

Md. Hasan Al Banna,^a* Md. Chanmiya Sheikh,^b Ryuta Miyatake,^c Md. Belayet Hossain Howlader^a and Ennio Zangrando^d

^aDepartment of Chemistry, Raishahi University, Raishahi-6205, Bangladesh, ^bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, ^cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and ^dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy. *Correspondence e-mail: s1510923194@ru.ac.bd

The molecular structure of the title compound, C₂₂H₁₉N₃O₄, shows a noncoplanar conformation, with dihedral angles between the phenyl rings of 73.3 (1) and 80.9 (1)°. These deformations are induced by the crystal packing that is mainly governed by $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming a mono-periodic arrangement parallel to the b axis.

1. Chemical context

Hydrazones are a special class of Schiff bases, which can be obtained by condensation between an alkyl or aryl hydrazine and a carbonyl compound (aldehyde or ketone). The active pharmacophore group, -CH=N-NH-C=O-, present in a hydrazone is primarily responsible for its broad spectrum of biological aspects (Taha et al., 2013). The presence of tautomeric forms facilitates their coordination behavior in neutral or anionic species (Banna et al., 2022) with metal ions (Zülfikaroğlu et al., 2020). The chemical diversity and pharmacological accessibility of hydrazone and its derivatives paves the way for research exploring drug design and discovery (Verma et al., 2014).

In this context and in a continuation of our recent work (Banna et al., 2023), we report here on the synthesis and crystal-structure determination of another derivatized aroylhydrazone bearing an ether group.

2. Structural commentary

The molecular structure of the hydrazone compound is shown in Fig. 1. The acyl-hydrazone (-CH=N-NH-C=O-) group connects the *p*-nitrophenyl group and the central phenyl ring, which in turn is bound to the *p*-methylbenzyloxy fragment. An E-configuration is observed with respect to the double bond of the hydrazone bridge N2=C16. The N1-N2 bond length of 1.376 (4) Å is slightly shorter than that of

> 531 https://doi.org/10.1107/S2056989023003948

Received 10 April 2023 Accepted 2 May 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrazine; hydrazone.

CCDC reference: 2232132

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot$	
$C14-H14\cdots N2^{i}$	0.95	2.68	3.524 (5)	148	
$C16-H16\cdots O2^{ii}$	0.95	2.45	3.259 (4)	143	
$C21 - H21 \cdots O4^{iii}$	0.95	2.59	3.532 (5)	171	
$N1 - H1 \cdots O2^{ii}$	0.90(4)	2.04 (4)	2.911 (4)	161 (3)	

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) x, y + 1, z; (iii) -x + 1, $y + \frac{1}{2}$, -z.

1.397 (4) Å determined in the corresponding derivative having a thienyl ring replacing the *p*-nitrophenyl group (Banna *et al.*, 2023). On the other hand, the O2=C15 bond of 1.237 (4) Å is close to that determined in the thienyl derivative [1.236 (4) Å], and typical of a ketonic linkage, while an equilibrium between the keto and enol forms is present in solution. The nitrophenyl group and the benzohydrazone fragment form a dihedral angle of 73.3 (1)° while the terminal 4-methylbenzyl group is rotated by 80.9 (1)° with respect to the central phenyl ring.

Fig. 2 depicts a superimposition of the molecular structure of the title compound with the thienyl derivative (Banna *et al.*, 2023). It is worth noting the different orientations of the carbohydrazide CO-NH-N moiety, likely induced by crystal-packing requirements.

3. Supramolecular features

The crystal packing is governed by hydrogen-bonding interactions (Table 1, with corresponding symmetry codes) realized between the imino group N1–H1 with carbonyl oxygen atom $O2^{ii}$ of a symmetry-related molecule. This results in a monoperiodic arrangement parallel to the *b* axis. In addition, nonclassical C16–H16···O2ⁱⁱ hydrogen bonds between a methine group and the carbonyl O atom and C21–H21···O4ⁱⁱⁱ between an aromatic C–H group and one of the nitro O atoms are also present, as shown in Fig. 3. The ribbons are further connected by C14–H14···N2ⁱ interactions (Table 1). No significant π -stacking interaction is found in the crystal (all centroid-to-centroid distances between phenyl rings are > 5.0 Å).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2 Overlay plot of the molecule of the title compound and the reported thienvl derivative (Banna *et al.*, 2023).

