

Received 3 April 2023 Accepted 20 April 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrogen bonds; π - π stacking interaction; chain structure; hydrazone.

CCDC reference: 2257827

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structure of *catena*poly[[[aqua{2-[(*E*)-(1-cyano-2-imino-2-methoxyethylidene)hydrazinyl]benzenesulfonato}sodium]di-*µ*-aqua] dihydrate]

Vusala A. Aliyeva,^a Fargana S. Aliyeva,^b Mehmet Akkurt,^c Sema Öztürk Yıldırım^{d,c} and Ajaya Bhattarai^e*

^aCentro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, ^bExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, ^dDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Türkiye, and ^eDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal. *Correspondence e-mail: bkajaya@yahoo.com

In the polymeric title compound, {[Na($C_{10}H_9N_4O_4S$)(H_2O)₃]·2 H_2O }_n, sixfold coordinated Na⁺ cations are linked into a chain parallel to [010] by sharing common water molecules. Next to the four bridging water molecules, each Na⁺ cation of the chain is bonded to the O atom of a terminal water molecule and an O atom of the SO₃⁻ group of the sulfonate anion. Classical $O-H\cdots O$, $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds and additional $\pi-\pi$ interactions connect these chains into a three-dimensional network.

1. Chemical context

Hydrazones are interesting compounds in the fields of coordination chemistry, crystal engineering, catalysis, molecular recoginition and synthetic organic chemistry (Ma et al., 2021; Mahmoudi et al., 2017a,b, 2019). Depending on the attached functional groups of the hydrazone ligands, the solubility and catalytic activities of their corresponding metal complexes can be improved (Gurbanov et al., 2022). Hydrazones have been applied as analytical reagents (Mahmudov et al., 2010), as well as building blocks in the construction of supramolecular networks, owing to their capabilities as donor and acceptor groups in hydrogen bonding (Maharramov et al., 2010; Mahmudov et al., 2011, 2012, 2013). Both resonance-assisted hydrogen or chalcogen bonds also play a crucial role in the synthesis and structural chemistry of hydrazone ligands (Gurbanov et al., 2020a,b; Mahmudov et al., 2022). Similar to other classes of N-containing ligands, hydrazones also participate in various types of intermolecular interactions (Polyanskii et al., 2019; Zubkov et al., 2018).

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$05-H5A\cdots04^{i}$	0.85	1.98	2,8243 (13)	173
$O5-H5B\cdots O6^{ii}$	0.85	1.90	2.7660 (13)	176
$O6-H6A\cdots O5$	0.85	1.88	2.7295 (15)	174
O6−H6 <i>B</i> ···O3	0.85	1.98	2.8169 (13)	168
$O7-H7A\cdots O5^{iii}$	0.85	2.06	2.8978 (13)	171
$O7-H7B\cdots N4^{iv}$	0.85	1.98	2.8141 (14)	167
$O8-H8A\cdots O3^{v}$	0.85	2.05	2.8874 (14)	168
$O8-H8B\cdots O2^{vi}$	0.85	2.18	2.9689 (15)	153
O9−H9A···O6	0.85	1.97	2.8241 (14)	178
$N4-H4N\cdots O8^{vii}$	0.93	2.38	3.0905 (16)	133

Symmetry codes: (i) x, y + 1, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) x - 1, y, z; (v) -x, -y + 1, -z + 1; (vi) -x, -y, -z + 1; (vii) x + 1, y, z.

Herein, we report the structural features of the hydrazone derivative poly[[di- μ -aqua-{2-[(E)-(1-cyano-2-imino-2-methoxy-ethylidene)hydrazinyl]benzenesulfonato}sodium] dihydrate].

2. Structural commentary

The Na⁺ cation exhibits a six-coordination by O atoms in the form of a distorted octahedron. Four water molecules (O7, O9 and their symmetry-related counterparts) bridge adjacent cations into a chain extending parallel to [010] (Fig. 1). The coordination sphere is completed by the O atoms of another water molecule (O8), now bonded terminally, and an O atom from the SO_3^- group (O2). The sulfonate anion shows no atypical features.

3. Supramolecular features

Classical O-H···O, O-H···N and N-H···O hydrogen bonds of medium strength (Table 1) form a three-dimensional network (Figs. 2 and 3). Furthermore, the molecules are linked by π - π stacking interactions between the benzene rings $[Cg1\cdots Cg1(-x + 1, -y + 1, -z + 1) = 3.7588$ (8) Å and slip-

Figure 2 View of the crystal structure along [010], with $O-H\cdots O$, $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds shown as dashed lines.

page = 1.684 Å, where Cg1 is the centroid of the C1–C6 ring] parallel to [010] (Fig. 4).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Groom *et al.*, 2016) for related benzenesulfonates with a monovalent cation gave two matches. In *catena*-[bis(μ_4 -3-carboxy-4-hydroxybenzenesulfonato)triaquadisilver(I) monohydrate] (CSD refcode FETHES; Gao *et al.*, 2005), both substituted benzenesulfonate anions use two of their sulfonyl O atoms to link to three Ag⁺

Figure 1

The coordination environment of the Na⁺ cations in the title compound, leading to the formation of a chain extending parallel to [010]. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) -x, -y, -z + 1; (b) -x, -y + 1, -z + 1.]

research communications

Figure 3 View of the crystal structure along [001]; the hydrogen bonds are as in Fig. 2.

cations and their carbonyl O atom to another Ag⁺ cation in a μ_4 -binding mode. The two symmetry-independent Ag⁺ cations are additionally coordinated by water molecules, one by one water molecule and the other by two water molecules, so that one Ag⁺ cation is five- and the other six-coordinate. In *catena*-[μ_5 -(3-carboxy-4-hydroxybenzenesulfonate)(μ_2 -aqua)rubidium] (FAXGAN; Hu *et al.*, 2005), the 3-carboxy-4-hydroxybenzenesulfonate anion retains the usual intermolecular hydrogen bond between the phenol and carboxyl O atoms. The Rb⁺ cation is surrounded by eight O atoms, and the crystal packing is stabilized by intermolecular O-H···O hydrogen bonds.

5. Synthesis and crystallization

344 mg (1 mmol) of sodium 2-[2-(dicyanomethylene)hydrazinyl]benzenesulfonate tetrahydrate (Kopylovich *et al.*, 2013) were dissolved in 60 ml of methanol and refluxed for 6 h. The reaction mixture was kept in air at room temperature for slow evaporation. After *ca* 2–3 d, yellow crystals of the title compound, suitable for X-ray analysis, had formed (yield 84%). The crystals were soluble in DMSO, ethanol and dimethylformamide and insoluble in nonpolar solvents. Elemental analysis (%) for C₁₀H₁₉N₄NaO₉S: C 30.41 (calc. 30.46), H 4.83 (4.86), N 14.16 (14.21); IR (KBr): 3390 ν(OH), 2995 and 2867 ν(NH), 1653 ν(C=N) cm⁻¹. ¹H NMR in DMSO, internal TMS: δ (ppm) 3.44 (3H, OCH₃), 7.16–8.11 (4H, Ar–H), 10.19 (1H, NH), 14.11 (*s*, 1H, N–H). ¹³C NMR in DMSO, internal TMS: δ (ppm) 58.2 (OCH₃), 111.5 (C=N), 112.3 (C=N), 123.6 (ArC–H), 121.7 (ArC–SO₃Na), 122.2 (ArC–H), 126.8 (ArC–H), 129.1 (ArC–H), 142.5 (ArC–NH) and 160.0 (C=NH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically (C-H = 0.95 and 0.98 Å) and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. O- and N-bound H atoms were located from difference Fourier maps and refined with $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)$, with their

Figure 4 The π - π stacking interactions in the title compound shown with dashed lines.

Table 2 Experimental details.

Crystal data	
Chemical formula	$[Na(C_{10}H_9N_4O_4S)(H_2O)_3]\cdot 2H_2O$
M _r	394.34
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	13.3305 (5), 6.8212 (3), 20.9547 (8)
β (°)	106.681 (1)
$V(\dot{A}^3)$	1825.23 (13)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.25
Crystal size (mm)	$0.27 \times 0.21 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.926, 0.967
No. of measured, independent and	27710, 3748, 3389
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.021
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.081, 1.07
No. of reflections	3748
No. of parameters	227
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.35, -0.36

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS (Sheldrick, 2008), SHELXL2019 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

positions fixed at distances of N-H = 0.93 Å and O-H = 0.85 Å.

