

Received 10 May 2023 Accepted 20 May 2023

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: crystal structure; [1,2,4]triazolo[1,5a]pyridine; hydrogen bond; Hirshfeld surface analysis.

CCDC reference: 2264500

Supporting information: this article has supporting information at journals.iucr.org/e

is a widespread structural motif in various synthetic biologically active compounds, possessing cardiovascular, trypanocidal, nitric oxide synthase inhibitor and antimicrobial activity, and in non-hormonal compounds with antifertility activity and leishmanicidal activity (Jones & Abarca, 2010; Mohamed et al.,

A literature survey shows that the title compound 3 was previously synthesized in a two-pot reaction protocol (Barsy et al., 2008), wherein the iminophosphorane 1-amino-6-(triphenylphosphoranylideneamino)-2-oxo-4-phenyl-1,2-dihydropyri-

Farid N. Naghiyev,^a Victor N. Khrustalev,^{b,c} Huseyn M. Mamedov,^d Mehmet Akkurt,^e Ali N. Khalilov,^a Ajaya Bhattarai^{f*} and İbrahim G. Mamedov^a

^aFaculty of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^dFaculty of Physics, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Türkiye, and ^fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{20}H_{12}N_6O \cdot C_2H_6OS$, the [1,2,4]triazolo[1,5-*a*]pyridine ring system is almost planar and makes dihedral angles of 16.33 (7) and 46.80 (7) $^{\circ}$, respectively, with the phenylamino and phenyl rings. In the crystal, molecules are linked by intermolecular N-H···O and C-H···O hydrogen bonds into chains along the *b*-axis direction through the dimethyl sulfoxide solvent molecule, forming $C(10)R_1^2(6)$ motifs. These chains are connected via S-O··· π interactions, π - π stacking interactions between the pyridine rings [centroid-to-centroid distance = 3.6662 (9) Å] and van der Waals interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from $H \cdots H$ (28.1%), $C \cdots H/$ $H \cdots C$ (27.2%), $N \cdots H/H \cdots N$ (19.4%) and $O \cdots H/H \cdots O$ (9.8%) interactions.

1. Chemical context

Diverse carbon-carbon and carbon-heteroatom bond-formation reactions are considered fundamental tools in organic synthesis. The reaction has also been amplified, extending these methods to different fields of chemistry, as well to the synthesis of natural products, in medicinal and pharmaceutical chemistry, material science, supramolecular chemistry etc (Celik et al., 2023; Chalkha et al., 2023; Tapera et al., 2022; Gurbanov et al., 2020; Zubkov et al., 2018). Triazolo[1,5a pyridines are accessible heterocyclic compounds and α substituted pyridines are among the most widely used starting materials for their synthesis. The most common synthetic pathways to these compounds are well-reviewed in the literature (Jones & Abarca, 2010; Soliman et al., 2014; Kotovshchikov et al., 2021). The triazolo[1,5-a]pyridine moiety 2013; Poustforoosh et al., 2022).

research communications

Figure 1 The synthesis routes or the title compound **3**.

dine-3,5-dicarbonitrile 2 prepared from 1,6-diaminopyridine 1 reacted with phenylisocyanate method to prepare 3 (*B* pathway, Fig. 1). Herein, we disclose a more straightforward one-pot synthesis method of 3 using the same starting compound 1 at room temperature (*A* pathway, Fig. 1), but through a different pathway.

Continuing our investigations of heterocyclic systems with biological activity and in the framework of our ongoing structural studies (Maharramov *et al.*, 2021, 2022; Naghiyev *et al.*, 2020, 2021, 2022), we report the crystal structure and Hirshfeld surface analysis of the title compound, 5-oxo-7-

Figure 2

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

 Table 1

 Hydrogen-bond geometry (Å, °).

