

Received 5 April 2023 Accepted 12 May 2023

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India

Keywords: synthesis; 1,3,4-oxadiazole; crystal structure; Hirshfeld surface analysis.

CCDC references: 2262491; 2262490

Supporting information: this article has supporting information at journals.iucr.org/e

Rasul Ya. Okmanov,^{a,b}* Abdukhakim A. Ziyaev,^a Azimboy Sh. Abdukarimov,^b Turdibek T. Toshmurodov^a and Tursunali S. Kholikov^b

^aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent, 100170, Uzbekistan, and ^bNational University of Uzbekistan named after Mirzo Ulugbek, University Str. 4, Tashkent, 100174, Uzbekistan. *Correspondence e-mail: raxul@mail.ru

The title compounds were synthesized by alkylation of 5-[(4-dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiol with benzyl chloride or 2-chloro-6-fluorobenzyl chloride in the presence of potassium carbonate. The yields of 2-(benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole, $C_{17}H_{17}N_3OS$ (I), and 2-[(2chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole, $C_{17}H_{15}CIFN_3OS$ (II), were 96 and 92%, respectively. In the crystal structures of (I) and (II), C-H··· π interactions are observed between neighboring molecules. Hirshfeld surface analysis indicates that H···H and H···C/C···H interactions make the most important contributions to the crystal packing.

1. Chemical context

For the synthesis of pharmacologically active heterocyclic compounds, a study of the relationship between structure and activity is of great interest. The various five-membered aromatic heterocyclic compounds have a diverse range of action. These include oxadiazoles, consisting of two carbon atoms, two nitrogen atoms and one oxygen atom, which have four different isomeric structures: 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole.

There is much information in the literature indicating that 1,3,4-oxadiazole compounds or substituted 1,3,4-oxadiazoles have a wide spectrum of biological activity (Sahin et al., 2002; Erensoy et al., 2020; Glomb & Świątek, 2021) with substituted 5-aryl-1,3,4-oxadiazole-2(3H)thiones exhibiting anti-inflammatory, anti-cancer, analgesic and anticonvulsant activity (Chen et al., 2007; Zheng et al., 2010; Mamatha et al., 2019; Pathak et al., 2020). In this article, we report the synthesis and structure of two S-derivatives of 5-aryl-1,3,4-oxadiazole-2thiole derivatives. From the reaction of 5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiole with benzyl chloride or 2-chloro-6-fluorobenzyl chloride, the corresponding Sproducts. 2-(benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I) and 2-[(2-chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II) were obtained in high yield.

2. Structural commentary

Compound (I) crystallizes in space group *Ia*. The crystal studied was refined as an inversion twin with matrix $[\overline{1} \ 0 \ 0, 0 \ \overline{1}]$; the resulting BASF value is 0.43 (2). Compound (II) crystallizes in $P21_1/c$.

In compounds (I) and (II), the oxadiazole rings (centroid Cg1) are almost coplanar with the attached benzene (C1A-

Figure 1 The asymmetric unit of (I) with atom labeling. Ellipsoids represent 30% probability levels.

Figure 2 The asymmetric unit of (II) with atom labeling. Ellipsoids represent 30% probability levels.

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7A-H7AC\cdots Cg2^{i}$	0.96	2.80	3.626 (4)	145
$C7B-H7BA\cdots Cg3^{ii}$	0.97	2.93	3.738 (4)	141

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.

C6A, centroid Cg2) rings, forming dihedral angles of 3.36 (18) and 2.93 (14)°, respectively (Figs. 1 and 2). Such an arrangement of the benzene or phenyl fragment is also observed in many similar structures (Singh *et al.*, 2007; Zareef *et al.*, 2008; Zheng *et al.*, 2010; Ji & Xu 2011; Zou *et al.*, 2020). This arrangement indicates conjugation of π -electrons between the benzene and the 1,3,4-oxadiazole rings.

The bond angle C2–S1–C7*B* is 99.79 (16)° in (I) and 100.11 (10)° in (II). The dihedral angle subtended by the benzene (C1*B*–C6*B*, centroid *Cg*3) and 1,3,4-oxadiazole rings is 74.94 (10)° in (I) and 73.12 (7)° in (II).

3. Supramolecular features

In crystal structures of the title compounds, weak intermolecular contacts of the $C-X\cdots\pi$ type are observed. In (I), weak $C7A-H7AC\cdots Cg2$ interactions link the molecules, forming infinite chains along the *b*-axis direction (Fig. 3). Between these chains, other interactions of the C7B- $H7BA\cdots Cg3$ type are observed, which consolidate the crystal

Figure 3

Observed weak intermolecular $C7A - H7AC \cdots Cg2$ interactions in the crystal structure of (I) (the molecules are linked along the *b*-axis direction).

research communications

Figure 4

Observed intermolecular $C2B-Cl1\cdots Cg1$ interactions in the crystal structure of (II) (the molecules are linked along the *c*-axis direction).

structure (Table 1). In the crystal structure of (II), the formation of an infinite chain is also observed as a result of the $C2B-Cl1\cdots Cg1$ interaction, which links molecules along the *c*-axis direction (Fig. 4). Intermolecular $C8A-H8AB\cdots Cg3$ and $C7B-H7BA\cdots Cg3$ interactions between these chains consolidate the crystal structure (Table 2).

In order to visualize and quantify the intermolecular interactions in (I) and (II), a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with *Crystal*

Figure 5

Three-dimensional Hirshfeld surfaces of compound (I) plotted over d_{norm} in the range 0.0145 to 1.3066 a.u. Hirshfeld fingerprint plots for all contacts and decomposed into $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots N/N \cdots H$, $H \cdots S/S \cdots H$, $C \cdots C$ and $H \cdots O/O \cdots H$ contacts. d_i and d_e denote the closest internal and external distances (in Å) from a point on the surface.

