

Received 17 February 2023 Accepted 3 April 2023

Edited by J. Reibenspies, Texas A & M University, USA

Keywords: copper(II) complex; X-ray crystallography; acetate anion; 3-(2-pyridyl)-1,2,4triazole; crystal packing.

CCDC reference: 2253664

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structure of a new copper(II) complex based on 5-ethyl-3-(pyridin-2-yl)-1,2,4-triazole

Yuliia P. Petrenko,^a* Dmytro M. Khomenko,^{a,b} Roman O. Doroshchuk,^{a,b} Ilona V. Raspertova,^a Sergiu Shova^c and Rostyslav D. Lampeka^a

^aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, ^bEnamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and ^c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., GhicaVoda 41A, 700487 Iasi, Romania. *Correspondence e-mail: p.yuliiapetrenko@gmail.com

The title compound, bis[μ -3-ethyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ido]bis-[acetato(dimethylformamide)copper(II)], [Cu₂(C₉H₉N₄)₂(C₂H₃O₂)₂(C₃H₇NO)₂] or [Cu₂(L^{Et})₂(OAc)₂(dmf)₂], is a triazolate complex, which contains two 3-(2pyridyl)-5-ethyl-triazolates (L^{Et})⁻ in bidentate-bridged coordination modes. Both copper atoms are involved in the formation of a planar six-membered metallocycle Cu-[N-N]₂-Cu. The inversion center of the complex is located at the mid-point of the Cu···Cu vector. Each Cu^{II} atom has a distorted trigonalbipyramidal environment formed by the three nitrogen atoms of the deprotonated bridging 3-(2-pyridyl)-5-ethyl-triazolate unit, oxygen atoms of the OAc⁻ group and dmf molecule. In the crystal, C-H···O hydrogen bonds link the molecules into chains running along the *c*-axis direction.

1. Chemical context

The design and construction of coordination complexes based on dinuclear copper(II) compounds have been the subject of intensive study over the past decades (Li et al., 2018; Cui et al., 2019; Doroschuk, 2016). N-containing ligands with polypyridyl (Lee et al., 2017), triazolyl (Kucheriv et al., 2016) and pyridyl moieties (Bartual-Murgui et al., 2020) have been widely used for this purpose. Much interest has been focused on functional materials with the presence of a triazole ring, which demonstrate interesting properties such as catalytic ability (Petrenko et al., 2021), anticancer activity (Muhammad & Guo, 2014) and magnetism (Kuzevanova et al., 2021). Although a variety of triazolate frameworks with intriguing topologies (Govor et al., 2010; Senchyk et al., 2012; Lysenko et al., 2016) have been synthesized to date, making rational control in the construction of coordination compounds is a great challenge in crystal engineering. Derivatives of 3-(2-pyridyl)-1,2,4-triazole are among the most widely used ligands that form stable Cu^{II} coordination compounds. There are about 127 examples in the Cambridge Structural Database that exhibit this type of ligand, 37 of which complexes include the binuclear unit $[Cu_2(trz-py)_2]$ with a Cu- $[N-N]_2$ -Cu bridge. Among the reported binuclear compounds, there are few reports of 3-(2pyridyl)-1,2,4-triazole compounds obtained with copper(II) acetate (Petrenko et al., 2021; Li et al., 2010). In all cases, the equatorial coordination consists of metallocentres linked by two deprotonated triazole ligands, where additional ligands (acetate anions or solvent) axially coordinate the copper atom.

2. Structural commentary

The results of the X-ray diffraction study are depicted in Fig. 1. The crystal is built from discrete dinuclear units $[Cu_2(L^{Ei})_2(OAc)_2(dmf)_2]$, where the $Cu\cdots Cu1'$ separation is of 4.0159 (8) Å. There are no co-crystallized solvent molecules in the crystals. The complex molecule has its own crystal-lographically imposed symmetry, being assembled around the inversion centers located at the mid-point of the $Cu1\cdots Cu1'$ distances. Each copper(II) atom exhibits an N_3O_2 coordination environment in a slightly distorted trigonal–bipyramidal geometry provided by three nitrogen atoms of the organic ligands and two oxygen atoms from the dmf molecule and the monodentate acetate anion.