4. Database survey

 $\cdot A$

For a closely related structure with a thienyl moiety, see: Banna *et al.* (2023); for some other aroylhydrazones, see: Ban & Li (2009); Chantrapromma *et al.* (2016); Horkaew *et al.* (2011); Zong & Wu (2013). All these molecules exhibit an *E*configuration about the double bond of the hydrazone bridge, and they have comparable bond lengths and angles in the C=N-NH-C moiety, in agreement with the present geometrical parameters. For reference bond-length data, see: Allen *et al.* (1987).

5. Synthesis and crystallization

The synthesis of the compound follows a procedure previously described (Banna *et al.*, 2023). To a solution of 4-[(4-methylbenzyl)oxy]benzoylhydrazine (0.25 g, 0.97 mmol in 20 ml of absolute ethanol), a solution of 4-nitrobenzaldehyde (0.14 g, 0.97 mmol) in 5 ml ethanol was added and the mixture was heated and refluxed for 2 h. A colorless precipitate was obtained, filtered off, and washed several times with hot ethanol to eliminate any types of starting materials prior to being dried in a desiccator. The title compound was recrystallized from a mixture of DMF and ethanol. Colorless crystals suitable for X-ray diffraction were obtained after 60 d of keeping the sample solution undisturbed.

Yield: 0.29 g, 79%; melting point (m.p.): 531–533 K; FT–IR: 1636 ν (C=O_{amide}), 3315 ν (N–H), 1606 ν (C=N_{azomethine}).

Figure 3

Crystal packing of the title compound showing the mono-periodic arrangement parallel to the *b* axis built by $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (dashed lines).

LC-MS (FAB) m/z: $[M + H]^+$ calculated for C₂₂H₁₉N₃O₄; 390.1446; found 390.1448.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed at geometrical positions, except for the N-H hydrogen atom, the position of which was located in a difference-Fourier map and freely refined. The Flack parameter of -0.8 (9) indicates that the absolute structure cannot confidently be derived from the data based on Mo radiation.

Acknowledgements

The authors express their gratitude to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama for providing facilities for single-crystal X-ray analyses.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Ban, H.-Y. & Li, C.-M. (2009). Acta Cryst. E65, 03272.
- Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.
- Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081-1083.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339-1342.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst.
- E67, o2985. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

Rigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Table	2	
Experi	mental	details

1	
Crystal data	
Chemical formula	$C_{22}H_{19}N_3O_4$
Mr	389.40
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.9485 (8), 5.0612 (5), 20.949 (2)
β (°)	96.585 (7)
$V(Å^3)$	942.54 (16)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.30 \times 0.28 \times 0.03$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.749, 0.997
No. of measured, independent and	9086, 3799, 2635
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.050
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.126, 1.04
No. of reflections	3799
No. of parameters	266
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.19, -0.16
Absolute structure	Unknown: Flack x determined using 741 quotients $[(I^+)-(I^-)]/$
	$[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.8(9)

Computer programs: RAPID-AUTO (Rigaku, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Taha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. & Hussain, E. (2013). Molecules, 18, 10912-10929.

Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R. & Alam, M. M. (2014). J. Pharm. Bioallied. Sci. 6, 69-80.

Zong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151-1156. Zülfikaroğlu, A., Yüksektepe Ataol, Ç., Çelikoğlu, E., Çelikoğlu, U. & İdil, Ö. (2020). J. Mol. Struct. 1199, 127012.

supporting information

Acta Cryst. (2023). E79, 531-533 [https://doi.org/10.1107/S2056989023003948]

Crystal structure of 4-[(4-methylbenzyl)oxy]-N'-(4-nitrobenzylidene)benzohydrazide: a new hydrazone derivative

Md. Hasan Al Banna, Md. Chanmiya Sheikh, Ryuta Miyatake, Md. Belayet Hossain Howlader and Ennio Zangrando

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2018); cell refinement: *RAPID-AUTO* (Rigaku, 2018); data reduction: *RAPID-AUTO* (Rigaku, 2018); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