,		/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O2	0.88 (2)	1.84 (2)	2.6249 (16)	146.9 (17)
$N2-H2\cdots O2$	0.90(2)	2.07 (2)	2.8680 (16)	147.7 (17)
$C10-H10\cdots N3$	0.95	2.39	2.9956 (19)	121
$C23 - H23B \cdot \cdot \cdot O1^{i}$	0.98	2.44	3.166 (2)	131
$C24 - H24B \cdot \cdot \cdot N22$	0.98	2.53	3.474 (2)	162

Symmetry code: (i) x + 1, y + 1, z.

phenyl-2-(phenylamino)-1,5-dihydro-[1,2,4]triazolo[1,5-*a*]-pyridine-6,8-dicarbonitrile, which crystallized as a DMSO solvate.

2. Structural commentary

In the title compound, (Fig. 2), the [1,2,4]triazolo[1,5-*a*]pyridine ring system (N1/N3/N4/C2/C5–C8/C8*A*) is almost planar [maximum deviation = 0.043 (2) Å for C5] and subtends dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenylamino and phenyl rings (C9–C14 and C16–C21). The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the *Database survey* (Section 4).

3. Supramolecular features

In the crystal, molecules are linked by intermolecular N– H···O and C–H···O hydrogen bonds into chains along the *b*axis direction through the dimethyl sulfoxide solvent molecule, forming $C(10)R_1^2(6)$ motifs (Bernstein *et al.*, 1995; Table 1). These chains are connected *via* S–O··· π interactions [S1–O2···Cg2ⁱ: O2···Cg2ⁱ = 3.1775 (14) Å; S1···Cg2ⁱ = 4.0054 (8) Å; S1–O2···Cg2ⁱ = 111.93 (6)°; symmetry code: (i) 1 – x, 1 – y, 1 – z; Cg2 is the centroid of the pyridine ring

A view along the *c* axis of the N-H \cdots O and C-H \cdots O bonds in the title compound.

 Table 2

 Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
$O1 \cdot \cdot \cdot H23B$	2.44	-1 + x, -1 + y, z
H17···O1	2.65	-x, 1-y, 1-z
$O1 \cdot \cdot \cdot H24A$	2.63	1-x, 1-y, 1-z
H1···O2	1.84	x, y, z
H14···C21	2.98	1-x, 1-y, 1-z
H19···N15	2.73	-x, 1-y, 2-z
H18···N22	2.82	1 - x, 2 - y, 2 - z
C22···H23B	3.08	1-x, 2-y, 1-z
C9···H20	3.05	x, y, -1 + z
C11···C11	3.53	-x, -y, -z
C12···H18	3.05	x, -1 + y, -1 + z
H19···H23A	2.54	x, y, 1 + z
$H12 \cdot \cdot \cdot H24A$	2.41	-1 + x, $-1 + y$, $-1 + z$
$H12 \cdot \cdot \cdot S1$	3.04	1 - x, 1 - y, -z
$H23C \cdot \cdot \cdot H23C$	2.43	1 - x, 2 - y, 1 - z
		· •

(e) O...H / H...O

Two-dimensional fingerprint plots for title molecule showing (*a*) all interactions, and delineated into (*b*) $H \cdots H$, (*c*) $C \cdots H/H \cdots C$, (*d*) $N \cdots H/H \cdots N$ and (*e*) $O \cdots H/H \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

(N4/C5–C8/C8A)], π – π stacking interactions [$Cg2\cdots Cg2^{ii}$ = 3.6662 (9) Å; slippage = 1.468 Å; symmetry code: (ii) –x, 1 – y, 1 – z] and van der Waals interactions (Fig. 3).

CrystalExplorer17.5 (Spackman et al., 2021) was used to compute Hirshfeld surfaces of the title molecule and twodimensional fingerprints. The Hirshfeld surfaces were mapped over d_{norm} in the range -0.6769 (red) to +1.1190 (blue) a.u. The interactions given in Table 2 play a key role in the molecular packing of the title compound. The most important interatomic contact is $H \cdots H$ as it makes the highest contribution to the crystal packing (28.1%, Fig. 4b). Other major contributors are $C \cdots H/H \cdots C$ (27.2%, Fig. 4c), $N \cdots H/H \cdots N$ (19.4%, Fig. 4d) and $N \cdots H/H \cdots N$ (9.8%, Fig. 4e) interactions. Smaller contributions are made by $N \cdots C/C \cdots N$ (6.7%), $C \cdots C$ (3.6%), $O \cdots C/C \cdots O(1.7\%)$, $N \cdots N$ (1.5%), $S \cdots H/$ $H \cdots S$ (1.0%), $O \cdots N/N \cdots O$ (0.7%), $S \cdots C/C \cdots S(0.2\%)$ and $O \cdots S/S \cdots O$ (0.1%) interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016) for the central nine-membered ring system '1,5-dihydro[1,2,4]triazolo[1,5-*a*]pyridine' yielded three compounds related to the title compound, *viz.* CSD refcodes HODQEZ (Gumus *et al.*, 2019), HODQID (Gumus *et al.*, 2019) and RETCAX (Aydemir *et al.*, 2018).

In the crystal of HODQEZ, pairs of $N-H\cdots N$ hydrogen bonds link the molecules, forming inversion dimers with an $R_2^2(8)$ ring motif. The dimers are linked by $C-H\cdots \pi$ and C-Br $\cdots \pi$ interactions, forming layers parallel to the *bc* plane. In the crystal of HODQID, molecules are linked by $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, forming chains propagating along the *b*-axis direction. In the crystal of RETCAX, N- $H\cdots N$ hydrogen bonds link the molecules into supramolecular chains propagating along the *c*-axis direction.

5. Synthesis and crystallization

To a solution of 1,6-diamino-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (0.82 g, 5.1 mmol) in DMF (25 mL) was added 10 mL of an aqueous solution of potassium hydroxide (0.28 g, 5.1 mmol). The mixture was stirred at room temperature for 2 h. Then an equimolar amount of phenylisothiocyanate (0.51 g, 5.2 mmol) was added to the vigorously stirred reaction mixture and left overnight. After completion of the reaction, monitored by TLC, the reaction mixture was acidified by adding conc. HCl (4 mL). The precipitated solids were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 80%; m.p. 557–558 K). Single crystals were grown from a DMSO solution.

¹H NMR (300 MHz, DMSO- d_6 , p.p.m.): 4.3 (*s*, 1H, NH); 6.9 (*t*, 1H, CH_{arom}, ${}^{3}J_{H-H} = 7.5$ MHz); 7.3 (*t*, 2H, CH_{arom}, ${}^{3}J_{H-H} = 7.5$ MHz); 7.5 (*m*, 5H, CH_{arom}); 7.7 (*d*, 2H, CH_{arom}, ${}^{3}J_{H-H} = 8.1$ MHz); 9.6 (*s*, 1H, NH); ¹³C NMR (75 MHz, DMSO- d_6 , p.p.m.): 76.4 (C_{quat}), 83.9 (C_{quat}), 117.0 (CH_{arom}), 117.5 (CN), 118.9 (CN), 120.7 (CH_{arom}), 128.9 (CH_{arom}), 129.0 (CH_{arom}),

Figure 4

research communications

 Table 3

 Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{12}N_6O \cdot C_2H_6OS$
$M_{ m r}$	430.48
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.87885 (12), 10.46018 (13), 11.48307 (12)
$lpha,eta,\gamma(^\circ)$	100.9305 (10), 105.3054 (11), 112.6790 (12)
$V(Å^3)$	997.81 (2)
Z	2
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	1.73
Crystal size (mm)	$0.22 \times 0.16 \times 0.12$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2021)
T_{\min}, T_{\max}	0.660, 0.781
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22299, 4314, 4124
R _{int}	0.037
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.638
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.106, 1.08
No. of reflections	4314
No. of parameters	289
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.41, -0.51

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

129.2 (CH_{arom}), 129.9 (CH_{arom}), 136.3 (C_{arom}), 141.4 (C_{arom}), 152.2 (C_{quat}), 154.9 (C_{quat}), 156.2 (C_{quat}), 161.1 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The NH H atoms were located in a difference-Fourier map [N1-H1 = 0.88 (2) Å and N2-H2 =0.90 (2) Å] and refined with $U_{iso}(H) = 1.2U_{eq}(N)$. Carbonbound H atoms were positioned geometrically [C-H = 0.95-0.98 Å;] and were included in the refinement in the ridingmodel approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and HMM; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and HMM; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

- Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370.
- Barsy, M. A., El Rady, E. A. & El Latif, F. M. A. (2008). J. Heterocycl. Chem. 45, 773–778.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.
- Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gumus, M. K., Kansiz, S., Yuksektepe Ataol, C., Dege, N. & Fritsky, I. O. (2019). Acta Cryst. E75, 492–498.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). *Chem. Eur. J.* 26, 14833–14837.
- Jones, G. & Abarca, B. (2010). Adv. Heterocycl. Chem. 100, 195-252.
- Kotovshchikov, Y. N., Voloshkin, V. A., Latyshev, G. V., Lukashev, N. V. & Beletskaya, I. P. (2021). Russ. J. Org. Chem. 57, 1212–1244.
- Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.
- Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.
- Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425–1430.
- Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). *Acta Cryst.* E76, 720–723.
- Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). *Acta Cryst.* E78, 554–558.
- Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.
- Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). *Curr. Microbiol.* **79**, 241.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202–1209.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

supporting information

Acta Cryst. (2023). E79, 567-570 [https://doi.org/10.1107/S2056989023004383]

Crystal structure and Hirshfeld surface analysis of 5-oxo-7-phenyl-2-(phenyl-amino)-1*H*-[1,2,4]triazolo[1,5-*a*]pyridine-6,8-dicarbonitrile dimethyl sulfoxide monosolvate

Farid N. Naghiyev, Victor N. Khrustalev, Huseyn M. Mamedov, Mehmet Akkurt, Ali N. Khalilov, Ajaya Bhattarai and İbrahim G. Mamedov

Computing details

Data collection: *CrysAlis PRO* 1.171.41.117a (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* 1.171.41.117a (Rigaku OD, 2021); data reduction: *CrysAlis PRO* 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

5-Oxo-7-phenyl-2-(phenylamino)-1*H*-[1,2,4]triazolo[1,5-*a*]pyridine-6,8-dicarbonitrile dimethyl sulfoxide monosolvate

Crystal data

 $C_{20}H_{12}N_6O \cdot C_2H_6OS$ $M_r = 430.48$ Triclinic, $P\overline{1}$ a = 9.87885 (12) Å b = 10.46018 (13) Å c = 11.48307 (12) Å $a = 100.9305 (10)^{\circ}$ $\beta = 105.3054 (11)^{\circ}$ $\gamma = 112.6790 (12)^{\circ}$ $V = 997.81 (2) \text{ Å}^{3}$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube φ and ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) $T_{\min} = 0.660, T_{\max} = 0.781$ 22299 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.106$ Z = 2 F(000) = 448 $D_x = 1.433 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 15870 reflections $\theta = 4.8-79.3^{\circ}$ $\mu = 1.73 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.22 \times 0.16 \times 0.12 \text{ mm}$

4314 independent reflections 4124 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 79.5^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = -12 \rightarrow 9$ $k = -12 \rightarrow 13$ $l = -14 \rightarrow 14$

S = 1.084314 reflections 289 parameters 0 restraints

Primary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.554P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: mixed	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent and constrained refinement	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0029 (4)

