research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of tetra­kis­(4,5-di­hydro­furan-2-yl)silane and tetra­kis­(4,5-di­hydro­furan-2-yl)germane

crossmark logo

aTechnische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 2 March 2023; accepted 4 April 2023; online 14 April 2023)

The title compounds Si(C4H5O)4 (1) and Ge(C4H5O)4 (2) are di­hydro­furyl compounds of silicon and germanium and are useful building blocks for the functionalization of these elements. Both structures crystallize in space group P21/n in the monoclinic crystal system with two mol­ecules in the asymmetric unit: the Si and Ge atoms adopt slightly distorted tetra­hedral geometries, while the C4H5O moieties exhibit shallow envelope conformations. Through a Hirshfeld surface analysis of the structures, inter­actions within the crystal packing could be elucidated: compound 1 features a polymeric chain in the (101) plane via C—H⋯O hydrogen bonds whereas in 2 C—H⋯O hydrogen bonds create a polymeric chain in the (010) plane.

1. Chemical context

The first di­hydro­furylsilanes (DHF) were prepared by Lukevits and co-workers in the 1980s (Gevorgyan et al., 1989[Gevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19-21.]). The di­hydro­furyl substituent is a good leaving group for nucleophilic substitution on silicon and has therefore been further investigated since then (Lukevits et al., 1993[Lukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735-743.]). Primarily carbon nucleophiles (e.g. lithium alkyls) can be used for substitution of the DHF groups (Lukevits et al., 1993[Lukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735-743.]). Nitro­gen and oxygen nucleophiles (e.g. LiNEt2 or t-butanol) also serve to cleave the Si­–C(DHF) bond: this is an alternative way of introducing an Si—N bond into a compound compared to conventional synthesis methods using, for example, meth­oxy­silanes (Bauer & Strohmann, 2014[Bauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 720-724.]). With an oxygen nucleophile such as pyrocatechol, penta­valent silicates can be synthesized (Tacke et al., 1991[Tacke, R., Sperlich, J., Strohmann, C. & Mattern, G. (1991). Chem. Ber. 124, 1491-1496.], 1993[Tacke, R., Lopex-Mras, A., Sperlich, J., Strohmann, C., Kuhs, W. F., Mattern, G. & Sebald, A. (1993). Chem. Ber. 126, 851-861.]). Hydrides, likewise, are useful for substitutions (e.g. LiAlH4) (Gevorgyan et al., 1990[Gevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57-67.], 1992[Gevorgyan, V., Borisova, L. & Lukevics, E. (1992). J. Organomet. Chem. 441, 381-387.]). Thus, silanes can be synthesised in a very precise way (Lukevics et al., 1985[Lukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163-171.], 1997[Lukevics, E., Gevorgyan, V. & Borisova, L. (1997). Chem. Heterocycl. Compd. 33, 161-163.]). Analogous to DHF silanes, it is also possible to form germanes with di­hydro­furyl substituents. The substitution of the DHF groups on germanium is possible via lithium alkyls or hydrides, similar to silanes (Lukevics et al., 1985[Lukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163-171.]). The crystal structures of various di­hydro­furylsilanes such as bis­(4,5-di­hydro­furan-2-yl)(dimeth­yl)silane and (4,5-di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane (Schmidt et al., 2022[Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23-28.]) or tris­(4,5-di­hydro­furan-2-yl)(meth­yl)silane and tris(4,5-di­hydro­furan-2-yl)(phen­yl)silane (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]) are already known. Here, we report the crystal structures of tetra­kis­(4,5-di­hydro­furan-2-yl)silane, Si(C4H5O)4 (1) and tetra­kis­(4,5-di­hydro­furan-2-yl)germane, Ge(C4H5O)4 (2) and their extended structures, which were investigated using a Hirshfeld surface analysis. The two compounds are already known in the literature (Lukevics et al., 1984[Lukevics, E., Gevorgyan, V., Rosite, S., Gavaps, M. & Mascheika, I. (1984). LZA Vēstis, 1, 109-111.]; Ertschak et al., 1982[Ertschak, N., Popelis, Û., Nichler, I. & Lukevics, E. (1982). Zh. Obshch. Khim. 5, 1181-1187.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 1 is shown in Fig. 1[link] and selected bond lengths and angles of the solid-state structure are shown in Table 1[link]. There are two mol­ecules in the asymmetric unit. The listed bond lengths of the Si–C(DHF) links are all in a comparable range. In addition, the bond lengths are consistent with the characteristic Si—C bond length (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C—Si—C bond angles deviate from the ideal value of 109.47° and indicate a slightly distorted tetra­hedron. This has already been described in related compounds by Strohmann and co-workers (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]; Schmidt et al., 2022[Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23-28.]). This slight distortion is possibly due to the packing in the solid state. The bond lengths of the C=C bonds within the di­hydro­furanyl substituent show agreement with bond lengths known in the literature. The C—C single bond between the two sp3 carbon atoms shows a clear deviation from the median known in literature, and is nearly in the lower quartile. This was also previously described by Strohmann and co-workers (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]; Schmidt et al., 2022[Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23-28.]). The DHF rings of the structure do not show complete planarity and have the r.m.s deviations shown in Table 2[link]. The largest deviation of an atom from the planar position is shown by the sp3 carbon atom C28, which is located next to the oxygen atom O7. This has also been reported for comparable structures (Schmidt et al., 2022[Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23-28.]). In addition, Table 2[link] shows the dihedral angles between the normals of two rings.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Si1—C1 1.8632 (10) Si2—C17 1.8621 (10)
Si1—C5 1.8611 (9) Si2—C21 1.8598 (10)
Si1—C9 1.8604 (10) Si2—C25 1.8615 (10)
Si1—C13 1.8633 (10) Si2—C29 1.8609 (10)
       
C5—Si1—C1 110.75 (4) C21—Si2—C17 106.75 (4)
C5—Si1—C13 108.60 (4) C21—Si2—C25 109.54 (4)
C9—Si1—C1 109.39 (4) C21—Si2—C29 112.87 (4)
C9—Si1—C5 106.46 (4) C25—Si2—C17 110.57 (4)
C9—Si1—C13 113.04 (4) C29—Si2—C17 108.47 (4)
C13—Si1—C1 108.60 (4) C29—Si2—C25 108.64 (4)

Table 2
Conformations (Å, °) of the DHF rings for compound 1

DHF ring r.m.s. deviation Largest deviation Angle between ring normals
C1–C4/O1 0.067 C4 −0.0936 (6)
C5–C8/O2 0.038 C8 −0.0521 (8) 82.18 (4)a
C9–C12/O3 0.034 C12 −0.0468 (7) 42.32 (4)a
C13–C16/O4 0.049 C16 −0.0679 (7) 45.01 (4)a
C17–C20/O5 0.054 C20 −0.0934 (6)
C21–C24/O6 0.050 C24 −0.0699 (7) 48.41 (6)b
C25–C28/O7 0.093 C28 0.1298 (9) 55.30 (6)b
C29–C32/O8 0.029 C32 −0.0397 (7) 81.77 (4)b
Notes: (a) compared to C1–C4/O1; (b) compared to C17–C20/O5.
[Figure 1]
Figure 1
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of 2 is shown in Fig. 2[link]. There are two mol­ecules in the asymmetric unit and selected bond lengths and angles are given in Table 3[link]. The Ge—C bonds are in a comparable range and are consistent with similar bond lengths in the literature (Lazraq et al., 1988[Lazraq, M., Escudié, J., Couret, C., Satgé, J., Dräger, M. & Dammel, R. (1988). Angew. Chem. 100, 885-887.]). As already described for structure 1, the germane 2 also shows a slight deviation from the ideal tetra­hedral value for the C—Ge—C bond angles, which can also be explained by the packing in the solid state. Likewise, the bond lengths of the C=C groups within the di­hydro­furanyl rings show consistency with bond lengths known in the literature, as well as the C—C bond between two sp3 carbon atoms showing similar peculiarities as previously described (Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]; Schmidt et al., 2022[Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23-28.]). The DHF rings of the structure do not show complete planarity and have the r.m.s deviations shown in Table 3[link]. Compared to 1, the deviations in 2 are smaller and, again, the sp3 carbon atom C28, which is located next to O7, shows the highest deviation. However, this does not apply to the C21–C24/O6 ring as this has a very low r.m.s. deviation and C21 shows the highest deviation. The dihedral angles between the normals of two rings are listed in Table 4[link].

