

Received 24 March 2023 Accepted 11 April 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrogen bonds; sesquiterpene lactones; *Ferula persica*; Hirshfeld surface analysis.

CCDC reference: 2255517

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of (5aS,8aR)-3,5a-dimethyl-8-methylidene-2oxododecahydrooxireno[2',3':6,7]naphtho[1,2b]furan-6-yl (Z)-2-methylbut-2-enoate extracted from Ferula persica

Elvin G. Karimli,^a Victor N. Khrustalev,^{b,c} Margarita N. Kurasova,^b Mehmet Akkurt,^d Ali N. Khalilov,^{e,f} Ajaya Bhattarai^{g*} and İbrahim G. Mamedov^f

^aAzerbaijan Medical University, Bakikhanov st. 23, AZ1022, Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, ^e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, ^fDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, and ^gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{20}H_{26}O_5$, the two cyclohexane rings adopt boat and halfchair conformations. In the crystal, adjacent molecules are connected by intermolecular C-H···O hydrogen bonds, forming a three-dimensional network. According to a Hirshfeld surface study, H···H interactions are the most significant contributors to the crystal packing (63.0%).

1. Chemical context

Sesquiterpene lactones are a significant group of natural products isolated from the extracts of various parts of medicinal plants. As a medicinal plant, the *Ferula* genus is rich in coumarins, specifically sesquiterpene coumarins. *Ferula* species are found in the Mediterranean region, Central Asia, Siberia, China, Afghanistan, Iran, North Africa and the Caucasus (Mir-Babayev & Houghton, 2002). The members of this genus typically have a heavy fragrance due to the presence of essential oils or oleoresins in their content. This genus is applied for the cure of various organ disorders in folk medicine (Salehi *et al.*, 2019). These herbs have been used for oleo-gum resin, plant extracts, and essential oils. Moreover, the essential oils and extracts of different species of this herb can be used as natural food preservatives due to their antioxidant and antimicrobial activity (Daneshniya *et al.*, 2021).

research communications

Table 1Hydrogen-bond geometry (Å, °).

3.353 (2) 3.176 (2)	149 124
	3.353 (2) 3.176 (2) 3.423 (2)

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Table 2

Summary of short interatomic contacts (Å) in the title compound.

H15A···H16C	2.39	$-\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$
O2···H8	2.50	$\frac{1}{2} - x, 1 - y, \frac{1}{2} + z$
$O4 \cdot \cdot \cdot H3A$	2.45	$\frac{3}{2} - x, 1 - y, -\frac{1}{2} + z$
$H8 \cdot \cdot \cdot H10A$	2.48	$\tilde{1} - x, -\frac{1}{2} + y, \frac{3}{2} - z$
$H11B \cdot \cdot \cdot H17A$	2.40	1 + x, y, z

Herein, in the framework of our ongoing structural studies, we report the crystal structure and Hirshfeld surface analysis of the title compound, (5aS,8aR)-3,5a-dimethyl-8-methylidene-2-oxododecahydrooxireno[2',3':6,7]naphtho[1,2-*b*]furan-6-yl (*Z*)-2-methylbut-2-enoate extracted from *Ferula persica*.

2. Structural commentary

A view of the molecular structure of the title compound is shown in Fig. 1. The cyclohexane rings (A: C3A/C4/C5/C5A/ C9A/C9B; B: C5A/C6–C9/C9A) adopt boat and half-chair conformations, respectively. The puckering parameters (Cremer & Pople, 1975) of the A and B rings are $Q_{\rm T}$ =

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Figure 2 View of the packing of the title compound down the *a* axis.

0.7259 (19) Å, $\theta = 83.29 (15)^{\circ}$, $\varphi = 51.45 (15)^{\circ}$, and $Q_{\rm T} = 0.5337 (18)$ Å, $\theta = 52.1 (2)^{\circ}$, $\varphi = 331.7 (3)^{\circ}$, respectively.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal of the title compound, adjacent molecules are connected by intermolecular $C-H\cdots O$ hydrogen bonds, forming a three dimensional network (Tables 1 and 2). Figs. 2, 3 and 4 show packing views of the title compound down the *a*, *b* and *c* axes, respectively.

