CRYSTALLOGRAPHIC COMMUNICATIONS

Received 12 May 2023
Accepted 7 June 2023

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India

Keywords: crystal structure; intermolecular interactions; Hirshfeld surface analysis.

CCDC reference: 2268276

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN © ACCESS
Published under a CC BY 4.0 licence

Crystal structure of 1-(4-bromophenyl)but-3-yn-1one

Shaziyaparveen K. Siddiqui, ${ }^{\mathrm{a}, \mathrm{b}}$ C. V. Ramana ${ }^{\mathrm{a}, \mathrm{b}}$ and Rajesh G. Gonnade ${ }^{\mathrm{c}, \mathrm{b} *}$

${ }^{\text {a Division of Organic Synthesis, CSIR-National Chemical Laboratory, Dr. Homi, Bhabha Road, Pashan, Pune-411008, }}$ India, ${ }^{\mathbf{b}}$ Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India, and ${ }^{\text {c }}$ Physical \& Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. *Correspondence e-mail: rg.gonnade@ncl.res.in

The title compound, 1-(4-bromophenyl)but-3-yn-1-one, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}$, crystallizes in the monoclinic space group $P 2_{1} / n$ with one molecule in the asymmetric unit. The structure displays a planar geometry. The crystal structure is consolidated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and a short $\mathrm{C}=\mathrm{O} \cdots \mathrm{C} \equiv \mathrm{C}$ (acetylene) contacts. Hirshfeld surface analysis indicates that $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ and $\mathrm{H} \cdots \mathrm{Br} /$ $\mathrm{Br} \cdots \mathrm{H}$ interactions play a more important role in consolidating the crystal structure compared to $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ and $\mathrm{C} \cdots \mathrm{C}$ contacts.

1. Chemical context

The title compound 1-(4-bromophenyl)but-3-yn-1-one (1) was obtained as a side product during the synthesis of 5-(4-bromophenyl)isoxazole-3-carboxylic acid (2) from the NaOH mediated hydrolysis of ethyl 5-(4-bromophenyl)isoxazole-3carboxylate (3). These arylisoxazole carboxylic acids have been identified as potential isosteres of aryl diketo acid in the design of novel HIV-1 integrase inhibitors (Zeng et al., 2008). The presence of three distinct functional groups, viz. alkyne, bromo, and carbonyl, offers an intriguing opportunity to explore how intermolecular interactions contribute to the cohesion of the crystal structure.

2. Structural commentary

The title compound crystallizes in the monoclinic $P 2_{1} / n$ centrosymmetric space group with one molecule of $\mathbf{1}$ in the asymmetric unit (Fig. 1). The structure displays a planar geometry [torsion angle $\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9=175.4$ (3) ${ }^{\mathrm{o}}$, only the C5 atom of phenyl ring is considered and not the full fragment]. The phenyl ring makes a dihedral angle of $5.4(2)^{\circ}$

Figure 1
The asymmetric unit of $\mathbf{1}$ with the atom labelling. Displacement ellipsoids represent 30% probability levels.
with the least-squares plane through the $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 8-\mathrm{C} 10$ fragment.

3. Supramolecular features

In the crystal, the closely associated molecules of $\mathbf{1}$ generate two different helical assemblies across the crystallographic 2_{1}-screw axis (b-axis). The helical assembly generated using $\mathrm{C} 1=\mathrm{O} 1 \cdots \mathrm{C} 9 \mathrm{D} \equiv \mathrm{C} 10^{\mathrm{i}} \quad$ (acetylene, $\quad \mathrm{C}=\mathrm{O} \cdots \pi$) contacts [symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$] (Li et al., 2019; Mooibroek, et al., 2008) has a sheet structure (Fig. 2, Table 1), while the helical assembly created using $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ ($\mathrm{C} 8-$ $\mathrm{H} 8 A \cdots \mathrm{O} 1^{\text {ii }}$) contacts [symmetry code: (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$] (Desiraju \& Steiner, 2001) has a proper helical structure (Fig. 3, Table 1). The helical assembly created using the short $\mathrm{C} 1=\mathrm{O} 1 \cdots \mathrm{C} 9 \equiv \mathrm{C} 10$ contacts is further supported by marginal $\mathrm{C}-\mathrm{H} \cdots \pi$ [symmetry code: (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$] contacts

Figure 2
A view of the molecular packing of $\mathbf{1}$ along the helical b-axis showing the association of closely linked molecules by $\mathrm{C}=\mathrm{O} \cdots \mathrm{C} \equiv \mathrm{C}$ (acetylene, $\mathrm{C}=\mathrm{O} \cdots \pi$) and marginal $\mathrm{C}-\mathrm{H} \cdots \pi$ (π-cloud of acetylene molecules) contacts. Neighbouring helices along the longer c axis are linked by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ contacts. Symmetry codes as in Table 1.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{O} 1 \cdots \mathrm{C} 9^{\mathrm{i}}$		$3.13(1)$		$154(1)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1^{\text {ii }}$	$1.02(4)$	$2.31(4)$	$3.259(5)$	$156(3)$
$\mathrm{C}^{1}-\mathrm{H} 7 \cdots \mathrm{C} 0^{\text {iii }}$	$1.06(3)$	$2.71(4)$	$3.626(5)$	$144(3)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Br}^{\mathrm{iv}}$	0.93	2.68	$3.305(5)$	126

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2} ; \quad$ (ii) $\quad-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$;
$-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (iv) $x-\frac{3}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.
involving the phenyl ring ($\mathrm{C} 7-\mathrm{H} 7$) and the π cloud of the acetylene moiety. Both helices are intertwined and form a twodimensional sheet structure roughly along the a-axis direction. Along the longer c-axis, molecules are loosely connected using weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}\left(\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Br}^{\text {iv }}\right.$ contacts [symmetry code: (iv) $\left.x-\frac{3}{2},-y+\frac{1}{2}, z-\frac{1}{2}\right]$ (van den Berg \& Seddon, 2003), generating the extended assembly (Figs. 2 and 3, Table 1).

In order to visualize and quantify intermolecular interactions in 1, a Hirshfeld surface analysis (Spackman \& Jayatilaka, 2009) was performed using Crystal Explorer 21.5 (Spackman et al., 2021), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated. The Hirshfeld surfaces for the molecule in $\mathbf{1}$ are shown in Fig. 4 in which the two-dimensional fingerprint plots of the most dominant contacts are also presented. $\mathrm{H} \cdots \mathrm{H}(27.4 \%), \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H}(22.3 \%)$ and $\mathrm{H} \cdots \mathrm{Br} / \mathrm{Br} \cdots \mathrm{H}(22.0 \%)$ contacts are responsible for the largest contributions to the Hirshfeld surface. Besides these contacts, $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(11.8 \%)$ and C $\cdot \mathrm{C}(7.8 \%)$ interactions contribute significantly to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to $\mathrm{C} \cdots \mathrm{Br} / \mathrm{Br} \cdots \mathrm{C}(4.5 \%)$ and $\mathrm{C} \cdots \mathrm{O} /$ O…C (3.6\%).

Figure 3
A view of the molecular packing of $\mathbf{1}$ along the helical b-axis showing the association of closely linked molecules by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. Neighbouring helices along the longer c axis are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ contacts. Symmetry codes as in Table 1.

Figure 4
Three-dimensional Hirshfeld surfaces of compound 1 plotted over $d_{\text {norm }}$ in the range -0.2760 to 0.9829 a.u., and Hirshfeld fingerprint plots for all contacts and those decomposed into $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{Br} /$ $\mathrm{Br} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{Br} / \mathrm{Br} \cdots \mathrm{C}$ contacts. d_{i} and d_{e} denote the closest internal and external distances (in \AA) from a point on the surface.

4. Database survey

A survey of the Cambridge Structural Database (version 5.43, update 4, November 2022; Groom et al., 2016) revealed that no crystal structure of compound $\mathbf{1}$ has been reported. Moreover, no crystal structure similar to that of compound $\mathbf{1}$ has been reported. However, focusing only on the 1-phenylbut-3-yn-1one unit yielded 24 hits with not much similarity with the title compound. The most similar structure with respect to compound 1 is 3-phenyl-2-(phenylethynyl)-1H-inden-1-one (FEGDOO; Kumar et al., 2022).

5. Synthesis and crystallization

A solution of methyl ester $3(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ and 1 N $\mathrm{NaOH}(3 \mathrm{~mL})$ and methanol (3 mL) was heated to reflux for 3 h . After completion of the reaction as indicated by TLC, the reaction mixture was cooled to room temperature and neutralized with a solution of 3 N HCl and then extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine and concentrated. The resulting crude was purified by column chromatography (30% ethyl acetate in petroleum ether) to afford the acid $2(70 \mathrm{mg}, 74 \%$ yield) and an alkyne, the title compound $\mathbf{1}(8 \mathrm{mg}, 11 \%$ yield) as colourless solids. Colourless crystals of the title compound $\mathbf{1}$ suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution.

Table 2
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}$
$M_{\text {r }}$	223.07
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	297
$a, b, c(\AA)$	4.471 (2), 9.032 (4), 21.652 (11)
$\beta\left({ }^{\circ}\right.$)	92.252 (8)
$V\left(\mathrm{~A}^{3}\right)$	873.7 (7)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.65
Crystal size (mm)	$0.35 \times 0.28 \times 0.13$
Data collection	
Diffractometer	Bruker SMART APEX
Absorption correction	Multi-scan (SADABS; Bruker 2016)
$T_{\text {min }}, T_{\text {max }}$	0.293, 0.583
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	4994, 1965, 1397
$R_{\text {int }}$	0.043
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.664
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.048, 0.140, 1.02
No. of reflections	1965
No. of parameters	133
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.40, -0.62

Computer programs: APEX3 and SAINT-Plus (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms (except the acetylene H atom) were located in difference-Fourier map and refined isotropically. The acetylene ($-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$) H atom was placed in a geometrically idealized position using HFIX 163. It was constrained to ride on its parent atom, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for acetylene. The long $\mathrm{C} 8-\mathrm{H} 8 A$ distance [1.02 (4) A] could be the result of its involvement in the directional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond formation with O .

Acknowledgements

SKS thanks the DST-INSPIRE program for a research fellowship.

References

Berg, J. van den \& Seddon, K. R. (2003). Cryst. Growth Des. 3, 643661.

Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kumar, S., Nunewar, S., Sabbi, T. K. \& Kanchupalli, V. (2022). Org. Lett. 24, 3395-3400.

Li, P., Vik, E. C., Maier, J. M., Karki, I., Strickland, S. M. S., Umana, J. M., Smith, M. D., Pellechia, P. J. \& Shimizu, K. D. (2019). J. Am. Chem. Soc. 141, 12513-12517.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commии. pp. 3814-3816.
Mooibroek, T. J., Gamez, P. \& Reedijk, J. (2008). CrystEngComm, 10, 1501-1515.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 1932.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zeng, L.-F., Zhang, H.-S., Wang, Y.-H., Sanchez, T., Zheng, Y.-T., Neamati, N. \& Long, Y.-Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521-4524.

supporting information

Acta Cryst. (2023). E79, 633-636 [https://doi.org/10.1107/S205698902300508X]

Crystal structure of 1-(4-bromophenyl)but-3-yn-1-one

Shaziyaparveen K. Siddiqui, C. V. Ramana and Rajesh G. Gonnade

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1-(4-Bromophenyl)but-3-yn-1-one

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrO}$
$M_{r}=223.07$
Monoclinic, $P 2_{1} / n$
$a=4.471$ (2) \AA
$b=9.032$ (4) \AA
$c=21.652(11) \AA$
$\beta=92.252$ (8$)^{\circ}$
$V=873.7$ (7) \AA^{3}
$Z=4$

Data collection

Bruker SMART APEX diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Phi and ω Scan scans
Absorption correction: multi-scan
(SADABS; Bruker 2016)
$T_{\text {min }}=0.293, T_{\text {max }}=0.583$

$$
F(000)=440
$$

$D_{\mathrm{x}}=1.696 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1876 reflections
$\theta=2.4-24.9^{\circ}$
$\mu=4.65 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, colourless
$0.35 \times 0.28 \times 0.13 \mathrm{~mm}$

4994 measured reflections
1965 independent reflections
1397 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-4 \rightarrow 5$
$k=-11 \rightarrow 11$
$l=-27 \rightarrow 27$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.140$
$S=1.02$
1965 reflections
133 parameters
0 restraints

> Primary atom site location: structure-invariant \quad direct methods
> Hydrogen site location: mixed
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0812 P)^{2}+0.1069 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=0.40$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.62 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.5990(7)$	$0.3666(3)$	$0.79382(16)$	$0.0508(8)$
Br1	$1.37959(10)$	$0.22006(5)$	$1.02549(2)$	$0.0743(2)$
C2	$0.7972(7)$	$0.3261(3)$	$0.84766(16)$	$0.0488(7)$
C3	$0.9384(9)$	$0.4391(4)$	$0.88181(17)$	$0.0581(9)$
H3	$0.887(9)$	$0.545(5)$	$0.8679(19)$	$0.080(12)^{*}$
C4	$1.1186(9)$	$0.4079(4)$	$0.93323(18)$	$0.0615(9)$
H4	$1.217(9)$	$0.494(5)$	$0.9555(19)$	$0.077(11)^{*}$
C5	$1.1578(9)$	$0.2628(4)$	$0.95122(18)$	$0.0556(8)$
C6	$1.0233(9)$	$0.1475(4)$	$0.91808(18)$	$0.0609(9)$
H6	$1.065(9)$	$0.051(5)$	$0.9319(19)$	$0.070(11)^{*}$
C7	$0.8439(9)$	$0.1783(4)$	$0.86619(17)$	$0.0560(8)$
H7	$0.752(8)$	$0.096(4)$	$0.8364(15)$	$0.054(9)^{*}$
C8	$0.4544(9)$	$0.2439(4)$	$0.7551(2)$	$0.0555(9)$
H8B	$0.342(9)$	$0.184(4)$	$0.7824(18)$	$0.056(10)^{*}$
C9	$0.2564(10)$	$0.3048(4)$	$0.7064(2)$	$0.0666(11)$
H8A	$0.617(10)$	$0.187(5)$	$0.734(2)$	$0.068(12)^{*}$
C10	$0.1011(10)$	$0.3516(5)$	$0.6698(2)$	$0.0783(12)$
H10	-0.0283	0.3905	0.6393	0.094^{*}
O1	$0.5514(7)$	$0.4954(2)$	$0.77985(13)$	$0.0718(8)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0553(18)$	$0.0353(15)$	$0.0622(19)$	$-0.0025(13)$	$0.0097(15)$	$-0.0018(14)$
Br1	$0.0827(4)$	$0.0702(3)$	$0.0688(3)$	$-0.00322(18)$	$-0.0116(2)$	$-0.00504(18)$
C2	$0.0542(18)$	$0.0368(14)$	$0.0563(18)$	$-0.0031(13)$	$0.0125(15)$	$-0.0051(14)$
C3	$0.076(2)$	$0.0382(16)$	$0.061(2)$	$-0.0070(15)$	$0.0057(18)$	$-0.0033(15)$
C4	$0.074(2)$	$0.0484(19)$	$0.062(2)$	$-0.0152(17)$	$0.0072(18)$	$-0.0110(17)$
C5	$0.060(2)$	$0.0547(19)$	$0.0524(19)$	$-0.0042(15)$	$0.0068(15)$	$-0.0065(16)$
C6	$0.077(2)$	$0.0415(18)$	$0.064(2)$	$-0.0030(17)$	$0.0016(18)$	$-0.0003(16)$
C7	$0.069(2)$	$0.0386(15)$	$0.060(2)$	$-0.0030(15)$	$0.0009(17)$	$-0.0053(15)$
C8	$0.057(2)$	$0.0396(15)$	$0.069(2)$	$0.0016(15)$	$-0.0034(19)$	$-0.0029(16)$
C9	$0.067(2)$	$0.0464(18)$	$0.087(3)$	$-0.0048(17)$	$0.002(2)$	$-0.0019(19)$
C10	$0.084(3)$	$0.060(2)$	$0.088(3)$	$0.005(2)$	$-0.032(2)$	$0.017(2)$
O1	$0.0875(18)$	$0.0377(12)$	$0.0895(19)$	$0.0002(12)$	$-0.0066(16)$	$0.0024(13)$

Geometric parameters (A, ${ }^{\circ}$)

C1-O1	1.218 (4)	C5-C6	1.388 (5)
C1-C2	1.482 (5)	C6-C7	1.383 (5)
C1-C8	1.518 (5)	C6-H6	0.93 (4)
$\mathrm{Br} 1-\mathrm{C} 5$	1.895 (4)	C7-H7	1.06 (3)
C2-C3	1.397 (5)	C8-C9	1.458 (7)
C2-C7	1.407 (5)	C8-H8B	0.96 (4)
C3-C4	1.378 (6)	C8-H8A	1.02 (4)
C3-H3	1.03 (5)	C9-C10	1.117 (6)
C4-C5	1.377 (5)	C10-H10	0.9300
C4-H4	1.01 (5)		
O1-C1-C2	121.6 (3)	C7-C6-C5	119.7 (3)
O1-C1-C8	119.6 (3)	C7- $\mathrm{C} 6-\mathrm{H} 6$	123 (3)
C2-C1-C8	118.8 (3)	C5-C6-H6	117 (3)
C3-C2-C7	118.9 (3)	C6-C7-C2	119.8 (3)
C3-C2-C1	118.7 (3)	C6-C7-H7	123.5 (18)
C7- $72-\mathrm{C} 1$	122.4 (3)	C2-C7-H7	116.4 (18)
C4-C3-C2	121.1 (3)	C9-C8-C1	110.9 (3)
C4-C3-H3	123 (2)	C9-C8-H8B	110 (2)
C2-C3-H3	116 (2)	C1-C8-H8B	107 (2)
C5-C4-C3	119.2 (3)	C9-C8-H8A	107 (2)
C5-C4-H4	123 (2)	C1-C8-H8A	109 (2)
C3-C4-H4	117 (3)	H8B-C8-H8A	113 (3)
C4-C5-C6	121.3 (4)	C10-C9-C8	178.8 (6)
C4- $55-\mathrm{Br} 1$	119.4 (3)	C9-C10-H10	180.0
C6-C5-Br1	119.2 (3)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.9 (5)	C3-C4-C5- Br 1	-175.1 (3)
C8- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	177.7 (3)	C4-C5-C6-C7	-0.6 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	177.0 (3)	$\mathrm{Br} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	175.5 (3)
C8-C1-C2-C7	-3.4 (5)	C5-C6-C7-C2	-0.5 (6)
C7-C2-C3-C4	-0.7 (5)	C3-C2-C7-C6	1.1 (6)
C1-C2-C3-C4	178.3 (3)	C1-C2-C7-C6	-177.8 (3)
C2-C3-C4-C5	-0.4 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	-3.3 (6)
C3-C4-C5-C6	1.0 (6)	C2-C1-C8-C9	177.1 (3)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{O} 1 \cdots \mathrm{C} 9^{\mathrm{i}}$		$3.13(1)$		$154(1)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots 1^{\mathrm{ii}}$	$1.02(4)$	$2.31(4)$	$3.259(5)$	$156(3)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{C} 10^{\mathrm{iii}}$	$1.06(3)$	$2.71(4)$	$3.626(5)$	$144(3)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Br}^{\mathrm{iv}}$	0.93	2.68	$3.305(5)$	126

[^0]
[^0]: Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (iv) $x-3 / 2,-y+1 / 2, z-1 / 2$.