Table 3
Selected geometric parameters (Å, °) for 2[link]

Ge1—C1 1.9331 (13) Ge2—C17 1.9370 (13)
Ge1—C5 1.9326 (14) Ge2—C21 1.9290 (13)
Ge1—C9 1.9299 (14) Ge2—C25 1.9329 (13)
Ge1—C13 1.9351 (14) Ge2—C29 1.9353 (14)
       
C1—Ge1—C13 109.37 (6) C21—Ge2—C17 108.03 (6)
C5—Ge1—C1 109.74 (6) C21—Ge2—C25 108.58 (5)
C5—Ge1—C13 108.78 (6) C21—Ge2—C29 112.88 (6)
C9—Ge1—C1 107.67 (6) C25—Ge2—C17 107.92 (5)
C9—Ge1—C5 108.46 (6) C25—Ge2—C29 106.91 (6)
C9—Ge1—C13 112.79 (6) C29—Ge2—C17 112.36 (6)

Table 4
Conformations (Å, °) of the DHF rings for compound 2

DHF ring r.m.s. deviation Largest deviation Angle between ring normals
C1–C4/O1 0.015 C3 −0.0196 (12)
C5–C8/O2 0.038 C8 −0.0526 (9) 81.75 (6)a
C9–C12/O3 0.017 C12 0.0240 (13) 62.38 (7)a
C13–C16/O4 0.029 C16 0.0399 (11) 82.47 (7)a
C17–C20/O5 0.032 C20 0.0442 (11)
C21–C24/O6 0.007 C21 0.0094 (10) 87.22 (9)b
C25–C28/O7 0.068 C28 −0.0941 (9) 45.36 (6)b
C29–C32/O8 0.033 C32 0.0462 (9) 80.68 (7)b
Notes: (a) compared to C1–C4/O1; (b) compared to C17–C20/O5.
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In order to qu­antify the inter­molecular inter­actions in the crystal structure, a Hirshfeld surface analysis was carried out, generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of 1 is shown in Fig. 3[link], where the red areas represent closer inter­actions between adjacent atoms. The Hirshfeld surface is mapped over dnorm, in the range −0.11 to 1.37 a.u. The distribution of the different inter­actions is illus­trated by the two-dimensional fingerprint plots (Fig. 4[link]). Inter­actions identified by the Hirshfeld surface are mostly H⋯H inter­actions, which contribute 69.9% to the crystal packing. The close inter­action H23A⋯H23Ai [symmetry code: (i) −x, −y, −z] with a distance of 2.22 (4) Å was identified by the red spots on the Hirshfeld surface. However, these red spots show only a small proportion of the inter­actions indicated in the fingerprint. Furthermore, a C30⋯H24Bii [symmetry code: (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z] van der Waals inter­action with a separation of 2.796 (16) Å was also identified. The contribution of the C⋯H inter­actions is 10.7%, which is a low contribution to the crystal packing. Besides these inter­actions, H⋯O inter­actions could be identified and contribute 19.2% of the structure in the solid state. Hydrogen bonds between C—H⋯O, which are indicated by red spots on the Hirshfeld surface are listed in Table 5[link]. The C—H⋯O hydrogen bonds C8—H8A⋯O5ii, C27—H27B⋯O3iii and C31—H31A⋯O4 can be described as having a D11(2) graph-set motif. C23—H23B⋯O5i is described by C11(7) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Through the hydrogen bonds C27—H27B⋯O3iii and C31—H31A⋯O4, a part of the crystal packing is defined along the [101] direction (Fig. 5[link]).

Table 5
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯O5i 0.974 (18) 2.531 (18) 3.3484 (14) 141.5 (14)
C8—H8A⋯O5ii 0.95 (2) 2.61 (2) 3.3800 (15) 137.9 (15)
C27—H27B⋯O3iii 0.92 (2) 2.61 (2) 3.4200 (16) 147.1 (18)
C31—H31A⋯O4 0.986 (18) 2.561 (18) 3.5358 (14) 169.6 (15)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Hirshfeld surface analysis of 1 showing close contacts in the crystal. (a) The hydrogen bonds between C8—H8A⋯O5ii, C23i—H23Bi⋯O5, C27iii—H27Biii⋯O3 and C31—H31A⋯O4 are labelled [symmetry codes: (i) −[{1\over 2}] + x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z]. (b) The close hydrogen–hydrogen inter­action H23A⋯H23Ai and close carbon–hydrogen inter­action C30ii⋯H24B are labelled [symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z].
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for compound 1, showing (a) all contributions, and (b)–(d) delineated into the contributions of atoms within specific inter­acting pairs (blue areas).
[Figure 5]
Figure 5
A part of the crystal packing of compound 1 via hydrogen bonds C27–H27B⋯O3iii and C31—H31A⋯O4 in the (101) plane. C—H⋯O hydrogen bonds are shown as dashed blue lines. [Symmetry codes: (iii) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z].

For the Hirshfeld surface analysis of 2, a surface mapped over dnorm in the range −0.15 to 1.33 a.u. was used (Fig. 6[link]). The distribution of the various inter­actions is illustrated by the two-dimensional fingerprint plots (Fig. 7[link]). The distribution of the inter­actions is very similar and minimally larger for H⋯H (71.6%) than for 1. The inter­actions between H31B⋯H31Bi at 2.17 (4) Å and H7B⋯H7Bi [symmetry code: (i) −x, −y, −z] at 2.20 (4) Å are visible as red spots and could be identified as close inter­actions by the Hirshfeld surface. The contribution of the van der Waals inter­actions is slightly lower at 10.0%. The inter­action C32⋯H4Aii [symmetry code: (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z] at 2.79 (2) Å could also be detected on the Hirshfeld surface. As in the case of 1, inter­actions of the form H⋯O could be determined, which contribute 18.3% to the crystal packing. These hydrogen bonds were detected by red spots on the Hirshfeld surface and are shown in Table 6[link]. C4—H4A⋯O7i and C23–H23A⋯O4ii can be described by the graph-set motif D11(2). In contrast, the hydrogen bond C31—H31A⋯O7iii is described by the graph-set motif C11(7) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). With C4—H4A⋯O7iii and C31—H31A⋯O7i, a part of the crystal packing, which forms a plane in the [010] direction, can be seen in Fig. 8[link].

Table 6
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯O7i 0.964 (19) 2.60 (2) 3.3279 (18) 132.1 (14)
C23—H23A⋯O4ii 0.97 (2) 2.57 (2) 3.530 (2) 168.0 (17)
C4—H4A⋯O7iii 0.93 (2) 2.63 (2) 3.398 (2) 140.8 (17)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, y, z-1].
[Figure 6]
Figure 6
Hirshfeld surface analysis of 2 showing close contacts in the crystal. (a) The hydrogen bonds between C4iii—H4Aiii⋯O7, C23—H23A⋯O4ii and C31i—H31Ai⋯O7 are labelled [symmetry codes: (i) [{1\over 2}] + x, −[{1\over 2}] + y, [{3\over 2}] − z; (ii) −[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z; (iii) x, y, 1 + z]. (b) The close hydrogen–hydrogen inter­actions H31B⋯H31Bi and H7B⋯H7Bi [symmetry code: (i) −x, −y, −z] and the close carbon–hydrogen inter­action C32⋯H4Aii are labelled [symmetry code: (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z].
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for compound 2, showing (a) all contributions, and (b)–(d) delineated into the contributions of atoms within specific inter­acting pairs (blue areas).
[Figure 8]
Figure 8
A part of the crystal packing of compound 2 via hydrogen bonds C4—H4A⋯O7i and C23—H23A⋯O4ii in the (010) plane. C—H⋯O hydrogen bonds are shown as dashed blue lines [symmetry codes: (i) [{3\over 2}] − x, −[{1\over 2}] + y, 3/2 − z; (ii) −[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z].

4. Database survey

A search of the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; WebCSD, accessed January 2023) for the term 2-(4,5-di­hydro­fur­yl)silanes gave bis­(4,5-di­hydro­furan-2-yl)(dimeth­yl)silane and (4,5-di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane (CSD refcodes GAVJUM and GAVKAT; Schmidt et al., 2022[Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23-28.]) as well as tris­(4,5-di­hydro­furan-2-yl)(meth­yl)silane and tris­(4,5-di­hydro­furan-2-yl)(phen­yl)silane (YUYCED and YUYCON; Krupp et al., 2020[Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514-1519.]), previously published by our group. These compounds show comparable Si—C(DHF), C—C and C=C bond lengths to those of 1 and 2. They also display similar (DHF)C—Si—C(DHF) bond angles and also a slightly distorted tetra­hedron. In addition, a deviation in the planarity of the di­hydro­furyl rings was found there. An extended search for 3-(4,5-di­hydro­fur­yl)silanes revealed the compounds [4-(4-fluoro­phen­yl)-5-(4-nitro­phen­yl)-4,5-di­hydro­furan-3-yl](trimeth­yl)silane (JIVLIM; Li & Zhang, 2018[Li, T. & Zhang, L. (2018). J. Am. Chem. Soc. 140, 17439-17443.]), (1′S,2R)-5-methyl-4-(t-butyl­diphenyl­sil­yl)-2,3-di­hydro-furan-2-carb­oxy­lic acid (1′-phenyl­eth­yl)amide (PUXCAM; Evans et al., 2001[Evans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095-12096.]) and 2,2-di­chloro-5-phenyl-4-(tri­methyl­sil­yl)-3(2H)-furan­one (YIHDOI; Murakami et al., 1994[Murakami, M., Hayashi, M. & Ito, Y. (1994). J. Org. Chem. 59, 7910-7914.]), which have little resemblance to the structure of 1. Tetra­kis(2-furan­yl)silane was also found in the database when searching for (2-furan­yl)silane (XAMZOA; Neugebauer et al., 2000[Neugebauer, P., Klingebiel, U. & Noltemeyer, M. (2000). Z. Naturforsch. B, 55, 913-923.]).

A search for 2-(4,5-di­hydro­fur­yl)germane and an extended search for 3-(4,5-di­hydro­fur­yl)germane found no hits.

5. Synthesis and crystallization

Compound 1 and 2 have already been described by Lukevits and Ertschak (Lukevics et al., 1984[Lukevics, E., Gevorgyan, V., Rosite, S., Gavaps, M. & Mascheika, I. (1984). LZA Vēstis, 1, 109-111.]; Ertschak et al., 1982[Ertschak, N., Popelis, Û., Nichler, I. & Lukevics, E. (1982). Zh. Obshch. Khim. 5, 1181-1187.]). For the synthesis of tetra­kis­(4,5-di­hydro­furan-2-yl)silane (1), tert-butyl­lithium (31.0 ml, 1.90 M in pentane, 58.90 mmol, 4.00 eq.) was added at 228 K to a solution of 2,3-di­hydro­furan (4.14 g, 59.10 mmol, 4.00 eq.) in diethyl ether (approx. 100 ml). The reaction solution was stirred for 1 h at room temperature. Then, tetra­chloro­silane (2.50 g, 14.70 mmol, 1.00 eq.) was added at 243 K and the reaction solution was stirred for 1 h. The resulting solid was separated by inert filtration. The obtained solution was concentrated in vacuo and crystallized at 243 K. The solvent was removed and the solid was washed with cold diethyl ether. The product tetra­kis­(4,5-di­hydro­furan-2-yl)silane (1) (3.05 g, 10.0 mmol, 68%) was obtained as colourless blocks.