CrystalExplorer17 (Spackman *et al.*, 2021) was used to compute Hirshfeld surfaces of the title molecule. The d_{norm} mappings for the molecule were performed in the range -0.1633 to +1.3364 a.u. The locations of the C-H···O interactions are shown by intense red circles on the d_{norm} surface (Fig. 5*a*,*b*).

Figure 3 View of the packing of the title compound down the *b* axis.

research communications

Figure 4 View of the packing of the title compound down the c axis.

Fig. 6 shows the full two-dimensional fingerprint plots for the molecule and those delineated into the major contacts. $H \cdots H$ interactions (Fig. 6b; 63.0% contribution) are the major contributor to the crystal packing with $O \cdots H/H \cdots O$ (Fig. 6c; 28.3%) and $C \cdots H/H \cdots C$ (Fig. 6d; 7.5%) interactions representing the next highest contributions. The percentage contributions of comparatively weaker interactions are $O \cdots C/$ $C \cdots O$ (0.5%), $O \cdots O$ (0.4%) and $C \cdots C$ (0.3%). Relevant short intermolecular atomic contacts are summarized in Table 2.

Figure 5

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d_{norm} , with a fixed colour scale of -0.1633 to +1.3364 a.u.

The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$ and (d) $C \cdots H/H \cdots C$ interactions. [d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

4. Database survey

Two closely related compounds are 1β -angeloyloxy- 2β , 3β -epoxy- $5\beta H$, $7\alpha H$ - 10α -methyleudesma-4(15),11(13)-dien-6,12olide (I) (Rychlewska *et al.*, 1992) and 1β -angeloyloxy- $5\beta H$, $6\alpha H$, $7\alpha H$, $11\alpha H$ - 10α -methyleudesma-2,4(15)-dien-6,12olide (II) (Rychlewska *et al.*, 1992).

The largest difference between the two structures (I and II) lies in the cyclohexane B ring, which is of the rigid-chair type in I and of the flexible boat type in II. In both crystal structures, the molecules are held together mostly by van der Waals forces.

5. Synthesis and crystallization

The title compound has previously been isolated from the roots of the *Ferula oopoda* plant and fully characterized (Serkerov, 1972). The compound used for the current study was isolated from the roots of the *Ferula persica* herb by a similar method.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms of the $-C=CH_2$ group were located in a difference-Fourier map and refined freely [C17-H17A = 0.94 (2) Å, C17-H17B = 0.97 (2) Å]. All other H atoms were placed at calculated positions and refined using a riding model, with C-H = 0.95-1.00 Å, and with Table 3Experimental details.

Crystal data Chemical formula $C_{20}H_{26}O_5$ 346.41 M_r Crystal system, space group Orthorhombic, $P2_12_12_1$ Temperature (K) 100 *a*, *b*, *c* (Å) 7.11296 (5), 15.4597 (10), 16.0358 (10) $V(Å^3)$ 1763.36 (16) Z 4 Radiation type Cu Ka $\mu \ (\mathrm{mm}^{-1})$ 0.76 Crystal size (mm) $0.21 \times 0.18 \times 0.13$ Data collection Diffractometer XtaLAB Synergy, Dualflex, HyPix Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022) 0.674, 1.000 T_{\min}, T_{\max} No. of measured, independent and 19755, 3751, 3717 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.024 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.634 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.031, 0.082, 1.05 No. of reflections 3751 No. of parameters 238 H-atom treatment H atoms treated by a mixture of independent and constrained refinement 0.56. -0.16 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ Absolute structure Flack x determined using 1576 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al, 2013). Absolute structure parameter 0.01 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020).

 $U_{\rm iso}({\rm H}) = 1.2$ or $1.5U_{\rm eq}({\rm C})$. The remaining maximum electron density peak (0.56 e⁻ Å⁻³) is 1.41 Å away from C17 and the minimum density peak (-0.16 e Å⁻³) is 0.92 Å away from C9.

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, EGK and IGM; investigation, ANK, MA and EGK; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and MNK; supervision, ANK and MA.

Funding information

This study was supported by Azerbaijan Medical University, Baku State University and the RUDN University Strategic Academic Leadership Program.