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.06967 (12)	0.20611 (11)	0.42668 (10)	0.0214 (2)	
N1	0.37412 (14)	0.55891 (13)	0.44627 (11)	0.0171 (2)	
H1	0.465 (2)	0.635 (2)	0.4612 (18)	0.021*	
C2	0.29261 (16)	0.44403 (15)	0.33251 (13)	0.0163 (3)	
N2	0.35694 (14)	0.44663 (14)	0.24222 (12)	0.0189 (3)	
H2	0.453 (2)	0.523 (2)	0.2678 (18)	0.023*	
N3	0.15858 (14)	0.34368 (13)	0.32865 (11)	0.0178 (2)	
N4	0.15615 (14)	0.40235 (12)	0.44782 (11)	0.0159 (2)	
C5	0.03861 (16)	0.32893 (15)	0.49174 (14)	0.0177 (3)	
C6	0.06152 (16)	0.41513 (15)	0.61676 (13)	0.0176 (3)	
C7	0.19229 (16)	0.55162 (15)	0.69078 (13)	0.0174 (3)	
C8	0.30798 (16)	0.61215 (15)	0.63984 (13)	0.0172 (3)	
C8A	0.28510 (16)	0.53211 (15)	0.51784 (13)	0.0167 (3)	
C9	0.29501 (17)	0.34391 (15)	0.11906 (13)	0.0179 (3)	
C10	0.13802 (18)	0.23723 (17)	0.06025 (15)	0.0227 (3)	
H10	0.0659	0.2308	0.1023	0.027*	
C11	0.08828 (19)	0.13987 (18)	-0.06143 (15)	0.0262 (3)	
H11	-0.0189	0.0670	-0.1026	0.031*	
C12	0.19282 (19)	0.14769 (18)	-0.12345 (15)	0.0265 (3)	
H12	0.1581	0.0794	-0.2056	0.032*	
C13	0.34888 (19)	0.25654 (18)	-0.06421 (15)	0.0242 (3)	
H13	0.4208	0.2634	-0.1065	0.029*	
C14	0.39982 (17)	0.35488 (17)	0.05611 (14)	0.0211 (3)	
H14	0.5062	0.4298	0.0958	0.025*	
C15	-0.06863 (17)	0.35194 (15)	0.65539 (13)	0.0186 (3)	
N15	-0.18041 (15)	0.29648 (14)	0.67726 (13)	0.0235 (3)	
C16	0.21011 (16)	0.63048 (16)	0.82000 (13)	0.0178 (3)	
C17	0.25352 (17)	0.78044 (16)	0.85674 (14)	0.0202 (3)	
H17	0.2689	0.8319	0.7977	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C18	0.27428 (18)	0.85436 (16)	0.97909 (14)	0.0223 (3)
H18	0.3041	0.9563	1.0037	0.027*
C19	0.25145 (17)	0.77930 (17)	1.06577 (14)	0.0218 (3)
H19	0.2658	0.8301	1.1495	0.026*
C20	0.20758 (17)	0.62989 (17)	1.03002 (14)	0.0215 (3)
H20	0.1913	0.5788	1.0892	0.026*
C21	0.18757 (17)	0.55538 (16)	0.90782 (14)	0.0195 (3)
H21	0.1587	0.4537	0.8839	0.023*
C22	0.44758 (17)	0.74971 (16)	0.70142 (14)	0.0191 (3)
N22	0.56198 (16)	0.85887 (14)	0.74045 (13)	0.0251 (3)
S1	0.73840 (4)	0.86862 (4)	0.42677 (3)	0.01894 (11)