1H NMR: (600.29 MHz, C6D6): δ = 2.25 [dt, 3JHH = 2.57 Hz, 3JHH = 9.72 Hz, 8H; Si(CCHCH2)4], 4.06 [t, 3JHH = 9.72 Hz, 8H; Si(COCH2)4], 5.88 [t, 3JHH = 2.57 Hz, 4H; Si(CCH)4] ppm. {1H}13C NMR: (150.94 MHz, C6D6): δ = 31.4 [4C; Si(CCHCH2)4], 71.0 [4C; Si(COCH2)4], 117.8 [4C; Si(CCH)4], 155.1 [4C; (Si(CO)4] ppm. {1H}29Si NMR: (119.26 MHz, C6D6): δ = −51.40 [s, 1Si; Si(DHF)4] ppm.

For the synthesis of tetra­kis­(4,5-di­hydro­furan-2-yl)germane (2), tert-butyl­lithium (19.60 ml, 1.90 M in pentane, 37.30 mmol, 4.00 eq.) was added at 228 K to a solution of 2,3-di­hydro­furan (2.60 g, 37.30 mmol, 4.00 eq.) in diethyl ether (approx. 100 ml). The reaction solution was stirred for 1 h at rt. Tetra­chloro­germane (2.00 g, 9.33 mmol, 1.00 eq.) was added at 213 K and the reaction solution was stirred for 1 h. The resulting solid was separated by inert filtration. The obtained solution was concentrated in vacuo and crystallized at 243 K. The solvent was removed, and the solid was washed with cold diethyl ether. The product tetra­kis­(4,5-di­hydro­furan-2-yl)germane (2) (2.94 g, 8.44 mmol, 91%) was obtained as colourless blocks.

1H NMR: (400.25 MHz, C6D6): δ = 2.26 [dt, 3JHH = 2.57 Hz, 3JHH = 9.66 Hz, 8H; Ge(CCHCH2)4], 4.05 [t, 3JHH = 9.66 Hz, 8H; Ge(COCH2)4], 5.62 [t, 3JHH = 2.57 Hz, 4H; Ge(CCH)4] ppm. {1H}13C NMR: (100.64 MHz, C6D6): δ = 30.8 [4C; Ge(CCHCH2)4], 71.0 [4C; Ge(COCH2)4], 113.8 [4C; Si(CCH)4], 155.7 [4C; (Ge(CO)4] ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Hydrogen atoms H8A,B, H23A,B, H24A,B, H27A,B and H31A,B for compound 1 and all H atoms for compound 2 were refined independently. Other H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen.

Table 7
Experimental details

  1 2
Crystal data
Chemical formula C16H20O4Si C16H20GeO4
Mr 304.41 348.91
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 14.2044 (7), 14.2458 (7), 15.4851 (8) 14.3828 (5), 14.2069 (5), 15.3594 (6)
β (°) 102.605 (2) 101.159 (1)
V3) 3057.9 (3) 3079.13 (19)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.17 2.00
Crystal size (mm) 0.68 × 0.54 × 0.48 0.19 × 0.16 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.532, 0.570 0.496, 0.568
No. of measured, independent and observed [I > 2σ(I)] reflections 371220, 9331, 8779 71639, 13541, 10143
Rint 0.036 0.046
(sin θ/λ)max−1) 0.714 0.807
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.03 0.032, 0.077, 1.02
No. of reflections 9331 13541
No. of parameters 419 539
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.89, −0.38 0.67, −0.56
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker 2018) for (1); APEX2 (Bruker, 2018) for (2). For both structures, cell refinement: SAINT V8.38A (Bruker, 2018); data reduction: SAINT V8.38A (Bruker, 2018). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (1); SHELXT (Sheldrick, 2015a) for (2). For both structures, program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: CrystalExplorer21 (Spackman et al., 2021), Mercury (Macrae et al., 2020), publCIF (Westrip, 2010).