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Daneshniya, M., Maleki, M. H., Mohammadi, M. A., Ahangarian, K., Kondeskalaei, V. J. & Alavi, H. (2021). SARJNP, 4, 1–23.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Mir-Babayev, N. F. & Houghton, P. J. (2002). *Pharm. Biol.* **40**, 16–22. Parsons, S., Flack, H. D. & Wagner, T. (2013). *Acta Cryst.* B**69**, 249–

259. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Rychlewska, U., Szczepańska, B. & Serkerov, S. V. (1992). Acta Cryst. C48, 1543–1547.

Salehi, M., Naghavi, M. R. & Bahmankar, M. (2019). *Ind. Crops Prod.* **139**, 111511.

- Serkerov, S. V. (1972). Chem. Nat. Compd. 8, 181-183.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

supporting information

Acta Cryst. (2023). E79, 474-477 [https://doi.org/10.1107/S205698902300333X]

Crystal structure and Hirshfeld surface analysis of (5a*S*,8a*R*)-3,5a-dimethyl-8methylidene-2-oxododecahydrooxireno[2',3':6,7]naphtho[1,2-*b*]furan-6-yl (*Z*)-2-methylbut-2-enoate extracted from *Ferula persica*

Elvin G. Karimli, Victor N. Khrustalev, Margarita N. Kurasova, Mehmet Akkurt, Ali N. Khalilov, Ajaya Bhattarai and İbrahim G. Mamedov

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2022); cell refinement: *CrysAlis PRO* (Rigaku OD, 2022); data reduction: *CrysAlis PRO* (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

(5a*S*,8a*R*)-3,5a-Dimethyl-8-methylidene-2-oxododecahydrooxireno[2',3':6,7]naphtho[1,2-b]furan-6-yl (*Z*)-2-methylbut-2-enoate

Crystal data

 $C_{20}H_{26}O_5$ $M_r = 346.41$ Orthorhombic, $P2_12_12_1$ a = 7.11296 (5) Å b = 15.4597 (10) Å c = 16.0358 (10) Å V = 1763.36 (16) Å³ Z = 4F(000) = 744

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube φ and ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2022) $T_{\min} = 0.674, T_{\max} = 1.000$ 19755 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.05 $D_x = 1.305 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 16716 reflections $\theta = 3.9-77.3^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.21 \times 0.18 \times 0.13 \text{ mm}$

3751 independent reflections 3717 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 77.8^{\circ}, \ \theta_{min} = 4.0^{\circ}$ $h = -9 \rightarrow 8$ $k = -19 \rightarrow 16$ $l = -18 \rightarrow 20$

3751 reflections238 parameters0 restraintsPrimary atom site location: difference Fourier map

Secondary atom site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.56 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: mixed	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	Absolute structure: Flack <i>x</i> determined using
and constrained refinement	1576 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
$w = 1/[\sigma^2(F_o^2) + (0.0444P)^2 + 0.4585P]$	al, 2013).
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: 0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement pa	parameters (.	A^2
---	---------------	-------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.27214 (18)	0.55551 (9)	0.81184 (8)	0.0258 (3)
O2	0.1708 (2)	0.66397 (9)	0.89164 (9)	0.0325 (3)
O3	0.62078 (17)	0.61814 (8)	0.55679 (8)	0.0217 (3)
O4	0.7139 (2)	0.60760 (8)	0.42338 (8)	0.0316 (3)
C2	0.2969 (3)	0.61638 (12)	0.87107 (10)	0.0257 (4)
C3	0.4949 (3)	0.61151 (12)	0.90431 (11)	0.0278 (4)
Н3	0.4936	0.5693	0.9516	0.033*
C3A	0.6045 (3)	0.56914 (11)	0.83285 (11)	0.0237 (4)
H3A	0.7026	0.5300	0.8568	0.028*
C4	0.6965 (3)	0.62980 (11)	0.76998 (11)	0.0259 (4)
H4A	0.7893	0.6675	0.7983	0.031*
H4B	0.6003	0.6670	0.7434	0.031*
C5	0.7941 (3)	0.57422 (12)	0.70428 (12)	0.0270 (4)
H5A	0.8994	0.5429	0.7311	0.032*
H5B	0.8483	0.6127	0.6612	0.032*
C5A	0.6636 (2)	0.50725 (11)	0.66081 (11)	0.0220 (3)
C6	0.6543 (3)	0.52614 (11)	0.56680 (11)	0.0226 (3)
H6	0.7798	0.5124	0.5420	0.027*
C7	0.5062 (3)	0.47385 (11)	0.52056 (11)	0.0234 (4)
H7	0.5477	0.4454	0.4677	0.028*
C8	0.3552 (3)	0.42987 (11)	0.56746 (11)	0.0227 (3)
H8	0.3055	0.3750	0.5428	0.027*
C9	0.3431 (2)	0.43826 (11)	0.65931 (11)	0.0217 (3)
C9A	0.4598 (2)	0.51073 (10)	0.69607 (10)	0.0194 (3)
H9A	0.4033	0.5660	0.6756	0.023*
C9B	0.4515 (2)	0.51404 (11)	0.79115 (10)	0.0219 (3)
H9B	0.4543	0.4540	0.8143	0.026*
O10	0.31873 (19)	0.50878 (8)	0.52107 (8)	0.0254 (3)
C10	0.5680 (4)	0.69679 (14)	0.93885 (14)	0.0379 (5)
H10A	0.5624	0.7412	0.8953	0.057*
H10B	0.6984	0.6895	0.9572	0.057*
H10C	0.4902	0.7146	0.9863	0.057*

C11	0.7473 (3)	0.41612 (12)	0.67128 (13)	0.0295 (4)	
H11A	0.7450	0.3999	0.7303	0.044*	
H11B	0.8774	0.4159	0.6511	0.044*	
H11C	0.6729	0.3746	0.6390	0.044*	
C12	0.6677 (3)	0.65206 (11)	0.48211 (11)	0.0214 (3)	
C13	0.6622 (2)	0.74835 (11)	0.48349 (10)	0.0201 (3)	
C14	0.6640 (2)	0.79339 (11)	0.41196 (11)	0.0215 (3)	
H14	0.6658	0.8546	0.4177	0.026*	
C15	0.6619 (3)	0.79287 (11)	0.56742 (11)	0.0224 (3)	
H15A	0.5441	0.7800	0.5966	0.034*	
H15B	0.6732	0.8555	0.5594	0.034*	
H15C	0.7682	0.7720	0.6007	0.034*	
C16	0.6635 (3)	0.75991 (11)	0.32443 (11)	0.0245 (4)	
H16A	0.6156	0.8048	0.2868	0.037*	
H16B	0.5826	0.7087	0.3210	0.037*	
H16C	0.7918	0.7443	0.3081	0.037*	
C17	0.2362 (3)	0.38217 (12)	0.70195 (12)	0.0251 (4)	
H17A	0.165 (3)	0.3387 (14)	0.6752 (13)	0.018 (5)*	
H17B	0.218 (3)	0.3870 (14)	0.7618 (15)	0.028 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0248 (6)	0.0325 (6)	0.0203 (6)	-0.0019 (5)	0.0003 (5)	-0.0013 (5)
O2	0.0399 (8)	0.0341 (7)	0.0234 (6)	0.0069 (6)	0.0046 (6)	0.0021 (5)
03	0.0268 (6)	0.0167 (5)	0.0218 (6)	0.0001 (5)	0.0052 (5)	0.0007 (5)
O4	0.0485 (8)	0.0216 (6)	0.0247 (6)	-0.0013 (6)	0.0106 (6)	-0.0019 (5)
C2	0.0347 (10)	0.0268 (8)	0.0156 (7)	-0.0025 (8)	0.0019 (7)	0.0039 (6)
C3	0.0355 (10)	0.0264 (9)	0.0214 (8)	-0.0034 (8)	-0.0035 (8)	0.0013 (7)
C3A	0.0269 (9)	0.0224 (8)	0.0219 (8)	-0.0020(7)	-0.0054 (7)	0.0025 (7)
C4	0.0273 (9)	0.0230 (8)	0.0275 (9)	-0.0057 (7)	-0.0051 (7)	0.0015 (7)
C5	0.0221 (8)	0.0304 (9)	0.0286 (9)	-0.0043 (7)	-0.0033 (7)	0.0025 (7)
C5A	0.0206 (8)	0.0205 (8)	0.0251 (8)	0.0016 (6)	-0.0003 (7)	0.0015 (6)
C6	0.0248 (8)	0.0169 (7)	0.0261 (8)	0.0022 (6)	0.0045 (7)	0.0012 (7)
C7	0.0322 (9)	0.0173 (7)	0.0209 (8)	0.0030 (7)	0.0016 (7)	0.0002 (6)
C8	0.0279 (8)	0.0170 (7)	0.0231 (8)	0.0015 (6)	-0.0018 (7)	0.0004 (6)
C9	0.0216 (8)	0.0207 (8)	0.0230 (8)	0.0005 (7)	-0.0013 (7)	-0.0001 (6)
C9A	0.0211 (8)	0.0184 (7)	0.0188 (7)	0.0001 (6)	-0.0010 (6)	0.0019 (6)
C9B	0.0251 (9)	0.0206 (8)	0.0199 (8)	-0.0018 (7)	-0.0019 (6)	0.0027 (6)
O10	0.0308 (7)	0.0197 (6)	0.0258 (6)	0.0008 (5)	-0.0053 (5)	0.0020 (5)
C10	0.0463 (12)	0.0327 (10)	0.0348 (11)	-0.0077 (9)	0.0000 (10)	-0.0097 (9)
C11	0.0271 (9)	0.0261 (9)	0.0355 (10)	0.0064 (7)	-0.0023 (8)	0.0062 (8)
C12	0.0230 (8)	0.0204 (8)	0.0208 (8)	-0.0017 (7)	0.0022 (7)	-0.0003 (6)
C13	0.0183 (7)	0.0195 (7)	0.0225 (8)	-0.0017 (6)	0.0016 (7)	-0.0004 (6)
C14	0.0196 (8)	0.0200 (7)	0.0248 (8)	-0.0011 (6)	0.0004 (7)	-0.0002 (6)
C15	0.0239 (8)	0.0203 (7)	0.0230 (8)	-0.0013 (7)	0.0010 (7)	-0.0016 (6)
C16	0.0261 (9)	0.0261 (8)	0.0212 (8)	0.0014 (7)	0.0011 (7)	0.0007 (7)
C17	0.0234 (8)	0.0258 (8)	0.0262 (9)	-0.0036 (7)	-0.0017 (7)	-0.0006 (7)
C15 C16 C17	0.0239 (8) 0.0261 (9) 0.0234 (8)	0.0203 (7) 0.0261 (8) 0.0258 (8)	0.0230 (8) 0.0212 (8) 0.0262 (9)	-0.0013 (7) 0.0014 (7) -0.0036 (7)	0.0010 (7) 0.0011 (7) -0.0017 (7)	-(0. -(

Geometric parameters (Å, °)

01-C2	1.349 (2)	C8—O10	1.452 (2)
O1—C9B	1.466 (2)	C8—C9	1.481 (2)
O2—C2	1.206 (2)	C8—H8	1.0000
O3—C12	1.349 (2)	C9—C17	1.341 (3)
O3—C6	1.4510 (19)	C9—C9A	1.514 (2)
O4—C12	1.211 (2)	C9A—C9B	1.527 (2)
C2—C3	1.508 (3)	С9А—Н9А	1.0000
C3—C10	1.522 (3)	C9B—H9B	1.0000
C3—C3A	1.533 (3)	C10—H10A	0.9800
С3—Н3	1.0000	C10—H10B	0.9800
C3A—C4	1.525 (2)	C10—H10C	0.9800
C3A—C9B	1.535 (2)	C11—H11A	0.9800
СЗА—НЗА	1.0000	C11—H11B	0.9800
C4—C5	1.526 (3)	C11—H11C	0.9800
C4—H4A	0.9900	C12—C13	1.489 (2)
C4—H4B	0.9900	C13—C14	1.342 (2)
C5—C5A	1.556 (2)	C13—C15	1.512 (2)
С5—Н5А	0.9900	C14—C16	1.496 (2)
С5—Н5В	0.9900	C14—H14	0.9500
C5A—C6	1.537 (2)	C15—H15A	0.9800
C5A—C11	1.539 (2)	C15—H15B	0.9800
С5А—С9А	1.557 (2)	C15—H15C	0.9800
C6—C7	1.521 (3)	C16—H16A	0.9800
С6—Н6	1.0000	C16—H16B	0.9800
C7—O10	1.439 (2)	C16—H16C	0.9800
С7—С8	1.477 (3)	C17—H17A	0.94 (2)
С7—Н7	1.0000	C17—H17B	0.97 (2)
C2—O1—C9B	110.55 (14)	С17—С9—С8	118.92 (16)
С12—О3—С6	116.01 (13)	С17—С9—С9А	126.23 (16)
O2—C2—O1	121.42 (18)	C8—C9—C9A	114.83 (15)
O2—C2—C3	128.94 (17)	C9—C9A—C9B	113.11 (14)
O1—C2—C3	109.64 (16)	C9—C9A—C5A	110.09 (14)
C2—C3—C10	113.86 (17)	C9B—C9A—C5A	113.57 (14)
C2—C3—C3A	103.43 (14)	С9—С9А—Н9А	106.5
C10—C3—C3A	117.94 (17)	С9В—С9А—Н9А	106.5
С2—С3—Н3	107.0	С5А—С9А—Н9А	106.5
С10—С3—Н3	107.0	O1—C9B—C9A	105.92 (13)
СЗА—СЗ—НЗ	107.0	O1—C9B—C3A	106.01 (13)
C4—C3A—C3	116.74 (15)	C9A—C9B—C3A	115.22 (14)
C4—C3A—C9B	110.96 (14)	O1—C9B—H9B	109.8
C3—C3A—C9B	101.65 (15)	C9A—C9B—H9B	109.8
С4—С3А—Н3А	109.0	C3A—C9B—H9B	109.8
С3—С3А—НЗА	109.0	C7—O10—C8	61.44 (11)
С9В—СЗА—НЗА	109.0	C3—C10—H10A	109.5
C3A—C4—C5	107.78 (15)	C3—C10—H10B	109.5

C3A—C4—H4A	110.2	H10A—C10—H10B	109.5
С5—С4—Н4А	110.2	C3—C10—H10C	109.5
C3A—C4—H4B	110.2	H10A—C10—H10C	109.5
C5—C4—H4B	110.2	H10B-C10-H10C	109.5
H4A—C4—H4B	108.5	C5A—C11—H11A	109.5
C4—C5—C5A	114.37 (16)	C5A—C11—H11B	109.5
C4—C5—H5A	108.7	H11A—C11—H11B	109.5
С5А—С5—Н5А	108.7	C5A—C11—H11C	109.5
C4—C5—H5B	108.7	H11A—C11—H11C	109.5
C5A-C5-H5B	108.7	H11B-C11-H11C	109.5
H5A—C5—H5B	107.6	04-012-03	122 45 (16)
C6-C5A-C11	107.32 (15)	04-012-013	125.87 (16)
C6-C5A-C5	107.52(15) 109.79(14)	03 - C12 - C13	123.67(10) 111.64(14)
$C_{11} - C_{5A} - C_{5}$	109.79(14) 109.24(15)	C_{14} C_{13} C_{12} C_{13}	120 38 (15)
C6-C5A-C9A	109.24(13) 108.03(14)	$C_{14} = C_{13} = C_{12}$	120.50(15) 121.65(15)
$C_{11} C_{51} C_{91}$	100.03(14) 110.64(14)	$C_{14} = C_{13} = C_{13}$	121.03(13) 117.03(15)
$C_{1} = C_{2} = C_{2}$	110.04(14) 111.71(14)	$C_{12} - C_{13} - C_{15}$	117.93(15) 128.40(15)
C_{3}	111.71(14) 110.60(14)	$C_{13} - C_{14} - C_{10}$	120.49 (13)
03 - 0 - 07	110.09(14) 107.57(12)	C13 - C14 - H14	115.8
03-06-05A	107.57 (13)	C10-C14-H14	115.8
C/-Cb-CSA	114.02 (14)	CI3—CI5—HI5A	109.5
03—C6—H6	108.1		109.5
С/—С6—Н6	108.1	HISA—CIS—HISB	109.5
С5А—С6—Н6	108.1	C13—C15—H15C	109.5
010	59.73 (11)	H15A—C15—H15C	109.5
O10—C7—C6	116.08 (13)	H15B—C15—H15C	109.5
C8—C7—C6	120.00 (15)	C14—C16—H16A	109.5
O10—C7—H7	116.3	C14—C16—H16B	109.5
С8—С7—Н7	116.3	H16A—C16—H16B	109.5
С6—С7—Н7	116.3	C14—C16—H16C	109.5
O10—C8—C7	58.83 (11)	H16A—C16—H16C	109.5
O10—C8—C9	115.17 (14)	H16B—C16—H16C	109.5
С7—С8—С9	120.57 (16)	C9—C17—H17A	122.2 (13)
О10—С8—Н8	116.5	C9—C17—H17B	122.1 (14)
С7—С8—Н8	116.5	H17A—C17—H17B	115.5 (19)
С9—С8—Н8	116.5		
C9B—O1—C2—O2	172.91 (16)	O10—C8—C9—C9A	-52.2 (2)
C9B—O1—C2—C3	-8.26 (18)	C7—C8—C9—C9A	15.0 (2)
O2—C2—C3—C10	-28.0 (3)	C17—C9—C9A—C9B	1.8 (3)
O1—C2—C3—C10	153.32 (16)	C8—C9—C9A—C9B	-176.92 (15)
O2—C2—C3—C3A	-157.18 (18)	C17—C9—C9A—C5A	130.09 (19)
O1—C2—C3—C3A	24.10 (18)	C8—C9—C9A—C5A	-48.67 (19)
C2—C3—C3A—C4	92.11 (18)	C6—C5A—C9A—C9	65.44 (17)
C10—C3—C3A—C4	-34.6 (2)	C11—C5A—C9A—C9	-51.76 (19)
C2—C3—C3A—C9B	-28.74 (17)	C5—C5A—C9A—C9	-173.70 (14)
C10—C3—C3A—C9B	-155.42 (17)	C6—C5A—C9A—C9B	-166.57(14)
C3—C3A—C4—C5	-179.07 (15)	C11—C5A—C9A—C9B	76.22 (19)
C9B—C3A—C4—C5	-63.29 (19)	C5—C5A—C9A—C9B	-45.71 (19)
	()		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.2 (2) 118.63 (17) -123.94 (17) -1.2 (2) -75.56 (18) 159.27 (14) -166.03 (14) -47.40 (18) 74.64 (17) 70.81 (18) -170.56 (14) -48.52 (18) -36.6 (2) 84.87 (18) -105.14 (17) 16.3 (2) 104.52 (16) -102.71 (17) 1.8 (2) 128.89 (18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -133.99\ (14)\\ -11.12\ (17)\\ -78.72\ (17)\\ 154.87\ (13)\\ 164.45\ (14)\\ 38.0\ (2)\\ -99.98\ (16)\\ 24.83\ (16)\\ 16.8\ (2)\\ 141.61\ (15)\\ -111.03\ (17)\\ 111.87\ (18)\\ 8.5\ (3)\\ -169.25\ (15)\\ 16.9\ (3)\\ -165.42\ (16)\\ -160.91\ (18)\\ 16.8\ (2)\\ 2.7\ (3)\\ -179.63\ (18)\\ \end{array}$
O10—C8—C9—C17 C7—C8—C9—C17	128.89 (18) -163.85 (17)	C15—C13—C14—C16	-179.63 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C3 <i>A</i> —H3 <i>A</i> ···O4 ⁱ	1.00	2.45	3.353 (2)	149	
C5—H5 <i>B</i> ···O3	0.99	2.33	2.752 (2)	105	
C8—H8····O2 ⁱⁱ	1.00	2.50	3.176 (2)	124	
С9А—Н9А…О3	1.00	2.58	3.010 (2)	106	
C14—H14…O10 ⁱⁱⁱ	0.95	2.57	3.423 (2)	149	
C16—H16 <i>B</i> ···O4	0.98	2.45	2.862 (2)	105	

Symmetry codes: (i) -*x*+3/2, -*y*+1, *z*+1/2; (ii) -*x*+1/2, -*y*+1, *z*-1/2; (iii) *x*+1/2, -*y*+3/2, -*z*+1.