The inner (Cu1/N2/N3–Cu1'/N2'/N3') core has an almost planar conformation in $[Cu_2(L^{Et})_2(OAc)_2(dmf)_2]$, although

Figure 1 X-ray molecular structure with atom labelling for $[Cu_2(L^{Et})_{2}-(OAc)_2(dmf)_2]$.

Figure 2

Overlay diagram of the molecular structures $[Cu_2(L^{Mc})_2(OAc)_2(H_2O)_2]$ (green) and $[Cu_2(L^{Et})_2(OAc)_2(dmf)_2]$ (yellow), showing the difference in the spatial arrangement of the ligands.

for the previously described complex $[Cu_2(L^{Me})_2(OAc)_2]$ $(H_2O)_2$ [HL^{Me} = 5-methyl-3-(2-pyridyl)-1,2,4-triazole], a twist-boat conformation was observed (Petrenko et al., 2021) for the non-planar six-membered Cu₂N₄ metal ring. The structures were compared (Fig. 2) using OLEX2 software (Dolomanov et al., 2009). It was found that in $[Cu_2(L^{Me})_2(OAc)_2(H_2O)_2]$, the water molecules are axially coordinated by the central atom from one side of the Cu₂N₄ plane, and the acetates from the other. Thus, the non-coordinated oxygen of the acetate anion is involved in an intermolecular hydrogen bond with the coordinated water molecule of an adjacent complex, giving rise to an essentially different crystal motif than was observed for $[Cu_2(L^{Et})_2]$ $(OAc)_2(dmf)_2].$ In the newly reported compound $[Cu_2(L^{Et})_2(OAc)_2(dmf)_2]$, the copper atoms coordinate the dmf molecules and acetate anions in the axial positions in such a manner that they reflect in the symmetry center, which is typical for such a kind of binuclear species. Notably, both $[Cu_2(L^{Me})_2(OAc)_2(H_2O)_2]$ and $[Cu_2(L^{Et})_2(OAc)_2(dmf)_2]$ were synthesized using the same conditions. These features can be probably induced by different substituents in the 5-position of the 3-(2-pyridyl)-1,2,4-triazole ring in these two compounds, indicating that even negligible changes of the non-coordinating part of the ligand could significantly influence the structure of the complex. The non-typical molecular structure of $[Cu_2(L^{Me})_2(OAc)_2(H_2O)_2]$ is supported by the formation of intermolecular hydrogen bonds. In the case of $[Cu_2(L^{Et})_2]$ $(OAc)_2(dmf)_2$, branching of the non-coordinated part leads to the formation of a less-hindered structure of higher symmetry, similar to those of the previously described 37 compounds, indicating a small difference in the energies of these two topologies, which is probably the result of the formation of additional intermolecular contacts.

research communications

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$\overline{C3-H3\cdots O2^{i}}$	0.93	2.59	3.513 (4)	170		

Symmetry code: (i) -x + 1, -y, -z + 1.

3. Supramolecular features

Further analysis of the structure showed that the crystal structure motif is characterized as a parallel packing of discrete supramolecular chains running along the *b*-axis direction (Fig. 3). Within a chain, the complex molecules interact through weak $C-H \cdots O$ hydrogen bonds, where the pyridine H atom acts as acceptor, and the acetate O atom as donor (Table 1, Fig. 4).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, update of March 2022; Groom et al., 2016) using ConQuest (Bruno et al., 2002) revealed 127 hits for the moiety containing the $Cu_2(trz-py)_2$ unit. In addition, the searches were also limited to structures with low *R*-factor values (R <0.05). Most similar to the title compound are binuclear copper(II) complexes with two unsubstituted 3-(2-pyridyl)-1,2,4-triazole ligands, two anions and two water molecules in the axial positions [DODRIX, DODRET (Prins et al., 1985); FIVGEY (Matthews et al., 2003)] and with 3,5-bis(2-pyridyl)-1,2,4-triazole ligands (JUDBIV; Du et al., 2017). The compounds most closely related to the title complex are binuclear Cu^{II} complexes with unsubstituted 3-(2-pyridyl)-1,2,4-triazole ligands and a coordinated acetate anion [UQEQUD (Li et al., 2011); GUWZEE (Li et al., 2010); CUSHUV (Li et al., 2015) and JUDBOB (Du et al., 2017)].

5. Synthesis and crystallization

Ligand HL^{Et} was prepared according to the synthesis described in the literature (Khomenko *et al.*, 2016; Zakharchenko *et al.*, 2019). Single crystals of $[Cu_2(L^{Et})-2(OAc)_2(dmf)_2]$ were obtained in dmf. A solution of $Cu(OAc)_2 \cdot H_2O$ (0.50 g, 10 ml, 2.5 mmol) was added to a solution of HL^{Et} (0.48 g, 5 ml, 2.5 mmol). The resulting

Figure 3 One-dimensional coordination network viewed along the *b*-axis.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Cu_2(C_9H_9N_4)_2(C_2H_3O_2)_2-$
	$(C_3H_7NO)_2]$
M _r	737.76
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (A)	9.4445 (5), 8.9404 (4), 20.2237 (9)
β (°)	93.257 (4)
$V(A^3)$	1704.88 (14)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.30
Crystal size (mm)	$0.3 \times 0.2 \times 0.15$
Data collection	
Diffractometer	Xcalibur, Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.876, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7405, 3007, 2382
R _{int}	0.034
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.085, 1.05
No. of reflections	3007
No. of parameters	212
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.31, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

mixture was stirred with heating for 15 min, and then left in the air for crystallization. The green crystals obtained were filtered off, washed with dmf and dried in air. Yield 0.507 g (55%). Analysis calculated for $C_{28}H_{38}Cu_2N_{10}O_6$ (%): C 45.58, H 5.19, N 18.99; found: C 45.57, H 5.17, N 18.96.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

- Bartual-Murgui, C., Rubio-Giménez, V., Meneses-Sánchez, M., Valverde-Muñoz, F. J., Tatay, S., Martí-Gastaldo, C., Muñoz, M. C. & Real, J. A. (2020). *Appl. Mater. Interfaces*, **12**, 29461–29472.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Cui, Y., Wu, L., Yue, W., Lian, F. & Qu, J. (2019). J. Mol. Struct. 1191, 145–151.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Doroschuk, R. (2016). Acta Cryst. E72, 486-488.
- Du, C.-C., Fan, J.-Z., Li, J.-P. & Wang, D. Z. (2017). Chin. J. Inorg. Chem. 33, 1352–1353.
- Govor, E. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2010). Z. Anorg. Allg. Chem. 636, 209–217.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Khomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2016). *Chem. Heterocycl. Compd*, **52**, 402–408.
- Kucheriv, O. I., Oliynyk, V. V., Zagorodnii, V. V., Launets, V. L. & Gural'skiy, I. A. (2016). Sci. Rep. 6, 1–7.
- Kuzevanova, I. S., Kucheriv, O. I., Hiiuk, V. M., Naumova, D. D., Shova, S., Shylin, S. I., Kotsyubynsky, V. O., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2021). *Dalton Trans.* **50**, 9250–9258.
- Lee, L. C. C., Leung, K. K. & Lo, K. K. (2017). Dalton Trans. 46, 16357–16380.

- Li, C. H., Li, W., Hu, H. X. & Hu, B. N. (2015). Chin. J. Struct. Chem. 34, 1553–1557.
- Li, Ch.-H., Tan, X.-W., Li, W. & Yang, Y.-Q. (2011). Chin. J. Struct. Chem. 30, 289.
- Li, W., Zhang, J., Li, C. & Yang, Y. (2010). Z. Kristallogr. 225, 181– 182.
- Li, Y., Chen, Y., Liu, Y., Jia, L. & Chen, Y. (2018). *Transit. Met. Chem.* **43**, 731–737.
- Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S. X. (2016). *Inorg. Chem.* 55, 239– 250.
- Matthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Crystal Structure Report Archive, 986.
- Muhammad, N. & Guo, Z. (2014). Curr. Opin. Chem. Biol. 19, 144– 153.
- Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). *RSC Adv.* 11, 23442–23449.
- Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). *Inorg. Chem.* 24, 4128–4133.
- Rigaku OD (2019). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Senchyk, G. A., Lysenko, A. B., Boldog, I., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2012). *Dalton Trans.* 41, 8675–8689.
- Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). *New J. Chem.* **43**, 10973– 10984.

supporting information

Acta Cryst. (2023). E79, 432-435 [https://doi.org/10.1107/S2056989023003079]

Synthesis and crystal structure of a new copper(II) complex based on 5ethyl-3-(pyridin-2-yl)-1,2,4-triazole

Yuliia P. Petrenko, Dmytro M. Khomenko, Roman O. Doroshchuk, Ilona V. Raspertova, Sergiu Shova and Rostyslav D. Lampeka

Computing details

Data collection: *CrysAlis PRO* 1.171.40.53 (Rigaku OD, 2019); cell refinement: *CrysAlis PRO* 1.171.40.53 (Rigaku OD, 2019); data reduction: *CrysAlis PRO* 1.171.40.53 (Rigaku OD, 2019); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov *et al.*, 2009).

Bis[µ-3-ethyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ido]bis[acetato(dimethylacetamide)copper(II)]

Crystal data

 $[Cu_{2}(C_{9}H_{9}N_{4})_{2}(C_{2}H_{3}O_{2})_{2}(C_{3}H_{7}NO)_{2}]$ $M_{r} = 737.76$ Monoclinic, $P2_{1}/c$ a = 9.4445 (5) Å b = 8.9404 (4) Å c = 20.2237 (9) Å $\beta = 93.257$ (4)° V = 1704.88 (14) Å³ Z = 2

Data collection

Xcalibur, Eos diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1593 pixels mm⁻¹
ω scans
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.085$ S = 1.053007 reflections 212 parameters F(000) = 764 $D_x = 1.437 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2231 reflections $\theta = 2.0-25.3^{\circ}$ $\mu = 1.30 \text{ mm}^{-1}$ T = 293 KPrism, clear dark blue $0.3 \times 0.2 \times 0.15 \text{ mm}$

 $T_{\min} = 0.876, T_{\max} = 1.000$ 7405 measured reflections 3007 independent reflections 2382 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.0^{\circ}$ $h = -11 \rightarrow 10$ $k = -8 \rightarrow 10$ $l = -18 \rightarrow 24$

0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0304P)^2 + 0.6113P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.31$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.48907 (4)	0.60148 (4)	0.58814 (2)	0.03442 (13)	
01	0.4294 (2)	0.5477 (2)	0.67766 (10)	0.0415 (5)	
O2	0.2385 (3)	0.4889 (3)	0.61484 (12)	0.0601 (7)	
03	0.7170(2)	0.6884 (3)	0.60652 (12)	0.0528 (6)	
N1	0.5774 (3)	0.1842 (3)	0.39823 (12)	0.0353 (6)	
N2	0.5539(2)	0.3380 (3)	0.50737 (11)	0.0327 (6)	
N3	0.5690(2)	0.4020(2)	0.56906 (11)	0.0327 (6)	
N4	0.6816 (3)	0.1801 (3)	0.57376 (12)	0.0404 (6)	
N5	0.9247 (3)	0.7291 (3)	0.55819 (14)	0.0521 (7)	
C1	0.5741 (3)	0.1078 (4)	0.34135 (16)	0.0457 (8)	
H1	0.537481	0.154425	0.302982	0.055*	
C2	0.6226 (4)	-0.0369 (4)	0.33712 (17)	0.0544 (9)	
H2	0.618426	-0.086813	0.296711	0.065*	
C3	0.6776 (4)	-0.1069 (4)	0.39395 (19)	0.0551 (10)	
Н3	0.712383	-0.204028	0.392220	0.066*	
C4	0.6800 (3)	-0.0302 (3)	0.45327 (17)	0.0461 (8)	
H4	0.715879	-0.075095	0.492185	0.055*	
C5	0.6281 (3)	0.1149 (3)	0.45383 (15)	0.0355 (7)	
C6	0.6231 (3)	0.2074 (3)	0.51308 (14)	0.0337 (7)	
C7	0.6464 (3)	0.3047 (3)	0.60695 (15)	0.0376 (7)	
C8	0.6944 (4)	0.3322 (4)	0.67766 (16)	0.0512 (9)	
H8A	0.656363	0.254626	0.705100	0.061*	
H8B	0.656717	0.427334	0.691653	0.061*	
C9	0.8546 (4)	0.3344 (5)	0.6883 (2)	0.0881 (14)	
H9A	0.892006	0.418177	0.665222	0.132*	
H9B	0.892983	0.243409	0.671529	0.132*	
H9C	0.880205	0.342977	0.734718	0.132*	
C10	0.7957 (3)	0.6721 (3)	0.56038 (17)	0.0453 (8)	
H10	0.761756	0.615416	0.524331	0.054*	
C11	1.0110 (4)	0.7075 (4)	0.5014 (2)	0.0706 (12)	
H11A	1.096094	0.654624	0.515113	0.106*	
H11B	1.035153	0.803030	0.483543	0.106*	
H11C	0.958395	0.650492	0.468059	0.106*	
C12	0.9843 (5)	0.8163 (6)	0.6132 (2)	0.0978 (16)	
H12A	0.975052	0.920858	0.603018	0.147*	
H12B	1.082830	0.791748	0.620908	0.147*	
H12C	0.934694	0.794217	0.652151	0.147*	

supporting information

C13	0.3033 (4)	0.4974 (3)	0.66937 (16)	0.0407 (8)
C14	0.2343 (4)	0.4436 (4)	0.73102 (18)	0.0660 (11)
H14A	0.221006	0.337203	0.728592	0.099*
H14B	0.144052	0.491720	0.733999	0.099*
H14C	0.294255	0.467671	0.769470	0.099*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0376 (2)	0.0393 (2)	0.0265 (2)	0.00146 (18)	0.00264 (15)	0.00220 (17)
01	0.0415 (14)	0.0516 (13)	0.0316 (12)	-0.0047 (11)	0.0043 (10)	-0.0001 (10)
O2	0.0539 (16)	0.0787 (17)	0.0469 (15)	-0.0069 (13)	-0.0063 (12)	-0.0004 (13)
O3	0.0386 (14)	0.0636 (15)	0.0570 (16)	-0.0071 (11)	0.0085 (12)	-0.0052 (12)
N1	0.0375 (15)	0.0373 (14)	0.0314 (15)	-0.0007 (12)	0.0051 (11)	-0.0003 (12)
N2	0.0348 (15)	0.0356 (13)	0.0276 (14)	0.0014 (11)	0.0016 (11)	0.0052 (11)
N3	0.0357 (15)	0.0376 (13)	0.0247 (13)	0.0019 (12)	0.0009 (11)	0.0038 (11)
N4	0.0430 (16)	0.0435 (15)	0.0345 (15)	0.0071 (13)	0.0000 (12)	0.0061 (13)
N5	0.0349 (17)	0.0643 (18)	0.057 (2)	-0.0065 (14)	0.0026 (14)	0.0023 (15)
C1	0.051 (2)	0.049 (2)	0.0379 (19)	-0.0010 (16)	0.0040 (16)	-0.0029 (16)
C2	0.071 (3)	0.048 (2)	0.045 (2)	-0.0043 (19)	0.0099 (19)	-0.0101 (18)
C3	0.063 (3)	0.0392 (18)	0.064 (3)	0.0001 (17)	0.010 (2)	-0.0086 (18)
C4	0.048 (2)	0.0411 (18)	0.049 (2)	0.0041 (16)	0.0020 (16)	0.0061 (16)
C5	0.0305 (17)	0.0371 (17)	0.0396 (18)	-0.0026 (14)	0.0069 (13)	0.0016 (14)
C6	0.0298 (17)	0.0393 (17)	0.0322 (17)	0.0000 (14)	0.0046 (13)	0.0061 (14)
C7	0.0348 (18)	0.0452 (18)	0.0327 (18)	-0.0012 (15)	0.0003 (14)	0.0082 (15)
C8	0.059 (2)	0.059 (2)	0.0346 (19)	0.0106 (18)	-0.0078 (16)	0.0043 (17)
C9	0.072 (3)	0.133 (4)	0.056 (3)	-0.007 (3)	-0.025 (2)	0.010 (3)
C10	0.037 (2)	0.0445 (19)	0.054 (2)	-0.0045 (16)	-0.0035 (16)	0.0055 (17)
C11	0.050 (2)	0.088 (3)	0.076 (3)	-0.006 (2)	0.016 (2)	0.006 (2)
C12	0.065 (3)	0.135 (4)	0.094 (4)	-0.042 (3)	0.009 (3)	-0.035 (3)
C13	0.046 (2)	0.0380 (18)	0.038 (2)	0.0015 (16)	0.0051 (16)	0.0002 (14)
C14	0.064 (3)	0.082 (3)	0.054 (2)	-0.018 (2)	0.023 (2)	0.005 (2)

Geometric parameters (Å, °)

Cu1—O1	1.985 (2)	C3—C4	1.381 (4)	
Cu1—O3	2.299 (2)	C4—H4	0.9300	
Cu1—N1 ⁱ	2.040 (2)	C4—C5	1.387 (4)	
Cu1—N2 ⁱ	2.025 (2)	C5—C6	1.459 (4)	
Cu1—N3	1.983 (2)	C7—C8	1.496 (4)	
O1—C13	1.276 (4)	C8—H8A	0.9700	
O2—C13	1.233 (4)	C8—H8B	0.9700	
O3—C10	1.234 (4)	C8—C9	1.516 (5)	
N1-C1	1.337 (4)	С9—Н9А	0.9600	
N1C5	1.348 (4)	C9—H9B	0.9600	
N2—N3	1.373 (3)	С9—Н9С	0.9600	
N2C6	1.340 (3)	C10—H10	0.9300	
N3—C7	1.347 (3)	C11—H11A	0.9600	

supporting information

NA CG	1 220 (2)	C11 U11D	0.0600
N4	1.339 (3)		0.9000
N4C/	1.351 (4)	CII—HIIC	0.9600
N5—C10	1.323 (4)	C12—H12A	0.9600
N5—C11	1.459 (4)	C12—H12B	0.9600
N5—C12	1.446 (5)	C12—H12C	0.9600
C1—H1	0.9300	C13—C14	1.518 (4)
C1—C2	1.377 (4)	C14—H14A	0.9600
С2—Н2	0.9300	C14—H14B	0.9600
C2—C3	1.384 (5)	C14—H14C	0.9600
С3—Н3	0.9300		
O1—Cu1—O3	104.24 (9)	N4—C6—N2	114.3 (3)
O1—Cu1—N1 ⁱ	89.93 (9)	N4—C6—C5	128.2 (3)
O1—Cu1—N2 ⁱ	151.98 (9)	N3—C7—N4	113.0 (3)
N1 ⁱ —Cu1—O3	87.31 (9)	N3—C7—C8	124.2 (3)
N2 ⁱ —Cu1—O3	101.48 (9)	N4—C7—C8	122.7 (3)
N2 ⁱ —Cu1—N1 ⁱ	80.29 (10)	С7—С8—Н8А	109.1
N3—Cu1—O1	95.20 (9)	C7—C8—H8B	109.1
N3—Cu1—O3	88.40 (9)	C7—C8—C9	112.5 (3)
N3—Cu1—N1 ⁱ	173.99(10)	H8A—C8—H8B	107.8
N_3 —Cu1— N_2^i	96 46 (9)	C9—C8—H8A	109.1
13 - 01 - 01	106.07 (19)	C9-C8-H8B	109.1
C10-O3-Cu1	115.9(2)	C8 - C9 - H9A	109.1
$C1 N1 Cn1^{i}$	113.9(2) 127.1(2)	$C_8 C_9 H_{9}B$	109.5
C1 N1 C5	127.1(2) 118.2(3)	$C_8 = C_9 = H_9C$	109.5
$C_1 = N_1 = C_3$	118.2(3) 114.60(10)		109.5
$N_2 = N_2 = C_{11}$	114.00(19) 120.50(19)		109.5
$N_{2} = Cur$	139.30(18) 112.67(10)	H9A - C9 - H9C	109.5
$C_0 = N_2 = C_0 I_1^2$	112.07(19)	H9B - C9 - H9C	109.5
C_{0} N2 N2 C 1	105.1(2)	03 - 010 - 010	125.1 (3)
N2—N3—Cul	122.07 (17)	03-C10-H10	117.4
C/—N3—Cul	132.1 (2)	N5—C10—H10	117.4
C7—N3—N2	105.8 (2)	N5—C11—H11A	109.5
C6—N4—C7	101.8 (2)	N5—C11—H11B	109.5
C10—N5—C11	122.1 (3)	N5—C11—H11C	109.5
C10—N5—C12	120.1 (3)	H11A—C11—H11B	109.5
C12—N5—C11	117.8 (3)	H11A—C11—H11C	109.5
N1—C1—H1	118.6	H11B—C11—H11C	109.5
N1—C1—C2	122.8 (3)	N5—C12—H12A	109.5
C2—C1—H1	118.6	N5—C12—H12B	109.5
C1—C2—H2	120.5	N5—C12—H12C	109.5
C1—C2—C3	118.9 (3)	H12A—C12—H12B	109.5
С3—С2—Н2	120.5	H12A—C12—H12C	109.5
С2—С3—Н3	120.5	H12B—C12—H12C	109.5
C4—C3—C2	119.0 (3)	O1—C13—C14	116.4 (3)
С4—С3—Н3	120.5	O2—C13—O1	123.5 (3)
C3—C4—H4	120.6	O2—C13—C14	120.0 (3)
C3—C4—C5	118.9 (3)	C13—C14—H14A	109.5
C5—C4—H4	120.6	C13—C14—H14B	109.5