Tetrakis(4,5-dihydrofuran-2-yl)silane (1) top
Crystal data top
C16H20O4SiF(000) = 1296
Mr = 304.41Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.2044 (7) ÅCell parameters from 9905 reflections
b = 14.2458 (7) Åθ = 2.6–17.2°
c = 15.4851 (8) ŵ = 0.17 mm1
β = 102.605 (2)°T = 100 K
V = 3057.9 (3) Å3Block, white
Z = 80.68 × 0.54 × 0.48 mm
Data collection top
Bruker D8 VENTURE
diffractometer
9331 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs8779 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.036
Detector resolution: 10.4167 pixels mm-1θmax = 30.5°, θmin = 2.1°
ω and φ scansh = 2020
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.532, Tmax = 0.570l = 2222
371220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0578P)2 + 1.2587P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
9331 reflectionsΔρmax = 0.89 e Å3
419 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.74622 (2)0.28841 (2)0.75077 (2)0.01509 (6)
O10.93162 (5)0.25935 (5)0.85344 (5)0.02192 (14)
O20.66166 (7)0.30739 (6)0.89526 (5)0.02813 (17)
O30.72770 (6)0.45724 (6)0.65291 (5)0.02471 (15)
O40.68036 (6)0.15675 (7)0.61688 (6)0.03055 (19)
C10.86791 (7)0.32761 (7)0.81134 (6)0.01724 (16)
C20.90373 (7)0.41431 (7)0.82338 (7)0.02177 (18)
H20.8712740.4695490.7985070.026*
C31.00352 (8)0.41171 (8)0.88241 (7)0.0249 (2)
H3A1.0038890.4376930.9417840.030*
H3B1.0506360.4463870.8559160.030*
C41.02411 (7)0.30597 (8)0.88647 (7)0.02419 (19)
H4A1.0702350.2898120.8492050.029*
H4B1.0520020.2863700.9480760.029*
C50.67360 (7)0.24575 (7)0.82938 (6)0.01708 (16)
C60.63131 (8)0.16312 (7)0.83393 (7)0.02348 (19)
H60.6309730.1126600.7937500.028*
C70.58398 (9)0.16119 (7)0.91211 (8)0.0264 (2)
H7A0.6164130.1162780.9578090.032*
H7B0.5146950.1449910.8939730.032*
C80.59827 (10)0.26230 (8)0.94469 (8)0.0310 (2)
C90.67957 (7)0.39005 (7)0.69126 (6)0.01753 (16)
C100.58506 (7)0.40639 (8)0.68000 (7)0.02276 (18)
H100.5408080.3671880.7010300.027*
C110.55907 (8)0.49611 (8)0.62906 (8)0.0270 (2)
H11A0.5377130.5449890.6660150.032*
H11B0.5079130.4857390.5752460.032*
C120.65508 (8)0.52240 (8)0.60570 (7)0.0257 (2)
H12A0.6499020.5171790.5410820.031*
H12B0.6728320.5877800.6239970.031*
C130.76134 (7)0.19008 (7)0.67562 (6)0.01761 (16)
C140.84148 (7)0.14317 (7)0.67128 (6)0.02059 (17)
H140.9037610.1561740.7063780.025*
C150.81904 (8)0.06663 (8)0.60272 (7)0.02422 (19)
H15A0.8271250.0035880.6302490.029*
H15B0.8600330.0716380.5587820.029*
C160.71307 (7)0.08715 (8)0.56085 (7)0.02435 (19)
H16A0.7066980.1119150.5001140.029*
H16B0.6741290.0291370.5578710.029*
Si20.27704 (2)0.32421 (2)0.76377 (2)0.01562 (6)
O50.09592 (6)0.28846 (5)0.65743 (5)0.02374 (15)
O60.27220 (6)0.47644 (6)0.87285 (5)0.02643 (16)
O70.21828 (7)0.14802 (6)0.81068 (5)0.03273 (19)
O80.34396 (7)0.33545 (6)0.60778 (5)0.02971 (18)
C170.15457 (7)0.35882 (6)0.70150 (6)0.01701 (16)
C180.11405 (8)0.44363 (7)0.69027 (7)0.02251 (18)
H180.1431220.4999660.7160980.027*
C190.01501 (8)0.43670 (7)0.63035 (7)0.02359 (19)
H19A0.0131650.4666060.5722970.028*
H19B0.0347820.4655270.6577600.028*
C200.00210 (7)0.33032 (7)0.62152 (7)0.02269 (19)
H20A0.0457800.3084610.6549060.027*
H20B0.0207520.3126090.5586090.027*
C210.33102 (7)0.42965 (7)0.82634 (6)0.01817 (16)
C220.41603 (8)0.47116 (8)0.83225 (8)0.0262 (2)
H220.4657810.4490030.8052620.031*
C230.42186 (8)0.55853 (8)0.88805 (9)0.0290 (2)
C240.31965 (8)0.56474 (7)0.90322 (7)0.02153 (18)
C250.26895 (7)0.22739 (7)0.84255 (6)0.01758 (16)
C260.30693 (9)0.22394 (8)0.92899 (7)0.0288 (2)
H260.3430000.2726900.9628480.035*
C270.28359 (12)0.13035 (9)0.96465 (8)0.0375 (3)
C280.20576 (9)0.09462 (8)0.88849 (8)0.0285 (2)
H28A0.2137100.0265450.8793980.034*
H28B0.1409080.1056980.9002660.034*
C290.34752 (7)0.28210 (7)0.68322 (6)0.01786 (16)
C300.39575 (7)0.20199 (7)0.68338 (7)0.02305 (19)
H300.4067760.1575570.7302560.028*
C310.43036 (8)0.19189 (8)0.59856 (8)0.0278 (2)
C320.38774 (9)0.28001 (8)0.54776 (7)0.0271 (2)
H32A0.4390670.3165100.5289060.033*
H32B0.3385770.2623740.4944720.033*
H23A0.4712 (13)0.5512 (12)0.9465 (11)0.041 (5)*
H23B0.4341 (13)0.6133 (13)0.8545 (11)0.041 (4)*
H8A0.6292 (14)0.2656 (14)1.0055 (13)0.052 (5)*
H8B0.5353 (15)0.2977 (14)0.9324 (13)0.053 (5)*
H27A0.3448 (15)0.0826 (15)0.9746 (13)0.059 (6)*
H27B0.2664 (15)0.1338 (15)1.0187 (14)0.061 (6)*
H31A0.5013 (13)0.1894 (13)0.6088 (11)0.040 (4)*
H31B0.4046 (14)0.1348 (14)0.5651 (13)0.050 (5)*
H24A0.3158 (10)0.5717 (11)0.9629 (10)0.024 (3)*
H24B0.2840 (11)0.6143 (11)0.8672 (10)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01493 (11)0.01596 (12)0.01465 (11)0.00030 (8)0.00382 (8)0.00069 (8)
O10.0174 (3)0.0222 (3)0.0238 (3)0.0004 (3)0.0006 (3)0.0016 (3)
O20.0447 (5)0.0198 (3)0.0264 (4)0.0128 (3)0.0220 (3)0.0079 (3)
O30.0213 (3)0.0232 (3)0.0288 (4)0.0003 (3)0.0036 (3)0.0100 (3)
O40.0163 (3)0.0400 (5)0.0336 (4)0.0013 (3)0.0016 (3)0.0198 (4)
C10.0162 (4)0.0208 (4)0.0150 (4)0.0006 (3)0.0039 (3)0.0003 (3)
C20.0225 (4)0.0212 (4)0.0208 (4)0.0030 (3)0.0030 (3)0.0010 (3)
C30.0218 (4)0.0290 (5)0.0230 (4)0.0070 (4)0.0026 (4)0.0047 (4)
C40.0167 (4)0.0316 (5)0.0227 (4)0.0027 (4)0.0008 (3)0.0011 (4)
C50.0181 (4)0.0170 (4)0.0168 (4)0.0005 (3)0.0054 (3)0.0019 (3)
C60.0285 (5)0.0179 (4)0.0278 (5)0.0048 (4)0.0145 (4)0.0059 (4)
C70.0351 (5)0.0192 (4)0.0295 (5)0.0081 (4)0.0171 (4)0.0036 (4)
C80.0477 (7)0.0216 (5)0.0322 (6)0.0104 (5)0.0271 (5)0.0062 (4)
C90.0191 (4)0.0174 (4)0.0159 (4)0.0001 (3)0.0033 (3)0.0011 (3)
C100.0194 (4)0.0243 (5)0.0241 (4)0.0021 (3)0.0037 (3)0.0000 (4)
C110.0244 (5)0.0257 (5)0.0277 (5)0.0067 (4)0.0016 (4)0.0003 (4)
C120.0290 (5)0.0210 (4)0.0246 (5)0.0032 (4)0.0000 (4)0.0048 (4)
C130.0171 (4)0.0190 (4)0.0168 (4)0.0010 (3)0.0037 (3)0.0020 (3)
C140.0198 (4)0.0205 (4)0.0201 (4)0.0029 (3)0.0012 (3)0.0025 (3)
C150.0240 (4)0.0221 (4)0.0252 (5)0.0048 (4)0.0025 (4)0.0058 (4)
C160.0217 (4)0.0270 (5)0.0240 (4)0.0009 (4)0.0043 (3)0.0096 (4)
Si20.01722 (12)0.01467 (12)0.01523 (11)0.00029 (8)0.00411 (9)0.00052 (8)
O50.0218 (3)0.0164 (3)0.0287 (4)0.0020 (2)0.0038 (3)0.0029 (3)
O60.0260 (4)0.0261 (4)0.0300 (4)0.0089 (3)0.0122 (3)0.0140 (3)
O70.0474 (5)0.0228 (4)0.0234 (4)0.0128 (3)0.0022 (3)0.0023 (3)
O80.0418 (5)0.0291 (4)0.0225 (4)0.0143 (3)0.0164 (3)0.0068 (3)
C170.0193 (4)0.0165 (4)0.0158 (4)0.0002 (3)0.0051 (3)0.0006 (3)
C180.0257 (5)0.0171 (4)0.0238 (4)0.0023 (3)0.0035 (4)0.0006 (3)
C190.0244 (4)0.0227 (4)0.0234 (4)0.0074 (4)0.0046 (4)0.0032 (4)
C200.0178 (4)0.0252 (5)0.0245 (4)0.0024 (3)0.0033 (3)0.0003 (4)