Table 2

Hydrogen-bond geometry (Å, °) for (II).

Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B–C6B rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2B-Cl1\cdots Cg1^{i}$	1.74 (1)	3.30(1)	4.939 (2)	156(1)
$C8A - H8AB \cdots Cg3^{ii}$	0.96	2.94	3.857 (3)	161
$C7B-H7BA\cdots Cg3^{iii}$	0.97	2.85	3.674 (2)	143
Symmetry codes: (i) -x + 1, -y + 1, -z + 1.	$x, -y - \frac{1}{2}, z$	$-\frac{3}{2}$; (ii)	-x+2, -y+1,	-z + 2; (iii)

Explorer 21 (Spackman *et al.*, 2021) and the associated twodimensional fingerprint plots (McKinnon *et al.*, 2007) generated. The Hirshfeld surfaces for the molecules in (I) and (II) are shown in Figs. 5 and 6 in which the two-dimensional fingerprint plots of the most dominant contacts are also presented.

For structure (I), $H \cdots H$ contacts are responsible for the largest contribution (47.8%) to the Hirshfeld surface. Besides these contacts, $H \cdots C/C \cdots H$ (20.5%), $H \cdots N/N \cdots H$ (12.4%), $H \cdots S/S \cdots H$ (7.2%), $C \cdots C$ (4.1%) and $H \cdots O/O \cdots H$ (3.5%)

Figure 6

Three-dimensional Hirshfeld surfaces of the compound (II) plotted over d_{norm} in the range -0.0964 to 1.2943 a.u. Hirshfeld fingerprint plots for all contacts and decomposed into $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots N/N \cdots H$, $H \cdots F/F \cdots H$, $H \cdots S/S \cdots H$, $H \cdots CI/CI \cdots H$, $H \cdots O/O \cdots H$ and $C \cdots C$ contacts. d_i and d_e denote the closest internal and external distances (in Å) from a point on the surface.

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{17}H_{17}N_3OS$	C ₁₇ H ₁₅ ClFN ₃ OS
M_r	311.39	363.83
Crystal system, space group	Monoclinic, Ia	Monoclinic, $P2_1/c$
Temperature (K)	297	296
a, b, c (Å)	16.816 (3), 4.7848 (10), 20.123 (4)	16.308 (3), 7.9787 (16), 13.072 (3)
β (°)	105.96 (3)	103.33 (3)
$V(Å^3)$	1556.7 (6)	1655.1 (6)
Z	4	4
Radiation type	Cu Ka	Cu Ka
$\mu (\text{mm}^{-1})$	1.88	3.40
Crystal size (mm)	$0.35 \times 0.20 \times 0.15$	$0.30 \times 0.25 \times 0.15$
Data collection		
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000	XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\min}, \tilde{T}_{\max}$	0.749, 1.000	0.704, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6572, 2732, 2583	8579, 3181, 2771
R _{int}	0.026	0.021
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.615	0.615
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.089, 1.04	0.039, 0.106, 1.05
No. of reflections	2732	3181
No. of parameters	202	219
No. of restraints	2	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.15, -0.21	0.18, -0.33
Absolute structure	Refined as an inversion twin	_
Absolute structure parameter	0.43 (2)	_

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXS97, SHELXTL (Sheldrick, 2015) and XP in SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

interactions contribute significantly to the total Hirshfeld surface (Fig. 5). The contributions of other contacts are $O \cdots C/C \cdots O$ (2.0%), $O \cdots S/S \cdots O$ (1.3%), $S \cdots C/C \cdots S$ (0.9%), $N \cdots C/C \cdots N$ (0.4%) and $N \cdots N$ (0.1%).

In the structure of (II), the percentage contributions of the most significant contacts differ because of the presence of $H \cdots F/F \cdots H$ and $H \cdots Cl/Cl \cdots H$ interactions and amount to $H \cdots H$ (31.8%), $H \cdots C/C \cdots H$ (20.0%), $H \cdots N/N \cdots H$ (9.8%), $H \cdots F/F \cdots H$ (7.5%), $H \cdots S/S \cdots H$ (7.1%), $H \cdots Cl/Cl \cdots H$ (5.7%), $H \cdots O/O \cdots H$ (5.0%) and $C \cdots C$ (3.9%) (Fig. 6). The contributions of other contacts are $Cl \cdots C/C \cdots Cl$ (2.8%), $Cl \cdots F/F \cdots Cl$ (1.4%), $N \cdots S/S \cdots N$ (1.0%), $Cl \cdots O/O \cdots Cl$ (0.9%), $O \cdots C/C \cdots O$ (0.4%), $N \cdots C/C \cdots N$ (0.4%), $S \cdots Cl/Cl \cdots S$ (0.3%), $S \cdots C/C \cdots S$ (0.3%) and $N \cdots O/O \cdots N$ (0.2%).

As seen from Figs. 5 and 6, the most significant contributions to the overall Hirshfeld surface in the crystal structures of (I) and (II) are from $H \cdots H$ and $H \cdots C/C \cdots H$ contacts (together they amount to more than 50% for both cases).

4. Database survey

A search in the Cambridge Structural Database (CSD, version 2022.3.0; Groom *et al.*, 2016) yielded 45 derivatives of 5-phenyl-1,3,4-oxadiazole-2-thiole, nine of which are 2-(benzylsulfanyl)-5-phenyl-1,3,4-oxadiazole derivatives, and

no structure was found for a 5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiole derivative. When searching for similar structures in the CSD, two matches were found: 2-(4methoxyphenyl)-5-({[3-(trifluoromethyl)phenyl] methyl}sulfanyl)-1,3,4-oxadiazole (SOXGOE; Hamdani *et al.*, 2020) and 2-benzylsulfanyl-5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole (GIDKEK; Chen *et al.*, 2007), in which the benzene rings and 1,3,4-oxadiazole fragments are arranged in a similar manner as the title compounds. However, in the structures of SOXGOE and GIGKEK, intermolecular interactions are not observed, the molecules being stabilized mainly by van der Waals forces.

5. Synthesis and crystallization

A mixture of 5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole-2thiole (0.005 mol), benzyl chloride or 2-chloro-6-fluorobenzyl chloride (0.005 mol) and K_2CO_3 (0.005 mol) was boiled in 20 ml of dry acetone for 6 h. The solvent was then removed, the residue washed with water and with 2% NaOH solution to remove unreacted oxadiazolthione, and then washed with water until neutral. The resulting target products were dried in air and recrystallized from ethanol solution. Compound (I): yield 96%, m.p. 404–405 K. Compound (II): yield 92%, m.p. 406–407 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically (with C–H distances of 0.97 Å for CH₂, 0.96 Å for CH₃ and 0.93 Å for C_{ar}) and included in the refinement in a riding-motion approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ [$U_{iso} = 1.5U_{eq}(C)$ for methyl H atoms]. For (I), the crystal studied was refined as an inversion twin with matrix [$\overline{1} \ 0 \ 0, 0 \ \overline{1} \ 0, 0 \ 0 \ \overline{1}$]; the resulting BASF value is 0.43 (2).

Acknowledgements

We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.

References

- Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). *Bioorg. Med. Chem.* 15, 3981–3989.
- Erensoy, G., Ding, K., Zhan, C. G., Elmezayen, A., Yelekçi, K., Duracik, M., Özakpinar, Ö. B. & Küçükgüzel, İ. (2020). J. Res. Pharm. 24, 436–451.
- Glomb, T. & Świątek, P. (2021). Int. J. Mol. Sci. 22, 6979-6979.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K. & Mahmood, T. (2020). J. Mol. Struct. 1200, 127085– 127085.

- Ji, H. & Xu, X.-D. (2011). Acta Cryst. E67, 03490.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mamatha, S. V., Bhat, M., Sagar, B. K. & Meenakshi, S. K. (2019). J. Mol. Struct. 1196, 186–193.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Pathak, S., Sharma, S., Pathak, V. & Prasad, M. (2020). J. Appl. Pharm. Res. 8, 50–61.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Şahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539–542.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). *Acta Cryst.* E63, 0782–0784.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zareef, M., Iqbal, R., Arfan, M. & Parvez, M. (2008). Acta Cryst. E64, 0736.
- Zheng, Q. Z., Zhang, X. M., Xu, Y., Cheng, K., Jiao, Q. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 7836–7841.
- Zou, J., Zhao, C. L., Zhang, Q. L., Pan, L. T. & He, K. (2020). Z. *Kristallogr. New Cryst. Struct.* 235, 745–746.

Acta Cryst. (2023). E79, 552-556 [https://doi.org/10.1107/S2056989023004164]

Syntheses, crystal structures and Hirshfeld surface analysis of 2-(benzyl-sulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole and 2-[(2-chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole

Rasul Ya. Okmanov, Abdukhakim A. Ziyaev, Azimboy Sh. Abdukarimov, Turdibek T. Toshmurodov and Tursunali S. Kholikov

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010).

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I)

Crystal data

C₁₇H₁₇N₃OS $M_r = 311.39$ Monoclinic, Ia a = 16.816 (3) Å b = 4.7848 (10) Å c = 20.123 (4) Å $\beta = 105.96$ (3)° V = 1556.7 (6) Å³ Z = 4

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) *Refinement*

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ F(000) = 656 $D_x = 1.329 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4218 reflections $\theta = 3.0-71.2^{\circ}$ $\mu = 1.88 \text{ mm}^{-1}$ T = 297 KPrizmatic, colorless $0.35 \times 0.20 \times 0.15 \text{ mm}$

 $T_{\min} = 0.749, T_{\max} = 1.000$ 6572 measured reflections 2732 independent reflections 2583 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 71.5^{\circ}, \theta_{\text{min}} = 4.6^{\circ}$ $h = -20 \rightarrow 20$ $k = -5 \rightarrow 5$ $l = -24 \rightarrow 24$

 $wR(F^2) = 0.089$ S = 1.04 2732 reflections

202 parameters
2 restraints
Primary atom site location: dual
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0541P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.43 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.35188 (5)	0.65967 (15)	0.24394 (4)	0.0675 (2)
01	0.38557 (12)	0.2829 (4)	0.15990 (10)	0.0546 (4)
N3	0.25142 (15)	0.3621 (5)	0.13720 (14)	0.0607 (6)
N4	0.26466 (15)	0.1612 (5)	0.09008 (14)	0.0595 (6)
N1A	0.51675 (14)	-0.6015 (5)	-0.02778 (13)	0.0614 (6)
C2	0.32356 (17)	0.4249 (6)	0.17577 (14)	0.0561 (6)
C5	0.34386 (17)	0.1194 (6)	0.10548 (14)	0.0518 (6)
C1A	0.38914 (15)	-0.0700 (6)	0.07351 (13)	0.0497 (5)
C2A	0.34682 (16)	-0.2469 (6)	0.02095 (15)	0.0541 (6)
H2AA	0.289305	-0.245654	0.007619	0.065*
C3A	0.38831 (17)	-0.4238 (6)	-0.01174 (14)	0.0543 (6)
НЗАА	0.358087	-0.539335	-0.046814	0.065*
C4A	0.47522 (16)	-0.4349 (6)	0.00637 (14)	0.0514 (6)
C5A	0.51775 (17)	-0.2603 (6)	0.06167 (16)	0.0555 (6)
H5AA	0.575192	-0.266824	0.076730	0.067*
C6A	0.47585 (16)	-0.0824 (6)	0.09332 (14)	0.0549 (6)
H6AA	0.505497	0.032849	0.128737	0.066*
C7A	0.4722 (2)	-0.7707 (7)	-0.08530 (18)	0.0681 (8)
H7AA	0.510695	-0.863023	-0.105354	0.102*
H7AB	0.436148	-0.653916	-0.119410	0.102*
H7AC	0.439939	-0.907932	-0.069428	0.102*
C8A	0.60506 (19)	-0.6514 (7)	0.0000(2)	0.0718 (9)
H8AA	0.622912	-0.784539	-0.028621	0.108*
H8AB	0.615965	-0.723417	0.046118	0.108*
H8AC	0.634547	-0.479131	0.000665	0.108*
C1B	0.20329 (17)	0.5859 (6)	0.27839 (14)	0.0536 (6)
C2B	0.23312 (18)	0.5105 (7)	0.34681 (15)	0.0605 (7)
H2BA	0.283977	0.579459	0.372557	0.073*
C3B	0.1890 (2)	0.3346 (7)	0.37792 (18)	0.0723 (9)
H3BA	0.209881	0.285927	0.424205	0.087*
C4B	0.1137 (3)	0.2317 (9)	0.3397 (2)	0.0826 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4BA	0.083364	0.114435	0.360365	0.099*	
C5B	0.0837 (2)	0.3010 (10)	0.2720 (2)	0.0863 (11)	
H5BA	0.033294	0.228498	0.246285	0.104*	
C6B	0.1276 (2)	0.4787 (8)	0.24093 (17)	0.0710 (8)	
H6BA	0.106285	0.526586	0.194651	0.085*	
C7B	0.2500 (2)	0.7858 (6)	0.24513 (19)	0.0687 (8)	
H7BA	0.256392	0.962089	0.269826	0.082*	
H7BB	0.217555	0.820846	0.197995	0.082*	

Atomic	displacement	parameters	$(Å^2)$
Atomic	displacement	parameters	(A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0666 (4)	0.0746 (4)	0.0645 (4)	-0.0124 (4)	0.0234 (3)	-0.0030 (4)
01	0.0501 (10)	0.0581 (9)	0.0555 (10)	-0.0021 (8)	0.0144 (8)	0.0069 (8)
N3	0.0516 (12)	0.0674 (14)	0.0641 (14)	0.0038 (10)	0.0177 (11)	0.0037 (11)
N4	0.0465 (12)	0.0681 (14)	0.0619 (14)	0.0035 (10)	0.0116 (10)	0.0036 (11)
N1A	0.0471 (12)	0.0666 (14)	0.0680 (15)	-0.0002 (10)	0.0114 (11)	-0.0029 (11)
C2	0.0564 (16)	0.0568 (14)	0.0578 (15)	-0.0004 (11)	0.0201 (13)	0.0116 (12)
C5	0.0471 (13)	0.0552 (13)	0.0515 (14)	-0.0025 (11)	0.0108 (11)	0.0121 (11)
C1A	0.0448 (12)	0.0528 (12)	0.0506 (13)	0.0000 (10)	0.0115 (11)	0.0127 (10)
C2A	0.0398 (13)	0.0597 (14)	0.0601 (15)	-0.0042 (10)	0.0092 (11)	0.0115 (12)
C3A	0.0451 (13)	0.0565 (14)	0.0571 (15)	-0.0047 (11)	0.0069 (11)	0.0061 (12)
C4A	0.0438 (12)	0.0521 (13)	0.0556 (15)	-0.0040 (10)	0.0091 (11)	0.0119 (11)
C5A	0.0400 (12)	0.0612 (14)	0.0600 (15)	-0.0034 (11)	0.0048 (12)	0.0073 (12)
C6A	0.0469 (13)	0.0576 (14)	0.0552 (14)	-0.0041 (11)	0.0058 (11)	0.0041 (12)
C7A	0.0636 (18)	0.0708 (18)	0.0676 (19)	-0.0046 (15)	0.0145 (15)	-0.0064 (15)
C8A	0.0473 (15)	0.084 (2)	0.084 (2)	0.0032 (15)	0.0178 (15)	-0.0042 (17)
C1B	0.0555 (14)	0.0531 (13)	0.0541 (14)	0.0088 (11)	0.0184 (12)	-0.0046 (11)
C2B	0.0550 (15)	0.0725 (17)	0.0527 (15)	-0.0006 (13)	0.0126 (12)	-0.0028 (12)
C3B	0.071 (2)	0.089 (2)	0.0609 (18)	0.0056 (16)	0.0252 (16)	0.0073 (15)
C4B	0.074 (2)	0.101 (3)	0.084 (2)	-0.0115 (19)	0.042 (2)	-0.006 (2)
C5B	0.0556 (18)	0.119 (3)	0.087 (2)	-0.0168 (18)	0.0245 (17)	-0.027 (2)
C6B	0.0580 (16)	0.097 (2)	0.0563 (17)	0.0077 (16)	0.0121 (14)	-0.0097 (16)
C7B	0.083 (2)	0.0529 (15)	0.0729 (19)	0.0070 (14)	0.0255 (16)	0.0060 (13)

Geometric parameters (Å, °)

S1—C2	1.735 (3)	С7А—Н7АА	0.9600	
S1—C7B	1.823 (4)	C7A—H7AB	0.9600	
O1—C2	1.354 (3)	C7A—H7AC	0.9600	
01—C5	1.371 (3)	C8A—H8AA	0.9600	
N3—C2	1.283 (4)	C8A—H8AB	0.9600	
N3—N4	1.410 (4)	C8A—H8AC	0.9600	
N4—C5	1.297 (4)	C1B—C2B	1.378 (4)	
N1A—C4A	1.364 (4)	C1B—C6B	1.387 (5)	
N1A—C7A	1.442 (4)	C1B—C7B	1.506 (5)	
N1A—C8A	1.455 (4)	C2B—C3B	1.381 (5)	
C5—C1A	1.444 (4)	C2B—H2BA	0.9300	