O2	0.63433 (12)	0.71002 (11)	0.41226 (10)	0.0215 (2)
C23	0.6060 (2)	0.94489 (18)	0.39068 (19)	0.0328 (4)
H23A	0.5447	0.9058	0.2985	0.049*
H23B	0.6662	1.0518	0.4170	0.049*
H23C	0.5340	0.9190	0.4366	0.049*
C24	0.83449 (19)	0.96161 (17)	0.59410 (15)	0.0249 (3)
H24A	0.9001	0.9187	0.6319	0.037*
H24B	0.7551	0.9518	0.6326	0.037*
H24C	0.9013	1.0657	0.6101	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0204 (5)	0.0187 (5)	0.0200 (5)	0.0048 (4)	0.0082 (4)	0.0039 (4)
N1	0.0170 (6)	0.0169 (5)	0.0174 (6)	0.0073 (5)	0.0079 (4)	0.0045 (4)
C2	0.0179 (6)	0.0170 (6)	0.0160 (6)	0.0096 (5)	0.0072 (5)	0.0054 (5)
N2	0.0173 (6)	0.0196 (6)	0.0181 (6)	0.0065 (5)	0.0089 (5)	0.0037 (5)
N3	0.0193 (6)	0.0192 (6)	0.0162 (6)	0.0087 (5)	0.0095 (5)	0.0049 (5)
N4	0.0174 (6)	0.0156 (5)	0.0157 (5)	0.0075 (5)	0.0080 (4)	0.0046 (4)
C5	0.0187 (6)	0.0193 (6)	0.0191 (7)	0.0108 (5)	0.0086 (5)	0.0083 (5)
C6	0.0195 (7)	0.0199 (7)	0.0177 (7)	0.0109 (6)	0.0091 (5)	0.0081 (5)
C7	0.0198 (7)	0.0198 (7)	0.0178 (7)	0.0128 (6)	0.0077 (5)	0.0080 (5)
C8	0.0181 (6)	0.0175 (6)	0.0172 (7)	0.0089 (5)	0.0073 (5)	0.0058 (5)
C8A	0.0175 (6)	0.0187 (6)	0.0178 (7)	0.0109 (5)	0.0075 (5)	0.0076 (5)
C9	0.0204 (7)	0.0190 (6)	0.0161 (6)	0.0102 (5)	0.0077 (5)	0.0058 (5)
C10	0.0210 (7)	0.0257 (7)	0.0210 (7)	0.0090 (6)	0.0106 (6)	0.0063 (6)
C11	0.0227 (7)	0.0272 (8)	0.0200 (7)	0.0057 (6)	0.0072 (6)	0.0032 (6)
C12	0.0298 (8)	0.0277 (8)	0.0168 (7)	0.0104 (7)	0.0088 (6)	0.0025 (6)
C13	0.0263 (8)	0.0301 (8)	0.0211 (7)	0.0144 (6)	0.0138 (6)	0.0085 (6)
C14	0.0197 (7)	0.0253 (7)	0.0202 (7)	0.0107 (6)	0.0093 (6)	0.0082 (6)
C15	0.0214 (7)	0.0187 (6)	0.0173 (7)	0.0105 (6)	0.0075 (5)	0.0058 (5)
N15	0.0241 (6)	0.0250 (6)	0.0239 (6)	0.0114 (5)	0.0123 (5)	0.0083 (5)
C16	0.0170 (6)	0.0211 (7)	0.0170 (7)	0.0100 (5)	0.0070 (5)	0.0058 (5)
C17	0.0222 (7)	0.0216 (7)	0.0206 (7)	0.0115 (6)	0.0105 (6)	0.0080 (6)
C18	0.0230 (7)	0.0212 (7)	0.0221 (7)	0.0107 (6)	0.0090 (6)	0.0039 (6)
C19	0.0209 (7)	0.0273 (7)	0.0174 (7)	0.0122 (6)	0.0079 (6)	0.0041 (6)
C20	0.0213 (7)	0.0266 (7)	0.0195 (7)	0.0122 (6)	0.0093 (6)	0.0087 (6)

