research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural, Hirshfeld surface and three-dimensional inter­action-energy studies of 1,3,5-tri­ethyl 2-amino-3,5-di­cyano-4,6-bis­­(4-fluoro­phen­yl)cyclo­hex-1-ene-1,3,5-tri­carboxyl­ate

crossmark logo

aDepartment of Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru 577102, Karnataka, India, bDepartment of Physics, Rajeev Institute of Technology, Hassan 573201, Karnataka, India, cDepartment of Physics, Government Engineering College, Bedarapura, Chamarajanagara 571313, Karnataka, India, and dAlkem Laboratories Ltd, R&D Centre, Industrial Estate, 4th Phase, Bangalore, Karnataka, India
*Correspondence e-mail: bnlphysics@gmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 12 December 2022; accepted 4 April 2023; online 14 April 2023)

In the title compound, C29H27F2N3O6, which crystallizes in the monoclinic space group P21/c, the cyclo­hexenone ring is puckered and adopts an envelope conformation. The crystal structure features various inter­molecular inter­actions, such as N—H⋯O, C—H⋯N and C—H⋯O. These inter­actions were investigated using Hirshfeld surface analysis and the three-dimensional inter­action energies were calculated using the B3LYP/6–31 G(d,p) energy density model.

1. Chemical context

Organic compounds containing hetero atoms such as fluorine, nitro­gen, sulfur and oxygen exhibit significant biological activities such as anti­oxidant (Fu et al., 2010[Fu, J., Cheng, K., Zhang, Z. M., Fang, R. Q. & Zhu, H. L. (2010). Eur. J. Med. Chem. 45, 2638-2643. https://doi.org/10.1016/j.ejmech.2010.01.066]), insecticidal (Carbonnelle et al., 2005[Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546-556.]), anti­bacterial, anti­fungal (Sener et al., 2000[Sener, E. A., Bingöl, K. K., Oren, I., Arpaci, O. T., Yaçin, I. & Altanlar, N. (2000). Farmaco, 55, 469-476. https://doi.org/10.1016/S0014-827X(00)00070-7]), anti-inflammatory (Khanum et al., 2004[Khanum, S. A., Shashikanth, S. & Deepak, A. V. (2004). Bioorg. Chem. 32, 211-222.]), anti­convulsant, analgesic and anti­tumor (Kushwaha et al., 2011[Kushwaha, N., Saini, R. K. & Kushwaha, S. K. (2011). Int. J. Chem. Tech. Res. 3, 203-209.]). These compounds find a wide range of applications in the fields of agriculture and biochemistry as well as in the pharmaceuticals industry. Hence, hetero organic compounds have attracted the attention of chemists with the aim of designing and synthesizing new organic compounds. The title compound was synthesized, its structure was studied by X-ray diffraction techniques and a computational analysis was performed to understand the inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the cyclo­hexenone ring (C1–C6) is puckered [maximum puckering amplitude Q = 0.554 (4) (3) Å and exhibits an envelope conformation on atom C2 (Cremer & Pople, 1975[Cremer, D. T. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The bond lengths and bond angles agree with those of previously reported related compounds (Gunasekaran et al., 2009[Gunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2009). Acta Cryst. E65, o3188.]; Mertsalov et al., 2021[Mertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021). Acta Cryst. E77, 237-241.]; Chandana et al., 2021[Chandana, S.N., Fares Hezam Al-Ostoot., Yasser Hussein Eissa Mohammed., Tareq N. Al-Ramadneh., Akhileshwari, P., Shaukath Ara Khanum., Sridhar, M.A., and Lakshminarayana, B.N. (2021). Heliyon, e06464(3). https://doi.org/10.1002/eji.200425007]; Ganesha, Sreenatha et al., 2023[Ganesha, D. P., Sreenatha, N. R., Shankara, S. R. & Lakshminarayana, B. N. (2023). Acta Cryst. E79, 65-69.]; Ganesha, Nizamuddin et al., 2023[Ganesha, D. P., Nizamuddin, S., Sreenatha, N. R., Gnanendra, C. R. & Lakshminarayana, B. N. (2023). J. Mol. Struct. 1274, 134462.]; Ganesha et al., 2022[Ganesha, D. P., Sreenatha, N. R., Gnanendra, C. R. & Lakshminarayana, B. N. (2022). Materials Today: Proceedings., 49, 817-823.]; Sreenatha et al., 2018[Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P. & Gnanendra, C. R. (2018). Acta Cryst. E74, 1451-1454.], 2020[Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B., Lakshminarayana, B. N., Hariprasad, S. & Ganesha, D. P. (2020). J. Mol. Struct. 127979. https://doi.org/10.1016/j.molstruc.2020.127979], 2022[Sreenatha, N. R., Ganesha, D. P., Jeevan Chakravarthy, A. S., Suchithra, B. & Lakshminarayana, B. N. (2022). Heliyon, e10151(8). https://doi.org/10.1016/j.heliyon.2022.e10151]; Lakshminarayana et al., 2009[Lakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237.], 2010[Lakshminarayana, B. N., Gnanendra, C. R., Prasad, T. M., Sridhar, M. A., Naik, N., Gowda, D. C. & Prasad, J. S. (2010). J. Chem. Crystallogr. 40, 686-690.], 2022[Lakshminarayana, B. N., Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B. & Hariprasad, S. (2022). Crystallogr. Rep. 67, 201-208. https://doi.org/10.1134/S1063774522020080]; Madan Kumar et al., 2018[Madan Kumar, S., Lakshminarayana, B. N., Nagaraju, S., Sushma, Ananda, S., Manjunath, B. C., Lokanath, N. K. & Byrappa, K. (2018). J. Mol. Struct. 1173, 300-306.]; HariPrasada et al., 2023[HariPrasad, S., Sreenatha, N. R., Suchithra, B., Nagesh Babu, R., Suman, G. R., Lakshminarayana, B. N. & Chakravarthy, A. S. J. (2023). J. Mol. Struct. 1275, 134558. https://doi.org/10.1016/j.molstruc.2022.134558]). The dihedral angle between the mean plane of the cyclo­hexenone (C1–C6) and fluoro­benzene rings (C7–C12 and C17–C22) are 62.3 (2) and 84.9 (2)°, respectively, confirming the non-planarity of the mol­ecule and also the equatorial orientation of the rings. The carboxyl­ate group at the C2 position is oriented +syn-clinical, --anti-clinical, +anti-clinical and –syn-clinical to the mean plane of the C1–C6 ring with torsion angles C1—C2—C13—O2 = 50.3 (4)°, C1—C2—C13—O1 = −131.3 (4)°, C3—C2—C13—O1 = 110.6 (4)° and C3—C2—C13—O2 = −67.8 (4)°. The orientation of other two carboxyl­ate groups at the C4 and C5 positions are described by the torsion angles C1—C6—C27—O6 = −15.4 (5)° (–syn-periplanar), C1—C6—C27—O5 = 167.2 (4)° (+anti-periplanar), C5—C6—C27—O5 = −17.2 (6)° (–anti-periplanar), C5—C6—C27—O6 = 160.1 (3)° (+anti-periplanar) and C3—C4—C23—O3 = 44.9 (5)° (+syn-clinal), C3—C4—C23—O4 = −136.4 (3)° (–anti-clinal), C5—C4—C23—O3 = −75.8 (4)° (–syn-clinal), C5—C4—C23—O4 = 102.9 (3)° (+anti-clinal). The orientation is due to the inter­molecular N—H⋯O and C—H⋯O inter­actions.

[Figure 1]
Figure 1
View of the title mol­ecule with displacement ellipsoids drawn at 40% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are held together by an inter­molecular inter­actions of the types N1—H2N⋯O1, C14—H14B⋯N3, and C24—H24B⋯O3 (Table 1[link]), enclosing an R22(10) closed ring motif, propagating along the [101] direction (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯N3i 0.97 2.60 3.420 (7) 143
C24—H24B⋯O3ii 0.97 2.58 3.483 (6) 156
N1—H1N⋯O5 0.87 (2) 2.03 (4) 2.662 (5) 128 (4)
N1—H2N⋯O1iii 0.88 (2) 2.25 (3) 3.064 (4) 155 (4)
N1—H2N⋯O4 0.88 (2) 2.61 (4) 3.152 (5) 121 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecules along the b axis, showing the R22(10) ring motif.
[Figure 3]
Figure 3
The inter­molecular inter­actions enclosing the R22(10) ring motif propagating along the [101] direction.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals one nearly comparable derivative, triethyl 2-(5-nitro-2H-indazol-2-yl)propane-1,2,3-tri­carboxyl­ate (NUPQAS; Boulhaoua et al., 2015[Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780-o781.]) in which intermolecular C—H⋯O and C—H⋯N bonds are observed.

5. Hirshfeld surfaces and 2D fingerprint calculations

The Hirshfeld surface (HS) mapped over dnorm was generated using CrystalExplorer17.5 (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with a colour scale of −0.3124 a.u. for red to +1.7877 a.u. for blue. The area and volume of the dnorm surface are 681.46 Å2 and 527.71 Å3, respectively. The front and rear views of the Hirshfeld surface mapped over dnorm are depicted in Fig. 4[link]. The bright-red circular spots on dnorm indicates the presence of inter­molecular N1—H2N⋯O1, C14—H14B⋯N3 and C24—H24B⋯O3 inter­actions. The percentage contribution from different inter­molecular inter­actions towards the formation of a three dimensional Hirshfeld surface (HS) was computed using two-dimensional fingerprint calculations (Fig. 5[link]). The results showed that the H⋯H (40.1%) contacts make the major contribution to the crystal packing, while the C⋯H (11.2%), N⋯H (14.7%), H⋯F (16.3%), H⋯O (14.5%) contacts also make a significant contribution to the total area of the HS surface.

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm (front and back views are shown).
[Figure 5]
Figure 5
Two-dimensional fingerprint plots showing the pecentage contributions of various inter­atomic contacts.

6. Three-dimensional-framework analysis of inter­action energies

CrystalExplorer 17.5 software calculates inter­action energies between crystal mol­ecular pairs. Energy calculations were carried out using the B3LYP/6-31G(d,p) basis set within a default radius of 3.8 Å (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.], 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]; Gavezzotti, 2002[Gavezzotti, A. (2002). J. Phys. Chem. B, 106, 4145-4154.]; Grimme, 2006[Grimme, S. (2006). J. Comput. Chem. 27, 1787-1799.]). The interaction of different molecules with the reference mol­ecule (black ball-and-stick model at the centre) in the cluster of energy frameworks is depicted in Fig. 6[link]. Fig. 7[link] depicts the energy frameworks, visualizing the strength of the inter­actions, with the Coulombic, dispersion and total energies shown in red, green and blue, respectively. The radii of the cylinders connecting the centroids of the mol­ecules indicate the relative strengths of the inter­action energies. A table of inter­action energies in component form is given in the table in Fig. 6[link]. The highest total inter­action energy (Etot = −67.4 kJ mol−1) is associated with a pair of yellow mol­ecules with the short centroid distance R = 9.29 Å with rotational symmetry −x, y + [{1\over 2}], −z + [{1\over 2}], while the lowest total inter­action energy (Etot = −17.6 kJ mol−1) was observed for a pair of green mol­ecules inter­acting at the longer centroid distance R = 12.86 Å; this is in accordance with the classical laws of electrostatics. In each of the energy terms, the dispersion component is dominant over the others.

[Figure 6]
Figure 6
Visualization of the inter­action energy values between the reference mol­ecule and the constituents of a cluster within the default radius of 3.8 Å. The table gives information on the number of mol­ecules (N) inter­acting with the reference nolecule in a cluster, the rotational symmetry (Symop) and the corresponding mol­ecular centroid–centroid distances (R, in Å) and the inter­action energies in component form.
[Figure 7]
Figure 7
Three-dimensional energy frameworks of Coulombic, dispersion and total energy terms.

7. Synthesis and crystallization

Piperidine (6 mmol) was added to ethyl cyano­acetate (30 mmol) and the mixture was stirred for 10 min. Then 4-fluoro­benzaldehyde (20 mmol) was added dropwise and during the addition, the temperature of the reaction mass rose to 333 K (it should not be cooled), and the mass was stirred for 30 min. The temperature slowly came down to 293–298 K over 30 min. The progress of the reaction was monitored by TLC and found to be complete. Methyl­ene chloride (30 ml) and water (20 ml) were added and the mixture was stirred for 10 min. The organic layer was separated and washed with sat. aq. NaCl solution and dried over anhydrous Na2SO4, then concentrated under reduced pressure to get the crude product. This was purified by silica gel column chromatography using n-hepta­ne/ethyl acetate as eluent. The mixture was quenched in cold water and the organic layer was extracted with ethyl acetate, washed with 5% sodium bicarbonate solution, and dried over anhydrous sodium sulfate. Slow evaporation of the solvent lead to crystals of the title compound, which were recrystallized from ethanol solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms).

Table 2
Experimental details

Crystal data
Chemical formula C29H27F2N3O6
Mr 551.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 297
a, b, c (Å) 12.0884 (11), 17.0492 (16), 13.5966 (11)
β (°) 100.008 (3)
V3) 2759.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.14 × 0.09 × 0.04
 
Data collection
Diffractometer Bruker Kappa APEXIII PHOTON II
No. of measured, independent and observed [I > 2σ(I)] reflections 52965, 4869, 3477
Rint 0.141
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.214, 1.14
No. of reflections 4869
No. of parameters 386
No. of restraints 47
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXL2018/3 (Sheldrick, 2015b); software used to prepare material for publication: PLATON (Spek, 2020).

1,3,5-Triethyl 2-amino-3,5-dicyano-4,6-bis(4-fluorophenyl)cyclohex-1-ene-1,3,5-tricarboxylate top
Crystal data top
C29H27F2N3O6F(000) = 1152
Mr = 551.53Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0884 (11) ÅCell parameters from 3477 reflections
b = 17.0492 (16) Åθ = 2.9–25.1°
c = 13.5966 (11) ŵ = 0.10 mm1
β = 100.008 (3)°T = 297 K
V = 2759.6 (4) Å3Block, colorless
Z = 40.14 × 0.09 × 0.04 mm
Data collection top
Bruker Kappa APEXIII PHOTON II
diffractometer
Rint = 0.141
Radiation source: fine focus sealed tubeθmax = 25.0°, θmin = 2.9°
φ and ω scansh = 1414
52965 measured reflectionsk = 2020
4869 independent reflectionsl = 1615
3477 reflections with I > 2σ(I)
Refinement top
Refinement on F247 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.087H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.095P)2 + 2.1236P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
4869 reflectionsΔρmax = 0.32 e Å3
386 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7198 (3)0.2207 (2)0.2001 (3)0.0240 (8)
H10.7277690.2310410.1307830.029*
C20.6104 (3)0.2626 (2)0.2181 (2)0.0235 (8)
C30.5101 (3)0.2230 (2)0.1488 (2)0.0234 (8)
H30.5321150.2210200.0827400.028*
C40.4967 (3)0.1361 (2)0.1785 (3)0.0253 (8)
C50.6106 (3)0.0939 (2)0.2085 (3)0.0285 (8)
C60.7102 (3)0.1323 (2)0.2112 (3)0.0264 (8)
C70.8219 (3)0.2567 (2)0.2671 (3)0.0286 (8)
C80.8565 (3)0.2338 (2)0.3650 (3)0.0403 (10)
H80.8171460.1944090.3912820.048*
C90.9480 (4)0.2679 (3)0.4252 (4)0.0531 (12)
H90.9703800.2521130.4911500.064*
C101.0048 (4)0.3258 (3)0.3841 (4)0.0601 (14)
C110.9741 (4)0.3508 (3)0.2875 (4)0.0521 (13)
H111.0136650.3903430.2617320.062*
C120.8822 (3)0.3153 (2)0.2293 (3)0.0378 (10)
H120.8604410.3310960.1633410.045*
C130.6100 (3)0.3501 (2)0.1913 (3)0.0290 (8)
C140.6296 (6)0.4404 (3)0.0641 (5)0.085 (2)
H14A0.5539660.4512750.0297240.102*
H14B0.6461420.4762500.1201250.102*
C150.7038 (9)0.4537 (4)0.0001 (7)0.143 (4)
H15A0.6973390.5070960.0226470.215*
H15B0.7790250.4440780.0339560.215*
H15C0.6868510.4191040.0564450.215*
C160.6009 (3)0.2580 (2)0.3251 (3)0.0282 (8)
C170.3999 (3)0.2679 (2)0.1335 (3)0.0255 (8)
C180.3455 (3)0.2816 (3)0.0369 (3)0.0428 (11)
H180.3782040.2641550.0162080.051*
C190.2441 (4)0.3203 (3)0.0172 (4)0.0556 (13)
H190.2080540.3289360.0481250.067*
C200.1976 (3)0.3458 (3)0.0969 (4)0.0489 (12)
C210.2487 (3)0.3355 (2)0.1932 (4)0.0430 (11)
H210.2158530.3542550.2455980.052*
C220.3500 (3)0.2967 (2)0.2117 (3)0.0352 (9)
H220.3858880.2895080.2773020.042*
C230.4342 (3)0.0933 (2)0.0843 (3)0.0303 (9)
C240.2967 (4)0.0024 (3)0.0223 (4)0.0538 (13)
H24A0.2686390.0304940.0348690.065*
H24B0.3481930.0404680.0024750.065*
C250.2039 (5)0.0422 (4)0.0563 (4)0.0697 (16)
H25A0.1647710.0741360.0033030.105*
H25B0.2325260.0747080.1126360.105*
H25C0.1532790.0040200.0754350.105*
C260.4322 (3)0.1278 (2)0.2620 (3)0.0312 (9)
C270.8120 (3)0.0845 (2)0.2178 (3)0.0356 (9)
C280.998 (3)0.084 (2)0.1734 (17)0.058 (5)0.345 (12)
H28A1.0298150.1085630.1201920.070*0.345 (12)
H28B0.9846970.0290900.1585810.070*0.345 (12)
C291.0710 (15)0.0958 (13)0.2720 (15)0.084 (5)0.345 (12)
H29A1.1426740.0717190.2715320.126*0.345 (12)
H29B1.0810770.1508670.2851530.126*0.345 (12)
H29C1.0363860.0721460.3231780.126*0.345 (12)
C28'1.0074 (13)0.0836 (10)0.2141 (11)0.063 (3)0.655 (12)
H28C1.0164420.0611170.2806000.076*0.655 (12)
H28D1.0131410.0417970.1668480.076*0.655 (12)
C29'1.0950 (6)0.1438 (6)0.2095 (8)0.070 (3)0.655 (12)
H29D1.1679490.1201500.2255390.105*0.655 (12)
H29E1.0851690.1655360.1434520.105*0.655 (12)
H29F1.0884550.1847650.2566730.105*0.655 (12)
F11.0955 (3)0.3596 (2)0.4425 (3)0.0998 (13)
F20.0967 (2)0.3833 (2)0.0775 (3)0.0818 (10)
N10.5985 (3)0.01657 (19)0.2255 (3)0.0421 (9)
H1N0.658 (3)0.013 (2)0.240 (3)0.050*
H2N0.536 (2)0.010 (2)0.215 (3)0.050*
N20.5956 (3)0.2536 (2)0.4077 (3)0.0475 (10)
N30.3848 (3)0.1197 (2)0.3262 (3)0.0478 (10)
O10.5874 (3)0.40133 (16)0.2450 (2)0.0477 (8)
O20.6346 (3)0.36003 (16)0.1017 (2)0.0444 (8)
O30.4589 (3)0.10243 (19)0.0037 (2)0.0515 (9)
O40.3547 (2)0.04598 (17)0.10520 (19)0.0394 (7)
O50.8213 (3)0.01601 (17)0.2428 (3)0.0567 (9)
O60.8963 (2)0.12367 (16)0.1887 (2)0.0464 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0252 (19)0.0198 (18)0.0296 (19)0.0023 (15)0.0116 (15)0.0003 (15)
C20.0297 (19)0.0174 (17)0.0250 (18)0.0007 (15)0.0095 (15)0.0000 (14)
C30.0286 (19)0.0199 (18)0.0238 (18)0.0012 (15)0.0109 (15)0.0016 (14)
C40.0258 (19)0.0227 (19)0.0297 (19)0.0009 (15)0.0112 (15)0.0006 (15)
C50.035 (2)0.0190 (18)0.033 (2)0.0016 (16)0.0098 (16)0.0033 (15)
C60.031 (2)0.0200 (18)0.0295 (19)0.0007 (16)0.0084 (15)0.0031 (15)
C70.0266 (19)0.0179 (18)0.042 (2)0.0016 (15)0.0066 (16)0.0019 (16)
C80.038 (2)0.028 (2)0.054 (3)0.0041 (18)0.006 (2)0.0009 (19)
C90.043 (3)0.055 (3)0.057 (3)0.001 (2)0.005 (2)0.010 (2)
C100.035 (3)0.054 (3)0.089 (4)0.007 (2)0.003 (3)0.030 (3)
C110.035 (2)0.031 (2)0.094 (4)0.012 (2)0.023 (3)0.015 (2)
C120.031 (2)0.028 (2)0.057 (3)0.0002 (18)0.0158 (19)0.0007 (19)
C130.0242 (19)0.0237 (19)0.040 (2)0.0014 (16)0.0065 (16)0.0012 (17)
C140.125 (5)0.039 (3)0.102 (5)0.024 (3)0.049 (4)0.042 (3)
C150.218 (10)0.061 (4)0.180 (8)0.010 (5)0.113 (8)0.055 (5)
C160.027 (2)0.025 (2)0.033 (2)0.0031 (15)0.0077 (16)0.0020 (16)
C170.0251 (19)0.0210 (18)0.031 (2)0.0038 (15)0.0060 (15)0.0016 (15)
C180.040 (2)0.050 (3)0.038 (2)0.009 (2)0.0066 (19)0.002 (2)
C190.046 (3)0.070 (3)0.047 (3)0.014 (3)0.002 (2)0.011 (2)
C200.025 (2)0.042 (3)0.078 (4)0.0076 (19)0.001 (2)0.004 (2)
C210.030 (2)0.036 (2)0.065 (3)0.0027 (19)0.016 (2)0.007 (2)
C220.031 (2)0.034 (2)0.042 (2)0.0045 (18)0.0097 (18)0.0013 (18)
C230.029 (2)0.025 (2)0.038 (2)0.0019 (16)0.0098 (17)0.0040 (16)
C240.048 (3)0.061 (3)0.054 (3)0.024 (2)0.013 (2)0.032 (2)
C250.064 (3)0.075 (4)0.068 (3)0.037 (3)0.005 (3)0.005 (3)
C260.034 (2)0.0210 (19)0.040 (2)0.0043 (16)0.0117 (18)0.0006 (16)
C270.036 (2)0.019 (2)0.052 (3)0.0042 (17)0.0066 (19)0.0006 (18)
C280.021 (6)0.054 (6)0.100 (12)0.014 (5)0.010 (9)0.010 (10)
C290.043 (8)0.086 (10)0.118 (11)0.001 (8)0.000 (8)0.017 (9)
C28'0.027 (5)0.057 (4)0.105 (10)0.012 (4)0.008 (7)0.008 (8)
C29'0.031 (4)0.075 (6)0.105 (7)0.002 (4)0.011 (4)0.003 (5)
F10.058 (2)0.097 (3)0.131 (3)0.0340 (19)0.0192 (19)0.035 (2)
F20.0386 (16)0.087 (2)0.115 (3)0.0305 (16)0.0012 (16)0.003 (2)
N10.036 (2)0.0187 (18)0.072 (3)0.0024 (15)0.0125 (19)0.0036 (17)
N20.056 (2)0.055 (2)0.034 (2)0.0074 (19)0.0148 (17)0.0013 (17)
N30.060 (2)0.046 (2)0.045 (2)0.0092 (19)0.030 (2)0.0024 (17)
O10.064 (2)0.0228 (15)0.059 (2)0.0075 (14)0.0186 (16)0.0112 (14)
O20.064 (2)0.0279 (15)0.0453 (17)0.0084 (14)0.0213 (15)0.0111 (13)
O30.063 (2)0.059 (2)0.0383 (17)0.0270 (17)0.0225 (15)0.0144 (15)
O40.0377 (16)0.0429 (16)0.0396 (16)0.0169 (13)0.0127 (12)0.0084 (13)
O50.0423 (18)0.0280 (17)0.100 (3)0.0084 (14)0.0130 (17)0.0077 (16)
O60.0277 (15)0.0306 (15)0.085 (2)0.0050 (12)0.0201 (15)0.0051 (15)
Geometric parameters (Å, º) top
C1—C61.520 (5)C17—C221.399 (5)
C1—C71.530 (5)C18—C191.377 (6)
C1—C21.559 (5)C18—H180.9300
C1—H10.9800C19—C201.375 (7)
C2—C161.480 (5)C19—H190.9300
C2—C131.535 (5)C20—C211.359 (6)
C2—C31.555 (5)C20—F21.362 (5)
C3—C171.520 (5)C21—C221.375 (6)
C3—C41.551 (5)C21—H210.9300
C3—H30.9800C22—H220.9300
C4—C261.491 (5)C23—O31.194 (4)
C4—C51.545 (5)C23—O41.322 (4)
C4—C231.552 (5)C24—C251.453 (6)
C5—N11.351 (5)C24—O41.472 (5)
C5—C61.365 (5)C24—H24A0.9700
C6—C271.466 (5)C24—H24B0.9700
C7—C81.380 (6)C25—H25A0.9600
C7—C121.387 (5)C25—H25B0.9600
C8—C91.385 (6)C25—H25C0.9600
C8—H80.9300C26—N31.133 (5)
C9—C101.376 (7)C27—O51.216 (5)
C9—H90.9300C27—O61.334 (5)
C10—F11.365 (5)C28—O61.45 (3)
C10—C111.369 (7)C28—C291.484 (18)
C11—C121.386 (6)C28—H28A0.9700
C11—H110.9300C28—H28B0.9700
C12—H120.9300C29—H29A0.9600
C13—O11.200 (4)C29—H29B0.9600
C13—O21.314 (4)C29—H29C0.9600
C14—C151.375 (8)C28'—C29'1.484 (14)
C14—O21.460 (5)C28'—O61.494 (18)
C14—H14A0.9700C28'—H28C0.9700
C14—H14B0.9700C28'—H28D0.9700
C15—H15A0.9600C29'—H29D0.9600
C15—H15B0.9600C29'—H29E0.9600
C15—H15C0.9600C29'—H29F0.9600
C16—N21.139 (5)N1—H1N0.874 (19)
C17—C181.383 (5)N1—H2N0.875 (19)
C6—C1—C7113.9 (3)C22—C17—C3123.8 (3)
C6—C1—C2110.9 (3)C19—C18—C17121.7 (4)
C7—C1—C2109.9 (3)C19—C18—H18119.1
C6—C1—H1107.2C17—C18—H18119.1
C7—C1—H1107.2C20—C19—C18118.0 (4)
C2—C1—H1107.2C20—C19—H19121.0
C16—C2—C13106.7 (3)C18—C19—H19121.0
C16—C2—C3112.8 (3)C21—C20—F2119.2 (4)
C13—C2—C3107.9 (3)C21—C20—C19122.6 (4)
C16—C2—C1110.1 (3)F2—C20—C19118.1 (4)
C13—C2—C1112.1 (3)C20—C21—C22118.6 (4)
C3—C2—C1107.4 (3)C20—C21—H21120.7
C17—C3—C4112.8 (3)C22—C21—H21120.7
C17—C3—C2115.9 (3)C21—C22—C17121.2 (4)
C4—C3—C2111.2 (3)C21—C22—H22119.4
C17—C3—H3105.3C17—C22—H22119.4
C4—C3—H3105.3O3—C23—O4125.7 (4)
C2—C3—H3105.3O3—C23—C4122.1 (3)
C26—C4—C5108.3 (3)O4—C23—C4112.1 (3)
C26—C4—C3112.4 (3)C25—C24—O4108.0 (4)
C5—C4—C3112.6 (3)C25—C24—H24A110.1
C26—C4—C23109.9 (3)O4—C24—H24A110.1
C5—C4—C23106.4 (3)C25—C24—H24B110.1
C3—C4—C23107.0 (3)O4—C24—H24B110.1
N1—C5—C6125.8 (4)H24A—C24—H24B108.4
N1—C5—C4112.4 (3)C24—C25—H25A109.5
C6—C5—C4121.7 (3)C24—C25—H25B109.5
C5—C6—C27117.6 (3)H25A—C25—H25B109.5
C5—C6—C1123.7 (3)C24—C25—H25C109.5
C27—C6—C1118.6 (3)H25A—C25—H25C109.5
C8—C7—C12118.0 (4)H25B—C25—H25C109.5
C8—C7—C1122.6 (3)N3—C26—C4178.2 (4)
C12—C7—C1119.3 (4)O5—C27—O6121.7 (4)
C7—C8—C9121.9 (4)O5—C27—C6125.9 (4)
C7—C8—H8119.0O6—C27—C6112.4 (3)
C9—C8—H8119.0O6—C28—C29101.3 (19)
C10—C9—C8117.7 (5)O6—C28—H28A111.5
C10—C9—H9121.2C29—C28—H28A111.5
C8—C9—H9121.2O6—C28—H28B111.5
F1—C10—C11118.9 (5)C29—C28—H28B111.5
F1—C10—C9118.3 (5)H28A—C28—H28B109.3
C11—C10—C9122.8 (4)C28—C29—H29A109.5
C10—C11—C12117.9 (4)C28—C29—H29B109.5
C10—C11—H11121.0H29A—C29—H29B109.5
C12—C11—H11121.0C28—C29—H29C109.5
C11—C12—C7121.6 (4)H29A—C29—H29C109.5
C11—C12—H12119.2H29B—C29—H29C109.5
C7—C12—H12119.2C29'—C28'—O6107.0 (12)
O1—C13—O2125.6 (4)C29'—C28'—H28C110.3
O1—C13—C2123.7 (3)O6—C28'—H28C110.3
O2—C13—C2110.7 (3)C29'—C28'—H28D110.3
C15—C14—O2112.7 (5)O6—C28'—H28D110.3
C15—C14—H14A109.1H28C—C28'—H28D108.6
O2—C14—H14A109.1C28'—C29'—H29D109.5
C15—C14—H14B109.1C28'—C29'—H29E109.5
O2—C14—H14B109.1H29D—C29'—H29E109.5
H14A—C14—H14B107.8C28'—C29'—H29F109.5
C14—C15—H15A109.5H29D—C29'—H29F109.5
C14—C15—H15B109.5H29E—C29'—H29F109.5
H15A—C15—H15B109.5C5—N1—H1N120 (3)
C14—C15—H15C109.5C5—N1—H2N127 (3)
H15A—C15—H15C109.5H1N—N1—H2N113 (4)
H15B—C15—H15C109.5C13—O2—C14116.3 (4)
N2—C16—C2178.5 (4)C23—O4—C24116.4 (3)
C18—C17—C22117.8 (3)C27—O6—C28121.5 (14)
C18—C17—C3118.4 (3)C27—O6—C28'113.9 (6)
C6—C1—C2—C1670.5 (4)C8—C7—C12—C110.5 (6)
C7—C1—C2—C1656.4 (4)C1—C7—C12—C11178.8 (3)
C6—C1—C2—C13171.0 (3)C16—C2—C13—O110.8 (5)
C7—C1—C2—C1362.1 (4)C3—C2—C13—O1110.6 (4)
C6—C1—C2—C352.6 (4)C1—C2—C13—O1131.3 (4)
C7—C1—C2—C3179.6 (3)C16—C2—C13—O2170.8 (3)
C16—C2—C3—C1774.3 (4)C3—C2—C13—O267.8 (4)
C13—C2—C3—C1743.3 (4)C1—C2—C13—O250.3 (4)
C1—C2—C3—C17164.3 (3)C4—C3—C17—C18102.1 (4)
C16—C2—C3—C456.4 (4)C2—C3—C17—C18128.1 (4)
C13—C2—C3—C4173.9 (3)C4—C3—C17—C2278.1 (4)
C1—C2—C3—C465.1 (3)C2—C3—C17—C2251.8 (5)
C17—C3—C4—C2649.1 (4)C22—C17—C18—C191.7 (6)
C2—C3—C4—C2683.1 (4)C3—C17—C18—C19178.5 (4)
C17—C3—C4—C5171.8 (3)C17—C18—C19—C200.3 (7)
C2—C3—C4—C539.6 (4)C18—C19—C20—C211.2 (7)
C17—C3—C4—C2371.6 (3)C18—C19—C20—F2179.2 (4)
C2—C3—C4—C23156.2 (3)F2—C20—C21—C22179.2 (4)
C26—C4—C5—N160.7 (4)C19—C20—C21—C221.2 (7)
C3—C4—C5—N1174.3 (3)C20—C21—C22—C170.3 (6)
C23—C4—C5—N157.4 (4)C18—C17—C22—C211.7 (6)
C26—C4—C5—C6122.6 (4)C3—C17—C22—C21178.5 (4)
C3—C4—C5—C62.4 (5)C26—C4—C23—O3167.2 (4)
C23—C4—C5—C6119.3 (4)C5—C4—C23—O375.7 (5)
N1—C5—C6—C2710.0 (6)C3—C4—C23—O344.9 (5)
C4—C5—C6—C27166.2 (3)C26—C4—C23—O414.0 (4)
N1—C5—C6—C1174.7 (4)C5—C4—C23—O4103.0 (3)
C4—C5—C6—C19.1 (5)C3—C4—C23—O4136.4 (3)
C7—C1—C6—C5142.1 (3)C5—C6—C27—O517.2 (6)
C2—C1—C6—C517.4 (5)C1—C6—C27—O5167.2 (4)
C7—C1—C6—C2742.7 (4)C5—C6—C27—O6160.1 (3)
C2—C1—C6—C27167.4 (3)C1—C6—C27—O615.4 (5)
C6—C1—C7—C841.2 (5)O1—C13—O2—C142.4 (6)
C2—C1—C7—C884.0 (4)C2—C13—O2—C14176.0 (4)
C6—C1—C7—C12139.5 (3)C15—C14—O2—C13150.1 (7)
C2—C1—C7—C1295.3 (4)O3—C23—O4—C243.5 (6)
C12—C7—C8—C90.4 (6)C4—C23—O4—C24175.1 (3)
C1—C7—C8—C9179.0 (4)C25—C24—O4—C23172.8 (4)
C7—C8—C9—C100.3 (7)O5—C27—O6—C287.9 (11)
C8—C9—C10—F1179.7 (4)C6—C27—O6—C28169.6 (10)
C8—C9—C10—C110.3 (7)O5—C27—O6—C28'14.7 (9)
F1—C10—C11—C12179.5 (4)C6—C27—O6—C28'167.8 (7)
C9—C10—C11—C120.5 (7)C29—C28—O6—C2794 (2)
C10—C11—C12—C70.6 (6)C29'—C28'—O6—C27161.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N3i0.972.603.420 (7)143
C24—H24B···O3ii0.972.583.483 (6)156
N1—H1N···O50.87 (2)2.03 (4)2.662 (5)128 (4)
N1—H2N···O1iii0.88 (2)2.25 (3)3.064 (4)155 (4)
N1—H2N···O40.88 (2)2.61 (4)3.152 (5)121 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are thankful for Department of Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India, for support and also thank the SAIF, IIT Madras, Chennai-36,Tamil Nadu, India, for the data collection.

References

First citationBoulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChandana, S.N., Fares Hezam Al-Ostoot., Yasser Hussein Eissa Mohammed., Tareq N. Al-Ramadneh., Akhileshwari, P., Shaukath Ara Khanum., Sridhar, M.A., and Lakshminarayana, B.N. (2021). Heliyon, e06464(3). https://doi.org/10.1002/eji.200425007  Google Scholar
First citationCremer, D. T. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFu, J., Cheng, K., Zhang, Z. M., Fang, R. Q. & Zhu, H. L. (2010). Eur. J. Med. Chem. 45, 2638–2643. https://doi.org/10.1016/j.ejmech.2010.01.066  Google Scholar
First citationGanesha, D. P., Nizamuddin, S., Sreenatha, N. R., Gnanendra, C. R. & Lakshminarayana, B. N. (2023). J. Mol. Struct. 1274, 134462.  Web of Science CSD CrossRef Google Scholar
First citationGanesha, D. P., Sreenatha, N. R., Gnanendra, C. R. & Lakshminarayana, B. N. (2022). Materials Today: Proceedings., 49, 817–823.  Google Scholar
First citationGanesha, D. P., Sreenatha, N. R., Shankara, S. R. & Lakshminarayana, B. N. (2023). Acta Cryst. E79, 65–69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGavezzotti, A. (2002). J. Phys. Chem. B, 106, 4145–4154.  Web of Science CrossRef CAS Google Scholar
First citationGrimme, S. (2006). J. Comput. Chem. 27, 1787–1799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2009). Acta Cryst. E65, o3188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHariPrasad, S., Sreenatha, N. R., Suchithra, B., Nagesh Babu, R., Suman, G. R., Lakshminarayana, B. N. & Chakravarthy, A. S. J. (2023). J. Mol. Struct. 1275, 134558. https://doi.org/10.1016/j.molstruc.2022.134558  Google Scholar
First citationKhanum, S. A., Shashikanth, S. & Deepak, A. V. (2004). Bioorg. Chem. 32, 211–222.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKushwaha, N., Saini, R. K. & Kushwaha, S. K. (2011). Int. J. Chem. Tech. Res. 3, 203–209.  CAS Google Scholar
First citationLakshminarayana, B. N., Gnanendra, C. R., Prasad, T. M., Sridhar, M. A., Naik, N., Gowda, D. C. & Prasad, J. S. (2010). J. Chem. Crystallogr. 40, 686–690.  Web of Science CSD CrossRef CAS Google Scholar
First citationLakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLakshminarayana, B. N., Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B. & Hariprasad, S. (2022). Crystallogr. Rep. 67, 201–208. https://doi.org/10.1134/S1063774522020080  Google Scholar
First citationMadan Kumar, S., Lakshminarayana, B. N., Nagaraju, S., Sushma, Ananda, S., Manjunath, B. C., Lokanath, N. K. & Byrappa, K. (2018). J. Mol. Struct. 1173, 300–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationMertsalov, D. F., Nadirova, M. A., Chervyakova, L. V., Grigoriev, M. S., Shelukho, E. R., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021). Acta Cryst. E77, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSener, E. A., Bingöl, K. K., Oren, I., Arpaci, O. T., Yaçin, I. & Altanlar, N. (2000). Farmaco, 55, 469–476. https://doi.org/10.1016/S0014-827X(00)00070-7  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreenatha, N. R., Ganesha, D. P., Jeevan Chakravarthy, A. S., Suchithra, B. & Lakshminarayana, B. N. (2022). Heliyon, e10151(8). https://doi.org/10.1016/j.heliyon.2022.e10151  Google Scholar
First citationSreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B., Lakshminarayana, B. N., Hariprasad, S. & Ganesha, D. P. (2020). J. Mol. Struct. 127979. https://doi.org/10.1016/j.molstruc.2020.127979  Google Scholar
First citationSreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P. & Gnanendra, C. R. (2018). Acta Cryst. E74, 1451–1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds