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The title compound, 1-(4-bromophenyl)but-3-yn-1-one, C10H7BrO, crystallizes

in the monoclinic space group P21/n with one molecule in the asymmetric unit.

The structure displays a planar geometry. The crystal structure is consolidated

by C—H� � �O hydrogen bonding and a short C O� � �C C (acetylene) contacts.

Hirshfeld surface analysis indicates that H� � �H, C� � �H/H� � �C and H� � �Br/

Br� � �H interactions play a more important role in consolidating the crystal

structure compared to H� � �O/O� � �H and C� � �C contacts.

1. Chemical context

The title compound 1-(4-bromophenyl)but-3-yn-1-one (1) was

obtained as a side product during the synthesis of 5-(4-

bromophenyl)isoxazole-3-carboxylic acid (2) from the NaOH-

mediated hydrolysis of ethyl 5-(4-bromophenyl)isoxazole-3-

carboxylate (3). These arylisoxazole carboxylic acids have

been identified as potential isosteres of aryl diketo acid in the

design of novel HIV-1 integrase inhibitors (Zeng et al., 2008).

The presence of three distinct functional groups, viz. alkyne,

bromo, and carbonyl, offers an intriguing opportunity to

explore how intermolecular interactions contribute to the

cohesion of the crystal structure.

2. Structural commentary

The title compound crystallizes in the monoclinic P21/n

centrosymmetric space group with one molecule of 1 in the

asymmetric unit (Fig. 1). The structure displays a planar

geometry [torsion angle C5—C1—C8—C9 = 175.4 (3)o, only

the C5 atom of phenyl ring is considered and not the full

fragment]. The phenyl ring makes a dihedral angle of 5.4 (2)�
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with the least-squares plane through the O1/C1/C8–C10

fragment.

3. Supramolecular features

In the crystal, the closely associated molecules of 1 generate

two different helical assemblies across the crystallographic

21-screw axis (b-axis). The helical assembly generated using

C1 O1� � �C9i C10i (acetylene, C=O� � ��) contacts

[symmetry code: (i) �x + 1
2, y + 1

2, �z + 3
2] (Li et al., 2019;

Mooibroek, et al., 2008) has a sheet structure (Fig. 2, Table 1),

while the helical assembly created using C—H� � �O (C8—

H8A� � �O1ii) contacts [symmetry code: (ii)�x + 3
2, y� 1

2,�z + 3
2]

(Desiraju & Steiner, 2001) has a proper helical structure

(Fig. 3, Table 1). The helical assembly created using the short

C1 O1� � �C9 C10 contacts is further supported by marginal

C—H� � �� [symmetry code: (iii) �x + 1
2, y � 1

2, �z + 3
2] contacts

involving the phenyl ring (C7—H7) and the � cloud of the

acetylene moiety. Both helices are intertwined and form a two-

dimensional sheet structure roughly along the a-axis direction.

Along the longer c-axis, molecules are loosely connected using

weak C—H� � �Br (C10—H10� � �Br1iv contacts [symmetry

code: (iv) x � 3
2, �y + 1

2, z � 1
2] (van den Berg & Seddon, 2003),

generating the extended assembly (Figs. 2 and 3, Table 1).

In order to visualize and quantify intermolecular inter-

actions in 1, a Hirshfeld surface analysis (Spackman & Jaya-

tilaka, 2009) was performed using Crystal Explorer 21.5

(Spackman et al., 2021), and the associated two-dimensional

fingerprint plots (McKinnon et al., 2007) were generated. The

Hirshfeld surfaces for the molecule in 1 are shown in Fig. 4 in

which the two-dimensional fingerprint plots of the most

dominant contacts are also presented. H� � �H (27.4%), H� � �C/

C� � �H (22.3%) and H� � �Br/Br� � �H (22.0%) contacts are

responsible for the largest contributions to the Hirshfeld

surface. Besides these contacts, H� � �O/O� � �H (11.8%) and

C� � �C (7.8%) interactions contribute significantly to the total

Hirshfeld surface. The contributions of further contacts are

only minor and amount to C� � �Br/Br� � �C (4.5%) and C� � �O/

O� � �C (3.6%).
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Figure 2
A view of the molecular packing of 1 along the helical b-axis showing the
association of closely linked molecules by C O� � �C C (acetylene,
C O� � ��) and marginal C—H� � �� (�-cloud of acetylene molecules)
contacts. Neighbouring helices along the longer c axis are linked by C—
H� � �Br contacts. Symmetry codes as in Table 1.

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C1—O1� � �C9i 3.13 (1) 154 (1)
C8—H8A� � �O1ii 1.02 (4) 2.31 (4) 3.259 (5) 156 (3)
C7—H7� � �C10iii 1.06 (3) 2.71 (4) 3.626 (5) 144 (3)
C10—H10� � �Br1iv 0.93 2.68 3.305 (5) 126

Symmetry codes: (i) �xþ 1
2; yþ 1

2;�z þ 3
2; (ii) �xþ 3

2; y � 1
2;�zþ 3

2; (iii)
�x þ 1

2; y� 1
2;�zþ 3

2; (iv) x� 3
2;�yþ 1

2; z� 1
2.