N1—C5—C4	122.1 (3)	C13—C14—H14C	109.5
N1—C5—C6	113.5 (2)	H14A—C14—H14B	109.5
C4—C5—C6	124.4 (3)	H14A—C14—H14C	109.5
N2—C6—C5	117.5 (3)	H14B—C14—H14C	109.5
Cu1—O1—C13—O2	-0.5 (4)	N3—C7—C8—C9	-118.2 (4)
Cu1—O1—C13—C14	178.2 (2)	N4—C7—C8—C9	59.2 (4)
Cu1—O3—C10—N5	172.0 (2)	C1—N1—C5—C4	1.8 (4)
Cu1 ⁱ —N1—C1—C2	179.5 (2)	C1—N1—C5—C6	-178.5 (3)
Cu1 ⁱ —N1—C5—C4	-178.8 (2)	C1—C2—C3—C4	1.0 (5)
Cu1 ⁱ —N1—C5—C6	0.9 (3)	C2—C3—C4—C5	-0.4 (5)
Cu1 ⁱ —N2—N3—Cu1	20.3 (4)	C3—C4—C5—N1	-1.0 (5)
Cu1 ⁱ —N2—N3—C7	-158.4 (2)	C3—C4—C5—C6	179.3 (3)
Cu1 ⁱ —N2—C6—N4	165.50 (19)	C4—C5—C6—N2	-171.7 (3)
Cu1 ⁱ —N2—C6—C5	-13.5 (3)	C4—C5—C6—N4	9.4 (5)
Cu1—N3—C7—N4	-179.03 (19)	C5—N1—C1—C2	-1.2 (5)
Cu1—N3—C7—C8	-1.4 (5)	C6—N2—N3—Cu1	178.70 (18)
N1—C1—C2—C3	-0.2 (5)	C6—N2—N3—C7	0.1 (3)
N1-C5-C6-N2	8.5 (4)	C6—N4—C7—N3	0.8 (3)
N1-C5-C6-N4	-170.3 (3)	C6—N4—C7—C8	-176.8 (3)
N2—N3—C7—N4	-0.6 (3)	C7—N4—C6—N2	-0.8 (3)
N2—N3—C7—C8	177.1 (3)	C7—N4—C6—C5	178.1 (3)
N3—N2—C6—N4	0.5 (3)	C11—N5—C10—O3	-178.9 (3)
N3—N2—C6—C5	-178.5 (2)	C12—N5—C10—O3	1.0 (5)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
С3—Н3…О2іі	0.93	2.59	3.513 (4)	170

Symmetry code: (ii) -x+1, -y, -z+1.