C1A—C2A 1.388 (4) C3B—C4B 1.	.379 (6)
C1A—C6A 1.403 (4) C3B—H3BA 0.	.9300
C2A—C3A 1.374 (4) C4B—C5B 1.	.358 (7)
C2A—H2AA 0.9300 C4B—H4BA 0.	.9300
C3A—C4A 1.407 (4) C5B—C6B 1.	.383 (6)
C3A—H3AA 0.9300 C5B—H5BA 0.	.9300
C4A—C5A 1.418 (4) C6B—H6BA 0.	.9300
C5A—C6A 1.369 (4) C7B—H7BA 0.	.9700
C5A—H5AA 0.9300 C7B—H7BB 0.	.9700
С6А—Н6АА 0.9300	
C2—S1—C7B 99.79 (16) N1A—C7A—H7AC 10	09.5
C2—O1—C5 102.5 (2) H7AA—C7A—H7AC 10	09.5
C2—N3—N4 105.6 (2) H7AB—C7A—H7AC 10	09.5
C5—N4—N3 106.6 (2) N1A—C8A—H8AA 10	09.5
C4A—N1A—C7A 120.5 (2) N1A—C8A—H8AB 10	09.5
C4A—N1A—C8A 120.8 (3) H8AA—C8A—H8AB 10	09.5
C7A—N1A—C8A 117.8 (3) N1A—C8A—H8AC 10	09.5
N3—C2—O1 113.6 (3) H8AA—C8A—H8AC 10	09.5
N3—C2—S1 129.6 (2) H8AB—C8A—H8AC 10	09.5
O1—C2—S1 116.7 (2) C2B—C1B—C6B 11	18.3 (3)
N4—C5—O1 111.6 (3) C2B—C1B—C7B 12	21.3 (3)
N4—C5—C1A 128.5 (3) C6B—C1B—C7B 12	20.4 (3)
01—C5—C1A 119.8 (2) C1B—C2B—C3B 12	21.3 (3)
C2A—C1A—C6A 117.7 (3) C1B—C2B—H2BA 11	19.3
C2A-C1A-C5 120.0 (2) $C3B-C2B-H2BA$ 11	19.3
C6A-C1A-C5 122.3 (2) $C4B-C3B-C2B$ 11	19.3 (3)
C3A—C2A—C1A 121.3 (3) C4B—C3B—H3BA 12	20.3
C3A—C2A—H2AA 119.4 C2B—C3B—H3BA 12	20.3
C1A—C2A—H2AA 119.4 C5B—C4B—C3B 12	20.2 (4)
C2A-C3A-C4A 121.8 (3) $C5B-C4B-H4BA$ 11	19.9
C2A-C3A-H3AA 119.1 $C3B-C4B-H4BA$ 11	19.9
$C4A - C3A - H3AA \qquad 119.1 \qquad C4B - C5B - C6B \qquad 17$	20.4(4)
N1A - C4A - C3A 122 1 (3) $C4B - C5B - H5BA$ 11	19.8
N1A - C4A - C5A 121 5 (2) $C6B - C5B - H5BA$ 11	19.8
$C_{3A} - C_{4A} - C_{5A}$ 116.4 (3) $C_{5B} - C_{6B} - C_{1B}$ 12	20.4 (3)
C6A - C5A - C4A 121.2 (3) $C5B - C6B - H6BA$ 11	19.8
C6A—C5A—H5AA 119.4 C1B—C6B—H6BA 11	19.8
C4A - C5A - H5AA = 119.4 C1B - C7B - S1 = 119.4	13.7 (2)
C5A-C6A-C1A 121.4 (3) $C1B-C7B-H7BA$ 1(08.8
$C5A - C6A - H6AA = 119.3 \qquad S1 - C7B - H7BA = 10$	08.8
C1A - C6A - H6AA = 119.3 = C1B - C7B - H7BB = 10	08.8
N1A_C7A_H7AA 109.5 S1_C7B_H7BB 10	08.8
N1A_C7A_H7AB 109.5 H7BA_C7B_H7BB 10	07.7
H7AA - C7A - H7AB 109.5	
C2—N3—N4—C5 0.8 (3) C7A—N1A—C4A—C5A -1	178.0 (3)

N4—N3—C2—S1	179.7 (2)	C2A—C3A—C4A—N1A	-177.2 (3)
C5-01-C2-N3	0.2 (3)	C2A—C3A—C4A—C5A	2.0 (4)
C5—O1—C2—S1	179.95 (18)	N1A—C4A—C5A—C6A	176.4 (3)
C7B—S1—C2—N3	0.7 (3)	C3A—C4A—C5A—C6A	-2.8 (4)
C7B—S1—C2—O1	-179.1 (2)	C4A—C5A—C6A—C1A	1.5 (4)
N3—N4—C5—O1	-0.8 (3)	C2A—C1A—C6A—C5A	0.6 (4)
N3—N4—C5—C1A	178.9 (2)	C5—C1A—C6A—C5A	-179.0 (3)
C2-O1-C5-N4	0.4 (3)	C6B—C1B—C2B—C3B	-0.5 (4)
C2	-179.3 (2)	C7B—C1B—C2B—C3B	177.8 (3)
N4—C5—C1A—C2A	-3.2 (4)	C1B—C2B—C3B—C4B	0.2 (5)
O1—C5—C1A—C2A	176.4 (2)	C2B—C3B—C4B—C5B	0.6 (6)
N4—C5—C1A—C6A	176.4 (3)	C3B—C4B—C5B—C6B	-1.0 (6)
O1—C5—C1A—C6A	-4.0 (4)	C4B—C5B—C6B—C1B	0.7 (6)
C6A—C1A—C2A—C3A	-1.5 (4)	C2B—C1B—C6B—C5B	0.1 (5)
C5—C1A—C2A—C3A	178.2 (2)	C7B—C1B—C6B—C5B	-178.3 (3)
C1A—C2A—C3A—C4A	0.1 (4)	C2B—C1B—C7B—S1	61.9 (3)
C7A—N1A—C4A—C3A	1.1 (4)	C6B—C1B—C7B—S1	-119.8 (3)
C8A—N1A—C4A—C3A	-167.9 (3)	C2—S1—C7B—C1B	77.7 (3)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H… <i>A</i>
$C7A$ — $H7AC$ ··· $Cg2^{i}$	0.96	2.80	3.626 (4)	145
С7 <i>В</i> —Н7 <i>ВА</i> … <i>Cg</i> 3 ^{іі}	0.97	2.93	3.738 (4)	141

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II)

Crystal data	
C ₁₇ H ₁₅ ClFN ₃ OS	F(000) = 752
$M_r = 363.83$	$D_{\rm x} = 1.460 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 16.308 (3) Å	Cell parameters from 4884 reflections
b = 7.9787 (16) Å	$\theta = 2.8 - 70.7^{\circ}$
c = 13.072 (3) Å	$\mu = 3.40 \text{ mm}^{-1}$
$\beta = 103.33 \ (3)^{\circ}$	T = 296 K
V = 1655.1 (6) Å ³	Prizmatic, colorless
Z = 4	$0.30 \times 0.25 \times 0.15 \text{ mm}$
Data collection	
XtaLAB Synergy, Single source at home/near,	$T_{\rm min} = 0.704, \ T_{\rm max} = 1.000$
HyPix3000	8579 measured reflections
diffractometer	3181 independent reflections
Radiation source: micro-focus sealed X-ray	2771 reflections with $I > 2\sigma(I)$
tube, PhotonJet (Cu) X-ray Source	$R_{\rm int} = 0.021$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\rm max} = 71.5^{\circ}, \theta_{\rm min} = 2.8^{\circ}$
ω scans	$h = -19 \rightarrow 19$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(SADABS; Krause et al., 2015)	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 0.3561P]$
<i>S</i> = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3181 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
219 parameters	$\Delta ho_{ m max} = 0.18 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: dual	
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.70024 (3)	0.25638 (6)	0.67262 (4)	0.05766 (17)	
F1	0.53784 (8)	0.62390 (19)	0.74016 (9)	0.0710 (4)	
Cl1	0.65329 (4)	0.42921 (8)	0.43372 (4)	0.07189 (19)	
N3	0.70438 (10)	0.4438 (2)	0.85013 (13)	0.0575 (4)	
N4	0.76430 (11)	0.4635 (2)	0.94693 (13)	0.0591 (4)	
N4A	1.13318 (11)	0.2937 (3)	1.24513 (14)	0.0645 (5)	
01	0.81509 (8)	0.28552 (16)	0.84836 (9)	0.0484 (3)	
C2	0.73729 (11)	0.3394 (2)	0.79712 (14)	0.0469 (4)	
C5	0.82736 (11)	0.3695 (2)	0.94229 (13)	0.0459 (4)	
C1A	0.90528 (11)	0.3437 (2)	1.02033 (13)	0.0458 (4)	
C2A	0.91795 (13)	0.4247 (3)	1.11650 (15)	0.0569 (5)	
H2AA	0.875254	0.491431	1.130992	0.068*	
C3A	0.99218 (13)	0.4085 (3)	1.19079 (15)	0.0583 (5)	
H3AA	0.998800	0.464500	1.254560	0.070*	
C4A	1.05833 (11)	0.3090 (2)	1.17239 (14)	0.0490 (4)	
C5A	1.04385 (13)	0.2249 (3)	1.07595 (16)	0.0583 (5)	
H5AA	1.085423	0.154883	1.061691	0.070*	
C6A	0.96948 (13)	0.2437 (3)	1.00180 (15)	0.0560 (5)	
H6AA	0.962246	0.187883	0.937881	0.067*	
C7A	1.14655 (15)	0.3781 (4)	1.34498 (18)	0.0783 (7)	
H7AA	1.103965	0.344344	1.380639	0.118*	
H7AB	1.143475	0.497119	1.333810	0.118*	
H7AC	1.201117	0.349276	1.387036	0.118*	
C8A	1.20022 (14)	0.1914 (3)	1.2238 (2)	0.0734 (6)	
H8AA	1.180549	0.078396	1.209806	0.110*	
H8AB	1.247110	0.192586	1.283686	0.110*	
H8AC	1.217624	0.234985	1.163709	0.110*	
C1B	0.59678 (10)	0.5336 (2)	0.60183 (12)	0.0413 (4)	
C2B	0.62301 (10)	0.5823 (2)	0.51172 (13)	0.0447 (4)	
C3B	0.62432 (12)	0.7473 (3)	0.48082 (16)	0.0555 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3BA	0.643266	0.775274	0.421154	0.067*	
C4B	0.59745 (14)	0.8693 (3)	0.53885 (19)	0.0641 (6)	
H4BA	0.598734	0.980957	0.518853	0.077*	
C5B	0.56857 (13)	0.8285 (3)	0.62650 (18)	0.0618 (5)	
H5BA	0.549420	0.911110	0.665483	0.074*	
C6B	0.56865 (11)	0.6628 (3)	0.65515 (14)	0.0487 (4)	
C7B	0.59662 (12)	0.3548 (2)	0.63726 (16)	0.0537 (5)	
H7BA	0.561130	0.289986	0.581406	0.064*	
H7BB	0.571488	0.350251	0.697611	0.064*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0609 (3)	0.0489 (3)	0.0553 (3)	0.0077 (2)	-0.0030 (2)	-0.0039 (2)
F1	0.0611 (7)	0.1044 (10)	0.0511 (6)	0.0122 (7)	0.0199 (5)	-0.0031 (6)
Cl1	0.0721 (4)	0.0899 (4)	0.0532 (3)	0.0172 (3)	0.0134 (2)	-0.0173 (3)
N3	0.0510 (9)	0.0600 (10)	0.0562 (9)	0.0113 (8)	0.0010 (7)	0.0001 (8)
N4	0.0550 (9)	0.0651 (10)	0.0532 (9)	0.0145 (8)	0.0046 (7)	-0.0054 (8)
N4A	0.0483 (9)	0.0850 (12)	0.0551 (9)	0.0034 (9)	0.0013 (7)	0.0009 (9)
01	0.0478 (7)	0.0486 (7)	0.0460 (6)	0.0071 (5)	0.0050 (5)	-0.0008 (5)
C2	0.0466 (9)	0.0408 (9)	0.0500 (9)	0.0025 (8)	0.0043 (8)	0.0053 (7)
C5	0.0481 (10)	0.0438 (9)	0.0455 (9)	0.0032 (8)	0.0102 (7)	0.0005 (7)
C1A	0.0454 (9)	0.0463 (9)	0.0447 (9)	0.0038 (8)	0.0088 (7)	0.0015 (7)
C2A	0.0552 (11)	0.0628 (12)	0.0518 (10)	0.0154 (9)	0.0107 (9)	-0.0077 (9)
C3A	0.0636 (12)	0.0639 (12)	0.0449 (10)	0.0076 (10)	0.0072 (9)	-0.0093 (9)
C4A	0.0459 (10)	0.0549 (10)	0.0454 (9)	-0.0020 (8)	0.0093 (7)	0.0066 (8)
C5A	0.0504 (11)	0.0717 (13)	0.0524 (10)	0.0171 (10)	0.0110 (9)	-0.0048 (9)
C6A	0.0560 (11)	0.0650 (12)	0.0455 (10)	0.0124 (9)	0.0087 (9)	-0.0080 (9)
C7A	0.0620 (13)	0.109 (2)	0.0565 (12)	-0.0168 (14)	-0.0021 (10)	-0.0042 (13)
C8A	0.0484 (11)	0.0855 (16)	0.0824 (15)	0.0075 (11)	0.0071 (10)	0.0184 (13)
C1B	0.0319 (8)	0.0469 (9)	0.0415 (8)	-0.0017 (7)	0.0008 (6)	-0.0021 (7)
C2B	0.0340 (8)	0.0545 (10)	0.0423 (8)	0.0003 (7)	0.0018 (7)	-0.0044 (7)
C3B	0.0431 (10)	0.0641 (12)	0.0553 (11)	-0.0049 (9)	0.0031 (8)	0.0125 (9)
C4B	0.0555 (12)	0.0470 (11)	0.0818 (15)	-0.0011 (9)	-0.0005 (10)	0.0053 (10)
C5B	0.0522 (11)	0.0545 (11)	0.0731 (13)	0.0080 (9)	0.0032 (10)	-0.0161 (10)
C6B	0.0367 (8)	0.0633 (11)	0.0437 (9)	0.0029 (8)	0.0048 (7)	-0.0064 (8)
C7B	0.0448 (10)	0.0522 (10)	0.0589 (11)	-0.0064 (8)	0.0014 (8)	0.0019 (8)

Geometric parameters (Å, °)

S1—C2	1.7317 (19)	С5А—Н5АА	0.9300	
S1—C7B	1.824 (2)	С6А—Н6АА	0.9300	
F1—C6B	1.357 (2)	С7А—Н7АА	0.9600	
Cl1—C2B	1.7346 (18)	С7А—Н7АВ	0.9600	
N3—C2	1.278 (2)	С7А—Н7АС	0.9600	
N3—N4	1.418 (2)	C8A—H8AA	0.9600	
N4—C5	1.286 (2)	C8A—H8AB	0.9600	
N4A—C4A	1.369 (2)	C8A—H8AC	0.9600	

$N4\Delta$ $-C7\Delta$	1440(3)	C1B-C6B	1381(2)
N4A—C8A	1.440(3) 1 442(3)	C1B - C2B	1.301(2) 1.398(2)
01 $C2$	1.442(3)	C1B C7B	1.590(2)
01 C5	1.301(2) 1.372(2)	C2P $C3P$	1.300(2) 1.378(3)
C_{5}	1.372(2) 1.440(2)	C2B - C3B	1.378(3) 1.367(3)
	1.449(2) 1.282(2)	$C_{3}D - C_{4}D$	1.507 (5)
CIA = COA	1.382(3)	C3D—II3BA	0.9300
CIA - C2A	1.380 (3)		1.575 (5)
C2A - C3A	1.372 (3)	C4B—H4BA	0.9300
C2A—H2AA	0.9300	C5B—C6B	1.374 (3)
C3A—C4A	1.404 (3)	С5В—Н5ВА	0.9300
СЗА—НЗАА	0.9300	C7B—H7BA	0.9700
C4A—C5A	1.399 (3)	C7B—H7BB	0.9700
C5A—C6A	1.375 (3)		
C2—S1—C7B	100.11 (10)	N4A—C7A—H7AC	109.5
C2—N3—N4	105.48 (15)	Н7АА—С7А—Н7АС	109.5
C5—N4—N3	106.70 (15)	Н7АВ—С7А—Н7АС	109.5
C4A - N4A - C7A	120.80 (19)	N4A—C8A—H8AA	109.5
C4A - N4A - C8A	120.00 (19)	N4A—C8A—H8AB	109.5
C7A - N4A - C8A	118 50 (19)	H8AA_C8A_H8AB	109.5
$C_{2}=01=C_{5}$	102.31(14)	N4A—C8A—H8AC	109.5
N_{3} C_{2} O_{1} C_{3}	113 54 (16)		109.5
N3 C2 S1	131.27(14)	HAR CAN HAR	109.5
113 - 22 - 51	131.27(14) 115.10(12)	CAP CIP C2P	114.82 (16)
01 - 02 - 51	113.19 (13)	C0B - C1B - C2B	114.82 (10)
N4 - C5 - C1A	111.90 (16)	C_{0B} C_{1B} C_{7B}	121.99 (17)
N4 - C5 - CIA	129.11 (17)	C_{2B} $-C_{1B}$ $-C_{7B}$	123.18 (16)
OI-C5-CIA	118.93 (15)	C3B—C2B—C1B	122.74 (17)
C6A—C1A—C2A	117.89 (17)	C3B—C2B—C11	118.33 (15)
C6A—C1A—C5	122.38 (16)	C1B—C2B—C11	118.91 (14)
C2A—C1A—C5	119.70 (17)	C4B—C3B—C2B	119.26 (19)
C3A—C2A—C1A	121.37 (18)	C4B—C3B—H3BA	120.4
C3A—C2A—H2AA	119.3	С2В—С3В—Н3ВА	120.4
C1A—C2A—H2AA	119.3	C3B—C4B—C5B	120.6 (2)
C2A—C3A—C4A	121.29 (18)	C3B—C4B—H4BA	119.7
С2А—С3А—НЗАА	119.4	C5B—C4B—H4BA	119.7
С4А—С3А—НЗАА	119.4	C6B—C5B—C4B	118.43 (19)
N4A—C4A—C5A	121.42 (18)	C6B—C5B—H5BA	120.8
N4A—C4A—C3A	121.92 (18)	C4B—C5B—H5BA	120.8
C5A—C4A—C3A	116.66 (17)	F1—C6B—C5B	117.80 (18)
C6A—C5A—C4A	121.41 (18)	F1—C6B—C1B	118.12 (18)
С6А—С5А—Н5АА	119.3	C5B—C6B—C1B	124.07 (18)
С4А—С5А—Н5АА	119.3	C1B—C7B—S1	114.87 (13)
C5A—C6A—C1A	121.35 (18)	C1B—C7B—H7BA	108.6
С5А—С6А—Н6АА	119.3	S1—C7B—H7BA	108.6
С1А—С6А—Н6АА	119.3	C1B—C7B—H7BB	108.6
N4A—C7A—H7AA	109.5	S1—C7B—H7BB	108.6
N4A—C7A—H7AB	109.5	H7BA—C7B—H7BB	107.5
H7AA—C7A—H7AB	109.5		20110

C2—N3—N4—C5	0.2 (2)	C2A—C3A—C4A—C5A	-1.4 (3)
N4—N3—C2—O1	-0.4 (2)	N4A—C4A—C5A—C6A	-178.3 (2)
N4—N3—C2—S1	179.84 (15)	C3A—C4A—C5A—C6A	2.1 (3)
C5-01-C2-N3	0.4 (2)	C4A—C5A—C6A—C1A	-1.3 (3)
C5—O1—C2—S1	-179.82 (12)	C2A—C1A—C6A—C5A	-0.2 (3)
C7B—S1—C2—N3	-1.9 (2)	C5—C1A—C6A—C5A	178.09 (19)
C7B—S1—C2—O1	178.28 (13)	C6B—C1B—C2B—C3B	2.8 (2)
N3—N4—C5—O1	0.0 (2)	C7B—C1B—C2B—C3B	-178.83 (17)
N3—N4—C5—C1A	179.96 (18)	C6B—C1B—C2B—C11	-175.93 (12)
C2-O1-C5-N4	-0.2 (2)	C7B—C1B—C2B—C11	2.5 (2)
C2-01-C5-C1A	179.82 (16)	C1B—C2B—C3B—C4B	-1.3 (3)
N4—C5—C1A—C6A	-176.9 (2)	Cl1—C2B—C3B—C4B	177.37 (15)
O1—C5—C1A—C6A	3.1 (3)	C2B—C3B—C4B—C5B	-0.7 (3)
N4—C5—C1A—C2A	1.4 (3)	C3B—C4B—C5B—C6B	1.0 (3)
O1—C5—C1A—C2A	-178.60 (17)	C4B—C5B—C6B—F1	-178.26 (17)
C6A—C1A—C2A—C3A	0.9 (3)	C4B—C5B—C6B—C1B	0.6 (3)
C5—C1A—C2A—C3A	-177.46 (19)	C2B-C1B-C6B-F1	176.46 (14)
C1A—C2A—C3A—C4A	-0.1 (3)	C7B—C1B—C6B—F1	-2.0 (2)
C7A—N4A—C4A—C5A	-178.7 (2)	C2B-C1B-C6B-C5B	-2.4 (2)
C8A—N4A—C4A—C5A	0.8 (3)	C7B—C1B—C6B—C5B	179.15 (17)
C7A—N4A—C4A—C3A	0.9 (3)	C6B-C1B-C7B-S1	-118.50 (17)
C8A—N4A—C4A—C3A	-179.6 (2)	C2B—C1B—C7B—S1	63.2 (2)
C2A—C3A—C4A—N4A	179.0 (2)	C2—S1—C7B—C1B	78.87 (15)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B-C6B rings, respectively.

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
$\overline{C2B}$ —Cl1····Cg1 ⁱ	1.74 (1)	3.30(1)	4.939 (2)	156 (1)
C8A—H8AB···Cg3 ⁱⁱ	0.96	2.94	3.857 (3)	161
C7B— $H7BA$ ···· $Cg3$ ⁱⁱⁱ	0.97	2.85	3.674 (2)	143

Symmetry codes: (i) *x*, -*y*-1/2, *z*-3/2; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) -*x*+1, -*y*+1, -*z*+1.