ |

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
bonds $\left[U_{\text {iso }}(\mathrm{H})\right.$ refined], ${\mathrm{C} 4 \mathrm{H}_{3}}$ as rotationally disordered between two orientations with occupancies of 0.62 (4) and $0.38(4)\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$, with $\mathrm{C}-\mathrm{H} 0.96 \AA$ in each case. The H atoms at N 1 and C 3 were refined isotropically.

## Acknowledgements

The X-ray diffraction experiment was carried out at the Centre of Shared Use of Physical Methods of Investigation of IPCE RAS.

## Funding information

Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (award No. 122011300061-3). This work was supported by the RUDN University Strategic Academic Leadership Program.

## References

Blaser, H.-U. \& Studer, M. (2007). Acc. Chem. Res. 40, 1348-1356. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Costa, J., Lunet, N., Santos, C., Santos, J. \& Vaz-Carneiro, A. (2010). J. Alzheimers Dis. 20, S221-S238.
Dilruba, S. \& Kalayda, G. V. (2016). Cancer Chemother. Pharmacol. 77, 1103-1124.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. \& Reedijk, J. (2011). Angew. Chem. Int. Ed. 50, 9564-9583.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Herman, A. \& Herman, A. P. (2012). Skin Pharmacol. Physiol. 26, 814.

Kascatan-Nebioglu, A., Panzner, M. J., Garrison, J. C., Tessier, C. A. \& Youngs, W. J. (2004). Organometallics, 23, 1928-1931.
Knapik, J., Steelman, R., Trone, D., Farina, E. \& Lieberman, H. (2022). Nutr. J. 21, 22.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lucas, X., Bauzá, A., Frontera, A. \& Quiñonero, D. (2016). Chem. Sci. 7, 1038-1050.
Novikov, A. P., Volkov, M. A., Safonov, A. V. \& Grigoriev, M. S. (2022). Crystals, 12, 271.

Novikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. \& Abkhalimov, E. V. (2021). Crystals, 11, 1417.
Santos, C., Costa, J., Santos, J., Vaz-Carneiro, A. \& Lunet, N. (2010). J. Alzheimers Dis. 20, S187-S204.
Savastano, M., García, C., López de la Torre, M. D., Pichierri, F., Bazzicalupi, C., Bianchi, A. \& Melguizo, M. (2018). Inorg. Chim. Acta, 470, 133-138.
Seselj, N., Engelbrekt, C. \& Zhang, J. (2015). Sci. Bull. 60, 864-876.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Traganos, F., Kapuscinski, J. \& Darzynkiewicz, Z. (1991). Cancer Res. 51, 3682-3689.
Zhang, L., Sun, J. \& Kozmin, S. A. (2006). Adv. Synth. Catal. 348, 2271-2296.

## supporting information

Acta Cryst. (2023). E79, 644-647 [https://doi.org/10.1107/S2056989023005157]

# Synthesis, crystal structure and Hirshfeld surface analysis of bis(caffeinium) hexachloridoplatinum(IV) in comparison with some related compounds 

Karim A. Zagidullin, Anton P. Novikov, Daria A. Zelenina, Mikhail S. Grigoriev and<br>Konstantin E. German

## Computing details

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT v7.68A (Bruker, 2013); data reduction: SAINT v7.68A (Bruker, 2013); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium) hexachloridoplatinum(IV)

## Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left[\mathrm{PtCl}_{6}\right]$
$M_{r}=798.20$
Triclinic, $P \overline{1}$
$a=7.8800(2) \AA$
$b=8.1542$ (2) $\AA$
$c=10.5374(3) \AA$
$\alpha=95.784(2)^{\circ}$
$\beta=91.525(2)^{\circ}$
$\gamma=112.472(1)^{\circ}$
$V=620.92(3) \AA^{3}$

$$
Z=1
$$

$F(000)=386$
$D_{\mathrm{x}}=2.135 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4212 reflections
$\theta=3.1-29.8^{\circ}$
$\mu=6.34 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, orange
$0.18 \times 0.08 \times 0.02 \mathrm{~mm}$

## Data collection

Bruker Kappa APEXII area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.734, T_{\text {max }}=1.000$
9764 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.041$
$S=1.04$
3616 reflections
173 parameters

3616 independent reflections
3573 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-14 \rightarrow 14$

## 1 restraint

Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0171 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