supporting information

C21	0.0187 (6)	0.0207 (7)	0.0199 (7)	0.0096 (5)	0.0078 (5)	0.0066 (6)
N22	0.0255 (7)	0.0221 (6)	0.0252 (7)	0.0082 (5)	0.0114 (5)	0.0053 (5)
S1	0.01723 (18)	0.01879 (19)	0.01979 (19)	0.00657 (14)	0.00849 (13)	0.00567 (13)
O2	0.0199 (5)	0.0174 (5)	0.0244 (5)	0.0061 (4)	0.0091 (4)	0.0048 (4)
C23	0.0242 (8)	0.0246 (8)	0.0444 (10)	0.0123 (7)	0.0037 (7)	0.0111 (7)
C24	0.0269 (8)	0.0197 (7)	0.0224 (7)	0.0085 (6)	0.0062 (6)	0.0038 (6)

Geometric parameters (Å, °)

O1—C5	1.2277 (18)	C13—C14	1.384 (2)
N1—C8A	1.3439 (18)	C13—H13	0.9500
N1—C2	1.3792 (18)	C14—H14	0.9500
N1—H1	0.88 (2)	C15—N15	1.152 (2)
C2—N3	1.3178 (18)	C16—C17	1.399 (2)
C2—N2	1.3508 (18)	C16—C21	1.403 (2)
N2—C9	1.4102 (18)	C17—C18	1.388 (2)
N2—H2	0.90 (2)	C17—H17	0.9500
N3—N4	1.4000 (16)	C18—C19	1.392 (2)
N4—C8A	1.3504 (18)	C18—H18	0.9500
N4—C5	1.4003 (18)	C19—C20	1.393 (2)
C5—C6	1.4510 (19)	С19—Н19	0.9500
C6—C7	1.403 (2)	C20—C21	1.391 (2)
C6—C15	1.4297 (19)	C20—H20	0.9500
C7—C8	1.4088 (19)	C21—H21	0.9500
C7—C16	1.4829 (19)	C22—N22	1.151 (2)
C8—C8A	1.3988 (19)	S1—O2	1.5253 (10)
C8—C22	1.429 (2)	S1—C24	1.7764 (16)
C9—C10	1.390 (2)	S1—C23	1.7788 (16)
C9—C14	1.394 (2)	C23—H23A	0.9800
C10—C11	1.394 (2)	С23—Н23В	0.9800
C10—H10	0.9500	С23—Н23С	0.9800
C11—C12	1.388 (2)	C24—H24A	0.9800
C11—H11	0.9500	C24—H24B	0.9800
C12—C13	1.391 (2)	C24—H24C	0.9800
C12—H12	0.9500		
C8A—N1—C2	106.74 (12)	С14—С13—Н13	119.9
C8A—N1—H1	130.6 (12)	C12—C13—H13	119.9
C2—N1—H1	122.6 (12)	C13—C14—C9	119.96 (14)
N3—C2—N2	128.74 (13)	C13—C14—H14	120.0
N3—C2—N1	112.99 (12)	C9—C14—H14	120.0
N2—C2—N1	118.26 (13)	N15—C15—C6	175.03 (16)
C2—N2—C9	128.42 (13)	C17—C16—C21	119.42 (13)
C2—N2—H2	113.3 (12)	C17—C16—C7	120.65 (13)
C9—N2—H2	118.3 (12)	C21—C16—C7	119.90 (13)
C2—N3—N4	102.08 (11)	C18—C17—C16	120.31 (13)
C8A—N4—N3	112.16 (11)	C18—C17—H17	119.8

C8A—N4—C5	124.35 (12)	C16—C17—H17	119.8
N3—N4—C5	123.34 (11)	C17—C18—C19	120.05 (14)
O1—C5—N4	121.08 (13)	C17—C18—H18	120.0
O1—C5—C6	126.58 (13)	C19—C18—H18	120.0
N4—C5—C6	112.33 (12)	C18—C19—C20	120.12 (14)
C7—C6—C15	122.14 (13)	С18—С19—Н19	119.9
C7—C6—C5	124.47 (13)	С20—С19—Н19	119.9
C15—C6—C5	113.26 (12)	C21—C20—C19	120.12 (14)
C6—C7—C8	118.34 (13)	С21—С20—Н20	119.9
C6—C7—C16	121.23 (13)	С19—С20—Н20	119.9
C8—C7—C16	120.43 (13)	C20—C21—C16	119.98 (13)
C8A—C8—C7	117.77 (13)	C20—C21—H21	120.0
C8A—C8—C22	116.44 (12)	C16—C21—H21	120.0
C7—C8—C22	125.79 (13)	N22—C22—C8	173.67 (15)
N1-C8A-N4	106.01 (12)	02-81-C24	105.38 (7)
N1-C8A-C8	131.52(13)	02 - 81 - C23	105.07(7)
N4—C8A—C8	122.47(13)	$C_{24} = S_{1} = C_{23}$	99 29 (8)
C10-C9-C14	120.41(13)	S1-C23-H23A	109.5
C10 - C9 - N2	123.15(13)	S1-C23-H23B	109.5
C14 - C9 - N2	116 43 (13)	$H^{23}A = C^{23} = H^{23}B$	109.5
C9-C10-C11	118 88 (14)	S1-C23-H23C	109.5
C9-C10-H10	120.6	$H_{23}A = C_{23} = H_{23}C$	109.5
$C_{11} - C_{10} - H_{10}$	120.6	$H_{23B} = C_{23} = H_{23C}$	109.5
C_{12} C_{11} C_{10} C_{10}	121.06 (14)	S1-C24-H24A	109.5
C_{12} C_{11} H_{11}	119 5	S1 = C24 = H24B	109.5
C10-C11-H11	119.5	$H_{24} = C_{24} = H_{24}$	109.5
$C_{11} - C_{12} - C_{13}$	119.36 (14)	S1-C24-H24C	109.5
$C_{11} - C_{12} - H_{12}$	120.3	$H_{24} - C_{24} - H_{24} C_{24}$	109.5
C13 - C12 - H12	120.3	$H_2H_1 = C_2 + H_2 + C_2$	109.5
C_{14} C_{13} C_{12} C_{12}	120.5	11240 024 11240	109.5
	120.29 (14)		
C8A—N1—C2—N3	-1.59 (16)	N3—N4—C8A—C8	179.38 (12)
C8A—N1—C2—N2	178.85 (12)	C5—N4—C8A—C8	-4.9 (2)
N3—C2—N2—C9	1.7 (2)	C7—C8—C8A—N1	-178.46 (13)
N1-C2-N2-C9	-178.83 (13)	C22—C8—C8A—N1	2.0 (2)
N2-C2-N3-N4	-179.43 (14)	C7—C8—C8A—N4	1.4 (2)
N1-C2-N3-N4	1.07 (15)	C22—C8—C8A—N4	-178.22 (13)
C2-N3-N4-C8A	-0.17 (14)	C2-N2-C9-C10	14.8 (2)
C2—N3—N4—C5	-175.92 (12)	C2—N2—C9—C14	-166.01 (14)
C8A-N4-C5-O1	-174.55 (13)	C14—C9—C10—C11	1.3 (2)
N3—N4—C5—O1	0.7 (2)	N2-C9-C10-C11	-179.53 (14)
C8A—N4—C5—C6	6.19 (19)	C9—C10—C11—C12	0.4 (2)
N3—N4—C5—C6	-178.59 (11)	C10-C11-C12-C13	-1.4 (3)
O1C5C7	176.10 (14)	C11—C12—C13—C14	0.8 (2)
N4—C5—C6—C7	-4.69 (19)	C12—C13—C14—C9	0.8 (2)
O1-C5-C6-C15	-7.8 (2)	C10-C9-C14-C13	-1.9 (2)
N4—C5—C6—C15	171.43 (11)	N2-C9-C14-C13	178.89 (13)
C15—C6—C7—C8	-173.97 (12)	C6—C7—C16—C17	-134.34 (14)

supporting information

C5—C6—C7—C8	1.8 (2)	C8—C7—C16—C17	46.20 (19)
C15—C6—C7—C16	6.6 (2)	C6-C7-C16-C21	47.42 (19)
C5-C6-C7-C16	-177.65 (12)	C8—C7—C16—C21	-132.04 (14)
C6—C7—C8—C8A	0.09 (19)	C21—C16—C17—C18	0.1 (2)
C16—C7—C8—C8A	179.57 (12)	C7—C16—C17—C18	-178.18 (13)
C6—C7—C8—C22	179.62 (13)	C16—C17—C18—C19	-0.2 (2)
C16—C7—C8—C22	-0.9 (2)	C17—C18—C19—C20	-0.1 (2)
C2—N1—C8A—N4	1.35 (14)	C18—C19—C20—C21	0.5 (2)
C2—N1—C8A—C8	-178.81 (14)	C19—C20—C21—C16	-0.6 (2)
N3—N4—C8A—N1	-0.77 (15)	C17—C16—C21—C20	0.3 (2)
C5—N4—C8A—N1	174.93 (12)	C7—C16—C21—C20	178.61 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1—H1…O2	0.88 (2)	1.84 (2)	2.6249 (16)	146.9 (17)
N2—H2…O2	0.90 (2)	2.07 (2)	2.8680 (16)	147.7 (17)
C10—H10…N3	0.95	2.39	2.9956 (19)	121
C23—H23 <i>B</i> ···O1 ⁱ	0.98	2.44	3.166 (2)	131
C24—H24 <i>B</i> ···N22	0.98	2.53	3.474 (2)	162

Symmetry code: (i) x+1, y+1, z.