Figure 3
A view of the molecular packing of 1 along the helical b-axis showing the
association of closely linked molecules by C—H� � �O contacts. Neigh-
bouring helices along the longer c axis are linked by C—H� � �Br contacts.
Symmetry codes as in Table 1.

Figure 1
The asymmetric unit of 1 with the atom labelling. Displacement ellipsoids
represent 30% probability levels.



4. Database survey

A survey of the Cambridge Structural Database (version 5.43,

update 4, November 2022; Groom et al., 2016) revealed that no

crystal structure of compound 1 has been reported. Moreover,

no crystal structure similar to that of compound 1 has been

reported. However, focusing only on the 1-phenylbut-3-yn-1-

one unit yielded 24 hits with not much similarity with the title

compound. The most similar structure with respect to

compound 1 is 3-phenyl-2-(phenylethynyl)-1H-inden-1-one

(FEGDOO; Kumar et al., 2022).

5. Synthesis and crystallization

A solution of methyl ester 3 (100 mg, 0.35 mmol) and 1N

NaOH (3 mL) and methanol (3 mL) was heated to reflux for

3 h. After completion of the reaction as indicated by TLC, the

reaction mixture was cooled to room temperature and

neutralized with a solution of 3N HCl and then extracted with

dichloromethane (3 � 10 mL). The combined organic layer

was washed with brine and concentrated. The resulting crude

was purified by column chromatography (30% ethyl acetate in

petroleum ether) to afford the acid 2 (70 mg, 74% yield) and

an alkyne, the title compound 1 (8 mg, 11% yield) as colour-

less solids. Colourless crystals of the title compound 1 suitable

for single crystal X-ray diffraction analysis were obtained by

slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 2. All H atoms (except the acetylene

H atom) were located in difference-Fourier map and refined

isotropically. The acetylene (—C C—H) H atom was placed

in a geometrically idealized position using HFIX 163. It was

constrained to ride on its parent atom, with Uiso(H) =

1.2Ueq(C) for acetylene. The long C8—H8A distance

[1.02 (4) Å] could be the result of its involvement in the

directional C— H� � �O hydrogen-bond formation with O1.
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Computing details 

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus 

(Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: 

SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 

2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and 

publCIF (Westrip, 2010).

1-(4-Bromophenyl)but-3-yn-1-one 

Crystal data 

C10H7BrO
Mr = 223.07
Monoclinic, P21/n
a = 4.471 (2) Å
b = 9.032 (4) Å
c = 21.652 (11) Å
β = 92.252 (8)°
V = 873.7 (7) Å3

Z = 4

F(000) = 440
Dx = 1.696 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 1876 reflections
θ = 2.4–24.9°
µ = 4.65 mm−1

T = 297 K
Block, colourless
0.35 × 0.28 × 0.13 mm

Data collection 

Bruker SMART APEX 
diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
Phi and ω Scan scans
Absorption correction: multi-scan 

(SADABS; Bruker 2016)
Tmin = 0.293, Tmax = 0.583

4994 measured reflections
1965 independent reflections
1397 reflections with I > 2σ(I)
Rint = 0.043
θmax = 28.2°, θmin = 2.4°
h = −4→5
k = −11→11
l = −27→27

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.048
wR(F2) = 0.140
S = 1.02
1965 reflections
133 parameters
0 restraints

Primary atom site location: structure-invariant 
direct methods

Hydrogen site location: mixed
H atoms treated by a mixture of independent 

and constrained refinement
w = 1/[σ2(Fo

2) + (0.0812P)2 + 0.1069P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max = 0.002
Δρmax = 0.40 e Å−3

Δρmin = −0.62 e Å−3
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Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

C1 0.5990 (7) 0.3666 (3) 0.79382 (16) 0.0508 (8)
Br1 1.37959 (10) 0.22006 (5) 1.02549 (2) 0.0743 (2)
C2 0.7972 (7) 0.3261 (3) 0.84766 (16) 0.0488 (7)
C3 0.9384 (9) 0.4391 (4) 0.88181 (17) 0.0581 (9)
H3 0.887 (9) 0.545 (5) 0.8679 (19) 0.080 (12)*
C4 1.1186 (9) 0.4079 (4) 0.93323 (18) 0.0615 (9)
H4 1.217 (9) 0.494 (5) 0.9555 (19) 0.077 (11)*
C5 1.1578 (9) 0.2628 (4) 0.95122 (18) 0.0556 (8)
C6 1.0233 (9) 0.1475 (4) 0.91808 (18) 0.0609 (9)
H6 1.065 (9) 0.051 (5) 0.9319 (19) 0.070 (11)*
C7 0.8439 (9) 0.1783 (4) 0.86619 (17) 0.0560 (8)
H7 0.752 (8) 0.096 (4) 0.8364 (15) 0.054 (9)*
C8 0.4544 (9) 0.2439 (4) 0.7551 (2) 0.0555 (9)
H8B 0.342 (9) 0.184 (4) 0.7824 (18) 0.056 (10)*
C9 0.2564 (10) 0.3048 (4) 0.7064 (2) 0.0666 (11)
H8A 0.617 (10) 0.187 (5) 0.734 (2) 0.068 (12)*
C10 0.1011 (10) 0.3516 (5) 0.6698 (2) 0.0783 (12)
H10 −0.0283 0.3905 0.6393 0.094*
O1 0.5514 (7) 0.4954 (2) 0.77985 (13) 0.0718 (8)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

C1 0.0553 (18) 0.0353 (15) 0.0622 (19) −0.0025 (13) 0.0097 (15) −0.0018 (14)
Br1 0.0827 (4) 0.0702 (3) 0.0688 (3) −0.00322 (18) −0.0116 (2) −0.00504 (18)
C2 0.0542 (18) 0.0368 (14) 0.0563 (18) −0.0031 (13) 0.0125 (15) −0.0051 (14)
C3 0.076 (2) 0.0382 (16) 0.061 (2) −0.0070 (15) 0.0057 (18) −0.0033 (15)
C4 0.074 (2) 0.0484 (19) 0.062 (2) −0.0152 (17) 0.0072 (18) −0.0110 (17)
C5 0.060 (2) 0.0547 (19) 0.0524 (19) −0.0042 (15) 0.0068 (15) −0.0065 (16)
C6 0.077 (2) 0.0415 (18) 0.064 (2) −0.0030 (17) 0.0016 (18) −0.0003 (16)
C7 0.069 (2) 0.0386 (15) 0.060 (2) −0.0030 (15) 0.0009 (17) −0.0053 (15)
C8 0.057 (2) 0.0396 (15) 0.069 (2) 0.0016 (15) −0.0034 (19) −0.0029 (16)
C9 0.067 (2) 0.0464 (18) 0.087 (3) −0.0048 (17) 0.002 (2) −0.0019 (19)
C10 0.084 (3) 0.060 (2) 0.088 (3) 0.005 (2) −0.032 (2) 0.017 (2)
O1 0.0875 (18) 0.0377 (12) 0.0895 (19) 0.0002 (12) −0.0066 (16) 0.0024 (13)
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Geometric parameters (Å, º) 

C1—O1 1.218 (4) C5—C6 1.388 (5)
C1—C2 1.482 (5) C6—C7 1.383 (5)
C1—C8 1.518 (5) C6—H6 0.93 (4)
Br1—C5 1.895 (4) C7—H7 1.06 (3)
C2—C3 1.397 (5) C8—C9 1.458 (7)
C2—C7 1.407 (5) C8—H8B 0.96 (4)
C3—C4 1.378 (6) C8—H8A 1.02 (4)
C3—H3 1.03 (5) C9—C10 1.117 (6)
C4—C5 1.377 (5) C10—H10 0.9300
C4—H4 1.01 (5)

O1—C1—C2 121.6 (3) C7—C6—C5 119.7 (3)
O1—C1—C8 119.6 (3) C7—C6—H6 123 (3)
C2—C1—C8 118.8 (3) C5—C6—H6 117 (3)
C3—C2—C7 118.9 (3) C6—C7—C2 119.8 (3)
C3—C2—C1 118.7 (3) C6—C7—H7 123.5 (18)
C7—C2—C1 122.4 (3) C2—C7—H7 116.4 (18)
C4—C3—C2 121.1 (3) C9—C8—C1 110.9 (3)
C4—C3—H3 123 (2) C9—C8—H8B 110 (2)
C2—C3—H3 116 (2) C1—C8—H8B 107 (2)
C5—C4—C3 119.2 (3) C9—C8—H8A 107 (2)
C5—C4—H4 123 (2) C1—C8—H8A 109 (2)
C3—C4—H4 117 (3) H8B—C8—H8A 113 (3)
C4—C5—C6 121.3 (4) C10—C9—C8 178.8 (6)
C4—C5—Br1 119.4 (3) C9—C10—H10 180.0
C6—C5—Br1 119.2 (3)

O1—C1—C2—C3 −1.9 (5) C3—C4—C5—Br1 −175.1 (3)
C8—C1—C2—C3 177.7 (3) C4—C5—C6—C7 −0.6 (6)
O1—C1—C2—C7 177.0 (3) Br1—C5—C6—C7 175.5 (3)
C8—C1—C2—C7 −3.4 (5) C5—C6—C7—C2 −0.5 (6)
C7—C2—C3—C4 −0.7 (5) C3—C2—C7—C6 1.1 (6)
C1—C2—C3—C4 178.3 (3) C1—C2—C7—C6 −177.8 (3)
C2—C3—C4—C5 −0.4 (6) O1—C1—C8—C9 −3.3 (6)
C3—C4—C5—C6 1.0 (6) C2—C1—C8—C9 177.1 (3)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

C1—O1···C9i 3.13 (1) 154 (1)
C8—H8A···O1ii 1.02 (4) 2.31 (4) 3.259 (5) 156 (3)
C7—H7···C10iii 1.06 (3) 2.71 (4) 3.626 (5) 144 (3)
C10—H10···Br1iv 0.93 2.68 3.305 (5) 126

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x−3/2, −y+1/2, z−1/2.