4-[(4-Methylbenzyl)oxy]-N'-(4-nitrobenzylidene)benzohydrazide

Crystal data

 $C_{22}H_{19}N_{3}O_{4}$ $M_{r} = 389.40$ Monoclinic, $P2_{1}$ a = 8.9485 (8) Å b = 5.0612 (5) Å c = 20.949 (2) Å $\beta = 96.585$ (7)° V = 942.54 (16) Å³ Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.749, T_{\max} = 0.997$ 9086 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.126$ S = 1.033799 reflections 266 parameters 1 restraint Hydrogen site location: mixed

Acta Cryst. (2023). E79, 531-533

F(000) = 408 $D_x = 1.372 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 5984 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 173 KPlatel, colorless $0.30 \times 0.28 \times 0.03 \text{ mm}$

3799 independent reflections 2635 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 2.0^\circ$ $h = -11 \rightarrow 11$ $k = -5 \rightarrow 6$ $l = -27 \rightarrow 27$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0637P)^2 + 0.0221P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 741 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.8 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1477 (3)	0.5424 (5)	0.66816 (11)	0.0476 (7)	
O2	0.3072 (3)	0.1188 (5)	0.39878 (10)	0.0407 (6)	
03	0.7195 (4)	0.3955 (11)	0.04333 (15)	0.0967 (14)	
O4	0.5966 (4)	0.7477 (8)	0.00909 (14)	0.0786 (10)	
N1	0.3611 (4)	0.5542 (5)	0.38830 (13)	0.0369 (7)	
H1	0.354 (4)	0.724 (8)	0.4011 (17)	0.044*	
N2	0.4173 (3)	0.5102 (5)	0.33080 (12)	0.0359(7)	
N3	0.6379 (4)	0.5860 (10)	0.05105 (16)	0.0632 (11)	
C1	-0.1011 (5)	0.8823 (12)	0.93031 (19)	0.0716 (14)	
H1A	-0.136189	1.063016	0.920871	0.086*	
H1B	-0.010078	0.886972	0.961152	0.086*	
H1C	-0.179652	0.782238	0.948641	0.086*	
C2	-0.0660(4)	0.7506 (9)	0.86904 (16)	0.0472 (10)	
C3	0.0290 (5)	0.5425 (10)	0.86983 (18)	0.0648 (13)	
H3	0.074131	0.476727	0.909949	0.078*	
C4	0.0622 (5)	0.4232 (10)	0.81397 (18)	0.0661 (13)	
H4	0.130000	0.278228	0.816291	0.079*	
C5	-0.0019 (4)	0.5115 (8)	0.75470 (16)	0.0401 (8)	
C6	-0.0974 (5)	0.7189 (9)	0.75353 (18)	0.0554 (11)	
H6	-0.143298	0.783136	0.713380	0.067*	
C7	-0.1295 (5)	0.8387 (11)	0.80936 (19)	0.0655 (13)	
H7	-0.196585	0.984825	0.806939	0.079*	
C8	0.0349 (4)	0.3846 (8)	0.69368 (16)	0.0462 (9)	
H8A	0.072933	0.203070	0.702463	0.055*	
H8B	-0.056490	0.374539	0.662284	0.055*	
C9	0.1823 (4)	0.4840 (7)	0.60809 (15)	0.0360 (8)	
C10	0.1222 (4)	0.2735 (7)	0.57052 (15)	0.0387 (9)	
H10	0.052049	0.156850	0.586470	0.046*	
C11	0.1652 (4)	0.2362 (7)	0.51033 (15)	0.0382 (8)	
H11	0.123802	0.092481	0.485007	0.046*	
C12	0.2679 (4)	0.4034 (6)	0.48530 (15)	0.0311 (8)	
C13	0.3289 (4)	0.6103 (7)	0.52395 (15)	0.0388 (8)	
H13	0.399403	0.727021	0.508241	0.047*	
C14	0.2876 (4)	0.6465 (7)	0.58475 (16)	0.0419 (9)	
H14	0.332136	0.785035	0.610979	0.050*	

C15	0.3126 (4)	0.3454 (7)	0.42105 (15)	0.0318 (8)	
C16	0.4317 (4)	0.7143 (7)	0.29601 (16)	0.0410 (8)	
H16	0.404496	0.884332	0.310034	0.049*	
C17	0.4910 (4)	0.6807 (7)	0.23383 (16)	0.0405 (9)	
C18	0.5876 (5)	0.4754 (8)	0.22322 (18)	0.0463 (9)	
H18	0.620600	0.356662	0.257043	0.056*	
C19	0.6358 (5)	0.4437 (9)	0.16319 (18)	0.0509 (10)	
H19	0.702781	0.304857	0.155381	0.061*	
C20	0.5843 (4)	0.6185 (9)	0.11485 (17)	0.0491 (10)	
C21	0.4894 (5)	0.8217 (8)	0.12357 (17)	0.0545 (11)	
H21	0.455193	0.937239	0.089234	0.065*	
C22	0.4445 (5)	0.8546 (8)	0.18362 (17)	0.0526 (10)	
H22	0.380496	0.998273	0.191162	0.063*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0515 (15)	0.0606 (18)	0.0328 (13)	-0.0128 (14)	0.0139 (11)	-0.0079 (12)
O2	0.0605 (16)	0.0307 (12)	0.0321 (12)	0.0011 (13)	0.0101 (11)	-0.0015 (11)
O3	0.076 (2)	0.168 (4)	0.0489 (19)	0.040 (3)	0.0199 (16)	-0.007 (2)
O4	0.113 (3)	0.086 (2)	0.0419 (17)	-0.015 (2)	0.0324 (17)	0.0032 (17)
N1	0.0571 (18)	0.0288 (16)	0.0259 (14)	0.0000 (15)	0.0105 (12)	-0.0017 (12)
N2	0.0492 (17)	0.0322 (15)	0.0274 (15)	0.0007 (14)	0.0087 (12)	-0.0020 (12)
N3	0.059 (2)	0.094 (3)	0.038 (2)	-0.011 (2)	0.0142 (17)	-0.008 (2)
C1	0.065 (3)	0.110 (4)	0.043 (2)	-0.008 (3)	0.023 (2)	-0.018 (2)
C2	0.0412 (19)	0.068 (3)	0.035 (2)	-0.014 (2)	0.0156 (15)	-0.0043 (19)
C3	0.092 (3)	0.069 (3)	0.031 (2)	0.011 (3)	-0.002 (2)	0.0080 (19)
C4	0.083 (3)	0.070 (3)	0.044 (2)	0.034 (3)	-0.001 (2)	0.002 (2)
C5	0.0385 (19)	0.049 (2)	0.0337 (18)	-0.0054 (19)	0.0090 (15)	-0.0003 (16)
C6	0.064 (2)	0.065 (3)	0.035 (2)	0.015 (2)	-0.0024 (18)	0.0006 (19)
C7	0.055 (2)	0.094 (4)	0.046 (2)	0.025 (3)	0.0002 (19)	-0.015 (2)
C8	0.048 (2)	0.056 (2)	0.037 (2)	-0.008 (2)	0.0126 (16)	-0.0022 (18)
C9	0.0385 (19)	0.042 (2)	0.0282 (17)	0.0001 (17)	0.0049 (14)	-0.0003 (15)
C10	0.0410 (19)	0.037 (2)	0.0396 (19)	-0.0052 (17)	0.0121 (16)	-0.0015 (16)
C11	0.0473 (19)	0.0326 (17)	0.0349 (19)	-0.0044 (17)	0.0051 (15)	-0.0069 (15)
C12	0.0395 (19)	0.0279 (17)	0.0259 (16)	0.0045 (16)	0.0035 (14)	-0.0016 (13)
C13	0.0467 (19)	0.039 (2)	0.0311 (17)	-0.0066 (18)	0.0073 (15)	-0.0001 (16)
C14	0.049 (2)	0.043 (2)	0.0333 (19)	-0.0072 (19)	0.0019 (15)	-0.0074 (16)
C15	0.0373 (19)	0.0297 (18)	0.0276 (16)	0.0041 (16)	0.0006 (14)	-0.0006 (14)
C16	0.061 (2)	0.0318 (18)	0.0320 (18)	-0.0014 (18)	0.0108 (16)	-0.0054 (15)
C17	0.056 (2)	0.036 (2)	0.0312 (18)	-0.0137 (18)	0.0114 (16)	-0.0051 (15)
C18	0.054 (2)	0.048 (2)	0.038 (2)	-0.008 (2)	0.0104 (17)	-0.0014 (17)
C19	0.051 (2)	0.057 (2)	0.047 (2)	-0.009 (2)	0.0170 (18)	-0.010 (2)
C20	0.051 (2)	0.068 (3)	0.0306 (19)	-0.019 (2)	0.0144 (16)	-0.007 (2)
C21	0.079 (3)	0.054 (3)	0.032 (2)	-0.018 (2)	0.0133 (19)	0.0022 (18)
C22	0.082 (3)	0.040 (2)	0.039 (2)	-0.006 (2)	0.021 (2)	0.0025 (17)

supporting information

Geometric parameters (Å, °)

01—C9	1.363 (4)	C8—H8A	0.9900	
01—C8	1.437 (4)	C8—H8B	0.9900	
O2—C15	1.237 (4)	C9—C14	1.382 (5)	
O3—N3	1.231 (6)	C9—C10	1.395 (5)	
O4—N3	1.227 (5)	C10—C11	1.373 (4)	
N1-C15	1.358 (4)	C10—H10	0.9500	
N1—N2	1.376 (4)	C11—C12	1.395 (5)	
N1—H1	0.90 (4)	C11—H11	0.9500	
N2-C16	1.279 (4)	C12—C13	1.396 (5)	
N3—C20	1.480 (5)	C12—C15	1.477 (4)	
C1—C2	1.511 (5)	C13—C14	1.379 (5)	
C1—H1A	0.9800	C13—H13	0.9500	
C1—H1B	0.9800	C14—H14	0.9500	
C1—H1C	0.9800	C16—C17	1.472 (5)	
C2—C3	1.353 (6)	C16—H16	0.9500	
C2—C7	1.386 (5)	C17—C18	1.385 (5)	
C3—C4	1.379 (6)	C17—C22	1.398 (5)	
С3—Н3	0.9500	C18—C19	1.385 (5)	
C4—C5	1.381 (5)	C18—H18	0.9500	
C4—H4	0.9500	C19—C20	1.383 (6)	
C5—C6	1.352 (6)	C19—H19	0.9500	
C5—C8	1.500 (5)	C20—C21	1.360 (6)	
C6—C7	1.377 (5)	C21—C22	1.374 (5)	
С6—Н6	0.9500	C21—H21	0.9500	
С7—Н7	0.9500	C22—H22	0.9500	
C9—O1—C8	117.8 (3)	C14—C9—C10	119.3 (3)	
C15—N1—N2	119.1 (3)	C11—C10—C9	119.5 (3)	
C15—N1—H1	124 (2)	C11—C10—H10	120.2	
N2—N1—H1	117 (2)	C9—C10—H10	120.2	
C16—N2—N1	116.0 (3)	C10—C11—C12	121.9 (3)	
O4—N3—O3	124.3 (4)	C10—C11—H11	119.1	
O4—N3—C20	118.1 (4)	C12—C11—H11	119.1	
O3—N3—C20	117.7 (4)	C11—C12—C13	117.9 (3)	
C2C1H1A	109.5	C11—C12—C15	118.8 (3)	
C2C1H1B	109.5	C13—C12—C15	123.3 (3)	
H1A—C1—H1B	109.5	C14—C13—C12	120.4 (3)	
C2-C1-H1C	109.5	C14—C13—H13	119.8	
H1A—C1—H1C	109.5	C12—C13—H13	119.8	
H1B—C1—H1C	109.5	C13—C14—C9	120.9 (3)	
C3—C2—C7	117.0 (4)	C13—C14—H14	119.5	
C3—C2—C1	121.6 (4)	C9—C14—H14	119.5	
C7—C2—C1	121.4 (4)	O2—C15—N1	122.1 (3)	
C2—C3—C4	121.8 (4)	O2—C15—C12	121.7 (3)	
С2—С3—Н3	119.1	N1—C15—C12	116.2 (3)	
С4—С3—Н3	119.1	N2—C16—C17	118.7 (3)	

C3—C4—C5	120.9 (4)	N2-C16-H16	120.6
C3—C4—H4	119.5	C17—C16—H16	120.6
C5—C4—H4	119.5	C18—C17—C22	119.3 (3)
C6—C5—C4	117.6 (4)	C18—C17—C16	121.6 (3)
C6—C5—C8	121.1 (3)	C22—C17—C16	119.1 (3)
C4—C5—C8	121.2 (4)	C19—C18—C17	119.8 (4)
C5—C6—C7	121.3 (4)	C19—C18—H18	120.1
С5—С6—Н6	119.3	C17—C18—H18	120.1
С7—С6—Н6	119.3	C20-C19-C18	118.6 (4)
C6—C7—C2	121.4 (4)	С20—С19—Н19	120.7
С6—С7—Н7	119.3	C18—C19—H19	120.7
С2—С7—Н7	119.3	C21—C20—C19	123.1 (3)
O1—C8—C5	108.1 (3)	C21—C20—N3	118.5 (4)
O1—C8—H8A	110.1	C19—C20—N3	118.4 (4)
С5—С8—Н8А	110.1	C20—C21—C22	117.9 (4)
O1—C8—H8B	110.1	C20—C21—H21	121.1
C5—C8—H8B	110.1	C22—C21—H21	121.1
H8A—C8—H8B	108.4	C21—C22—C17	121.3 (4)
O1—C9—C14	115.7 (3)	C21—C22—H22	119.3
O1—C9—C10	125.0 (3)	С17—С22—Н22	119.3
C15—N1—N2—C16	166.0 (3)	C10-C9-C14-C13	2.9 (5)
C7—C2—C3—C4	0.3 (7)	N2—N1—C15—O2	-5.3 (5)
C1—C2—C3—C4	-179.5 (5)	N2-N1-C15-C12	174.1 (3)
C2—C3—C4—C5	-0.5 (8)	C11—C12—C15—O2	-25.7 (5)
C3—C4—C5—C6	0.2 (7)	C13—C12—C15—O2	151.0 (3)
C3—C4—C5—C8	179.3 (4)	C11—C12—C15—N1	154.8 (3)
C4—C5—C6—C7	0.2 (6)	C13—C12—C15—N1	-28.5 (5)
C8—C5—C6—C7	-178.9 (4)	N1—N2—C16—C17	-179.9 (3)
C5—C6—C7—C2	-0.4 (7)	N2-C16-C17-C18	-27.8 (5)
C3—C2—C7—C6	0.2 (7)	N2-C16-C17-C22	149.9 (4)
C1—C2—C7—C6	179.9 (4)	C22-C17-C18-C19	-0.4 (5)
C9—O1—C8—C5	-170.9 (3)	C16—C17—C18—C19	177.2 (4)
C6-C5-C8-O1	80.9 (4)	C17—C18—C19—C20	-0.6 (5)
C4—C5—C8—O1	-98.2 (5)	C18—C19—C20—C21	0.5 (6)
C8—O1—C9—C14	177.9 (3)	C18—C19—C20—N3	179.1 (4)
C8—O1—C9—C10	-3.5 (5)	O4—N3—C20—C21	1.5 (5)
O1—C9—C10—C11	179.5 (3)	O3—N3—C20—C21	-177.5 (4)
C14—C9—C10—C11	-2.0 (5)	O4—N3—C20—C19	-177.2 (4)
C9—C10—C11—C12	0.0 (5)	O3—N3—C20—C19	3.9 (5)
C10-C11-C12-C13	1.1 (5)	C19—C20—C21—C22	0.7 (6)
C10-C11-C12-C15	177.9 (3)	N3—C20—C21—C22	-177.9 (3)
C11—C12—C13—C14	-0.2 (5)	C20—C21—C22—C17	-1.8 (6)
C15—C12—C13—C14	-176.9 (3)	C18—C17—C22—C21	1.7 (6)
C12—C13—C14—C9	-1.8 (5)	C16—C17—C22—C21	-176.0 (3)
O1—C9—C14—C13	-178.5(3)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C14—H14…N2 ⁱ	0.95	2.68	3.524 (5)	148
С16—Н16…О2 ^{іі}	0.95	2.45	3.259 (4)	143
C21—H21···O4 ⁱⁱⁱ	0.95	2.59	3.532 (5)	171
N1—H1····O2 ⁱⁱ	0.90 (4)	2.04 (4)	2.911 (4)	161 (3)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*+1/2, -*z*.