Acknowledgements

VA thanks the Fundação para a Ciência e a Tecnologia (FCT) (Portugal), Associação do Instituto Superior Técnico para Investigação e Desenvolvimento for her research fellowship through grant No. BL110/2022-IST-ID and Baku State University. The contributions of the authors are as follows. Conceptualization, MA and AB; synthesis, VAA and FSA; X-ray analysis, VAA, SÖY and MA; writing (review and editing of the manuscript), MA and AB; funding acquisition, VAA and FSA; supervision, MA and AB.

Funding information

Funding for this research was provided by: Fundação para a Ciência e a Tecnologia (grant No. BL110/2022-IST-ID).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854. Gao, S., Zhu, Z.-B., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, m279-m281. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837. Hu, M., Du, Y., Li, S., Jiang, Y., Liu, Z. & Geng, C. (2005). Acta Cryst. E61, m15-m17. Kopylovich, M. N., Mizar, A., Guedes da Silva, M. F. C., Mac Leod, T. C. O., Mahmudov, K. T. & Pombeiro, A. J. L. (2013). Chem. Eur. J. 19. 588-600. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772. Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938. Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769-779. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Acta Cryst. (2023). E79, 508-511 [https://doi.org/10.1107/S2056989023003602]

Synthesis and crystal structure of *catena*-poly[[[aqua{2-[(*E*)-(1-cyano-2-imino-2methoxyethylidene)hydrazinyl]benzenesulfonato}sodium]-di-µ-aqua] dihydrate]

Vusala A. Aliyeva, Fargana S. Aliyeva, Mehmet Akkurt, Sema Öztürk Yıldırım and Ajaya **Bhattarai**

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

catena-Poly[[[aqua{2-[(E)-(1-cyano-2-imino-2-methoxyethylidene)hydrazinyl]benzenesulfonato}sodium]-di-µaqua] dihydrate]

Crystal data	
[Na(C ₁₀ H ₉ N ₄ O ₄ S)(H ₂ O) ₃]·2H ₂ O	F(000) = 824
$M_r = 394.34$	$D_x = 1.435 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$
a = 13.3305 (5) Å	Cell parameters from 9914 reflections
b = 6.8212 (3) Å	$\theta = 3.2-26.5^{\circ}$
c = 20.9547 (8) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 106.681$ (1)°	T = 150 K
V = 1825.23 (13) Å ³	Needle, yellow
Z = 4	$0.27 \times 0.21 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD	3748 independent reflections
diffractometer	3389 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{int} = 0.021$
Absorption correction: multi-scan	$\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.2^{\circ}$
(<i>SADABS</i> ; Krause <i>et al.</i> , 2015)	$h = -16 \rightarrow 16$
$T_{min} = 0.926, T_{max} = 0.967$	$k = -8 \rightarrow 7$
27710 measured reflections	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.028$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.081$	map
S = 1.07	Hydrogen site location: mixed
3748 reflections	H-atom parameters constrained
227 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0397P)^2 + 0.8377P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$

Acta Cryst. (2023). E79, 508-511

		-
supporting	information	1

$$(\Delta/\sigma)_{\rm max} = 0.001$$

 $\Delta\rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $U_{\rm iso}$ */ $U_{\rm eq}$ х y ZNa1 0.01633 (4) 0.24885 (7) 0.50226(3)0.02094(13)**S**1 0.24044(2)0.24765 (4) 0.43523(2)0.01763 (9) 01 0.64543(8)0.03548(17)0.26660(5)0.0316(2)O2 0.16843(7)0.18478(17)0.47128(5)0.0312(2)O3 0.21772(7)0.44290 (14) 0.40648(5)0.0250(2)04 0.24943 (7) 0.10353 (15) 0.38547 (5) 0.0292(2)O5 0.05048(7)0.95638 (15) 0.31489(4)0.0259(2)H5A 0.111073 0.039* 1.003570 0.332701 0.039* H5B 0.026423 0.994300 0.274741 06 0.02512 (8) 0.55977 (15) 0.31795 (5) 0.0278(2)H6A 0.036537 0.682516 0.319429 0.042* H6B 0.083707 0.512606 0.340269 0.042* **O**7 -0.05415(7)0.00275 (14) 0.41756 (4) 0.0214(2)H7A -0.029422-0.0035530.384492 0.032* H7B 0.035287 0.397482 0.032* -0.11682208 0.51810(5) 0.0267(2)-0.15677(8)0.24814 (14) 0.329914 0.539397 0.040* H8A -0.183026H8B -0.1709260.135404 0.530527 0.040* 09 -0.07335(8)0.48983 (15) 0.41848(5)0.0292(2)-0.0449370.508569 0.387489 0.044* H9A H9B -0.1202470.402548 0.405278 0.044*N1 0.45695 (8) 0.19223 (16) 0.41179 (5) 0.0173(2)H1N 0.394133 0.153936 0.384683 0.021* N2 0.54648(8)0.17969 (16) 0.39713(5)0.0184(2)N3 0.37653 (11) 0.0270(2)0.24994(7)0.0407(3) N4 0.73936(9)0.1439(2)0.37031 (6) 0.0331(3)H4N 0.183478 0.410070 0.040* 0.728594 C1 0.45890 (9) 0.23787 (17) 0.47751 (6) 0.0160(2)C2 0.55436 (10) 0.25797 (18) 0.52682(7)0.0203(3)H2 0.240330 0.515954 0.024* 0.618229 C3 0.55603 (11) 0.3035(2)0.59141 (6) 0.0243(3)H3 0.621321 0.316534 0.624649 0.029* C4 0.46382 (11) 0.3304(2)0.60838 (6) 0.0254(3)H4 0.465840 0.363154 0.652795 0.030* C5 0.36862 (10) 0.30915 (19) 0.55994 (6) 0.0220(3)H5 0.305188 0.326402 0.571371 0.026*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	0.36531 (9)	0.26271 (17)	0.49470 (6)	0.0167 (2)	
C7	0.54846 (10)	0.12221 (19)	0.33855 (6)	0.0206 (3)	
C8	0.65335 (10)	0.1044 (2)	0.32786 (6)	0.0254 (3)	
C9	0.45515 (11)	0.0676 (2)	0.28728 (6)	0.0253 (3)	
C10	0.74403 (13)	0.0023 (3)	0.25222 (8)	0.0457 (5)	
H10C	0.730573	-0.048535	0.206797	0.069*	
H10D	0.785594	-0.093168	0.283906	0.069*	
H10E	0.782662	0.126071	0.256239	0.069*	

Atomic displacement parameters (\AA^2)	
--	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Na1	0.0226 (3)	0.0185 (3)	0.0246 (3)	0.00087 (19)	0.0112 (2)	0.00084 (19)
S1	0.01257 (15)	0.01943 (17)	0.02187 (16)	-0.00042 (10)	0.00653 (12)	0.00011 (11)
01	0.0268 (5)	0.0499 (7)	0.0209 (5)	0.0097 (5)	0.0111 (4)	-0.0017 (4)
O2	0.0193 (5)	0.0428 (6)	0.0354 (5)	-0.0046 (4)	0.0140 (4)	0.0061 (5)
O3	0.0219 (4)	0.0237 (5)	0.0267 (5)	0.0024 (4)	0.0027 (4)	0.0043 (4)
O4	0.0163 (4)	0.0326 (5)	0.0361 (5)	-0.0006 (4)	0.0034 (4)	-0.0151 (4)
O5	0.0229 (4)	0.0335 (5)	0.0192 (4)	-0.0052 (4)	0.0025 (4)	0.0012 (4)
O6	0.0286 (5)	0.0276 (5)	0.0229 (5)	0.0014 (4)	0.0007 (4)	0.0009 (4)
O7	0.0172 (4)	0.0256 (5)	0.0218 (4)	0.0030 (3)	0.0063 (3)	0.0015 (4)
O8	0.0287 (5)	0.0237 (5)	0.0316 (5)	0.0012 (4)	0.0147 (4)	-0.0001 (4)
09	0.0352 (5)	0.0240 (5)	0.0305 (5)	-0.0043 (4)	0.0126 (4)	0.0006 (4)
N1	0.0139 (5)	0.0202 (5)	0.0183 (5)	-0.0010 (4)	0.0052 (4)	-0.0009 (4)
N2	0.0170 (5)	0.0173 (5)	0.0226 (5)	0.0020 (4)	0.0085 (4)	0.0034 (4)
N3	0.0338 (7)	0.0553 (9)	0.0308 (7)	-0.0053 (6)	0.0059 (6)	-0.0077 (6)
N4	0.0215 (6)	0.0581 (9)	0.0214 (5)	0.0079 (6)	0.0088 (5)	0.0006 (6)
C1	0.0175 (6)	0.0125 (5)	0.0180 (6)	-0.0012 (4)	0.0053 (5)	0.0013 (4)
C2	0.0172 (6)	0.0191 (6)	0.0233 (6)	-0.0015 (4)	0.0038 (5)	0.0011 (5)
C3	0.0259 (6)	0.0215 (6)	0.0211 (6)	-0.0039 (5)	-0.0005 (5)	0.0009 (5)
C4	0.0372 (7)	0.0224 (7)	0.0165 (6)	-0.0018 (6)	0.0076 (5)	-0.0009(5)
C5	0.0270 (6)	0.0195 (6)	0.0230 (6)	0.0003 (5)	0.0125 (5)	0.0008 (5)
C6	0.0169 (6)	0.0141 (6)	0.0194 (6)	-0.0003 (4)	0.0059 (5)	0.0014 (4)
C7	0.0208 (6)	0.0220 (6)	0.0202 (6)	0.0030 (5)	0.0079 (5)	0.0028 (5)
C8	0.0237 (6)	0.0334 (7)	0.0220 (6)	0.0083 (5)	0.0111 (5)	0.0053 (5)
C9	0.0275 (7)	0.0299 (7)	0.0214 (6)	0.0019 (6)	0.0118 (5)	-0.0008 (5)
C10	0.0317 (8)	0.0826 (14)	0.0273 (7)	0.0189 (8)	0.0155 (6)	-0.0014 (8)

Geometric parameters (Å, °)

Na1—O2	2.3407 (11)	O9—H9B	0.8500
Na1—O7 ⁱ	2.3530 (10)	N1—N2	1.3178 (14)
Na1—O9 ⁱⁱ	2.4061 (11)	N1—C1	1.4049 (15)
Na1—O8	2.4237 (11)	N1—H1N	0.9050
Nal—O7	2.4276 (10)	N2—C7	1.2961 (16)
Na1—O9	2.4511 (11)	N3—C9	1.1474 (19)
Na1—Na1 ⁱ	3.4206 (10)	N4—C8	1.2621 (18)
Na1—Na1 ⁱⁱ	3.4517 (10)	N4—H4N	0.9254

Na1—H9B	2.5336	C1—C2	1.3967 (17)
S1—O2	1.4466 (9)	C1—C6	1.4045 (17)
S1—O3	1.4572 (10)	C2—C3	1.3826 (19)
S1—O4	1.4627 (10)	C2—H2	0.9500
S1—C6	1.7730 (13)	C3—C4	1.386 (2)
O1—C8	1.3424 (16)	С3—Н3	0.9500
O1—C10	1.4482 (17)	C4—C5	1.3864 (19)
O5—H5A	0.8498	C4—H4	0.9500
O5—H5B	0.8501	C5—C6	1.3916 (18)
О6—Н6А	0.8500	C5—H5	0.9500
06—H6B	0.8500	C7—C9	1.4398 (18)
07—H7A	0.8496	C7—C8	1.4832 (17)
07—H7B	0.8500	C10—H10C	0.9800
O8—H8A	0.8500	C10—H10D	0.9800
08—H8B	0.8503	C10—H10E	0.9800
09—H9A	0.8501		0.9000
	0.0201		
Ω^2 —Na1— Ω^{7i}	92,10 (4)	Na1 ⁱ —O7—H7B	121.5
Ω_2 —Na1— Ω_2^{ii}	101.69 (4)	Na1—O7—H7B	107.5
$O7^{i}$ Na1 $O9^{ii}$	94.98 (4)	H7A—O7—H7B	99.5
02—Na1— 08	166.44 (4)	Na1—O8—H8A	128.5
07^{i} Na1 -08	85.30 (3)	Na1—O8—H8B	110.3
$O9^{ii}$ —Na1—O8	91.80 (4)	H8A—O8—H8B	105.8
02—Na1—07	81.51 (4)	Na1 ⁱⁱ —O9—Na1	90.57 (4)
$O7^{i}$ —Na1—O7	88.64 (3)	Na1 ⁱⁱ —O9—H9A	107.1
$O9^{ii}$ —Na1—O7	175.04 (4)	Na1—O9—H9A	114.5
08—Na1—07	85.12 (3)	$Na1^{ii}$ —O9—H9B	143.2
02—Na1—09	102.11 (4)	Na1—O9—H9B	85.7
0.7^{i} Na1-09	163.96 (4)	H9AH9B	107.7
$O9^{ii}$ —Na1—O9	89.43 (4)	N2—N1—C1	118.67 (10)
08—Na1—09	79 14 (4)	N2—N1—H1N	124.9
07—Na1—09	86.18 (4)	C1—N1—H1N	115.6
Ω_{2} Na1 Na1 ⁱ	85.44 (3)	C7—N2—N1	120.42 (11)
07^{i} Nal Nali	45 20 (3)	C8—N4—H4N	110.6
O^{ii} Na1 Na1 ⁱ	140.07 (4)	C_2 — C_1 — C_6	119.09 (11)
08—Na1—Na1 ⁱ	83.29 (3)	C2-C1-N1	120.22(11)
07—Na1—Na1 ⁱ	43.45 (2)	C6-C1-N1	120.68(11)
09—Na1—Na1 ⁱ	127 86 (4)	$C_3 - C_2 - C_1$	120.00(12) 120.10(12)
Ω_{2} Na1 Na1 ⁱⁱ	106.87 (4)	C3-C2-H2	120.0
07^{i} Na1 Na1 ⁱⁱ	137.99 (4)	C1-C2-H2	120.0
$O9^{ii}$ Na1 Na1 ⁱⁱ	45 24 (3)	$C_{2}-C_{3}-C_{4}$	120.96(12)
08—Na1—Na1 ⁱⁱ	83.58 (3)	C2-C3-H3	119.5
07—Na1—Na1 ⁱⁱ	130.32 (3)	C4—C3—H3	119.5
09—Na1—Na1 ⁱⁱ	44.19 (3)	$C_3 - C_4 - C_5$	119.41 (12)
Na1 ⁱ —Na1—Na1 ⁱⁱ	166.02 (3)	C3—C4—H4	120.3
O2—Na1—H9B	109.6	C5—C4—H4	120.3
O7 ⁱ —Na1—H9B	146.3	C4—C5—C6	120.48 (12)
O9 ⁱⁱ —Na1—H9B	105.0	С4—С5—Н5	119.8

67.5	С6—С5—Н5	119.8
70.2	C5—C6—C1	119.95 (11)
19.5	C5—C6—S1	117.54 (10)
109.4	C1—C6—S1	122.45 (9)
60.7	N2—C7—C9	122.47 (11)
113.36 (6)	N2—C7—C8	116.37 (11)
112.05 (6)	C9—C7—C8	121.07 (11)
111.68 (6)	N4—C8—O1	123.70 (12)
106.26 (6)	N4—C8—C7	125.53 (12)
106.22 (5)	O1—C8—C7	110.75 (11)
106.71 (5)	N3—C9—C7	174.65 (14)
115.26 (11)	O1—C10—H10C	109.5
147.89 (7)	O1—C10—H10D	109.5
111.1	H10C—C10—H10D	109.5
103.1	O1—C10—H10E	109.5
91.36 (3)	H10C-C10-H10E	109.5
119.5	H10D-C10-H10E	109.5
118.2		
5.69 (15)	N1-C1-C6-S1	-2.39 (16)
-121.84 (12)	O2—S1—C6—C5	-30.12 (12)
121.98 (12)	O3—S1—C6—C5	90.88 (10)
174.30 (11)	O4—S1—C6—C5	-149.84 (10)
-3.68 (17)	O2—S1—C6—C1	152.62 (10)
176.71 (11)	O3—S1—C6—C1	-86.38 (11)
-0.59 (18)	O4—S1—C6—C1	32.90 (12)
179.80 (11)	N1—N2—C7—C9	-0.71 (19)
-0.2 (2)	N1—N2—C7—C8	-177.34 (11)
0.7 (2)	C10—O1—C8—N4	1.9 (2)
-0.5 (2)	C10—O1—C8—C7	-176.78 (13)
-0.26 (19)	N2-C7-C8-N4	-1.5 (2)
-177.60 (10)	C9—C7—C8—N4	-178.15 (15)
0.81 (17)	N2-C7-C8-O1	177.19 (12)
-179.58 (11)	C9—C7—C8—O1	0.51 (18)
178.00 (9)		
	67.5 70.2 19.5 109.4 60.7 113.36 (6) 112.05 (6) 111.68 (6) 106.26 (6) 106.22 (5) 106.71 (5) 115.26 (11) 147.89 (7) 111.1 103.1 91.36 (3) 119.5 118.2 5.69 (15) -121.84 (12) 121.98 (12) 174.30 (11) -3.68 (17) 176.71 (11) -0.59 (18) 179.80 (11) -0.2 (2) 0.7 (2) -0.5 (2) -0.26 (19) -177.60 (10) 0.81 (17) -179.58 (11) 178.00 (9)	67.5 $C6-C5-H5$ 70.2 $C5-C6-C1$ 19.5 $C5-C6-S1$ 109.4 $C1-C6-S1$ 60.7 $N2-C7-C9$ 113.36 (6) $N2-C7-C8$ 112.05 (6) $C9-C7-C8$ 111.68 (6) $N4-C8-O1$ 106.26 (6) $N4-C8-C7$ 106.22 (5) $O1-C8-C7$ 106.71 (5) $N3-C9-C7$ 111.1 $H10C-C10-H10C$ 147.89 (7) $O1-C10-H10D$ 111.1 $H10C-C10-H10D$ 103.1 $O1-C10-H10E$ 91.36 (3) $H10C-C10-H10E$ 119.5 $H10D-C10-H10E$ 118.2 $S.69$ (15) $S.69$ (15) $N1-C1-C6-S1$ -121.84 (12) $O2-S1-C6-C5$ 121.98 (12) $O3-S1-C6-C5$ 73.68 (17) $O2-S1-C6-C1$ 176.71 (11) $O3-S1-C6-C1$ -0.59 (18) $O4-S1-C6-C1$ 179.80 (11) $N1-N2-C7-C8$ 0.7 (2) $C10-O1-C8-N4$ -0.5 (2) $C10-O1-C8-N4$ -0.5 (2) $C10-O1-C8-N4$ -0.5 (2) $C10-O1-C8-N4$ -0.5 (2) $C10-O1-C8-N4$ $-0.7(2)$ $C10-O1-C8-N4$ -0

Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
O5—H5A···O4 ⁱⁱⁱ	0.85	1.98	2.8243 (13)	173
O5—H5 <i>B</i> ···O6 ^{iv}	0.85	1.92	2.7660 (13)	176
O6—H6A···O5	0.85	1.88	2.7295 (15)	174
O6—H6 <i>B</i> ···O3	0.85	1.98	2.8169 (13)	168
$O7-H7A\cdots O5^{v}$	0.85	2.06	2.8978 (13)	171
O7—H7B…N4 ^{vi}	0.85	1.98	2.8141 (14)	167
O8—H8A···O3 ⁱⁱ	0.85	2.05	2.8874 (14)	168
$O7-H7B\cdots O5^{v}$ $O7-H7B\cdots N4^{vi}$ $O8-H8A\cdots O3^{ii}$	0.85 0.85 0.85	2.06 1.98 2.05	2.8978 (13) 2.8978 (13) 2.8141 (14) 2.8874 (14)	171 167 168

O8— $H8B$ ···O2 ⁱ	0.85	2.18	2.9689 (15)	153	
O9—H9A…O6	0.85	1.97	2.8241 (14)	178	
N4—H4 N ···O8 ^{vii}	0.93	2.38	3.0905 (16)	133	

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) *x*, *y*-1, *z*; (vi) *x*-1, *y*, *z*; (vii) *x*+1, *y*, *z*.