C210.0218 (4)0.0156 (4)0.0174 (4)0.0007 (3)0.0048 (3)0.0001 (3)
C220.0233 (5)0.0203 (4)0.0365 (5)0.0024 (4)0.0100 (4)0.0042 (4)
C230.0243 (5)0.0195 (4)0.0425 (6)0.0054 (4)0.0060 (4)0.0061 (4)
C240.0268 (5)0.0170 (4)0.0202 (4)0.0022 (3)0.0037 (3)0.0028 (3)
C250.0187 (4)0.0159 (4)0.0183 (4)0.0007 (3)0.0044 (3)0.0002 (3)
C260.0353 (6)0.0249 (5)0.0216 (5)0.0109 (4)0.0037 (4)0.0042 (4)
C270.0539 (8)0.0304 (6)0.0227 (5)0.0157 (5)0.0039 (5)0.0089 (4)
C280.0301 (5)0.0211 (5)0.0324 (5)0.0068 (4)0.0025 (4)0.0044 (4)
C290.0181 (4)0.0186 (4)0.0174 (4)0.0007 (3)0.0049 (3)0.0005 (3)
C300.0219 (4)0.0208 (4)0.0283 (5)0.0028 (3)0.0095 (4)0.0027 (4)
C310.0267 (5)0.0268 (5)0.0330 (5)0.0044 (4)0.0133 (4)0.0041 (4)
C320.0300 (5)0.0330 (5)0.0210 (4)0.0036 (4)0.0111 (4)0.0027 (4)
Geometric parameters (Å, º) top
Si1—C11.8632 (10)Si2—C171.8621 (10)
Si1—C51.8611 (9)Si2—C211.8598 (10)
Si1—C91.8604 (10)Si2—C251.8615 (10)
Si1—C131.8633 (10)Si2—C291.8609 (10)
O1—C11.3901 (11)O5—C171.3843 (11)
O1—C41.4613 (12)O5—C201.4552 (12)
O2—C51.3842 (11)O6—C211.3869 (12)
O2—C81.4525 (13)O6—C241.4559 (12)
O3—C91.3834 (12)O7—C251.3729 (12)
O3—C121.4598 (12)O7—C281.4683 (14)
O4—C131.3853 (11)O8—C291.3853 (12)
O4—C161.4587 (12)O8—C321.4583 (13)
C1—C21.3334 (13)C17—C181.3332 (13)
C2—H20.9500C18—H180.9500
C2—C31.5102 (14)C18—C191.5099 (15)
C3—H3A0.9900C19—H19A0.9900
C3—H3B0.9900C19—H19B0.9900
C3—C41.5332 (16)C19—C201.5291 (15)
C4—H4A0.9900C20—H20A0.9900
C4—H4B0.9900C20—H20B0.9900
C5—C61.3304 (13)C21—C221.3297 (14)
C6—H60.9500C22—H220.9500
C6—C71.5078 (14)C22—C231.5071 (15)
C7—H7A0.9900C23—C241.5230 (15)
C7—H7B0.9900C23—H23A1.022 (18)
C7—C81.5251 (15)C23—H23B0.974 (18)
C8—H8A0.95 (2)C24—H24A0.942 (14)
C8—H8B1.01 (2)C24—H24B0.971 (16)
C9—C101.3358 (13)C25—C261.3303 (14)
C10—H100.9500C26—H260.9500
C10—C111.5049 (15)C26—C271.5073 (16)
C11—H11A0.9900C27—C281.5175 (17)
C11—H11B0.9900C27—H27A1.09 (2)
C11—C121.5317 (16)C27—H27B0.92 (2)
C12—H12A0.9900C28—H28A0.9900
C12—H12B0.9900C28—H28B0.9900
C13—C141.3343 (13)C29—C301.3307 (13)
C14—H140.9500C30—H300.9500
C14—C151.5065 (14)C30—C311.5065 (15)
C15—H15A0.9900C31—C321.5341 (17)
C15—H15B0.9900C31—H31A0.986 (18)
C15—C161.5315 (15)C31—H31B0.99 (2)
C16—H16A0.9900C32—H32A0.9900
C16—H16B0.9900C32—H32B0.9900
C5—Si1—C1110.75 (4)C21—Si2—C17106.75 (4)
C5—Si1—C13108.60 (4)C21—Si2—C25109.54 (4)
C9—Si1—C1109.39 (4)C21—Si2—C29112.87 (4)
C9—Si1—C5106.46 (4)C25—Si2—C17110.57 (4)
C9—Si1—C13113.04 (4)C29—Si2—C17108.47 (4)
C13—Si1—C1108.60 (4)C29—Si2—C25108.64 (4)
C1—O1—C4106.85 (8)C17—O5—C20107.10 (7)
C5—O2—C8107.31 (8)C21—O6—C24107.11 (8)
C9—O3—C12107.07 (8)C25—O7—C28106.23 (8)
C13—O4—C16107.27 (8)C29—O8—C32107.34 (8)
O1—C1—Si1117.64 (7)O5—C17—Si2117.21 (7)
C2—C1—Si1129.18 (8)C18—C17—Si2129.46 (8)
C2—C1—O1113.14 (8)C18—C17—O5113.31 (9)
C1—C2—H2125.0C17—C18—H18125.1
C1—C2—C3109.94 (9)C17—C18—C19109.80 (9)
C3—C2—H2125.0C19—C18—H18125.1
C2—C3—H3A111.5C18—C19—H19A111.5
C2—C3—H3B111.5C18—C19—H19B111.5
C2—C3—C4101.21 (8)C18—C19—C20101.38 (8)
H3A—C3—H3B109.3H19A—C19—H19B109.3
C4—C3—H3A111.5C20—C19—H19A111.5
C4—C3—H3B111.5C20—C19—H19B111.5
O1—C4—C3106.46 (8)O5—C20—C19106.85 (8)
O1—C4—H4A110.4O5—C20—H20A110.4
O1—C4—H4B110.4O5—C20—H20B110.4
C3—C4—H4A110.4C19—C20—H20A110.4
C3—C4—H4B110.4C19—C20—H20B110.4
H4A—C4—H4B108.6H20A—C20—H20B108.6
O2—C5—Si1116.71 (7)O6—C21—Si2115.61 (7)
C6—C5—Si1130.14 (7)C22—C21—Si2131.30 (8)
C6—C5—O2113.14 (8)C22—C21—O6113.05 (9)
C5—C6—H6124.9C21—C22—H22125.0
C5—C6—C7110.13 (9)C21—C22—C23110.01 (9)
C7—C6—H6124.9C23—C22—H22125.0
C6—C7—H7A111.5C22—C23—C24101.63 (8)
C6—C7—H7B111.5C22—C23—H23A111.4 (10)
C6—C7—C8101.42 (8)C22—C23—H23B110.5 (10)
H7A—C7—H7B109.3C24—C23—H23A111.2 (10)
C8—C7—H7A111.5C24—C23—H23B108.8 (10)
C8—C7—H7B111.5H23A—C23—H23B112.7 (14)
O2—C8—C7107.24 (8)O6—C24—C23106.83 (8)
O2—C8—H8A107.2 (12)O6—C24—H24A106.6 (9)
O2—C8—H8B107.8 (11)O6—C24—H24B107.2 (9)
C7—C8—H8A112.0 (12)C23—C24—H24A114.7 (9)
C7—C8—H8B111.2 (12)C23—C24—H24B110.5 (9)
H8A—C8—H8B111.2 (16)H24A—C24—H24B110.6 (13)
O3—C9—Si1120.36 (7)O7—C25—Si2118.49 (7)
C10—C9—Si1126.06 (8)C26—C25—Si2128.12 (8)
C10—C9—O3113.58 (9)C26—C25—O7113.39 (9)
C9—C10—H10125.0C25—C26—H26125.4
C9—C10—C11109.94 (9)C25—C26—C27109.14 (10)
C11—C10—H10125.0C27—C26—H26125.4
C10—C11—H11A111.4C26—C27—C28101.14 (9)
C10—C11—H11B111.4C26—C27—H27A111.9 (11)
C10—C11—C12101.67 (8)C26—C27—H27B114.0 (14)
H11A—C11—H11B109.3C28—C27—H27A108.9 (11)
C12—C11—H11A111.4C28—C27—H27B115.5 (14)
C12—C11—H11B111.4H27A—C27—H27B105.5 (17)
O3—C12—C11107.13 (8)O7—C28—C27105.41 (9)
O3—C12—H12A110.3O7—C28—H28A110.7
O3—C12—H12B110.3O7—C28—H28B110.7
C11—C12—H12A110.3C27—C28—H28A110.7
C11—C12—H12B110.3C27—C28—H28B110.7
H12A—C12—H12B108.5H28A—C28—H28B108.8
O4—C13—Si1118.38 (7)O8—C29—Si2117.54 (7)
C14—C13—Si1128.60 (7)C30—C29—Si2128.85 (8)
C14—C13—O4112.99 (8)C30—C29—O8113.34 (9)
C13—C14—H14124.9C29—C30—H30124.9
C13—C14—C15110.26 (9)C29—C30—C31110.25 (9)
C15—C14—H14124.9C31—C30—H30124.9
C14—C15—H15A111.5C30—C31—C32101.63 (8)
C14—C15—H15B111.5C30—C31—H31A112.3 (10)
C14—C15—C16101.39 (8)C30—C31—H31B112.4 (11)
H15A—C15—H15B109.3C32—C31—H31A112.8 (11)
C16—C15—H15A111.5C32—C31—H31B110.1 (11)
C16—C15—H15B111.5H31A—C31—H31B107.6 (15)
O4—C16—C15106.81 (8)O8—C32—C31106.97 (8)
O4—C16—H16A110.4O8—C32—H32A110.3
O4—C16—H16B110.4O8—C32—H32B110.3
C15—C16—H16A110.4C31—C32—H32A110.3
C15—C16—H16B110.4C31—C32—H32B110.3
H16A—C16—H16B108.6H32A—C32—H32B108.6
Si1—C1—C2—C3176.08 (7)Si2—C17—C18—C19177.05 (7)
Si1—C5—C6—C7177.67 (8)Si2—C21—C22—C23176.66 (8)
Si1—C9—C10—C11179.51 (7)Si2—C25—C26—C27178.46 (9)
Si1—C13—C14—C15177.84 (8)Si2—C29—C30—C31172.10 (8)
O1—C1—C2—C31.60 (12)O5—C17—C18—C190.92 (12)
O2—C5—C6—C71.12 (13)O6—C21—C22—C230.58 (14)
O3—C9—C10—C111.00 (12)O7—C25—C26—C271.49 (15)
O4—C13—C14—C150.17 (13)O8—C29—C30—C311.61 (13)
C1—Si1—C5—O255.68 (9)C17—Si2—C21—O647.49 (8)
C1—Si1—C5—C6123.08 (10)C17—Si2—C21—C22129.70 (11)
C1—Si1—C9—O336.98 (9)C17—Si2—C25—O753.20 (9)
C1—Si1—C9—C10143.56 (9)C17—Si2—C25—C26126.85 (11)
C1—Si1—C13—O4173.06 (8)C17—Si2—C29—O845.79 (9)
C1—Si1—C13—C149.04 (11)C17—Si2—C29—C30127.70 (10)
C1—O1—C4—C314.79 (10)C17—O5—C20—C1912.05 (11)
C1—C2—C3—C410.34 (11)C17—C18—C19—C208.05 (11)
C2—C3—C4—O114.89 (10)C18—C19—C20—O511.93 (10)
C4—O1—C1—Si1173.47 (7)C20—O5—C17—Si2174.56 (6)
C4—O1—C1—C28.56 (11)C20—O5—C17—C187.20 (11)
C5—Si1—C1—O168.57 (8)C21—Si2—C17—O5172.97 (7)
C5—Si1—C1—C2109.02 (10)C21—Si2—C17—C189.12 (11)
C5—Si1—C9—O3156.69 (7)C21—Si2—C25—O7170.57 (8)
C5—Si1—C9—C1023.85 (10)C21—Si2—C25—C269.48 (12)
C5—Si1—C13—O466.43 (9)C21—Si2—C29—O872.29 (9)
C5—Si1—C13—C14111.48 (10)C21—Si2—C29—C30114.22 (10)
C5—O2—C8—C78.28 (14)C21—O6—C24—C2311.72 (11)
C5—C6—C7—C85.96 (13)C21—C22—C23—C246.51 (13)
C6—C7—C8—O28.43 (13)C22—C23—C24—O610.84 (11)
C8—O2—C5—Si1176.40 (8)C24—O6—C21—Si2169.79 (7)
C8—O2—C5—C64.63 (13)C24—O6—C21—C227.92 (12)
C9—Si1—C1—O1174.39 (7)C25—Si2—C17—O553.90 (8)
C9—Si1—C1—C28.02 (11)C25—Si2—C17—C18128.20 (9)
C9—Si1—C5—O263.14 (8)C25—Si2—C21—O672.25 (8)
C9—Si1—C5—C6118.10 (10)C25—Si2—C21—C22110.57 (11)
C9—Si1—C13—O451.47 (9)C25—Si2—C29—O8166.02 (8)
C9—Si1—C13—C14130.62 (9)C25—Si2—C29—C307.47 (11)
C9—O3—C12—C117.40 (11)C25—O7—C28—C2720.72 (13)
C9—C10—C11—C125.34 (12)C25—C26—C27—C2813.98 (15)
C10—C11—C12—O37.57 (11)C26—C27—C28—O720.51 (14)
C12—O3—C9—Si1175.37 (7)C28—O7—C25—Si2167.63 (7)
C12—O3—C9—C104.16 (12)C28—O7—C25—C2612.41 (13)
C13—Si1—C1—O150.60 (8)C29—Si2—C17—O565.13 (8)
C13—Si1—C1—C2131.81 (9)C29—Si2—C17—C18112.78 (10)
C13—Si1—C5—O2174.85 (7)C29—Si2—C21—O6166.57 (7)
C13—Si1—C5—C63.91 (12)C29—Si2—C21—C2210.62 (12)
C13—Si1—C9—O384.16 (8)C29—Si2—C25—O765.72 (9)
C13—Si1—C9—C1095.30 (9)C29—Si2—C25—C26114.22 (11)
C13—O4—C16—C1511.15 (12)C29—O8—C32—C317.05 (12)
C13—C14—C15—C166.83 (12)C29—C30—C31—C322.78 (12)
C14—C15—C16—O410.65 (11)C30—C31—C32—O85.86 (12)
C16—O4—C13—Si1174.68 (7)C32—O8—C29—Si2168.91 (7)
C16—O4—C13—C147.10 (12)C32—O8—C29—C305.58 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23B···O5i0.974 (18)2.531 (18)3.3484 (14)141.5 (14)
C8—H8A···O5ii0.95 (2)2.61 (2)3.3800 (15)137.9 (15)
C27—H27B···O3iii0.92 (2)2.61 (2)3.4200 (16)147.1 (18)
C31—H31A···O40.986 (18)2.561 (18)3.5358 (14)169.6 (15)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
Tetrakis(4,5-dihydrofuran-2-yl)germane (2) top
Crystal data top
C16H20GeO4F(000) = 1440
Mr = 348.91Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.3828 (5) ÅCell parameters from 8295 reflections
b = 14.2069 (5) Åθ = 2.6–23.2°
c = 15.3594 (6) ŵ = 2.00 mm1
β = 101.159 (1)°T = 100 K
V = 3079.13 (19) Å3Block, colourless
Z = 80.19 × 0.16 × 0.08 mm
Data collection top
Bruker D8 VENTURE
diffractometer
13541 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs10143 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.046
Detector resolution: 10.4167 pixels mm-1θmax = 35.0°, θmin = 2.2°
ω and φ scansh = 2323
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2222
Tmin = 0.496, Tmax = 0.568l = 2424
71639 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.639P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
13541 reflectionsΔρmax = 0.67 e Å3
539 parametersΔρmin = 0.56 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.76646 (2)0.79656 (2)0.25601 (2)0.01725 (4)
O10.85960 (11)0.80852 (8)0.11071 (9)0.0405 (3)
O20.57907 (7)0.77199 (8)0.15770 (7)0.0234 (2)
O30.78696 (8)0.96600 (8)0.35784 (8)0.0284 (2)
O40.82066 (8)0.67821 (10)0.40676 (8)0.0360 (3)
C10.83902 (10)0.74624 (10)0.17308 (9)0.0198 (2)
C20.87060 (12)0.66001 (11)0.16430 (11)0.0266 (3)
H20.8597 (14)0.6081 (15)0.2001 (13)0.042 (6)*
C30.91833 (13)0.65498 (12)0.08575 (12)0.0284 (3)
H3A0.8873 (15)0.6142 (16)0.0419 (14)0.046 (6)*
H3B0.9832 (15)0.6336 (15)0.1007 (13)0.040 (6)*
C40.91262 (16)0.75656 (12)0.05442 (12)0.0337 (4)
C50.64477 (10)0.84006 (10)0.19256 (9)0.0192 (2)
C60.61438 (11)0.92783 (11)0.17540 (10)0.0240 (3)
H60.6487 (14)0.9854 (14)0.1928 (12)0.032 (5)*
C70.51501 (11)0.92654 (13)0.12080 (11)0.0289 (3)
C80.49159 (10)0.82158 (12)0.11877 (10)0.0250 (3)
H8A0.4679 (15)0.7944 (14)0.0582 (14)0.038 (6)*
H8B0.4508 (13)0.8053 (12)0.1537 (12)0.021 (4)*
C90.83515 (10)0.90293 (10)0.31455 (9)0.0200 (2)
C100.92565 (11)0.92402 (13)0.31889 (11)0.0288 (3)
H100.9719 (16)0.8885 (15)0.2931 (14)0.049 (6)*
C110.94986 (12)1.01363 (13)0.37105 (12)0.0319 (4)
H11A0.9997 (14)1.0013 (14)0.4282 (13)0.039 (6)*
H11B0.9740 (13)1.0595 (14)0.3353 (12)0.034 (5)*
C120.85364 (12)1.04082 (12)0.39196 (11)0.0280 (3)
H12A0.8284 (13)1.0973 (14)0.3656 (13)0.034 (5)*
H12B0.8548 (13)1.0425 (13)0.4541 (13)0.032 (5)*
C130.74617 (9)0.69873 (10)0.33799 (9)0.0188 (2)
C140.66946 (10)0.64706 (11)0.33906 (10)0.0221 (3)
H140.6147 (14)0.6514 (14)0.2963 (13)0.035 (5)*
C150.68669 (11)0.58031 (12)0.41642 (11)0.0267 (3)
H15A0.6842 (14)0.5155 (14)0.3967 (13)0.033 (5)*
H15B0.6374 (14)0.5901 (14)0.4575 (13)0.036 (5)*
C160.78647 (11)0.60903 (12)0.46348 (10)0.0259 (3)
H16A0.8283 (14)0.5559 (15)0.4694 (13)0.039 (6)*
H16B0.7876 (12)0.6372 (13)0.5198 (12)0.024 (5)*
Ge20.72156 (2)0.67613 (2)0.73024 (2)0.01539 (3)
O50.66868 (7)0.79050 (9)0.57513 (7)0.0292 (2)
O60.65130 (9)0.67107 (9)0.89028 (8)0.0319 (3)
O70.90223 (7)0.71570 (7)0.83475 (7)0.02075 (19)
O80.73350 (7)0.50898 (8)0.63530 (7)0.0237 (2)
C170.73712 (9)0.77827 (10)0.65076 (9)0.0172 (2)
C180.80834 (11)0.83944 (11)0.65802 (10)0.0241 (3)
H180.8624 (14)0.8432 (14)0.7071 (13)0.032 (5)*
C190.79407 (11)0.90342 (12)0.57842 (11)0.0266 (3)
H19A0.7938 (14)0.9697 (14)0.5976 (13)0.035 (5)*
H19B0.8440 (14)0.8900 (14)0.5411 (13)0.037 (6)*
C200.69603 (11)0.87337 (12)0.52929 (11)0.0265 (3)
H20A0.6984 (13)0.8555 (13)0.4700 (12)0.027 (5)*
H20B0.6490 (14)0.9218 (15)0.5329 (13)0.037 (5)*
C210.64670 (9)0.72187 (10)0.81286 (9)0.0182 (2)
C220.59783 (10)0.80127 (11)0.81080 (10)0.0235 (3)
H220.5888 (14)0.8425 (14)0.7631 (13)0.038 (6)*
C230.56360 (13)0.81459 (12)0.89642 (12)0.0294 (3)
C240.60078 (15)0.72545 (13)0.94731 (11)0.0324 (4)
H24A0.5493 (16)0.6861 (15)0.9582 (14)0.045 (6)*
H24B0.6453 (16)0.7397 (16)1.0018 (15)0.046 (6)*
C250.84566 (9)0.64211 (9)0.79573 (8)0.0166 (2)
C260.88659 (10)0.55803 (11)0.81029 (10)0.0215 (3)
H260.8613 (14)0.4975 (15)0.7893 (13)0.040 (6)*
C270.98385 (10)0.56899 (11)0.86794 (10)0.0216 (3)
H27A1.0330 (14)0.5386 (14)0.8448 (13)0.034 (5)*
H27B0.9826 (14)0.5428 (14)0.9284 (13)0.033 (5)*
C280.99617 (10)0.67601 (11)0.86798 (9)0.0203 (2)
H28A1.0206 (14)0.7041 (13)0.9236 (13)0.027 (5)*
H28B1.0331 (13)0.6967 (12)0.8283 (12)0.022 (5)*
C290.66849 (9)0.56460 (10)0.66718 (9)0.0185 (2)
C300.58084 (10)0.53090 (11)0.64952 (10)0.0236 (3)
H300.5260 (13)0.5604 (14)0.6667 (12)0.032 (5)*
C310.57860 (10)0.43934 (11)0.59975 (11)0.0250 (3)
H31A0.5534 (13)0.3918 (14)0.6335 (12)0.033 (5)*
H31B0.5415 (15)0.4461 (15)0.5397 (14)0.047 (6)*
C320.68365 (11)0.42402 (10)0.59885 (10)0.0227 (3)
H23A0.4953 (16)0.8203 (15)0.8901 (14)0.043 (6)*
H23B0.5908 (16)0.8691 (16)0.9306 (15)0.050 (7)*
H4A0.8817 (15)0.7617 (15)0.0042 (14)0.040 (6)*
H4B0.9781 (17)0.7862 (16)0.0636 (15)0.052 (7)*
H32A0.6975 (14)0.4156 (15)0.5409 (14)0.041 (6)*
H32B0.7082 (13)0.3748 (13)0.6351 (12)0.027 (5)*
H7A0.4702 (16)0.9630 (15)0.1448 (14)0.048 (6)*
H7B0.5180 (15)0.9528 (15)0.0576 (14)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.01688 (6)0.01865 (7)0.01668 (6)0.00177 (5)0.00433 (5)0.00107 (5)
O10.0733 (10)0.0227 (6)0.0364 (6)0.0195 (6)0.0374 (7)0.0121 (5)
O20.0211 (4)0.0209 (5)0.0254 (5)0.0006 (4)0.0023 (4)0.0009 (4)
O30.0227 (5)0.0265 (6)0.0361 (6)0.0032 (4)0.0055 (4)0.0116 (5)
O40.0179 (4)0.0551 (8)0.0320 (6)0.0060 (5)0.0026 (4)0.0239 (6)
C10.0215 (6)0.0198 (6)0.0192 (6)0.0030 (5)0.0070 (5)0.0028 (5)
C20.0319 (7)0.0198 (7)0.0325 (8)0.0051 (6)0.0171 (6)0.0063 (6)
C30.0369 (8)0.0197 (7)0.0323 (8)0.0067 (6)0.0161 (7)0.0023 (6)
C40.0546 (11)0.0231 (8)0.0308 (8)0.0133 (8)0.0265 (8)0.0067 (6)
C50.0195 (5)0.0217 (7)0.0169 (5)0.0028 (5)0.0047 (4)0.0005 (5)
C60.0259 (6)0.0211 (7)0.0245 (7)0.0041 (6)0.0039 (5)0.0028 (5)
C70.0270 (7)0.0315 (9)0.0276 (7)0.0090 (7)0.0034 (6)0.0087 (6)
C80.0192 (6)0.0334 (8)0.0217 (6)0.0038 (6)0.0021 (5)0.0010 (6)
C90.0202 (6)0.0205 (6)0.0190 (6)0.0008 (5)0.0029 (5)0.0006 (5)
C100.0201 (6)0.0361 (9)0.0300 (7)0.0024 (6)0.0041 (5)0.0017 (7)
C110.0253 (7)0.0341 (9)0.0322 (8)0.0095 (7)0.0045 (6)0.0069 (7)
C120.0331 (8)0.0209 (7)0.0273 (7)0.0070 (6)0.0007 (6)0.0003 (6)
C130.0177 (5)0.0215 (6)0.0172 (5)0.0033 (5)0.0035 (4)0.0016 (5)
C140.0223 (6)0.0218 (7)0.0208 (6)0.0018 (5)0.0006 (5)0.0023 (5)
C150.0231 (6)0.0291 (8)0.0271 (7)0.0021 (6)0.0028 (5)0.0074 (6)
C160.0218 (6)0.0314 (8)0.0240 (7)0.0004 (6)0.0030 (5)0.0088 (6)
Ge20.01513 (6)0.01417 (6)0.01657 (6)0.00089 (5)0.00231 (4)0.00060 (5)
O50.0213 (5)0.0340 (6)0.0278 (5)0.0084 (5)0.0062 (4)0.0122 (5)
O60.0454 (7)0.0298 (6)0.0246 (5)0.0172 (5)0.0168 (5)0.0083 (5)
O70.0192 (4)0.0148 (5)0.0254 (5)0.0014 (4)0.0029 (4)0.0022 (4)
O80.0208 (4)0.0193 (5)0.0304 (5)0.0021 (4)0.0036 (4)0.0091 (4)
C170.0168 (5)0.0165 (6)0.0174 (5)0.0014 (5)0.0014 (4)0.0010 (4)
C180.0243 (6)0.0230 (7)0.0226 (6)0.0061 (5)0.0016 (5)0.0029 (5)
C190.0234 (6)0.0243 (7)0.0299 (7)0.0048 (6)0.0001 (6)0.0077 (6)
C200.0231 (6)0.0293 (8)0.0254 (7)0.0026 (6)0.0005 (5)0.0105 (6)
C210.0173 (5)0.0186 (6)0.0189 (6)0.0007 (5)0.0041 (4)0.0012 (5)
C220.0229 (6)0.0215 (7)0.0275 (7)0.0037 (5)0.0088 (5)0.0046 (6)
C230.0310 (7)0.0268 (8)0.0338 (8)0.0086 (7)0.0149 (6)0.0009 (6)
C240.0447 (10)0.0310 (9)0.0261 (7)0.0095 (8)0.0180 (7)0.0020 (6)
C250.0168 (5)0.0156 (6)0.0171 (5)0.0003 (5)0.0025 (4)0.0008 (4)
C260.0219 (6)0.0165 (6)0.0242 (6)0.0014 (5)0.0001 (5)0.0000 (5)
C270.0210 (6)0.0203 (7)0.0225 (6)0.0054 (5)0.0018 (5)0.0011 (5)
C280.0172 (5)0.0227 (7)0.0200 (6)0.0023 (5)0.0015 (4)0.0000 (5)
C290.0210 (5)0.0158 (6)0.0180 (5)0.0014 (5)0.0023 (4)0.0008 (5)
C300.0205 (6)0.0193 (7)0.0293 (7)0.0024 (5)0.0007 (5)0.0024 (5)
C310.0222 (6)0.0163 (6)0.0326 (8)0.0011 (5)0.0047 (6)0.0009 (6)
C320.0264 (6)0.0162 (6)0.0238 (6)0.0027 (5)0.0008 (5)0.0022 (5)
Geometric parameters (Å, º) top
Ge1—C11.9331 (13)Ge2—C171.9370 (13)
Ge1—C51.9326 (14)Ge2—C211.9290 (13)
Ge1—C91.9299 (14)Ge2—C251.9329 (13)
Ge1—C131.9351 (14)Ge2—C291.9353 (14)
O1—C11.3776 (17)O5—C171.3806 (16)
O1—C41.4592 (19)O5—C201.4641 (19)
O2—C51.3852 (17)O6—C211.3816 (17)
O2—C81.4649 (17)O6—C241.4624 (19)
O3—C91.3797 (17)O7—C251.3877 (16)
O3—C121.4595 (18)O7—C281.4619 (16)
O4—C131.3822 (16)O8—C291.3840 (17)
O4—C161.4603 (19)O8—C321.4592 (17)
C1—C21.323 (2)C17—C181.3314 (19)
C2—H20.95 (2)C18—H180.97 (2)
C2—C31.501 (2)C18—C191.505 (2)
C3—H3A0.93 (2)C19—H19A0.99 (2)
C3—H3B0.97 (2)C19—H19B1.02 (2)
C3—C41.518 (2)C19—C201.526 (2)
C4—H4A0.93 (2)C20—H20A0.952 (18)
C4—H4B1.02 (2)C20—H20B0.97 (2)
C5—C61.331 (2)C21—C221.326 (2)
C6—H60.97 (2)C22—H220.93 (2)
C6—C71.511 (2)C22—C231.503 (2)
C7—C81.528 (2)C23—C241.529 (2)
C7—H7A0.96 (2)C23—H23A0.97 (2)
C7—H7B1.05 (2)C23—H23B0.97 (2)
C8—H8A1.00 (2)C24—H24A0.97 (2)
C8—H8B0.899 (18)C24—H24B0.97 (2)
C9—C101.325 (2)C25—C261.3313 (19)
C10—H100.98 (2)C26—H260.96 (2)
C10—C111.509 (3)C26—C271.5119 (19)
C11—H11A1.04 (2)C27—H27A0.95 (2)
C11—H11B0.960 (19)C27—H27B1.00 (2)
C11—C121.530 (3)C27—C281.531 (2)
C12—H12A0.94 (2)C28—H28A0.946 (19)
C12—H12B0.951 (19)C28—H28B0.930 (18)
C13—C141.328 (2)C29—C301.3266 (19)
C14—H140.92 (2)C30—H300.974 (19)
C14—C151.503 (2)C30—C311.506 (2)
C15—H15A0.97 (2)C31—H31A0.964 (19)
C15—H15B1.046 (19)C31—H31B0.98 (2)
C15—C161.532 (2)C31—C321.529 (2)
C16—H16A0.96 (2)C32—H32A0.96 (2)
C16—H16B0.950 (18)C32—H32B0.920 (19)
C1—Ge1—C13109.37 (6)C21—Ge2—C17108.03 (6)
C5—Ge1—C1109.74 (6)C21—Ge2—C25108.58 (5)
C5—Ge1—C13108.78 (6)C21—Ge2—C29112.88 (6)
C9—Ge1—C1107.67 (6)C25—Ge2—C17107.92 (5)
C9—Ge1—C5108.46 (6)C25—Ge2—C29106.91 (6)
C9—Ge1—C13112.79 (6)C29—Ge2—C17112.36 (6)
C1—O1—C4107.12 (11)C17—O5—C20106.95 (11)
C5—O2—C8106.84 (11)C21—O6—C24107.04 (12)
C9—O3—C12106.83 (12)C25—O7—C28106.57 (10)
C13—O4—C16107.29 (11)C29—O8—C32107.01 (11)
O1—C1—Ge1115.90 (10)O5—C17—Ge2118.30 (9)
C2—C1—Ge1130.51 (11)C18—C17—Ge2128.10 (11)
C2—C1—O1113.56 (13)C18—C17—O5113.59 (12)
C1—C2—H2124.1 (12)C17—C18—H18125.9 (12)
C1—C2—C3110.22 (13)C17—C18—C19110.14 (13)
C3—C2—H2125.5 (12)C19—C18—H18123.9 (12)
C2—C3—H3A112.3 (13)C18—C19—H19A110.0 (11)
C2—C3—H3B113.2 (12)C18—C19—H19B110.1 (11)
C2—C3—C4101.79 (13)C18—C19—C20101.56 (12)
H3A—C3—H3B106.4 (17)H19A—C19—H19B113.0 (16)
C4—C3—H3A111.9 (14)C20—C19—H19A111.0 (12)
C4—C3—H3B111.4 (13)C20—C19—H19B110.7 (11)
O1—C4—C3107.18 (12)O5—C20—C19107.20 (12)
O1—C4—H4A109.2 (13)O5—C20—H20A107.9 (11)
O1—C4—H4B106.5 (13)O5—C20—H20B106.7 (12)
C3—C4—H4A111.6 (13)C19—C20—H20A110.3 (11)
C3—C4—H4B111.0 (13)C19—C20—H20B111.1 (12)
H4A—C4—H4B111.1 (18)H20A—C20—H20B113.3 (16)
O2—C5—Ge1117.07 (10)O6—C21—Ge2116.77 (10)
C6—C5—Ge1129.06 (12)C22—C21—Ge2129.17 (11)
C6—C5—O2113.85 (13)C22—C21—O6113.68 (13)
C5—C6—H6127.5 (12)C21—C22—H22123.3 (13)
C5—C6—C7109.74 (14)C21—C22—C23110.38 (13)
C7—C6—H6122.8 (12)C23—C22—H22126.3 (12)
C6—C7—C8101.79 (12)C22—C23—C24101.63 (12)
C6—C7—H7A114.6 (13)C22—C23—H23A114.8 (13)
C6—C7—H7B107.8 (12)C22—C23—H23B114.0 (13)
C8—C7—H7A112.0 (13)C24—C23—H23A111.5 (13)
C8—C7—H7B112.1 (12)C24—C23—H23B108.5 (14)
H7A—C7—H7B108.5 (17)H23A—C23—H23B106.3 (17)
O2—C8—C7107.01 (12)O6—C24—C23107.24 (13)
O2—C8—H8A107.6 (12)O6—C24—H24A106.5 (13)
O2—C8—H8B103.9 (11)O6—C24—H24B107.8 (13)
C7—C8—H8A115.4 (12)C23—C24—H24A111.3 (13)