# supporting information 

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}_{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.89 \mathrm{e}_{\AA^{-3}}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ | Occ. $(<1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pt1 | 0.000000 | 0.000000 | 0.000000 | 0.02050 (4) |  |
| Cl1 | -0.04784 (10) | 0.01026 (9) | 0.21599 (5) | 0.03560 (15) |  |
| C12 | 0.30304 (9) | 0.03978 (10) | 0.04685 (6) | 0.03557 (14) |  |
| Cl 3 | 0.08989 (10) | 0.30803 (8) | 0.01376 (6) | 0.03532 (14) |  |
| O1 | 0.5394 (3) | 0.1187 (3) | 0.3683 (2) | 0.0474 (5) |  |
| O2 | 0.1510 (3) | 0.4010 (3) | 0.4685 (2) | 0.0517 (6) |  |
| N1 | 0.5642 (3) | 0.6187 (3) | 0.1713 (2) | 0.0340 (5) |  |
| H1 | 0.656 (3) | 0.646 (4) | 0.126 (3) | 0.053 (10)* |  |
| N2 | 0.3378 (3) | 0.6487 (3) | 0.2696 (2) | 0.0317 (5) |  |
| N3 | 0.5758 (3) | 0.3628 (3) | 0.2700 (2) | 0.0296 (5) |  |
| N4 | 0.3502 (3) | 0.2641 (3) | 0.42037 (19) | 0.0289 (5) |  |
| C1 | 0.3648 (4) | 0.5055 (3) | 0.3126 (2) | 0.0271 (5) |  |
| C2 | 0.5073 (4) | 0.4880 (3) | 0.2510 (2) | 0.0269 (5) |  |
| C3 | 0.4589 (4) | 0.7135 (4) | 0.1859 (3) | 0.0378 (7) |  |
| H3 | 0.475 (4) | 0.812 (4) | 0.150 (3) | 0.046 (9)* |  |
| C4 | 0.1984 (5) | 0.7171 (4) | 0.3115 (3) | 0.0485 (8) |  |
| H4A | 0.127241 | 0.645910 | 0.373253 | 0.058* | 0.38 (4) |
| H4B | 0.258237 | 0.838989 | 0.349513 | 0.058* | 0.38 (4) |
| H4C | 0.118735 | 0.711220 | 0.239191 | 0.058* | 0.38 (4) |
| H4D | 0.208901 | 0.818169 | 0.268052 | 0.058* | 0.62 (4) |
| H4E | 0.077905 | 0.625090 | 0.291792 | 0.058* | 0.62 (4) |
| H4F | 0.217407 | 0.752859 | 0.402113 | 0.058* | 0.62 (4) |
| C5 | 0.7299 (4) | 0.3460 (4) | 0.2023 (3) | 0.0461 (8) |  |
| H5A | 0.817041 | 0.334293 | 0.262454 | 0.097 (9)* |  |
| H5B | 0.788825 | 0.450488 | 0.160388 | 0.097 (9)* |  |
| H5C | 0.684455 | 0.242150 | 0.139850 | 0.097 (9)* |  |
| C6 | 0.2746 (4) | 0.3915 (3) | 0.4059 (2) | 0.0306 (5) |  |
| C7 | 0.2650 (4) | 0.1360 (4) | 0.5105 (3) | 0.0387 (7) |  |
| H7A | 0.226895 | 0.194389 | 0.581227 | 0.051 (5)* |  |
| H7B | 0.352395 | 0.090814 | 0.541266 | 0.051 (5)* |  |
| H7C | 0.159753 | 0.038818 | 0.468151 | 0.051 (5)* |  |
| C8 | 0.4901 (4) | 0.2398 (4) | 0.3536 (2) | 0.0312 (6) |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pt1 | $0.02068(7)$ | $0.02260(7)$ | $0.01919(6)$ | $0.00823(5)$ | $0.00384(4)$ | $0.00678(4)$ |


| C11 | $0.0415(4)$ | $0.0448(4)$ | $0.0214(3)$ | $0.0164(3)$ | $0.0078(2)$ | $0.0081(2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C12 | $0.0232(3)$ | $0.0458(4)$ | $0.0396(3)$ | $0.0136(3)$ | $0.0015(2)$ | $0.0125(3)$ |
| C13 | $0.0420(4)$ | $0.0236(3)$ | $0.0410(3)$ | $0.0114(3)$ | $0.0123(3)$ | $0.0088(2)$ |
| O1 | $0.0488(13)$ | $0.0419(12)$ | $0.0622(14)$ | $0.0242(11)$ | $0.0122(10)$ | $0.0258(10)$ |
| O2 | $0.0584(15)$ | $0.0519(14)$ | $0.0569(13)$ | $0.0294(12)$ | $0.0344(11)$ | $0.0201(11)$ |
| N1 | $0.0342(13)$ | $0.0317(12)$ | $0.0351(12)$ | $0.0088(10)$ | $0.0109(10)$ | $0.0131(9)$ |
| N2 | $0.0337(12)$ | $0.0253(11)$ | $0.0357(11)$ | $0.0106(10)$ | $0.0019(9)$ | $0.0054(9)$ |
| N3 | $0.0285(12)$ | $0.0289(11)$ | $0.0327(11)$ | $0.0110(9)$ | $0.0066(9)$ | $0.0085(8)$ |
| N4 | $0.0331(12)$ | $0.0278(11)$ | $0.0258(10)$ | $0.0103(9)$ | $0.0052(8)$ | $0.0090(8)$ |
| C1 | $0.0280(13)$ | $0.0218(12)$ | $0.0303(12)$ | $0.0079(10)$ | $0.0015(10)$ | $0.0040(9)$ |
| C2 | $0.0288(13)$ | $0.0236(12)$ | $0.0251(11)$ | $0.0062(10)$ | $0.0009(9)$ | $0.0049(9)$ |
| C3 | $0.0453(18)$ | $0.0281(14)$ | $0.0393(15)$ | $0.0110(13)$ | $0.0048(12)$ | $0.0129(11)$ |
| C4 | $0.0430(18)$ | $0.0396(18)$ | $0.071(2)$ | $0.0243(15)$ | $0.0078(16)$ | $0.0092(15)$ |
| C5 | $0.0368(17)$ | $0.0457(18)$ | $0.062(2)$ | $0.0201(14)$ | $0.0206(14)$ | $0.0134(15)$ |
| C6 | $0.0328(14)$ | $0.0288(13)$ | $0.0283(12)$ | $0.0097(11)$ | $0.0043(10)$ | $0.0033(10)$ |
| C7 | $0.0433(17)$ | $0.0378(16)$ | $0.0320(13)$ | $0.0087(13)$ | $0.0098(12)$ | $0.0172(11)$ |
| C8 | $0.0290(14)$ | $0.0296(14)$ | $0.0329(13)$ | $0.0081(11)$ | $0.0001(10)$ | $0.0082(10)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $A$, ${ }^{\circ}$ )

| $\mathrm{Pt} 1-\mathrm{Cl1}{ }^{\text {i }}$ | 2.3153 (6) | N4-C7 | 1.464 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Pt1}-\mathrm{Cl} 1$ | 2.3153 (6) | N4-C8 | 1.389 (3) |
| $\mathrm{Pt} 1-\mathrm{Cl} 2{ }^{\text {i }}$ | 2.3161 (6) | C1-C2 | 1.358 (4) |
| $\mathrm{Pt} 1-\mathrm{Cl} 2$ | 2.3161 (6) | C1-C6 | 1.433 (3) |
| $\mathrm{Pt} 1-\mathrm{Cl} 3$ | 2.3222 (6) | C3-H3 | 0.89 (3) |
| $\mathrm{Pt} 1-\mathrm{Cl}^{3}$ | 2.3222 (6) | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$ | 0.9600 |
| O1-C8 | 1.213 (3) | C4-H4B | 0.9600 |
| O2-C6 | 1.213 (3) | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 0.9600 |
| N1-H1 | 0.846 (18) | C4-H4D | 0.9600 |
| N1-C2 | 1.370 (3) | C4-H4E | 0.9600 |
| N1-C3 | 1.335 (4) | C4-H4F | 0.9600 |
| N2-C1 | 1.380 (3) | C5-H5A | 0.9600 |
| N2-C3 | 1.312 (4) | C5-H5B | 0.9600 |
| N2-C4 | 1.469 (4) | C5-H5C | 0.9600 |
| N3-C2 | 1.354 (3) | C7-H7A | 0.9600 |
| N3-C5 | 1.468 (3) | C7-H7B | 0.9600 |
| N3-C8 | 1.389 (3) | C7-H7C | 0.9600 |
| N4-C6 | 1.399 (3) |  |  |
| $\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{Cl1}$ | 180.0 | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | 107.3 (2) |
| $\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{Cl} 2$ | 89.97 (2) | N1-C3-H3 | 125 (2) |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2{ }^{\text {i }}$ | 90.03 (2) | N2-C3-N1 | 109.9 (2) |
| $\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{Cl} 2$ | 90.03 (2) | $\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3$ | 125 (2) |
| $\mathrm{Cl} 1^{i}-\mathrm{Ptl}-\mathrm{Cl}^{\text {i }}$ | 89.97 (2) | N2-C4-H4A | 109.5 |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl}^{3}{ }^{\text {i }}$ | 89.93 (2) | N2-C4-H4B | 109.5 |
| $\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{Cl} 3$ | 90.07 (2) | N2-C4-H4C | 109.5 |
| $\mathrm{Cl1}-\mathrm{Pt} 1-\mathrm{Cl} 3$ | 89.93 (2) | H4A-C4-H4B | 109.5 |
| $\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl3}^{\text {i }}$ | 90.07 (2) | H4A-C4-H4C | 109.5 |


| $\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{Cl}^{\text {i }}$ | 180.0 |
| :---: | :---: |
| $\mathrm{Cl} 2{ }^{\text {i }} \mathrm{Pt1}-\mathrm{Cl} 3$ | 90.52 (3) |
| Cl2-Pt1-Cl3 | 89.48 (3) |
| $\mathrm{Cl2}-\ldots \mathrm{Pt} 1-\mathrm{Cl}^{\text {i }}$ | 89.48 (3) |
| $\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{Cl3}^{\text {i }}$ | 90.52 (3) |
| $\mathrm{Cl3}^{\mathbf{i}}-\mathrm{Pt} 1-\mathrm{Cl} 3$ | 180.0 |
| C2-N1-H1 | 128 (2) |
| C3-N1-H1 | 124 (2) |
| C3-N1-C2 | 107.7 (2) |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$ | 125.7 (2) |
| C3-N2-C1 | 108.2 (2) |
| C3-N2-C4 | 126.1 (2) |
| C2-N3-C5 | 123.2 (2) |
| C2-N3-C8 | 117.9 (2) |
| C8-N3-C5 | 118.8 (2) |
| C6-N4-C7 | 116.2 (2) |
| C8-N4-C6 | 127.2 (2) |
| C8-N4-C7 | 116.5 (2) |
| N2-C1-C6 | 131.1 (2) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$ | 106.9 (2) |
| C2- $\mathrm{C} 1-\mathrm{C} 6$ | 122.0 (2) |
| N3-C2-N1 | 128.6 (2) |
| N3-C2-C1 | 124.1 (2) |
| $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | -0.4 (3) |
| $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 3$ | 179.0 (2) |
| N2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$ | -0.4 (5) |
| $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 4$ | -179.0 (2) |
| C1-N2-C3-N1 | 0.3 (3) |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$ | -0.6 (3) |
| $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 8-\mathrm{O} 1$ | 175.7 (2) |
| C2-N3-C8-N4 | -5.5 (3) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 2$ | 177.4 (3) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 4$ | -1.2 (3) |
| C3-N1-C2-N3 | -178.7 (3) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | 0.6 (3) |
| $\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$ | 0.0 (3) |
| C3-N2-C1-C6 | 178.1 (3) |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$ | -179.4 (3) |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$ | -1.4 (4) |
| C4-N2-C3-N1 | 179.8 (3) |


| H4B-C4-H4C | 109.5 |
| :--- | :--- |
| H4D-C4-H4E | 109.5 |
| H4D-C4-H4F | 109.5 |
| H4E-C4-H4F | 109.5 |
| N3-C5-H5A | 109.5 |
| N3-C5-H5B | 109.5 |
| N3-C5-H5C | 109.5 |
| H5A-C5-H5B | 109.5 |
| H5A-C5-H5C | 109.5 |
| H5B-C5-H5C | 109.5 |
| O2-C6-N4 | $122.2(2)$ |
| O2-C6-C1 | $126.5(3)$ |
| N4-C6-C1 | $111.2(2)$ |
| N4-C7-H7A | 109.5 |
| N4-C7-H7B | 109.5 |
| N4-C7-H7C | 109.5 |
| H7A-C7-H7B | 109.5 |
| H7A-C7-H7C | 109.5 |
| H7B-C7-H7C | 109.5 |
| O1-C8-N3 | $120.5(3)$ |
| O1-C8-N4 | $122.1(2)$ |
| N4-C8-N3 | $117.3(2)$ |

-0.8 (4)
179.9 (3)
-1.5 (4)
177.2 (2)
-175.8 (3)
5.4 (4)
-178.6 (2)
0.7 (4)
3.3 (4)
-178.1 (2)
0.3 (4)
-178.4 (2)
-178.0 (3)
2.8 (4)
179.4 (3)
-2.0 (4)

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry (A, ${ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3^{\mathrm{ii}}$ | $0.85(2)$ | $2.45(2)$ | $3.296(2)$ | $174(3)$ |

## supporting information

| $\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ | $0.89(3)$ | $2.81(3)$ | $3.455(3)$ | $131(3)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 5 — \mathrm{H} 5 \mathrm{C} \cdots \mathrm{Cl} 2$ | 0.96 | 2.91 | $3.563(3)$ | 127 |
| $\mathrm{C} 7 — \mathrm{H} 7 B \cdots \mathrm{O} 1^{\mathrm{iii}}$ | 0.96 | 2.44 | $3.346(4)$ | 157 |

Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $-x+1,-y,-z+1$.

