

ISSN 2056-9890

Received 11 March 2023 Accepted 30 March 2023

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: crystal structure; benzo[*d*]thiazole; chromene; imine; π – π -stacking.

CCDC reference: 2252955

Supporting information: this article has supporting information at journals.iucr.org/e

properties (Wang et al., 2010). Incorporated benzothiazole moieties are present in many commercially important organofluorescent materials that have attracted significant research interest in the field of organic light-emitting diodes (Lu et al., 2017; Metwally et al., 2022a,b). Coumarin (IUPAC name 2H-chromen-2-one) is a natural product and flavouring agent. Recently, a series of novel benzothiazolyl-coumarin hybrids have been synthesized as potential biological agents and efficient emitting materials (Azzam et al., 2021, 2022a,b,c,d; Wu et al., 2011). We have previously prepared 3-(benzo[d]oxazol, -imidazole, -thiazol-2-yl)-2H-chromen-2imine and their corresponding coumarin analogues 3-(benzo[d]oxazol-, -imidazol, -thiazol-2-yl)-2H-chromen-2one, through the reaction of salicylaldehyde with 2-cyanomethyl-benzoxazole, -benzimidazole, and -benzothiazole, respectively (Elgemeie, 1989). Some derivatives of these ring systems, known commercially as coumarin-6, coumarin-7 and coumarin-30, have been used as laser dyes in medical applications (Das et al., 2021; Satpati et al., 2009). Recently, we have synthesized some coumarin derivatives that exhibit fluorescence properties (Elgemeie & Elghandour, 1990; Elgemeie et al., 2000a,b; Elgemeie et al., 2015) as part of our research interest in exploiting new coumarin and benzothiazole derivatives for biological and photochemical materials (Azzam et al., 2017a,b, 2020a,b,c,d; Metwally et al., 2021a,b). Here, we describe a one-pot reaction of N-[2-(benzo[d]thiazol-2-yl)acetyl]benzohydrazide (1) with 5-bromo-salicylaldehde (2) and 4-p-toluidine (5) (Fig. 1). The mass spectrum of the product was, however, inconsistent with the proposed structure, 3-(benzo[d]thiazol-2-yl)-6-bromo-1-p-tolylquinolin-2(1H)-one (6). Therefore, the X-ray crystal structure was determined, showing the exclusive presence of N-[3-

Benzothiazoles exhibit strong fluorescence and luminescence

1. Chemical context

Crystal structure of *N*-[3-(benzo[*d*]thiazol-2-yl)-6bromo-2*H*-chromen-2-ylidene]-4-methylbenzenamine

Amira E. M. Abdallah,^a Galal H. Elgemeie^a and Peter G. Jones^{b*}

^aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-bs.de

The title compound, $C_{23}H_{15}BrN_2OS$, was the unexpected product in an attempted synthesis of the isomeric 3-(benzo[*d*]thiazol-2-yl)-6-bromo-1-*p*-tolyl-quinolin-2(1*H*)-one. The C_{chromene}=N-C angle is wide [125.28 (8)°]. The benzothiazole and chromene ring systems are almost coplanar, with their planes parallel to (110); the toluene ring system is rotated by *ca* 40° out of the chromene plane. The molecular packing involves layers with π -stacking, borderline 'weak' hydrogen bonds and possible C-H··· π contacts.

Acta Cryst. (2023). E**79**, 441–445

(benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-ylidene]-4methylbenzenamine (7), an isomer of 6, as the sole product in the solid state; this was unexpected because the C==O moiety of the coumarin framework is usually chemically robust. The formation of 7 presumably involves the initial formation of the adduct 3 followed by elimination of benzohydrazide; the intermediate 4 then reacts with p-toluidine to give the final product 7 by elimination of water.

2. Structural commentary

The molecule of **7** is shown in Fig. 2. The structure determination makes clear that the unexpected product is a chromene derivative with an exocyclic imino function rather than a

CH3COONH4 / EtOH

7

Figure 1 The synthesis of compound **7**.

8	1	<i></i>	
S1-C7A	1.7340 (9)	C9-O1	1.3819 (11)
S1-C2	1.7512 (9)	O1-C10	1.3751 (12)
C2-N3	1.3094 (12)	N9-C17	1.4127 (12)
C2-C8	1.4705 (12)	C13-Br1	1.8969 (10)
C9-N9	1.2708 (12)		
C7A-S1-C2	88.85 (4)	C3A - C7A - S1	109.69 (7)
N3-C2-S1	115.73 (7)	C10-O1-C9	121.82 (7)
C2-N3-C3A	110.78 (8)	C9-N9-C17	125.28 (8)
N3-C3A-C7A	114.92 (8)		

quinoline with an exocyclic oxo function. Bond lengths and angles may be regarded as normal, except that the C9—N9– C17 angle is very wide at 125.28 (8)°; selected values are given in Table 1. The benzothiazole and chromene ring systems are almost coplanar, with an interplanar angle of 7.59 (2)°; associated with this is a short intramolecular contact S1···N9 2.7570 (8) Å. The toluene ring system is appreciably rotated out of the chromene plane, with an interplanar angle of 40.38 (2)°.

3. Supramolecular features

There are few short contacts between molecules; two borderline 'weak' hydrogen bonds are listed in Table 2. A tenable packing analysis attributes a central role to the ring systems; individual rings are denoted here as A (thiazole), B(benzo ring of benzothiazole), C (pyran ring of chromene), D(benzo ring of chromene) and E (tolyl). The molecules lie with

The molecule of compound **7** in the crystal. Ellipsoids represent 50% probability levels.

Figure 3

Layer structure of compound 7 (without hydrogen atoms) showing the asymmetric unit (indicated by the label O1) and further translation-related molecules viewed perpendicular to the plane ($1\overline{10}$). A second layer is related to the first by inversion.

Figure 4

Stacking of ring systems in the structure of 7 (without hydrogen atoms). The view direction is parallel to the c axis. The label O1 indicates the molecule of the chosen asymmetric unit.

Table	2			
Hydro	gen-bond g	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C7-H7\cdots Br1^{i}$	0.95	3.11	3.7721 (10)	128
$C22 - H22 \cdot \cdot \cdot N3^{ii}$	0.95	2.63	3.5716 (13)	169

Symmetry codes: (i) x - 1, y - 1, z - 1; (ii) -x + 1, -y + 1, -z + 1.

rings A-D almost parallel to $(1\overline{10})$ (Fig. 3), and there are weak stacking effects $A \cdots D$ [intercentroid distance 3.5910 (5) Å, offset 1.12 Å; operator 1 - x, 1 - y, 1 - z], $C \cdots C$ [3.6184 (5) Å, 1.35 Å; 2 - x, 1 - y, 1 - z] and $C \cdots D$ [3.6308 (5) Å, 1.27 Å; 2 - x, 1 - y, 1 - z] (Fig. 4). Two possible $C-H \cdots \pi$ interactions are represented by the contacts H21 \cdots Cg(B) [Cg = centroid; H \cdots Cg 2.89 Å, C-H \cdots Cg 122°; -1 + x, -1 + y, z] and H6 \cdots Cg(E) [H \cdots Cg 2.87 Å, C-H \cdots Cg 124°; x, 1 + y, z]; the angles are narrow, but the interactions do not necessarily involve the ring centroids. The contacts H7 \cdots Br1 and H6 \cdots Cg(E) lie within the parent layer; H22 \cdots N3 is formed to a neighbouring layer and H21 \cdots Cg(B) to the next layer but one.

4. Database survey

The searches employed the routine ConQuest (Bruno *et al.*, 2002), part of Version 2022.3.0 of the CSD (Groom *et al.*, 2016).

We recently reported the structure of the mixed coumarin/ benzo[d]thiazole derivative 3-(benzo[d]thiazol-2-yl)-2Hchromen-2-one [3-(1,3-benzothiazol-2-yl)-2H-1-benzopyran-2-one] (Abdallah et al., 2022). The structure of the 4-oxo isomer had already been published by Lohar et al. (2018). Two more related structures were published by others at the same time (Singh et al., 2022). The current structure, however, bears an imine (=NAr) rather than an oxo substituent at atom C2 of the chromene (and thus is strictly not a coumarin). Only one other such structure was found in the database; its substituent at the imine nitrogen atom is pyridin-2-ethyl (refcode ITEVAF; Ahamed & Ghosh, 2011) and its C=N-C angle is much narrower than in 7 at 118.5 (7)°. A further search was therefore performed for structures with an -NAr group at the 2-position of a chromene ring system. This gave 18 hits with a considerable spread of C=N-C angles, namely $120.5-127.9^{\circ}$, mean value $123.4 (24)^{\circ}$. Nine of these structures appeared in the same publication (Shishkina et al., 2019), and, like 7, none of them had an interplanar angle close to the calculated gas-phase optimum of 0° .

5. Synthesis and crystallization

5-Bromo-salicylaldehyde **2** (2.01 g, 0.01 mol), *p*-toluidine **5** (1.07 g, 0.01 mol) and solid ammonium acetate (0.77 g, 0.01 mol) were added to a solution of N-[2-(benzo[*d*]thiazol-2-yl)acetyl]benzohydrazide **1** (3.11 g, 0.01 mol) in ethanol (25 mL). The reaction mixture was refluxed for 3 h, and the solid thus formed was collected by filtration and recrystallized from ethanol.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	C ₂₃ H ₁₅ BrN ₂ OS
M _r	447.34
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.34138 (10), 10.6720 (2), 12.9247 (2)
$lpha,eta,\gamma(^\circ)$	104.5034 (16), 90.2462 (12), 103.9961 (14)
$V(\mathring{A}^3)$	948 97 (3)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.29
Crystal size (mm)	$0.20 \times 0.15 \times 0.12$
Data collection	
Diffractometer	XtaLAB Synergy
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD. 2022)
Tmin Tmar	0.902, 1.000
No. of measured, independent and	126966, 12477, 11717
observed $[I > 2\sigma(I)]$ reflections	
Rint	0.030
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.928
(one offormax (i i)	0.720
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.086, 1.27
No. of reflections	12477
No. of parameters	254
H-atom treatment	H-atom parameters constrained
$\Delta \rho = \Delta \rho \cdot (e \text{ Å}^{-3})$	1.00 - 0.64
$-r \max$, $-r \min (c r r)$, 5.6.

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015b), SHELXL2018/3 (Sheldrick, 2015a) and XP (Siemens, 1994).

Yellow crystals (seen under the microscope to be orange/ yellow dichroic); yield: 94% (4.21 g); m.p. 501–503 K; IR (KBr, cm⁻¹): ν 3052, (CH-aromatic), 2918, 2852 (CH₃), 1554 (C=N), 1591, 1476 (C=C). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 2.51 (*s*, 3H, CH₃), 7.16–8.28 (*m*, 11H, 2 C₆H₄, C₆H₃), 8.73 (*s*, 1H, CHpyran). ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 21.2 (CH₃), 116.5, 118.0, 121.7, 122.5 (2), 123.1, 123.9, 125.8, 127.0, 129.9 (2), 132.0, 134.1, 134.5, 135.1, 137.6, 141.7, 145.6, 152.0, 152.1 (aromatic carbons, pyran ring), 160.5 (C=N). Analysis: calculated for C₂₃H₁₅BrN₂OS (447.35): C 61.75, H 3.38, N 6.26, S 7.17%. Found: C 61.86, H 3.50, N 6.06, S 6.99%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The methyl group was included as an idealized rigid group allowed to rotate but not tip (C–H 0.98 Å, H–C–H 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions, with C–H 0.95 Å. The U(H) values were fixed at 1.5 × U_{eq} of the parent carbon atoms for methyl H atoms and 1.2 × U_{eq} for other hydrogen atoms.

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

- Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). *IUCrData*, **7**, x220332.
- Ahamed, B. N. & Ghosh, P. (2011). Dalton Trans. 40, 6411-6419.
- Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.
- Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022*d*). *Antibiotics*, **11**, 1799.
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369–372.
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.
- Azzam, R. A., Elgemeie, G. H., Gad, N. M. & Jones, P. G. (2022c). *IUCrData*, **7**, x220412.
- Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020d). J. Mol. Struct. 1201, 127194.
- Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.
- Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.
- Azzam, R. A., Gad, N. M. & Elgemeie, G. H. (2022a). ACS Omega, 7, 35656–35667.
- Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Das, A., Das, S., Biswas, A. & Chattopadhyay, N. (2021). J. Phys. Chem. B, 125, 13482–13493.
- Elgemeie, G. H. (1989). Chem. Ind. 19, 653-654.
- Elgemeie, G. H., Ahmed, K. A., ahmed, E. A., helal, M. H. & Masoud, D. M. (2015). *Pigm. Resin Technol.* 44, 87–93.
- Elgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230–1232.
- Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). *Phosphorus Sulfur Silicon*, **165**, 265–272.
- Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). *Heterocycl. Commun.* 6, 363–268.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lohar, S., Dhara, K., Roy, P., Sinha Babu, S. P. & Chattopadhyay, P. (2018). ACS Omega, **3**, 10145–10153.
- Lu, F., Hu, R., Wang, S., Guo, X. & Yang, G. (2017). RSC Adv. 7, 4196–4202.
- Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.
- Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615–617.
- Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021*b*). *Acta Cryst.* E**77**, 1054–1057.
- Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Satpati, A. K., Kumbhakar, M., Nath, S. & Pal, H. (2009). *Photochem. Photobiol.* **85**, 119–129.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Shishkina, S. V., Konovalova, I. S., Kovalenko, S. M., Trostianko, P. V., Geleverya, A. O., Nikolayeva, L. L. & Bunyatyan, N. D. (2019). *Acta Cryst.* B75, 887–902.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.

- Singh, R., Chen, D.-G., Wang, C.-H., Wu, C.-C., Hsu, C.-H., Wu, C.-H., Lai, T.-Y., Chou, P. & Chen, C. (2022). *J. Mater. Chem. B*, **10**, 6228– 6236.
- Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.
- Wu, W., Wu, W., Ji, S., Guo, H. & Zhao, J. (2011). Dalton Trans. 40, 5953–5963.

supporting information

Acta Cryst. (2023). E79, 441-445 [https://doi.org/10.1107/S2056989023002979]

Crystal structure of *N*-[3-(benzo[*d*]thiazol-2-yl)-6-bromo-2*H*-chromen-2-yl-idene]-4-methylbenzenamine

Amira E. M. Abdallah, Galal H. Elgemeie and Peter G. Jones

Computing details

Data collection: *CrysAlis PRO* 1.171.42.69a (Rigaku OD, 2022); cell refinement: *CrysAlis PRO* 1.171.42.69a (Rigaku OD, 2022); data reduction: *CrysAlis PRO* 1.171.42.69a (Rigaku OD, 2022); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015b); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015a); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL2018/3* (Sheldrick, 2015a).

N-[3-(Benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-ylidene]-4-methylbenzenamine

Crystal data

C₂₃H₁₅BrN₂OS $M_r = 447.34$ Triclinic, $P\overline{1}$ a = 7.34138 (10) Å b = 10.6720 (2) Å c = 12.9247 (2) Å $a = 104.5034 (16)^{\circ}$ $\beta = 90.2462 (12)^{\circ}$ $\gamma = 103.9961 (14)^{\circ}$ $V = 948.97 (3) Å^{3}$

Data collection

XtaLAB Synergy diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.086$ S = 1.2712477 reflections 254 parameters Z = 2 F(000) = 452 $D_x = 1.566 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 55045 reflections $\theta = 2.3-41.0^{\circ}$ $\mu = 2.29 \text{ mm}^{-1}$ T = 100 KBlock, yellow-orange dichroic $0.20 \times 0.15 \times 0.12 \text{ mm}$

 $T_{\min} = 0.902, T_{\max} = 1.000$ 126966 measured reflections
12477 independent reflections
11717 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\max} = 41.3^{\circ}, \theta_{\min} = 2.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -19 \rightarrow 19$ $l = -23 \rightarrow 23$

0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 0.3775P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta\rho_{\rm max} = 1.00 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Short intramolecular contact: 2.7570 (0.0008) S1 - N9 Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.9114 (0.0010) x + 0.6551 (0.0043) y + 0.9221 (0.0052) z = 5.0880 (0.0023)* 0.0005 (0.0007) C17 * -0.0080 (0.0007) C18 * 0.0078 (0.0007) C19 * -0.0001 (0.0007) C20 * -0.0074 (0.0007) C21 * 0.0071 (0.0007) C22 -0.1433 (0.0014) N9 0.0078 (0.0018) C23 Rms deviation of fitted atoms = 0.00626.7905 (0.0005) x - 4.3737 (0.0026) y - 3.5046 (0.0028) z = 1.1567 (0.0016)Angle to previous plane (with approximate esd) = 40.378(0.018)* -0.0112 (0.0007) C8 * -0.0356 (0.0007) C9 * 0.0189 (0.0007) O1 * 0.0164 (0.0008) C10 * 0.0078 (0.0008) C11 * -0.0097 (0.0008) C12 * -0.0229 (0.0008) C13 * -0.0003 (0.0008) C14 * 0.0198 (0.0008) C15 * 0.0168 (0.0007) C16 -0.1250 (0.0009) Br1 -0.0945 (0.0011) N9 Rms deviation of fitted atoms = 0.01846.6853 (0.0007) x - 5.5698 (0.0018) y - 2.4072 (0.0037) z = 1.1618 (0.0013)Angle to previous plane (with approximate esd) = 7.587 (0.024)* -0.0246 (0.0005) S1 * -0.0299 (0.0006) C2 * 0.0114 (0.0007) N3 * 0.0329 (0.0008) C3A * 0.0037 (0.0008) C4 * -0.0325 (0.0008) C5 * -0.0172 (0.0009) C6 * 0.0192 (0.0008) C7 * 0.0370 (0.0008) C7A Rms deviation of fitted atoms = 0.0254

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.45005 (3)	0.22816 (2)	0.24952 (2)	0.01102 (4)	
C2	0.53265 (12)	0.27006 (9)	0.38418 (7)	0.00988 (12)	
N3	0.47875 (11)	0.17627 (8)	0.43436 (6)	0.01092 (11)	
C3A	0.36335 (12)	0.06293 (9)	0.36717 (7)	0.01059 (12)	
C4	0.27384 (14)	-0.05271 (10)	0.39829 (8)	0.01396 (14)	
H4	0.294443	-0.059470	0.469083	0.017*	
C5	0.15488 (14)	-0.15658 (10)	0.32326 (9)	0.01606 (16)	
Н5	0.091595	-0.234805	0.343368	0.019*	
C6	0.12611 (14)	-0.14821 (10)	0.21763 (9)	0.01639 (16)	
H6	0.044937	-0.221294	0.167457	0.020*	
C7	0.21439 (14)	-0.03497 (10)	0.18570 (8)	0.01469 (15)	
H7	0.195092	-0.029543	0.114386	0.018*	
C7A	0.33289 (12)	0.07121 (9)	0.26171 (7)	0.01109 (13)	
C8	0.65444 (12)	0.40075 (9)	0.44104 (7)	0.01000 (12)	
C9	0.69589 (12)	0.51144 (9)	0.39019 (7)	0.01044 (12)	
O1	0.81113 (10)	0.63197 (7)	0.44747 (6)	0.01236 (11)	
N9	0.62892 (12)	0.49654 (8)	0.29581 (7)	0.01224 (12)	
C10	0.87706 (12)	0.65155 (9)	0.55151 (7)	0.01079 (12)	
C11	0.98434 (13)	0.77861 (9)	0.60325 (8)	0.01284 (14)	
H11	1.010923	0.847551	0.567020	0.015*	
C12	1.05226 (13)	0.80324 (10)	0.70912 (8)	0.01385 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12	1.126245	0.889327	0.745864	0.017*
C13	1.01084 (13)	0.70054 (10)	0.76081 (8)	0.01306 (14)
Br1	1.09469 (2)	0.73707 (2)	0.90683 (2)	0.01723 (3)
C14	0.90564 (13)	0.57339 (9)	0.70921 (8)	0.01269 (13)
H14	0.880313	0.504533	0.745531	0.015*
C15	0.83692 (12)	0.54769 (9)	0.60237 (7)	0.01077 (12)
C16	0.72340 (12)	0.41962 (9)	0.54312 (7)	0.01106 (13)
H16	0.696241	0.347267	0.575708	0.013*
C17	0.64703 (13)	0.59939 (9)	0.24293 (7)	0.01134 (13)
C18	0.66395 (14)	0.56395 (10)	0.13211 (8)	0.01423 (14)
H18	0.674436	0.476506	0.097566	0.017*
C19	0.66550 (15)	0.65591 (10)	0.07226 (8)	0.01490 (15)
H19	0.680212	0.631073	-0.002518	0.018*
C20	0.64577 (13)	0.78423 (10)	0.12042 (8)	0.01351 (14)
C21	0.62680 (14)	0.81793 (10)	0.23071 (8)	0.01380 (14)
H21	0.611872	0.904390	0.264656	0.017*
C22	0.62919 (13)	0.72820 (9)	0.29233 (8)	0.01265 (13)
H22	0.618755	0.754253	0.367493	0.015*
C23	0.64635 (18)	0.88259 (12)	0.05472 (10)	0.02078 (19)
H23A	0.613539	0.961990	0.098977	0.031*
H23B	0.554014	0.841125	-0.006738	0.031*
H23C	0.771864	0.908668	0.029148	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.01261 (8)	0.01125 (8)	0.00922 (8)	0.00140 (6)	0.00060 (6)	0.00424 (6)
C2	0.0102 (3)	0.0100 (3)	0.0097 (3)	0.0025 (2)	0.0010 (2)	0.0031 (2)
N3	0.0119 (3)	0.0103 (3)	0.0107 (3)	0.0012 (2)	0.0001 (2)	0.0044 (2)
C3A	0.0103 (3)	0.0104 (3)	0.0113 (3)	0.0019 (2)	0.0004 (2)	0.0040 (2)
C4	0.0142 (3)	0.0127 (3)	0.0152 (4)	0.0007 (3)	-0.0004 (3)	0.0067 (3)
C5	0.0144 (3)	0.0132 (3)	0.0200 (4)	-0.0004 (3)	-0.0013 (3)	0.0070 (3)
C6	0.0151 (4)	0.0131 (3)	0.0185 (4)	-0.0005 (3)	-0.0031 (3)	0.0036 (3)
C7	0.0155 (3)	0.0136 (3)	0.0131 (4)	0.0007 (3)	-0.0021 (3)	0.0029 (3)
C7A	0.0113 (3)	0.0111 (3)	0.0107 (3)	0.0021 (2)	0.0004 (2)	0.0034 (2)
C8	0.0101 (3)	0.0096 (3)	0.0107 (3)	0.0023 (2)	0.0011 (2)	0.0036 (2)
C9	0.0104 (3)	0.0096 (3)	0.0116 (3)	0.0018 (2)	0.0014 (2)	0.0038 (2)
01	0.0136 (3)	0.0105 (2)	0.0122 (3)	0.0001 (2)	-0.0009 (2)	0.0043 (2)
N9	0.0145 (3)	0.0111 (3)	0.0116 (3)	0.0022 (2)	0.0009 (2)	0.0049 (2)
C10	0.0100 (3)	0.0104 (3)	0.0120 (3)	0.0023 (2)	0.0009 (2)	0.0032 (2)
C11	0.0122 (3)	0.0100 (3)	0.0154 (4)	0.0011 (2)	0.0009 (3)	0.0033 (3)
C12	0.0127 (3)	0.0117 (3)	0.0155 (4)	0.0020 (3)	0.0002 (3)	0.0015 (3)
C13	0.0126 (3)	0.0138 (3)	0.0116 (3)	0.0029 (3)	-0.0006 (3)	0.0016 (3)
Br1	0.01926 (5)	0.01788 (5)	0.01143 (4)	0.00218 (3)	-0.00160 (3)	0.00057 (3)
C14	0.0132 (3)	0.0125 (3)	0.0119 (3)	0.0027 (3)	-0.0004 (3)	0.0028 (3)
C15	0.0101 (3)	0.0103 (3)	0.0118 (3)	0.0023 (2)	0.0004 (2)	0.0029 (2)
C16	0.0113 (3)	0.0104 (3)	0.0116 (3)	0.0022 (2)	0.0004 (2)	0.0036 (2)
C17	0.0124 (3)	0.0111 (3)	0.0106 (3)	0.0015 (2)	0.0002 (2)	0.0043 (2)

supporting information

C18	0.0184 (4)	0.0125 (3)	0.0108 (3)	0.0021 (3)	0.0001 (3)	0.0029 (3)
C19	0.0184 (4)	0.0156 (4)	0.0099 (3)	0.0017 (3)	0.0000 (3)	0.0043 (3)
C20	0.0142 (3)	0.0147 (3)	0.0127 (4)	0.0020 (3)	0.0002 (3)	0.0068 (3)
C21	0.0161 (3)	0.0131 (3)	0.0140 (4)	0.0046 (3)	0.0025 (3)	0.0060 (3)
C22	0.0153 (3)	0.0127 (3)	0.0112 (3)	0.0040 (3)	0.0025 (3)	0.0048 (3)
C23	0.0267 (5)	0.0210 (4)	0.0186 (5)	0.0057 (4)	0.0018 (4)	0.0125 (4)

Geometric parameters (Å, °)

S1—C7A	1.7340 (9)	C15—C16	1.4382 (13)
S1—C2	1.7512 (9)	C17—C18	1.4010 (13)
C2—N3	1.3094 (12)	C17—C22	1.4010 (13)
C2—C8	1.4705 (12)	C18—C19	1.3915 (14)
N3—C3A	1.3809 (12)	C19—C20	1.3977 (15)
C3A—C4	1.4055 (13)	C20—C21	1.3964 (14)
C3A—C7A	1.4082 (13)	C20—C23	1.5057 (14)
C4—C5	1.3849 (14)	C21—C22	1.3934 (13)
C5—C6	1.4085 (15)	C4—H4	0.9500
C6—C7	1.3872 (14)	С5—Н5	0.9500
C7—C7A	1.4015 (13)	С6—Н6	0.9500
C8—C16	1.3600 (13)	С7—Н7	0.9500
C8—C9	1.4616 (12)	C11—H11	0.9500
C9—N9	1.2708 (12)	C12—H12	0.9500
C9—O1	1.3819 (11)	C14—H14	0.9500
O1—C10	1.3751 (12)	C16—H16	0.9500
N9—C17	1.4127 (12)	C18—H18	0.9500
C10—C11	1.3896 (13)	С19—Н19	0.9500
C10—C15	1.3985 (13)	C21—H21	0.9500
C11—C12	1.3931 (14)	C22—H22	0.9500
C12—C13	1.3954 (14)	C23—H23A	0.9800
C13—C14	1.3849 (13)	С23—Н23В	0.9800
C13—Br1	1.8969 (10)	С23—Н23С	0.9800
C14—C15	1.4049 (13)		
C7A—S1—C2	88.85 (4)	C22—C17—N9	123.92 (8)
N3—C2—C8	120.14 (8)	C19—C18—C17	120.48 (9)
N3—C2—S1	115.73 (7)	C18—C19—C20	121.05 (9)
C8—C2—S1	124.12 (6)	C21—C20—C19	117.95 (9)
C2—N3—C3A	110.78 (8)	C21—C20—C23	121.46 (9)
N3—C3A—C4	124.80 (8)	C19—C20—C23	120.58 (9)
N3—C3A—C7A	114.92 (8)	C22—C21—C20	121.80 (9)
C4—C3A—C7A	120.23 (8)	C21—C22—C17	119.69 (9)
C5—C4—C3A	118.40 (9)	C5—C4—H4	120.8
C4—C5—C6	121.12 (9)	C3A—C4—H4	120.8
C7—C6—C5	121.06 (9)	C4—C5—H5	119.4
C6—C7—C7A	118.06 (9)	C6—C5—H5	119.4
C7—C7A—C3A	121.11 (8)	С7—С6—Н6	119.5
C7—C7A—S1	129.11 (7)	С5—С6—Н6	119.5

C3A—C7A—S1	109.69 (7)	С6—С7—Н7	121.0
C16—C8—C9	119.94 (8)	С7А—С7—Н7	121.0
C16—C8—C2	119.48 (8)	C10—C11—H11	120.5
C9—C8—C2	120.55 (8)	C12—C11—H11	120.5
N9—C9—O1	121.20 (8)	C11—C12—H12	120.2
N9—C9—C8	120.80 (8)	C13—C12—H12	120.2
O1—C9—C8	118.00 (8)	C13—C14—H14	120.5
C10—O1—C9	121.82 (7)	C15—C14—H14	120.5
C9—N9—C17	125.28 (8)	C8—C16—H16	119.6
O1—C10—C11	117.00 (8)	C15—C16—H16	119.6
O1—C10—C15	121.11 (8)	C19—C18—H18	119.8
C11—C10—C15	121.89 (9)	C17—C18—H18	119.8
C10—C11—C12	118.90 (9)	C18—C19—H19	119.5
C11—C12—C13	119.52 (9)	С20—С19—Н19	119.5
C14—C13—C12	121.77 (9)	C22—C21—H21	119.1
C14—C13—Br1	119.00 (7)	C20—C21—H21	119.1
C12—C13—Br1	119.21 (7)	C21—C22—H22	120.2
C13—C14—C15	119.05 (9)	C17—C22—H22	120.2
C10—C15—C14	118.86 (8)	С20—С23—Н23А	109.5
C10—C15—C16	118.19 (8)	C20—C23—H23B	109.5
C14—C15—C16	122.95 (8)	H23A—C23—H23B	109.5
C8—C16—C15	120.85 (8)	С20—С23—Н23С	109.5
C18—C17—C22	119.00 (8)	H23A—C23—H23C	109.5
C18—C17—N9	116.72 (8)	H23B—C23—H23C	109.5
C7A—S1—C2—N3	0.05 (7)	C9—O1—C10—C11	-176.93 (8)
C7A—S1—C2—C8	-179.77 (8)	C9—O1—C10—C15	2.96 (13)
C8—C2—N3—C3A	179.03 (8)	O1—C10—C11—C12	179.31 (8)
S1—C2—N3—C3A	-0.79 (10)	C15-C10-C11-C12	-0.57 (14)
C2—N3—C3A—C4	-176.34 (9)	C10-C11-C12-C13	-0.22 (14)
C2—N3—C3A—C7A	1.36 (11)	C11—C12—C13—C14	0.92 (15)
N3—C3A—C4—C5	177.03 (9)	C11—C12—C13—Br1	-177.29 (7)
C7A—C3A—C4—C5	-0.56 (14)	C12—C13—C14—C15	-0.80 (14)
C3A-C4-C5-C6	1.09 (16)	Br1-C13-C14-C15	177.41 (7)
C4—C5—C6—C7	-0.75 (17)	O1—C10—C15—C14	-179.19 (8)
C5—C6—C7—C7A	-0.15 (16)	C11—C10—C15—C14	0.68 (13)
C6—C7—C7A—C3A	0.68 (15)	O1—C10—C15—C16	-0.42 (13)
C6—C7—C7A—S1	-175.47 (8)	C11—C10—C15—C16	179.46 (8)
N3—C3A—C7A—C7	-178.14 (9)	C13—C14—C15—C10	0.00 (13)
C4—C3A—C7A—C7	-0.33 (14)	C13—C14—C15—C16	-178.71 (9)
N3—C3A—C7A—S1	-1.32 (10)	C9—C8—C16—C15	0.14 (13)
C4—C3A—C7A—S1	176.50 (7)	C2-C8-C16-C15	-177.59 (8)
C2—S1—C7A—C7	177.19 (10)	C10-C15-C16-C8	-1.08 (13)
C2—S1—C7A—C3A	0.69 (7)	C14—C15—C16—C8	177.64 (9)
N3—C2—C8—C16	5.52 (13)	C9—N9—C17—C18	145.41 (10)
S1—C2—C8—C16	-174.66 (7)	C9—N9—C17—C22	-41.55 (14)
N3—C2—C8—C9	-172.19 (8)	C22-C17-C18-C19	0.84 (14)
S1—C2—C8—C9	7.62 (12)	N9-C17-C18-C19	174.24 (9)

supporting information

C16—C8—C9—N9	-178.29 (9)	C17—C18—C19—C20	-1.56 (15)
C2-C8-C9-N9	-0.59 (13)	C18—C19—C20—C21	0.79 (15)
C16—C8—C9—O1	2.26 (13)	C18—C19—C20—C23	-179.58 (10)
C2—C8—C9—O1	179.97 (8)	C19—C20—C21—C22	0.68 (15)
N9—C9—O1—C10	176.74 (8)	C23—C20—C21—C22	-178.95 (10)
C8—C9—O1—C10	-3.82 (12)	C20—C21—C22—C17	-1.37 (15)
O1-C9-N9-C17	-6.20 (14)	C18—C17—C22—C21	0.59 (14)
C8—C9—N9—C17	174.37 (8)	N9-C17-C22-C21	-172.29 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7····Br1 ⁱ	0.95	3.11	3.7721 (10)	128
C22—H22…N3 ⁱⁱ	0.95	2.63	3.5716 (13)	169

Symmetry codes: (i) *x*-1, *y*-1, *z*-1; (ii) -*x*+1, -*y*+1, -*z*+1.