C7—C8—H8B114.0 (11)C23—C24—H24B112.0 (14)
H8A—C8—H8B108.1 (16)H24A—C24—H24B111.7 (18)
O3—C9—Ge1118.25 (9)O7—C25—Ge2116.20 (9)
C10—C9—Ge1127.58 (12)C26—C25—Ge2130.20 (11)
C10—C9—O3114.16 (14)C26—C25—O7113.59 (12)
C9—C10—H10127.0 (13)C25—C26—H26128.1 (12)
C9—C10—C11109.94 (15)C25—C26—C27109.57 (13)
C11—C10—H10123.1 (13)C27—C26—H26122.3 (12)
C10—C11—H11A111.0 (12)C26—C27—H27A113.8 (12)
C10—C11—H11B109.9 (12)C26—C27—H27B108.9 (11)
C10—C11—C12101.51 (13)C26—C27—C28101.32 (11)
H11A—C11—H11B109.4 (16)H27A—C27—H27B108.9 (16)
C12—C11—H11A111.8 (11)C28—C27—H27A110.9 (12)
C12—C11—H11B113.0 (12)C28—C27—H27B113.0 (11)
O3—C12—C11107.40 (13)O7—C28—C27106.50 (11)
O3—C12—H12A107.2 (12)O7—C28—H28A108.0 (12)
O3—C12—H12B105.2 (12)O7—C28—H28B104.8 (11)
C11—C12—H12A114.5 (12)C27—C28—H28A116.2 (12)
C11—C12—H12B112.1 (12)C27—C28—H28B113.2 (11)
H12A—C12—H12B110.0 (16)H28A—C28—H28B107.4 (16)
O4—C13—Ge1117.16 (10)O8—C29—Ge2114.61 (9)
C14—C13—Ge1129.45 (11)C30—C29—Ge2131.68 (11)
C14—C13—O4113.39 (13)C30—C29—O8113.71 (12)
C13—C14—H14123.4 (13)C29—C30—H30125.3 (12)
C13—C14—C15110.38 (13)C29—C30—C31109.97 (13)
C15—C14—H14126.2 (13)C31—C30—H30124.8 (12)
C14—C15—H15A111.2 (11)C30—C31—H31A107.8 (12)
C14—C15—H15B111.5 (11)C30—C31—H31B110.4 (13)
C14—C15—C16101.60 (12)C30—C31—C32101.74 (12)
H15A—C15—H15B109.1 (15)H31A—C31—H31B112.5 (17)
C16—C15—H15A112.0 (12)C32—C31—H31A112.3 (11)
C16—C15—H15B111.2 (11)C32—C31—H31B111.5 (13)
O4—C16—C15106.89 (12)O8—C32—C31106.96 (12)
O4—C16—H16A108.0 (12)O8—C32—H32A106.6 (13)
O4—C16—H16B108.1 (11)O8—C32—H32B107.1 (12)
C15—C16—H16A110.4 (12)C31—C32—H32A114.2 (12)
C15—C16—H16B113.0 (11)C31—C32—H32B111.4 (11)
H16A—C16—H16B110.2 (16)H32A—C32—H32B110.2 (16)
Ge1—C1—C2—C3176.36 (12)Ge2—C17—C18—C19176.68 (11)
Ge1—C5—C6—C7178.01 (11)Ge2—C21—C22—C23170.77 (12)
Ge1—C9—C10—C11179.83 (11)Ge2—C25—C26—C27178.47 (10)
Ge1—C13—C14—C15179.37 (11)Ge2—C29—C30—C31178.54 (11)
O1—C1—C2—C31.5 (2)O5—C17—C18—C191.66 (19)
O2—C5—C6—C70.57 (18)O6—C21—C22—C231.84 (19)
O3—C9—C10—C110.27 (19)O7—C25—C26—C271.18 (17)
O4—C13—C14—C150.09 (19)O8—C29—C30—C310.67 (18)
C1—O1—C4—C32.7 (2)C17—O5—C20—C196.77 (18)
C1—C2—C3—C43.0 (2)C17—C18—C19—C205.58 (19)
C2—C3—C4—O13.4 (2)C18—C19—C20—O57.30 (18)
C4—O1—C1—Ge1179.00 (13)C20—O5—C17—Ge2178.16 (10)
C4—O1—C1—C20.8 (2)C20—O5—C17—C183.32 (18)
C5—O2—C8—C78.45 (15)C21—O6—C24—C230.6 (2)
C5—C6—C7—C85.62 (17)C21—C22—C23—C241.27 (19)
C6—C7—C8—O28.37 (16)C22—C23—C24—O60.35 (19)
C8—O2—C5—Ge1176.14 (9)C24—O6—C21—Ge2172.03 (11)
C8—O2—C5—C65.10 (16)C24—O6—C21—C221.55 (19)
C9—O3—C12—C114.04 (16)C25—O7—C28—C2715.01 (14)
C9—C10—C11—C122.19 (18)C25—C26—C27—C2810.12 (16)
C10—C11—C12—O33.72 (17)C26—C27—C28—O714.94 (14)
C12—O3—C9—Ge1177.31 (10)C28—O7—C25—Ge2171.34 (9)
C12—O3—C9—C102.78 (18)C28—O7—C25—C268.96 (16)
C13—O4—C16—C156.62 (18)C29—O8—C32—C317.81 (15)
C13—C14—C15—C163.90 (18)C29—C30—C31—C324.11 (17)
C14—C15—C16—O46.24 (17)C30—C31—C32—O87.10 (16)
C16—O4—C13—Ge1175.18 (11)C32—O8—C29—Ge2173.88 (9)
C16—O4—C13—C144.35 (19)C32—O8—C29—C305.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···O7i0.964 (19)2.60 (2)3.3279 (18)132.1 (14)
C23—H23A···O4ii0.97 (2)2.57 (2)3.530 (2)168.0 (17)
C4—H4A···O7iii0.93 (2)2.63 (2)3.398 (2)140.8 (17)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z+1/2; (iii) x, y, z1.
Conformations (Å, °) of the DHF rings for compound 1 top
DHF ringr.m.s. deviationLargest deviationAngle between ring normals
C1–C4/O10.067C4 –0.0936 (6)
C5–C8/O20.038C8 –0.0521 (8)82.18 (4)a
C9–C12/O30.034C12 –0.0468 (7)42.32 (4)a
C13–C16/O40.049C16 –0.0679 (7)45.01 (4)a
C17–C20/O50.054C20 –0.0934 (6)
C21–C24/O60.050C24 –0.0699 (7)48.41 (6)b
C25–C28/O70.093C28 0.1298 (9)55.30 (6)b
C29–C32/O80.029C32 –0.0397 (7)81.77 (4)b
Notes: (a) compared to C1–C4/O1; (b) compared to C17–C20/O5.
Conformations (Å, °) of the DHF rings for compound 2 top
DHF ringr.m.s. deviationLargest deviationAngle between ring normals
C1–C4/O10.015C3 –0.0196 (12)
C5–C8/O20.038C8 –0.0526 (9)81.75 (6)a
C9–C12/O30.017C12 0.0240 (13)62.38 (7)a
C13–C16/O40.029C16 0.0399 (11)82.47 (7)a
C17–C20/O50.032C20 0.0442 (11)
C21–C24/O60.007C21 0.0094 (10)87.22 (9)b
C25–C28/O70.068C28 –0.0941 (9)45.36 (6)b
C29–C32/O80.033C32 0.0462 (9)80.68 (7)b
Notes: (a) compared to C1–C4/O1; (b) compared to C17–C20/O5.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 720–724.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErtschak, N., Popelis, Û., Nichler, I. & Lukevics, E. (1982). Zh. Obshch. Khim. 5, 1181–1187.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095–12096.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19–21.  CrossRef CAS Web of Science Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57–67.  CrossRef CAS Web of Science Google Scholar
First citationGevorgyan, V., Borisova, L. & Lukevics, E. (1992). J. Organomet. Chem. 441, 381–387.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514–1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLazraq, M., Escudié, J., Couret, C., Satgé, J., Dräger, M. & Dammel, R. (1988). Angew. Chem. 100, 885–887.  CrossRef CAS Google Scholar
First citationLi, T. & Zhang, L. (2018). J. Am. Chem. Soc. 140, 17439–17443.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLukevics, E., Gevorgyan, V. & Borisova, L. (1997). Chem. Heterocycl. Compd. 33, 161–163.  CrossRef CAS Google Scholar
First citationLukevics, E., Gevorgyan, V., Rosite, S., Gavaps, M. & Mascheika, I. (1984). LZA Vēstis, 1, 109–111.  Google Scholar
First citationLukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163–171.  CrossRef CAS Web of Science Google Scholar
First citationLukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735–743.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurakami, M., Hayashi, M. & Ito, Y. (1994). J. Org. Chem. 59, 7910–7914.  CSD CrossRef CAS Web of Science Google Scholar
First citationNeugebauer, P., Klingebiel, U. & Noltemeyer, M. (2000). Z. Naturforsch. B, 55, 913–923.  CrossRef CAS Google Scholar
First citationSchmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23–28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTacke, R., Lopex–Mras, A., Sperlich, J., Strohmann, C., Kuhs, W. F., Mattern, G. & Sebald, A. (1993). Chem. Ber. 126, 851–861.  CSD CrossRef CAS Web of Science Google Scholar
First citationTacke, R., Sperlich, J., Strohmann, C. & Mattern, G. (1991). Chem. Ber. 124, 1491–1496.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds