

Received 22 March 2023 Accepted 12 June 2023

Edited by A. S. Batsanov, University of Durham, United Kingdom

Keywords: crystal structure; lutidine; sulfate; transition metal; coordination chemistry.

CCDC references: 2269315; 2269314; 2269313; 2269312

Supporting information: this article has supporting information at journals.iucr.org/e

648

3,5-Lutidine pentaaqua sulfate complexes of firstrow transition metals: $[M(3,5-\text{lutidine})(\text{H}_2\text{O})_5]SO_4$, with M = Mn, Co, Ni, and Zn

James A. Golen and David R. Manke*

University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. *Correspondence e-mail: dmanke@umassd.edu

The reactions of $MnSO_4 \cdot H_2O$, $CoSO_4 \cdot 7H_2O$, $NiSO_4 \cdot 6H_2O$ and $ZnSO_4 \cdot 7H_2O$ with 3,5-lutidine (3,5-dimethylpyridine) yield crystals of pentaaqua(3,5-dimethylpyridine- κN)manganese(II) sulfate, $[Mn(C_7H_9N)(H_2O)_5]SO_4$, (1), pentaaqua(3,5-dimethylpyridine- κN)cobalt(II) sulfate, $[Co(C_7H_9N)(H_2O)_5]SO_4$, (2), pentaaqua(3,5-dimethylpyridine- κN)nickel(II) sulfate, $[Ni(C_7H_9N)(H_2O)_5]SO_4$, (2), and pentaaqua(3,5-dimethylpyridine- κN)zinc(II) sulfate, $[Zn(C_7H_9N)-(H_2O)_5]SO_4$, (4), which were characterized by single-crystal X-ray diffraction. The four crystals are isostructural, demonstrating near identical unit-cell parameters and atomic positions. The metal atoms are all octahedrally coordinated, with one lutidine ligand and five water ligands. The sulfate dianion hydrogen bonds with the coordinated water molecules of the dicationic metal complex salts, generating infinite three-dimensional networks.

1. Chemical context

Metal-pyridine sulfate complexes have been reported in the literature since the 1880s (Jørgensen, 1886; Reitzenstein, 1898; Manke, 2021), though an extensive and systematic look at the crystal structures of this class of compounds has never been undertaken. In recent years, our laboratory began looking at the structures of first-row transition-metal-pyridine sulfate complexes, first with the parent pyridine (Park *et al.*, 2019; Pham *et al.*, 2018; Roy *et al.*, 2018) and then with picoline ligands (Park *et al.*, 2022; Pham *et al.*, 2019). In our efforts to examine the structural diversity of this class of compounds, we recently expanded to look at lutidine ligands. Herein we report four isostructural first-row transition-metal complexes of 3,5-lutidine.

https://doi.org/10.1107/S2056989023005261

Table 1 Selected bond lengths (\AA) for compounds (1)–(4).

Compound	<i>M</i> -N1	S1-O4	S1-O5	S1-O6
(1)	2.227 (3)	1.462 (2)	1.4650 (17)	1.484 (2)
(2)	2.112 (3)	1.462 (3)	1.4618 (17)	1.488 (2)
(3)	2.066 (2)	1.464 (2)	1.4588 (14)	1.4895 (19)
(4)	2.0924 (19)	1.4641 (19)	1.4596 (13)	1.4886 (18)

2. Structural commentary

The four compounds described herein are isostructural, demonstrating near identical unit-cell parameters and atomic positions (Fig. 1). The asymmetric unit comprises half of the cation and half of the sulfate anion, both ions having crystal-lographic mirror symmetry. In the cation, the metal atom, the lutidine ligand and the O1 atom of the *trans*-aqua ligand lie in the mirror plane, while two independent aqua ligands are in general positions. In each structure, both methyl groups of the lutidine ligand are rotationally disordered between two mirror-related orientations. In the anion, atoms S1, O4 and O6 lie in the mirror plane, while O5 and O5ⁱⁱ are related by it. Reflection generates the full dicationic complex, which exhibits an octahedral coordination with one lutidine and five water ligands bound to the metal, as well as the full sulfate dianion.

The MO_3N plane formed by the three crystallographically unique water molecules and the lutidine nitrogen atom is rotated by 45.52 (4)° from the plane of the pyridine ring for Mn, 45.79 (4)° for Co, 45.93 (3)° for Ni, and 45.75 (3)° for Zn.

Figure 1

The molecular structures of 3,5-lutidine pentaaqua manganese sulfate (1), 3,5-lutidine pentaaqua cobalt sulfate (2), 3,5-lutidine pentaaqua nickel sulfate (3), and 3,5-lutidine pentaaqua zinc sulfate (4) showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Dashed bonds are used to show the disordered hydrogen atoms on the methyl groups. Symmetry codes: (i) $x, \frac{3}{2} - y, z$; (ii) $x, \frac{1}{2} - y, z$.

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for (1).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots O5^{i}$	0.79(1)	2.00(1)	2.775 (2)	166 (3)
$O2-H2A\cdots O6^{i}$	0.78(1)	2.06 (1)	2.832 (3)	172 (3)
$O2-H2B\cdots O6^{ii}$	0.78(1)	2.10 (2)	2.850 (3)	162 (4)
$O3-H3A\cdots O5^{iii}$	0.78(1)	1.98 (1)	2.752 (2)	177 (4)
$O3-H3B\cdots O4$	0.78 (1)	1.99 (1)	2.748 (3)	165 (3)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for (2).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots O5^i$	0.78(1)	2.01 (1)	2.782 (2)	173 (3)
$O2-H2A\cdots O6^{i}$	0.78(1)	2.07 (1)	2.840 (3)	169 (3)
$O2-H2B\cdots O6^{ii}$	0.78(1)	2.07(2)	2.822 (3)	161 (4)
$O3-H3A\cdots O5^{iii}$	0.77(1)	1.99 (1)	2.764 (2)	174 (3)
O3−H3 <i>B</i> ···O4	0.78 (1)	1.97 (1)	2.742 (3)	171 (3)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$.

Table 4Hydrogen-bond geometry (Å, °) for (3).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01-H1\cdots O5^{i}$ $02-H2A\cdots O6^{i}$ $02-H2B\cdots O6^{ii}$ $03-H3A\cdots O5^{iii}$	0.78 (1)	2.00 (1)	2.7822 (18)	174 (3)
	0.78 (1)	2.08 (1)	2.857 (2)	172 (2)
	0.79 (1)	2.06 (1)	2.821 (2)	163 (3)
	0.77 (1)	2.00 (1)	2.7683 (18)	173 (2)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$.

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for (4).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O5^{i}$	0.78 (1)	2.01 (1)	2.7892 (17)	172 (3)
$O2-H2A\cdots O6^{i}$	0.78(1)	2.07(1)	2.845 (2)	173 (2)
$O2-H2B\cdots O6^{ii}$	0.79 (1)	2.08(1)	2.833 (2)	162 (3)
$O3-H3A\cdots O5^{iii}$	0.77(1)	1.99 (1)	2.7571 (18)	177 (2)
$O3-H3B\cdots O4$	0.77 (1)	1.97 (1)	2.7395 (19)	172 (2)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$.

The M-N distances (Table 1) observed in the complexes are all consistent with the ionic radii for the metals (Shannon, 1976). The full sulfate dianions have three near equivalent S-O bonds (S1-O4, S1-O5 and S1-O5ⁱⁱ) with two metalbound waters hydrogen bonding to each oxygen atom. There is also one slightly longer S-O bond (S1-O6) with four metal-bound waters hydrogen bonding to the oxygen. All S-O distances are listed in Table 1.

3. Supramolecular features

The ions in all of the compounds described are connected in an extended 3D network through hydrogen bonding. The major hydrogen bonds are between the metal-aqua complexes and the sulfate dianions (Tables 2–5). The extended structure packing of all compounds show π - π stacking between lutidine rings of adjacent complexes. The parameters of the π - π

research communications

Table 6		
Parameters of	f π - π interactions	s (Å).

	(1)	(2)	(3)	(4)
Centroid-to-centroid Plane-to-plane shift Plane-to-centroid	3.6461 (6) 0.770 (3) 3.5639 (3)	3.6485 (6) 0.829 (3) 3.5532 (2)	3.6337 (5) 0.8599 (19) 3.53045 (15)	3.6370 (5) 0.8290 (19) 3.54130 (15)

interactions are in Table 6. The crystal packing of the zinc complex is shown in Fig. 2. The crystal packing of the other three compounds is isostructural in nature.

4. Database survey

While there are many examples of metal-pyridine pentahydrate complexes, there is only one pyridine-based pentahydrate complex of a transition metal with a sulfate counterion, which is the dimer of zinc bridged by 1,2-bis(pyridin-3ylmethylene)hydrazine (YUMVAG; Lozovan *et al.*, 2020). The other similar structures with sulfur-based anions in the literature include a 3-carboxamidepyridine complex of cobalt with a sulfonate counter-ion (CACFAP; Lian *et al.*, 2010), and a pyridine nickel sulfonate complex with a calixarene tetrasulfonate counter-anion (VIWHUE: Atwood *et al.*, 1991). The only similar 3,5-lutidine structures are a tetrakis(3,5-lutidine)

Table 7Experimental details.

Figure 2

The crystal packing of 3,5-lutidine pentaaqua zinc sulfate (4). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines and π - π interactions are shown as bold dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

	(1)	(2)	(3)	(4)
Crystal data				
Chemical formula	$[Mn(C_7H_9N)(H_2O)_5]SO_4$	$[Co(C_7H_9N)(H_2O)_5]SO_4$	[Ni(C ₇ H ₉ N)(H ₂ O) ₅]SO ₄	$[Zn(C_7H_9N)(H_2O)_5]SO_4$
	348.23		352.00	
Crystal system, space group	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma
Temperature (K)	297	297	297	297
<i>a</i> , <i>b</i> , <i>c</i> (A)	17.1868 (13), 7.1278 (5), 11.4447 (8)	17.1238 (10), 7.1064 (4), 11.2576 (6)	17.1196 (8), 7.0609 (3), 11.2233 (5)	17.1312 (8), 7.0826 (3), 11.2879 (5)
$V(Å^3)$	1402.02 (17)	1369.92 (13)	1356.67 (10)	1369.60 (11)
Z	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.13	1.44	1.62	1.99
Crystal size (mm)	$0.22\times0.08\times0.05$	$0.08\times0.08\times0.06$	$0.17 \times 0.04 \times 0.03$	$0.21\times0.13\times0.1$
Data collection				
Diffractometer	Bruker D8 Venture CMOS	Bruker D8 Venture CMOS	Bruker D8 Venture CMOS	Bruker D8 Venture CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2021)	Multi-scan (SADABS; Bruker, 2021)	Multi-scan (SADABS; Bruker, 2021)	Multi-scan (SADABS; Bruker, 2021)
T_{\min}, T_{\max}	0.585, 0.745	0.714, 0.745	0.680, 0.745	0.671, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27161, 1460, 1265	32289, 1367, 1194	36924, 1499, 1386	46710, 1516, 1414
Rint	0.074	0.070	0.049	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.612	0.603	0.625	0.625
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.081, 1.11	0.028, 0.069, 1.12	0.023, 0.060, 1.10	0.021, 0.056, 1.12
No. of reflections	1460	1367	1499	1516
No. of parameters	128	128	128	128
No. of restraints	7	7	7	7
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e \ A}^{-5})$	0.39, -0.42	0.43, -0.29	0.44, -0.33	0.40, -0.27

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

copper sulfate complex (IWAWEJ; Bowmaker *et al.*, 2011), and a bis(3,5-lutidine) nickel thiosulfate dimer (BEMNIS; Pladzyk *et al.*, 2012).

5. Synthesis and crystallization

A metal sulfate (44 mg of $MnSO_4 \cdot H_2O$, 44 mg of $CoSO_4 \cdot 7H_2O$, 217 mg of $NiSO_4 \cdot 6H_2O$, 33 mg of $ZnSO_4 \cdot 7H_2O$) was dissolved in five drops of water and 2.5 mL of 3,5-lutidine. The resulting solution was heated to 338–343 K for twelve hours and allowed to cool slowly to room temperature producing single crystals suitable for X-ray diffraction. The manganese crystals formed as colorless blocks, the cobalt crystals formed as pale-green plates, and the zinc crystals formed as colorless blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. The water hydrogen atoms H1, H2A, H2B, H3A, and H3B were found in difference-Fourier maps. These hydrogen atoms were refined isotropically, using DFIX restraints with O—H distances of 0.78 (1) Å. Isotopic displacement parameters were set to 1.5 U_{eq} of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions [C—H = 0.93 Å (sp^2), 0.96 Å (CH₃)]. Isotropic displacement parameters were set to 1.2 U_{eq} of the parent aromatic carbon atoms and 1.5 U_{eq} of the parent methyl atoms.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

- Atwood, J. L., Orr, G. W., Hamada, F., Vincent, R. L., Bott, S. G. & Robinson, K. D. (1991). J. Am. Chem. Soc. 113, 2760–2761.
- Bowmaker, G. A., Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). *Inorg. Chim. Acta*, 375, 31–40.
- Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Jørgensen, S. M. (1886). J. Prakt. Chem. 33, 489-538.
- Lian, Z., Zhao, N. & Liu, P. (2010). Z. Kristallogr. New Cryst. Struct. 225, 371–373.
- Lozovan, V., Kravtsov, V. C., Coropceanu, E. B., Siminel, A. V., Kulikova, O. V., Costriucova, N. V. & Fonari, M. S. (2020). *J. Solid State Chem.* **286**, 121312.
- Manke, D. R. (2021). Bull. Hist. Chem. 46, 179-185.
- Park, A. M., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 108–110.
- Park, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888–1891.
- Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861.
- Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574.
- Pladzyk, A., Daca, N. & Ponikiewski, L. (2012). Z. Anorg. Allg. Chem. 638, 1497–1500.
- Reitzenstein, F. (1898). Z. Anorg. Chem. 18, 253-304.
- Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2023). E79, 648-651 [https://doi.org/10.1107/S2056989023005261]

3,5-Lutidine pentaaqua sulfate complexes of first-row transition metals: [M(3,5-lutidine)(H₂O)₅]SO₄, with M = Mn, Co, Ni, and Zn

James A. Golen and David R. Manke

Computing details

For all structures, data collection: *APEX4* (Bruker, 2021); cell refinement: *SAINT* (Bruker, 2021); data reduction: *SAINT* (Bruker, 2021); program(s) used to solve structure: *SHELXT2014* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Pentaaqua(3,5-dimethylpyridine-κN)manganese(II) sulfate (1)

Crystal data	
$[Mn(C_{7}H_{9}N)(H_{2}O)_{5}]SO_{4}$ $M_{r} = 348.23$ Orthorhombic, <i>Pnma</i> a = 17.1868 (13) Å b = 7.1278 (5) Å c = 11.4447 (8) Å $V = 1402.02 (17) Å^{3}$ Z = 4 F(000) = 724	$D_x = 1.650 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7487 reflections $\theta = 3.0-25.7^{\circ}$ $\mu = 1.13 \text{ mm}^{-1}$ T = 297 K BLOCK, colourless $0.22 \times 0.08 \times 0.05 \text{ mm}$
Data collection	
Bruker D8 Venture CMOS diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2021) $T_{min} = 0.585$, $T_{max} = 0.745$ 27161 measured reflections	1460 independent reflections 1265 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 25.8^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -20 \rightarrow 20$ $k = -8 \rightarrow 8$ $l = -13 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.081$ S = 1.11 1460 reflections 128 parameters 7 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0433P)^2 + 0.6101P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.39$ e Å ⁻³ $\Delta\rho_{min} = -0.42$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mn1	0.38853 (3)	0.750000	0.19452 (4)	0.02628 (16)	
S1	0.33347 (4)	0.250000	-0.03698 (6)	0.02472 (19)	
O1	0.35349 (17)	0.750000	0.0101 (2)	0.0431 (6)	
O2	0.47201 (10)	0.9730 (3)	0.14197 (15)	0.0370 (4)	
O3	0.30623 (11)	0.5330(3)	0.23922 (17)	0.0442 (4)	
O4	0.29510 (15)	0.250000	0.0770 (2)	0.0442 (6)	
05	0.31258 (11)	0.0805 (2)	-0.10225 (15)	0.0433 (4)	
O6	0.41874 (13)	0.250000	-0.0163 (2)	0.0414 (6)	
N1	0.44712 (15)	0.750000	0.3681 (2)	0.0305 (6)	
C1	0.52514 (18)	0.750000	0.3748 (3)	0.0335 (7)	
H1A	0.553273	0.750000	0.305376	0.040*	
C2	0.56607 (18)	0.750000	0.4786 (3)	0.0322 (7)	
C3	0.52253 (19)	0.750000	0.5812 (3)	0.0344 (7)	
Н3	0.547891	0.750000	0.652995	0.041*	
C4	0.44230 (19)	0.750000	0.5779 (3)	0.0327 (7)	
C5	0.40755 (19)	0.750000	0.4686 (3)	0.0323 (7)	
Н5	0.353492	0.750000	0.465014	0.039*	
C6	0.6535 (2)	0.750000	0.4798 (4)	0.0489 (10)	
H6A	0.671766	0.681677	0.546736	0.073*	0.5
H6B	0.672147	0.876855	0.483598	0.073*	0.5
H6C	0.672591	0.691467	0.409899	0.073*	0.5
C7	0.3933 (2)	0.750000	0.6867 (3)	0.0500 (10)	
H7A	0.420061	0.816577	0.747595	0.075*	0.5
H7B	0.384142	0.623070	0.711140	0.075*	0.5
H7C	0.344518	0.810353	0.670925	0.075*	0.5
H1	0.3430 (17)	0.834 (3)	-0.032 (2)	0.054 (9)*	
H2A	0.4583 (16)	1.057 (3)	0.103 (2)	0.056 (10)*	
H2B	0.5081 (14)	0.930 (5)	0.111 (3)	0.084 (13)*	
H3A	0.2719 (12)	0.549 (4)	0.282 (2)	0.062 (10)*	
H3B	0.2951 (17)	0.451 (3)	0.197 (2)	0.062 (10)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0239 (2)	0.0297 (3)	0.0253 (3)	0.000	-0.00054 (17)	0.000
S1	0.0223 (4)	0.0241 (4)	0.0278 (4)	0.000	-0.0028 (3)	0.000
01	0.0624 (17)	0.0320 (14)	0.0347 (14)	0.000	-0.0176 (12)	0.000
O2	0.0330 (9)	0.0403 (10)	0.0378 (9)	-0.0031 (8)	0.0016 (7)	0.0063 (8)
03	0.0413 (10)	0.0442 (11)	0.0469 (10)	-0.0143 (9)	0.0136 (8)	-0.0105 (9)

O4	0.0490 (15)	0.0410 (14)	0.0425 (13)	0.000	0.0151 (11)	0.000	
05	0.0548 (11)	0.0305 (9)	0.0447 (9)	0.0012 (8)	-0.0186 (8)	-0.0054 (7)	
06	0.0218 (11)	0.0466 (15)	0.0558 (15)	0.000	-0.0007 (10)	0.000	
N1	0.0274 (13)	0.0352 (15)	0.0290 (13)	0.000	-0.0047 (11)	0.000	
C1	0.0293 (16)	0.0395 (19)	0.0315 (16)	0.000	0.0012 (13)	0.000	
C2	0.0256 (16)	0.0314 (17)	0.0396 (18)	0.000	-0.0050 (13)	0.000	
C3	0.0340 (17)	0.0389 (19)	0.0303 (16)	0.000	-0.0080 (13)	0.000	
C4	0.0318 (16)	0.0357 (17)	0.0307 (16)	0.000	-0.0015 (13)	0.000	
C5	0.0273 (15)	0.0344 (17)	0.0351 (17)	0.000	-0.0038 (13)	0.000	
C6	0.0255 (17)	0.064 (3)	0.057 (2)	0.000	-0.0055 (16)	0.000	
C7	0.042 (2)	0.076 (3)	0.0317 (18)	0.000	0.0010 (15)	0.000	

Mn1—O1	2.195 (2)	N1—C5	1.336 (4)
Mn1—O2 ⁱ	2.2240 (17)	C1—H1A	0.9300
Mn1—O2	2.2240 (17)	C1—C2	1.381 (5)
Mn1—O3	2.1575 (17)	C2—C3	1.392 (5)
Mn1—O3 ⁱ	2.1575 (17)	C2—C6	1.504 (4)
Mn1—N1	2.227 (3)	С3—Н3	0.9300
S1—O4	1.462 (2)	C3—C4	1.379 (5)
S1—O5 ⁱⁱ	1.4650 (17)	C4—C5	1.386 (4)
S1—O5	1.4650 (17)	C4—C7	1.503 (5)
S1—O6	1.484 (2)	С5—Н5	0.9300
O1—H1	0.786 (10)	С6—Н6А	0.9600
O1—H1 ⁱ	0.786 (10)	С6—Н6В	0.9600
O2—H2A	0.781 (10)	С6—Н6С	0.9600
O2—H2B	0.776 (10)	C7—H7A	0.9600
ОЗ—НЗА	0.775 (10)	С7—Н7В	0.9600
O3—H3B	0.779 (10)	С7—Н7С	0.9600
N1—C1	1.343 (4)		
O1-Mn1-O2 ⁱ	85.24 (7)	C1—N1—Mn1	120.2 (2)
O1—Mn1—O2	85.24 (7)	C5—N1—Mn1	122.5 (2)
O1—Mn1—N1	169.05 (11)	C5—N1—C1	117.3 (3)
O2 ⁱ —Mn1—O2	91.24 (10)	N1—C1—H1A	118.0
O2 ⁱ —Mn1—N1	87.11 (7)	N1—C1—C2	123.9 (3)
O2—Mn1—N1	87.11 (7)	C2—C1—H1A	118.0
O3 ⁱ —Mn1—O1	92.76 (8)	C1—C2—C3	116.9 (3)
O3—Mn1—O1	92.76 (8)	C1—C2—C6	121.1 (3)
O3—Mn1—O2	177.99 (7)	C3—C2—C6	122.0 (3)
O3 ⁱ —Mn1—O2	88.55 (7)	С2—С3—Н3	119.5
O3—Mn1—O2 ⁱ	88.55 (7)	C4—C3—C2	120.9 (3)
O3 ⁱ —Mn1—O2 ⁱ	177.99 (7)	С4—С3—Н3	119.5
O3—Mn1—O3 ⁱ	91.59 (11)	C3—C4—C5	117.1 (3)
O3—Mn1—N1	94.87 (7)	C3—C4—C7	122.5 (3)
O3 ⁱ —Mn1—N1	94.87 (7)	C5—C4—C7	120.4 (3)
O4—S1—O5 ⁱⁱ	110.15 (9)	N1—C5—C4	123.9 (3)

O4—S1—O5	110.15 (10)	N1—C5—H5	118.1
O4—S1—O6	107.66 (15)	С4—С5—Н5	118.1
O5—S1—O5 ⁱⁱ	111.09 (14)	С2—С6—Н6А	109.5
O5—S1—O6	108.85 (9)	C2—C6—H6B	109.5
O5 ⁱⁱ —S1—O6	108.86 (9)	С2—С6—Н6С	109.5
Mn1—O1—H1 ⁱ	130 (2)	H6A—C6—H6B	109.5
Mn1—O1—H1	130 (2)	H6A—C6—H6C	109.5
H1-O1-H1 ⁱ	99 (4)	H6B—C6—H6C	109.5
Mn1—O2—H2A	120 (2)	С4—С7—Н7А	109.5
Mn1—O2—H2B	111 (3)	С4—С7—Н7В	109.5
H2A—O2—H2B	106.7 (17)	С4—С7—Н7С	109.5
Mn1—O3—H3A	123 (2)	H7A—C7—H7B	109.5
Mn1—O3—H3B	123 (2)	H7A—C7—H7C	109.5
НЗА—ОЗ—НЗВ	108.1 (17)	H7B—C7—H7C	109.5
Mn1—N1—C1—C2	180.000 (1)	C2—C3—C4—C5	0.000(1)
Mn1—N1—C5—C4	180.000 (1)	C2—C3—C4—C7	180.000 (1)
N1—C1—C2—C3	0.000(1)	C3—C4—C5—N1	0.000(1)
N1-C1-C2-C6	180.000 (1)	C5—N1—C1—C2	0.000(1)
C1—N1—C5—C4	0.000(1)	C6—C2—C3—C4	180.000(1)
C1—C2—C3—C4	0.000(1)	C7—C4—C5—N1	180.000 (1)

Symmetry codes: (i) *x*, -*y*+3/2, *z*; (ii) *x*, -*y*+1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…O5 ⁱⁱⁱ	0.79 (1)	2.00(1)	2.775 (2)	166 (3)
O2—H2A···O6 ⁱⁱⁱ	0.78 (1)	2.06 (1)	2.832 (3)	172 (3)
$O2$ — $H2B$ ···· $O6^{iv}$	0.78 (1)	2.10 (2)	2.850 (3)	162 (4)
O3—H3 <i>A</i> ···O5 ^v	0.78 (1)	1.98 (1)	2.752 (2)	177 (4)
O3—H3 <i>B</i> …O4	0.78 (1)	1.99 (1)	2.748 (3)	165 (3)

Symmetry codes: (iii) x, y+1, z; (iv) -x+1, -y+1, -z; (v) -x+1/2, y+1/2, z+1/2.

Pentaaqua(3,5-dimethylpyridine-*k*N)cobalt(II) sulfate (2)

Crystal data

 $[Co(C_7H_9N)(H_2O)_5]SO_4$ $M_r = 352.22$ Orthorhombic, *Pnma* a = 17.1238 (10) Å b = 7.1064 (4) Å c = 11.2576 (6) Å $V = 1369.92 (13) \text{ Å}^3$ Z = 4F(000) = 732 $D_x = 1.708 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6866 reflections $\theta = 3.0-25.3^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 297 KBLOCK, pink $0.08 \times 0.08 \times 0.06 \text{ mm}$ Data collection

Bruker D8 Venture CMOS diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2021) $T_{\min} = 0.714, T_{\max} = 0.745$ 32289 measured reflections	1367 independent reflections 1194 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -20 \rightarrow 20$ $k = -8 \rightarrow 8$ $l = -13 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: mixed H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.028$	and constrained refinement
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.033P)^2 + 0.9563P]$
S = 1.12	where $P = (F_0^2 + 2F_c^2)/3$
136/ reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
128 parameters	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm A}^{-3}$
7 restraints	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
0.38970 (2)	0.750000	0.19737 (4)	0.02337 (15)	
0.33394 (4)	0.250000	-0.03379 (7)	0.02209 (19)	
0.35093 (18)	0.750000	0.0198 (2)	0.0394 (6)	
0.46967 (11)	0.9655 (3)	0.14383 (16)	0.0336 (4)	
0.31132 (11)	0.5387 (3)	0.24411 (17)	0.0384 (4)	
0.29778 (16)	0.250000	0.0839 (2)	0.0427 (7)	
0.31138 (11)	0.0802 (2)	-0.09856 (16)	0.0406 (5)	
0.42011 (14)	0.250000	-0.0164 (2)	0.0396 (6)	
0.44535 (16)	0.750000	0.3648 (2)	0.0251 (6)	
0.5235 (2)	0.750000	0.3707 (3)	0.0293 (7)	
0.551507	0.750000	0.299987	0.035*	
0.56474 (19)	0.750000	0.4765 (3)	0.0279 (7)	
0.5217 (2)	0.750000	0.5803 (3)	0.0315 (8)	
0.547380	0.750000	0.653096	0.038*	
0.4411 (2)	0.750000	0.5776 (3)	0.0297 (7)	
0.40575 (19)	0.750000	0.4670 (3)	0.0268 (7)	
0.351489	0.750000	0.463642	0.032*	
0.6528 (2)	0.750000	0.4759 (4)	0.0439 (10)	
0.671655	0.688585	0.546196	0.066*	0.5
0.671452	0.877337	0.474120	0.066*	0.5
0.671263	0.684078	0.406972	0.066*	0.5
0.3926 (2)	0.750000	0.6890 (3)	0.0465 (10)	
	x $0.38970 (2)$ $0.33394 (4)$ $0.35093 (18)$ $0.46967 (11)$ $0.31132 (11)$ $0.29778 (16)$ $0.31138 (11)$ $0.42011 (14)$ $0.44535 (16)$ $0.5235 (2)$ 0.551507 $0.56474 (19)$ $0.5217 (2)$ 0.547380 $0.4411 (2)$ $0.40575 (19)$ 0.351489 $0.6528 (2)$ 0.671655 0.671452 $0.3926 (2)$	x y $0.38970(2)$ 0.750000 $0.33394(4)$ 0.250000 $0.35093(18)$ 0.750000 $0.46967(11)$ $0.9655(3)$ $0.31132(11)$ $0.5387(3)$ $0.29778(16)$ 0.250000 $0.31138(11)$ $0.0802(2)$ $0.42011(14)$ 0.250000 $0.44535(16)$ 0.750000 $0.5235(2)$ 0.750000 0.551507 0.750000 $0.56474(19)$ 0.750000 0.547380 0.750000 $0.4411(2)$ 0.750000 $0.44575(19)$ 0.750000 $0.6528(2)$ 0.750000 0.671452 0.877337 0.671263 0.684078 $0.3926(2)$ 0.750000	xyz $0.38970(2)$ 0.750000 $0.19737(4)$ $0.33394(4)$ 0.250000 $-0.03379(7)$ $0.35093(18)$ 0.750000 $0.0198(2)$ $0.46967(11)$ $0.9655(3)$ $0.14383(16)$ $0.31132(11)$ $0.5387(3)$ $0.24411(17)$ $0.29778(16)$ 0.250000 $0.0839(2)$ $0.31138(11)$ $0.0802(2)$ $-0.09856(16)$ $0.42011(14)$ 0.250000 $-0.0164(2)$ $0.44535(16)$ 0.750000 $0.3648(2)$ $0.5235(2)$ 0.750000 $0.3707(3)$ 0.551507 0.750000 $0.4765(3)$ $0.5217(2)$ 0.750000 $0.5803(3)$ 0.547380 0.750000 0.653096 $0.4411(2)$ 0.750000 $0.4670(3)$ 0.351489 0.750000 $0.44670(3)$ 0.351489 0.750000 $0.4759(4)$ 0.671655 0.688585 0.546196 0.671452 0.877337 0.474120 0.671263 0.684078 0.406972 $0.3926(2)$ 0.750000 $0.6890(3)$	xyz $U_{iso}*/U_{eq}$ 0.38970 (2)0.7500000.19737 (4)0.02337 (15)0.33394 (4)0.250000 -0.03379 (7)0.02209 (19)0.35093 (18)0.7500000.0198 (2)0.0394 (6)0.46967 (11)0.9655 (3)0.14383 (16)0.0336 (4)0.31132 (11)0.5387 (3)0.24411 (17)0.0384 (4)0.29778 (16)0.2500000.0839 (2)0.0427 (7)0.31138 (11)0.0802 (2) -0.09856 (16)0.0406 (5)0.42011 (14)0.250000 -0.0164 (2)0.0396 (6)0.44535 (16)0.7500000.3648 (2)0.0251 (6)0.5235 (2)0.7500000.3707 (3)0.0293 (7)0.5515070.7500000.4765 (3)0.0279 (7)0.5217 (2)0.7500000.6530960.038*0.5473800.7500000.5776 (3)0.0297 (7)0.40575 (19)0.7500000.466420.032*0.6528 (2)0.7500000.4759 (4)0.0439 (10)0.6716550.6885850.5461960.066*0.6714520.8773370.4741200.066*0.6714520.8773370.4741200.066*0.6712630.6840780.4069720.066*0.3926 (2)0.7500000.6890 (3)0.0465 (10)

H7A	0.420270	0.814262	0.751028	0.070*	0.5	
H7B	0.382469	0.622638	0.712901	0.070*	0.5	
H7C	0.343972	0.813100	0.674071	0.070*	0.5	
H1	0.3369 (18)	0.838 (3)	-0.016 (2)	0.058 (10)*		
H2A	0.4543 (17)	1.052 (3)	0.108 (2)	0.058 (11)*		
H2B	0.5060 (14)	0.928 (5)	0.108 (3)	0.079 (14)*		
H3A	0.2753 (11)	0.555 (4)	0.284 (2)	0.046 (9)*		
H3B	0.3023 (16)	0.457 (3)	0.201 (2)	0.053 (10)*		

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0234 (2)	0.0267 (2)	0.0200 (2)	0.000	-0.00065 (17)	0.000
S1	0.0216 (4)	0.0213 (4)	0.0233 (4)	0.000	-0.0020 (3)	0.000
01	0.0592 (18)	0.0293 (15)	0.0298 (14)	0.000	-0.0181 (13)	0.000
O2	0.0318 (10)	0.0375 (10)	0.0316 (9)	-0.0022 (8)	0.0004 (8)	0.0067 (9)
O3	0.0381 (11)	0.0389 (11)	0.0382 (10)	-0.0127 (9)	0.0118 (9)	-0.0095 (9)
O4	0.0531 (17)	0.0397 (15)	0.0354 (14)	0.000	0.0166 (12)	0.000
05	0.0531 (11)	0.0261 (10)	0.0427 (10)	-0.0013 (8)	-0.0190 (9)	-0.0058 (8)
06	0.0228 (12)	0.0426 (15)	0.0532 (16)	0.000	-0.0015 (11)	0.000
N1	0.0255 (14)	0.0280 (15)	0.0218 (13)	0.000	-0.0028 (11)	0.000
C1	0.0298 (18)	0.0311 (18)	0.0270 (17)	0.000	0.0007 (14)	0.000
C2	0.0270 (17)	0.0258 (17)	0.0309 (18)	0.000	-0.0047 (14)	0.000
C3	0.0344 (19)	0.036 (2)	0.0245 (16)	0.000	-0.0085 (14)	0.000
C4	0.0341 (18)	0.0292 (18)	0.0258 (17)	0.000	0.0003 (14)	0.000
C5	0.0248 (16)	0.0290 (17)	0.0266 (17)	0.000	-0.0031 (13)	0.000
C6	0.0238 (19)	0.060 (3)	0.048 (2)	0.000	-0.0031 (16)	0.000
C7	0.043 (2)	0.070 (3)	0.0268 (19)	0.000	0.0016 (17)	0.000

Co1-01	2.106 (3)	N1—C5	1.335 (4)
Co1—O2	2.1408 (18)	C1—H1A	0.9300
Co1-O2 ⁱ	2.1408 (18)	C1—C2	1.384 (5)
Co1—O3	2.0813 (18)	C2—C3	1.382 (5)
Co1-O3 ⁱ	2.0813 (18)	C2—C6	1.507 (5)
Co1—N1	2.112 (3)	С3—Н3	0.9300
S1—O4	1.462 (3)	C3—C4	1.380 (5)
S105 ⁱⁱ	1.4618 (17)	C4—C5	1.385 (5)
S1—05	1.4618 (17)	C4—C7	1.504 (5)
S1—06	1.488 (2)	С5—Н5	0.9300
01—H1 ⁱ	0.778 (10)	C6—H6A	0.9600
01—H1	0.778 (10)	C6—H6B	0.9600
O2—H2A	0.782 (10)	С6—Н6С	0.9600
O2—H2B	0.784 (10)	C7—H7A	0.9600
O3—H3A	0.774 (10)	С7—Н7В	0.9600
O3—H3B	0.776 (10)	C7—H7C	0.9600
N1—C1	1.339 (4)		

O1—Co1—O2 ⁱ	86.24 (8)	C1—N1—Co1	119.7 (2)
O1—Co1—O2	86.24 (8)	C5—N1—Co1	122.7 (2)
O1—Co1—N1	171.55 (11)	C5—N1—C1	117.7 (3)
O2—Co1—O2 ⁱ	91.32 (11)	N1—C1—H1A	118.2
O3—Co1—O1	92.10 (8)	N1—C1—C2	123.6 (3)
O3 ⁱ —Co1—O1	92.10 (8)	C2—C1—H1A	118.2
O3 ⁱ —Co1—O2	88.15 (8)	C1—C2—C6	120.5 (3)
O3—Co1—O2 ⁱ	88.15 (8)	C3—C2—C1	117.1 (3)
$O3^{i}$ —Co1— $O2^{i}$	178.29 (8)	C3—C2—C6	122.5 (3)
O3—Co1—O2	178.29 (8)	С2—С3—Н3	119.5
O3—Co1—O3 ⁱ	92.32 (11)	C4—C3—C2	121.0 (3)
O3 ⁱ —Co1—N1	93.74 (8)	С4—С3—Н3	119.5
O3—Co1—N1	93.74 (8)	C3—C4—C5	117.2 (3)
N1—Co1—O2	87.86 (7)	C3—C4—C7	122.3 (3)
N1—Co1—O2 ⁱ	87.86 (7)	C5—C4—C7	120.5 (3)
O4—S1—O6	107.51 (16)	N1—C5—C4	123.6 (3)
O5 ⁱⁱ —S1—O4	109.87 (10)	N1—C5—H5	118.2
O5—S1—O4	109.87 (10)	C4—C5—H5	118.2
O5 ⁱⁱ —S1—O5	111.27 (14)	С2—С6—Н6А	109.5
O5 ⁱⁱ —S1—O6	109.12 (10)	С2—С6—Н6В	109.5
O5—S1—O6	109.12 (10)	С2—С6—Н6С	109.5
Co1—O1—H1	126 (2)	H6A—C6—H6B	109.5
Co1—O1—H1 ⁱ	126 (2)	H6A—C6—H6C	109.5
$H1-O1-H1^{i}$	106 (5)	H6B—C6—H6C	109.5
Co1—O2—H2A	120 (2)	C4—C7—H7A	109.5
Co1—O2—H2B	114 (3)	C4—C7—H7B	109.5
H2A—O2—H2B	105.7 (16)	C4—C7—H7C	109.5
Со1—О3—НЗА	124 (2)	H7A—C7—H7B	109.5
Co1—O3—H3B	121 (2)	H7A—C7—H7C	109.5
H3A—O3—H3B	108.7 (17)	H7B—C7—H7C	109.5
Co1—N1—C1—C2	180.000 (1)	C2—C3—C4—C5	0.000(1)
Co1—N1—C5—C4	180.000 (1)	C2—C3—C4—C7	180.000(1)
N1—C1—C2—C3	0.000(1)	C3—C4—C5—N1	0.000(1)
N1—C1—C2—C6	180.000 (1)	C5—N1—C1—C2	0.000(1)
C1—N1—C5—C4	0.000(1)	C6—C2—C3—C4	180.000(1)
C1—C2—C3—C4	0.000(1)	C7—C4—C5—N1	180.000(1)

Symmetry codes: (i) *x*, -*y*+3/2, *z*; (ii) *x*, -*y*+1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
01—H1…O5 ⁱⁱⁱ	0.78 (1)	2.01 (1)	2.782 (2)	173 (3)
O2—H2A···O6 ⁱⁱⁱ	0.78 (1)	2.07 (1)	2.840 (3)	169 (3)
$O2$ — $H2B$ ···· $O6^{iv}$	0.78 (1)	2.07 (2)	2.822 (3)	161 (4)

O3—H3 <i>A</i> ···O5 ^v	0.77 (1)	1.99 (1)	2.764 (2)	174 (3)
O3—H3 <i>B</i> …O4	0.78 (1)	1.97 (1)	2.742 (3)	171 (3)

 $D_{\rm x} = 1.723 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.0-26.3^{\circ}$ $\mu = 1.62 \text{ mm}^{-1}$

BLOCK, green

 $0.17 \times 0.04 \times 0.03 \text{ mm}$

T = 297 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9899 reflections

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1/2, *y*+1/2, *z*+1/2.

Pentaaqua(3,5-dimethylpyridine-κN)nickel(II) sulfate (3)

Crystal data

 $[Ni(C_7H_9N)(H_2O)_5]SO_4$ $M_r = 352.00$ Orthorhombic, *Pnma* a = 17.1196 (8) Å b = 7.0609 (3) Å c = 11.2233 (5) Å V = 1356.67 (10) Å³ Z = 4F(000) = 736

Data collection

Bruker D8 Venture CMOS	1499 independent reflections
diffractometer	1386 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.049$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$
(SADABS; Bruker, 2021)	$h = -21 \rightarrow 20$
$T_{\min} = 0.680, \ T_{\max} = 0.745$	$k = -8 \rightarrow 8$
36924 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.060$	$w = 1/[\sigma^2(F_0^2) + (0.0308P)^2 + 0.6821P]$
S = 1.10	where $P = (F_0^2 + 2F_c^2)/3$
128 parameters	$(\Delta/\sigma)_{\text{max}} < 0.001$
7 restraints	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.39091 (2)	0.750000	0.19852 (3)	0.02146 (11)	
S1	0.33343 (3)	0.250000	-0.03397 (5)	0.02160 (14)	
01	0.35007 (14)	0.750000	0.02346 (18)	0.0384 (5)	
02	0.46878 (7)	0.9627 (2)	0.14536 (12)	0.0309 (3)	
03	0.31406 (8)	0.5401 (2)	0.24601 (12)	0.0354 (3)	
O4	0.29830 (12)	0.250000	0.08496 (18)	0.0424 (5)	
05	0.31029 (8)	0.0794 (2)	-0.09827(12)	0.0410 (3)	

O6	0.41976 (10)	0.250000	-0.01750 (19)	0.0394 (5)	
N1	0.44466 (12)	0.750000	0.36335 (17)	0.0241 (4)	
C1	0.52308 (14)	0.750000	0.3692 (2)	0.0277 (5)	
H1A	0.551105	0.750000	0.298181	0.033*	
C2	0.56433 (14)	0.750000	0.4753 (2)	0.0272 (5)	
C3	0.52130 (15)	0.750000	0.5799 (2)	0.0304 (6)	
Н3	0.546992	0.750000	0.652878	0.036*	
C4	0.44033 (15)	0.750000	0.5768 (2)	0.0282 (5)	
C5	0.40464 (14)	0.750000	0.4658 (2)	0.0260 (5)	
Н5	0.350357	0.750000	0.462450	0.031*	
C6	0.65243 (15)	0.750000	0.4748 (3)	0.0409 (7)	
H6A	0.671277	0.686857	0.544900	0.061*	0.5
H6B	0.671120	0.878180	0.474031	0.061*	0.5
H6C	0.670966	0.684963	0.405226	0.061*	0.5
C7	0.39189 (17)	0.750000	0.6886 (2)	0.0429 (7)	
H7A	0.418880	0.818472	0.750001	0.064*	0.5
H7B	0.383346	0.621918	0.714204	0.064*	0.5
H7C	0.342529	0.809610	0.673085	0.064*	0.5
H1	0.3354 (14)	0.840 (3)	-0.011 (2)	0.057 (8)*	
H2A	0.4540 (12)	1.048 (2)	0.1067 (18)	0.045 (7)*	
H2B	0.5056 (10)	0.923 (3)	0.1115 (19)	0.062 (9)*	
H3A	0.2777 (9)	0.557 (3)	0.2854 (16)	0.041 (6)*	
H3B	0.3050 (12)	0.460 (3)	0.2012 (16)	0.048 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02095 (16)	0.02450 (18)	0.01894 (17)	0.000	-0.00045 (11)	0.000
S1	0.0213 (3)	0.0206 (3)	0.0229 (3)	0.000	-0.0023 (2)	0.000
01	0.0564 (13)	0.0289 (11)	0.0300 (10)	0.000	-0.0187 (9)	0.000
02	0.0301 (7)	0.0325 (7)	0.0300 (7)	-0.0018 (6)	0.0016 (5)	0.0060 (6)
O3	0.0348 (7)	0.0370 (8)	0.0343 (7)	-0.0105 (6)	0.0108 (6)	-0.0078 (7)
04	0.0527 (12)	0.0386 (12)	0.0357 (11)	0.000	0.0161 (9)	0.000
05	0.0544 (8)	0.0269 (7)	0.0417 (8)	0.0008 (6)	-0.0201 (6)	-0.0060 (6)
06	0.0232 (9)	0.0435 (12)	0.0515 (12)	0.000	0.0003 (8)	0.000
N1	0.0243 (9)	0.0260 (11)	0.0221 (10)	0.000	-0.0029 (8)	0.000
C1	0.0252 (11)	0.0302 (14)	0.0277 (13)	0.000	0.0008 (10)	0.000
C2	0.0244 (12)	0.0273 (13)	0.0299 (13)	0.000	-0.0044 (10)	0.000
C3	0.0330 (13)	0.0339 (14)	0.0242 (12)	0.000	-0.0086 (10)	0.000
C4	0.0323 (12)	0.0280 (13)	0.0243 (12)	0.000	0.0004 (10)	0.000
C5	0.0251 (11)	0.0271 (13)	0.0258 (12)	0.000	-0.0022 (9)	0.000
C6	0.0219 (12)	0.0562 (19)	0.0444 (17)	0.000	-0.0065 (11)	0.000
C7	0.0392 (15)	0.064 (2)	0.0251 (14)	0.000	0.0012 (11)	0.000

Ni1—O1	2.0855 (19)	N1—C5	1.339 (3)
Nil—O2	2.0949 (13)	C1—H1A	0.9300

Ni1—O2 ⁱ	2.0949 (13)	C1—C2	1.384 (3)
Ni1—O3	2.0522 (13)	C2—C3	1.386 (4)
Ni1—O3 ⁱ	2.0522 (13)	C2—C6	1.508 (3)
Ni1—N1	2.066 (2)	С3—Н3	0.9300
S1—O4	1.464 (2)	C3—C4	1.387 (4)
S1-05 ⁱⁱ	1.4588 (14)	C4—C5	1.387 (3)
S1-05	1.4588 (14)	C4—C7	1.505 (4)
S1-06	1 4895 (19)	С5—Н5	0.9300
01—H1 ⁱ	0.782 (10)	C6—H6A	0.9600
01—H1	0.782(10)	C6—H6B	0.9600
02—H2A	0.782(9)	C6—H6C	0.9600
02—H2B	0.782(9) 0.787(9)	C7—H7A	0.9600
O3—H3A	0.767(9) 0.773(9)	C7—H7B	0.9600
O3—H3B	0.774(9)	C7—H7C	0.9600
N1_C1	1.344(3)	e, 11/e	0.9000
	1.544 (5)		
01-Ni1-02 ⁱ	86.85 (6)	C1—N1—Ni1	119.23 (17)
01—Ni1—O2	86.85 (6)	C5—N1—Ni1	122.77 (16)
O2 ⁱ —Ni1—O2	91.60 (8)	C5—N1—C1	118.0 (2)
O3 ⁱ —Ni1—O1	91.70 (6)	N1—C1—H1A	118.3
O3—Ni1—O1	91.70 (6)	N1—C1—C2	123.4 (2)
O3 ⁱ —Ni1—O2	87.95 (6)	C2—C1—H1A	118.3
O3—Ni1—O2	178.51 (6)	C1—C2—C3	117.2 (2)
O3—Ni1—O2 ⁱ	87.95 (6)	C1—C2—C6	120.5 (2)
O3 ⁱ —Ni1—O2 ⁱ	178.51 (6)	C3—C2—C6	122.3 (2)
O3—Ni1—O3 ⁱ	92.46 (8)	С2—С3—Н3	119.7
O3 ⁱ —Ni1—N1	93.04 (6)	C2—C3—C4	120.7 (2)
O3—Ni1—N1	93.04 (6)	C4—C3—H3	119.7
N1—Ni1—O1	173.14 (9)	C3—C4—C5	117.6 (2)
N1—Ni1—O2	88.38 (5)	C3—C4—C7	122.0 (2)
N1—Ni1—O2 ⁱ	88.37 (5)	C5—C4—C7	120.4 (2)
O4—S1—O6	107.12 (13)	N1—C5—C4	123.1 (2)
O5 ⁱⁱ —S1—O4	109.84 (8)	N1—C5—H5	118.5
O5—S1—O4	109.85 (8)	C4—C5—H5	118.5
O5 ⁱⁱ —S1—O5	111.30 (11)	С2—С6—Н6А	109.5
O5—S1—O6	109.32 (8)	C2—C6—H6B	109.5
O5 ⁱⁱ —S1—O6	109.32 (8)	C2—C6—H6C	109.5
Ni1—O1—H1	124.8 (19)	H6A—C6—H6B	109.5
Ni1—O1—H1 ⁱ	124.8 (19)	H6A—C6—H6C	109.5
H1	108 (4)	H6B—C6—H6C	109.5
Ni1—O2—H2A	120.2 (17)	C4—C7—H7A	109.5
Ni1—O2—H2B	113.1 (19)	C4—C7—H7B	109.5
H2A—O2—H2B	105.3 (15)	C4—C7—H7C	109.5
Ni1—O3—H3A	123.6 (16)	H7A—C7—H7B	109.5
Ni1—O3—H3B	119.3 (16)	H7A—C7—H7C	109.5
НЗА—ОЗ—НЗВ	108.9 (15)	Н7В—С7—Н7С	109.5
Ni1—N1—C1—C2	180.000(1)	C2—C3—C4—C5	0.000(1)

Ni1—N1—C5—C4	180.000 (1)	C2—C3—C4—C7	180.000 (1)
N1—C1—C2—C3	0.000(1)	C3—C4—C5—N1	0.000(1)
N1—C1—C2—C6	180.000 (1)	C5—N1—C1—C2	0.000(1)
C1—N1—C5—C4	0.000(1)	C6—C2—C3—C4	180.000 (1)
C1—C2—C3—C4	0.000(1)	C7—C4—C5—N1	180.000 (1)

Symmetry codes: (i) x, -y+3/2, z; (ii) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01—H1…O5 ⁱⁱⁱ	0.78 (1)	2.00(1)	2.7822 (18)	174 (3)
O2—H2A···O6 ⁱⁱⁱ	0.78 (1)	2.08 (1)	2.857 (2)	172 (2)
$O2$ — $H2B$ ···· $O6^{iv}$	0.79(1)	2.06(1)	2.821 (2)	163 (3)
$O3-H3A\cdots O5^{\vee}$	0.77 (1)	2.00(1)	2.7683 (18)	173 (2)
O3—H3 <i>B</i> ···O4	0.77 (1)	1.98 (1)	2.745 (2)	172 (2)

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1/2, *y*+1/2, *z*+1/2.

Pentaaqua(3,5-dimethylpyridine-κN)zinc(II) sulfate (4)

Crystal data

$[Zn(C_7H_9N)(H_2O)_5]SO_4$
$M_r = 358.66$
Orthorhombic, Pnma
<i>a</i> = 17.1312 (8) Å
b = 7.0826 (3) Å
c = 11.2879 (5) Å
$V = 1369.60 (11) \text{ Å}^3$
Z = 4
F(000) = 744

Data collection

Bruker D8 Venture CMOS
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
$T_{\min} = 0.671, \ T_{\max} = 0.745$
46710 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.056$ S = 1.121516 reflections 128 parameters 7 restraints $D_x = 1.739 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9907 reflections $\theta = 3.0-26.1^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 297 KBLOCK, colourless $0.21 \times 0.13 \times 0.1 \text{ mm}$

1516 independent reflections 1414 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -21 \rightarrow 21$ $k = -8 \rightarrow 8$ $l = -14 \rightarrow 14$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0287P)^2 + 0.6476P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.38941 (2)	0.750000	0.20029 (2)	0.02445 (10)	
S1	0.33349 (3)	0.250000	-0.03485 (5)	0.02238 (13)	
01	0.35283 (14)	0.750000	0.02014 (17)	0.0411 (5)	
O2	0.46998 (8)	0.9672 (2)	0.14481 (11)	0.0334 (3)	
03	0.31084 (8)	0.5381 (2)	0.24347 (13)	0.0393 (3)	
O4	0.29751 (12)	0.250000	0.08280 (17)	0.0435 (5)	
05	0.31108 (8)	0.07969 (19)	-0.09923 (12)	0.0418 (3)	
06	0.41959 (10)	0.250000	-0.01709 (19)	0.0403 (5)	
N1	0.44544 (12)	0.750000	0.36501 (17)	0.0258 (4)	
C1	0.52356 (14)	0.750000	0.3709 (2)	0.0292 (5)	
H1A	0.551519	0.750000	0.300258	0.035*	
C2	0.56501 (14)	0.750000	0.4762 (2)	0.0296 (5)	
C3	0.52173 (15)	0.750000	0.5806 (2)	0.0314 (5)	
H3	0.547367	0.750000	0.653242	0.038*	
C4	0.44114 (15)	0.750000	0.5775 (2)	0.0290 (5)	
C5	0.40543 (14)	0.750000	0.4668 (2)	0.0273 (5)	
Н5	0.351191	0.750000	0.463327	0.033*	
C6	0.65285 (15)	0.750000	0.4765 (3)	0.0440 (7)	
H6A	0.671449	0.681907	0.544387	0.066*	0.5
H6B	0.671527	0.877698	0.479610	0.066*	0.5
H6C	0.671616	0.690396	0.405608	0.066*	0.5
C7	0.39253 (17)	0.750000	0.6883 (2)	0.0438 (7)	
H7A	0.419605	0.817081	0.749703	0.066*	0.5
H7B	0.383455	0.622262	0.713159	0.066*	0.5
H7C	0.343476	0.810656	0.672744	0.066*	0.5
H1	0.3379 (13)	0.836 (2)	-0.0171 (18)	0.052 (7)*	
H2A	0.4540 (12)	1.049 (3)	0.1049 (18)	0.050 (7)*	
H2B	0.5065 (11)	0.928 (4)	0.1108 (19)	0.068 (9)*	
H3A	0.2758 (10)	0.550 (3)	0.2857 (16)	0.050 (7)*	
H3B	0.3024 (13)	0.458 (3)	0.1986 (16)	0.049 (7)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02442 (15)	0.02788 (16)	0.02103 (15)	0.000	-0.00072 (10)	0.000
S1	0.0220 (3)	0.0216 (3)	0.0235 (3)	0.000	-0.0025 (2)	0.000
01	0.0616 (13)	0.0301 (11)	0.0317 (10)	0.000	-0.0188 (9)	0.000
O2	0.0320 (7)	0.0367 (7)	0.0314 (6)	-0.0012 (6)	0.0013 (5)	0.0063 (6)
O3	0.0387 (7)	0.0406 (8)	0.0387 (7)	-0.0129 (6)	0.0121 (6)	-0.0103 (7)

O4	0.0544 (12)	0.0396 (11)	0.0366 (10)	0.000	0.0167 (9)	0.000
05	0.0541 (8)	0.0274 (7)	0.0438 (7)	0.0002 (6)	-0.0201 (6)	-0.0064 (6)
06	0.0229 (9)	0.0446 (11)	0.0533 (12)	0.000	0.0002 (8)	0.000
N1	0.0275 (10)	0.0274 (10)	0.0226 (9)	0.000	-0.0034 (8)	0.000
C1	0.0259 (12)	0.0339 (13)	0.0278 (12)	0.000	0.0004 (9)	0.000
C2	0.0265 (12)	0.0284 (12)	0.0340 (13)	0.000	-0.0046 (10)	0.000
C3	0.0331 (13)	0.0351 (14)	0.0259 (12)	0.000	-0.0085 (10)	0.000
C4	0.0318 (12)	0.0310 (13)	0.0242 (11)	0.000	0.0001 (10)	0.000
C5	0.0237 (11)	0.0304 (13)	0.0277 (12)	0.000	-0.0018 (9)	0.000
C6	0.0236 (13)	0.0580 (19)	0.0504 (17)	0.000	-0.0049 (11)	0.000
C7	0.0399 (15)	0.066 (2)	0.0251 (13)	0.000	0.0028 (11)	0.000

Zn1—O1	2.1279 (19)	N1—C5	1.337 (3)	
Zn1—O2	2.1598 (13)	C1—H1A	0.9300	
$Zn1-O2^{i}$	2.1598 (13)	C1—C2	1.385 (3)	
Zn103	2.0742 (13)	C2—C3	1.392 (4)	
Zn1-O3 ⁱ	2.0742 (13)	C2—C6	1.505 (3)	
Zn1—N1	2.0924 (19)	С3—Н3	0.9300	
S1—O4	1.4641 (19)	C3—C4	1.381 (4)	
S1—O5 ⁱⁱ	1.4596 (13)	C4—C5	1.392 (3)	
S1—O5	1.4596 (13)	C4—C7	1.502 (3)	
S1—O6	1.4886 (18)	С5—Н5	0.9300	
01—H1 ⁱ	0.784 (10)	C6—H6A	0.9600	
01—H1	0.784 (10)	C6—H6B	0.9600	
O2—H2A	0.784 (9)	C6—H6C	0.9600	
O2—H2B	0.785 (9)	С7—Н7А	0.9600	
O3—H3A	0.771 (9)	С7—Н7В	0.9600	
O3—H3B	0.773 (9)	C7—H7C	0.9600	
N1—C1	1.340 (3)			
O1-Zn1-O2 ⁱ	84.90 (6)	C1—N1—Zn1	120.14 (16)	
O1—Zn1—O2	84.90 (6)	C5—N1—Zn1	121.87 (16)	
O2 ⁱ —Zn1—O2	90.87 (8)	C5—N1—C1	118.0 (2)	
O3 ⁱ —Zn1—O1	91.92 (6)	N1—C1—H1A	118.2	
O3—Zn1—O1	91.92 (6)	N1—C1—C2	123.7 (2)	
O3 ⁱ —Zn1—O2	88.13 (6)	C2—C1—H1A	118.2	
O3—Zn1—O2	176.74 (5)	C1—C2—C3	117.0 (2)	
$O3$ — $Zn1$ — $O2^i$	88.13 (6)	C1—C2—C6	120.9 (2)	
$O3^{i}$ —Zn1— $O2^{i}$	176.74 (5)	C3—C2—C6	122.1 (2)	
$O3$ — $Zn1$ — $O3^i$	92.71 (8)	С2—С3—Н3	119.6	
O3 ⁱ —Zn1—N1	95.10 (6)	C4—C3—C2	120.7 (2)	
O3—Zn1—N1	95.10 (6)	С4—С3—Н3	119.6	
N1—Zn1—O1	169.82 (9)	C3—C4—C5	117.5 (2)	
N1—Zn1—O2	87.97 (5)	C3—C4—C7	122.2 (2)	
$N1$ — $Zn1$ — $O2^i$	87.97 (5)	C5—C4—C7	120.3 (2)	
O4—S1—O6	107.16 (12)	N1—C5—C4	123.1 (2)	

O5 ⁱⁱ —S1—O4	109.93 (8)	N1—C5—H5	118.4
O5—S1—O4	109.93 (8)	С4—С5—Н5	118.4
O5 ⁱⁱ —S1—O5	111.46 (11)	С2—С6—Н6А	109.5
O5—S1—O6	109.12 (7)	С2—С6—Н6В	109.5
O5 ⁱⁱ —S1—O6	109.12 (7)	С2—С6—Н6С	109.5
Zn1—O1—H1	127.5 (18)	H6A—C6—H6B	109.5
Zn1—O1—H1 ⁱ	127.5 (18)	H6A—C6—H6C	109.5
H1—O1—H1 ⁱ	102 (4)	H6B—C6—H6C	109.5
Zn1—O2—H2A	118.1 (17)	С4—С7—Н7А	109.5
Zn1—O2—H2B	114 (2)	С4—С7—Н7В	109.5
H2A—O2—H2B	105.0 (14)	С4—С7—Н7С	109.5
Zn1—O3—H3A	125.1 (17)	H7A—C7—H7B	109.5
Zn1—O3—H3B	119.8 (16)	H7A—C7—H7C	109.5
НЗА—ОЗ—НЗВ	109.6 (16)	H7B—C7—H7C	109.5
Zn1—N1—C1—C2	180.000 (1)	C2—C3—C4—C5	0.000(1)
Zn1—N1—C5—C4	180.000 (1)	C2—C3—C4—C7	180.000(1)
N1—C1—C2—C3	0.000(1)	C3—C4—C5—N1	0.000(1)
N1-C1-C2-C6	180.000(1)	C5—N1—C1—C2	0.000(1)
C1—N1—C5—C4	0.000(1)	C6—C2—C3—C4	180.000 (1)
C1—C2—C3—C4	0.000(1)	C7—C4—C5—N1	180.000 (1)

Symmetry codes: (i) x, -y+3/2, z; (ii) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

	D—H	H····A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…O5 ⁱⁱⁱ	0.78 (1)	2.01 (1)	2.7892 (17)	172 (3)
O2—H2A···O6 ⁱⁱⁱ	0.78 (1)	2.07 (1)	2.845 (2)	173 (2)
O2— $H2B$ ···O6 ^{iv}	0.79 (1)	2.08 (1)	2.833 (2)	162 (3)
O3—H3 <i>A</i> ···O5 ^v	0.77 (1)	1.99 (1)	2.7571 (18)	177 (2)
O3—H3 <i>B</i> …O4	0.77 (1)	1.97 (1)	2.7395 (19)	172 (2)

Symmetry codes: (iii) x, y+1, z; (iv) -x+1, -y+1, -z; (v) -x+1/2, y+1/2, z+1/2.