research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of three novel oxalate coordination compounds: Rb2Co(C2O4)2·4H2O, Rb2CoCl2(C2O4) and K2Li2Cu(C2O4)3·2H2O

crossmark logo

aDepartment of Chemistry - Ångström Laboratory, Lägerhyddsvägen 1, Box 538, 751 21, Uppsala, Sweden, and bSchool of Chemistry, University of St Andrews, KY16 9ST, Scotland, United Kingdom
*Correspondence e-mail: rebecca.clulow@kemi.uu.se

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 December 2022; accepted 27 February 2023; online 7 March 2023)

Single crystals of three novel transition-metal oxalates, dirubidium di­aqua­dioxalatocobalt(II) dihydrate or dirubidium cobalt(II) bis­(oxalate) tetra­hydrate, Rb2[Co(C2O4)2(H2O)2]·2H2O, (I), catena-poly[dirubidium [[di­chlorido­cobalt(II)]-μ-oxalato]] or dirubidium cobalt(II) dichloride oxalate, {Rb2[CoCl2(C2O4)]}n, (II), and poly[dipotassium [tri-μ-oxalato-copper(II)dilithium] dihydrate] or dipotassium dilithium copper(II) tris­(oxalate) dihydrate, {K2[Li2Cu(C2O4)3]·2H2O}n, (III), have been grown under hydro­thermal conditions and their crystal structures determined using single-crystal X-ray diffraction. The structure of (I) exhibits isolated octa­hedral [Co(C2O4)2(H2O)2] units, whereas (II) consists of trans chains of Co2+ ions bridged by bidentate oxalato ligands and (III) displays a novel tri-periodic network of Li+ and Cu2+ ions linked by oxalato bridging ligands.

1. Chemical context

Oxalate-based transition-metal complexes have long attracted inter­est because of their promising magnetic and electrochemical properties. Their magnetic properties are in part due to the oxalato ligand, which is known to facilitate magnetic exchange between transition-metal cations, and the compounds are known to exhibit both ferro- and anti­ferromagnetic inter­actions (Miller & Drillon, 2002[Miller, J. S. & Drillon, M. (2002). Magnetism: Molecules to Materials IV. Weinheim: Wiley-VCH.]; Baran, 2014[Baran, E. J. (2014). J. Coord. Chem. 67, 3734-3768.]). In addition to their magnetic properties, there have also been numerous studies concerning their electrochemical properties, which have shown promising results (Pramanik et al., 2022[Pramanik, A., Manche, A. G., Clulow, R., Lightfoot, P. & Armstrong, A. R. (2022). Dalton Trans. 51, 12467-12475.]; Cai et al., 2020[Cai, J., Lan, Y., He, H., Zhang, X., Armstrong, A. R., Yao, W., Lightfoot, P. & Tang, Y. (2020). Inorg. Chem. 59, 16936-16943.]; Yao et al., 2019[Yao, W., Armstrong, A. R., Zhou, X., Sougrati, M. T., Kidkhunthod, P., Tunmee, S., Sun, C., Sattayaporn, S., Lightfoot, P., Ji, B., Jiang, C., Wu, N., Tang, Y. & Cheng, H. M. (2019). Nat. Commun. 10, 33483. https://doi.org/10.1038/s41467-019-11077-0]). Part of the appeal of oxalate-based coordination compounds is due to their high degree of structural diversity, as a result of the oxalate ligand, which can adopt 17 different coordination modes and act as a mono-, bi-, tri- or tetra­dentate ligand (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). This has led to a vast compositional area, which is yet to be fully explored. In this context, the crystal structures of three new oxalate-based coordination compounds are reported and discussed herein.

2. Structural commentary

Rb2Co(C2O4)2·4H2O (I) consists of isolated [Co(C2O4)2(H2O)2] octa­hedra. The Co2+ cation lies on the 2c Wyckoff position with a site symmetry of [\overline{1}], leading to a trans disposition of the bidentate oxalato and aqua ligands (Fig. 1[link]). The average Co—O bond length was determined as 2.080 Å, with a calculated bond-valence sum of 2.10 valence units. The Rb+ cation has a coordination number of 11, defined by oxalate O atoms and water mol­ecules. While the water mol­ecule involving O1 coordinates to both Rb+ and Co2+, the second water mol­ecule involving O2 solely bonds to the alkali metal cation. The [Co(C2O4)2(H2O)2] octa­hedra are inter­linked by hydrogen bonding of both types of water mol­ecules, as shown in Fig. 2[link]. The mutually trans coordinating water mol­ecules (H3, O1, H4) form hydrogen bonds with the oxalate ligands of the neighbouring [Co(C2O4)2(H2O)2] octa­hedra, whilst the second type of water mol­ecule (H1, O2, H2) forms hydrogen bonds (in part bifurcated) with the oxalate ligands of two separate [Co(C2O4)2(H2O)2] octa­hedra. Numerical data for the hydrogen-bonding inter­actions are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O4 0.89 (4) 2.00 (4) 2.880 (2) 171 (4)
O2—H2⋯O4i 0.85 (5) 2.47 (5) 3.187 (2) 143 (4)
O2—H2⋯O6i 0.85 (5) 2.20 (5) 3.008 (2) 159 (4)
O1—H3⋯O5ii 0.76 (3) 1.98 (3) 2.736 (2) 174 (3)
O1—H4⋯O6iii 0.78 (3) 2.05 (3) 2.825 (2) 172 (3)
Symmetry codes: (i) [-x+2, -y, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Coordination environment of Co2+ in Rb2Co(C2O4)2·4H2O (I). Colour code: Co (blue), C (black), O (red) and H (light pink). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (viii) −x + 1, −y, −z + 1].
[Figure 2]
Figure 2
The hydrogen-bonding network of Rb2Co(C2O4)2·2H2O (I) viewed along the a and b axes. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bonds are shown as dashed lines. Colour code: Rb (pink), Co (blue), C (black), O (red) and H (light pink).

Rb2CoCl2(C2O4) (II) consists of octa­hedrally coordinated Co2+ cations. They are linked by bis-bidentate oxalate ligands to form chains extending parallel to the a axis, as shown in Fig. 3[link]. The oxalate ligands are mutually trans to one another whilst the Cl anions cap each side of the octa­hedron. Co—O bond lengths are 2.0616 (17) Å and longer for the Co—Cl bond at 2.4863 (9) Å, with a calculated bond-valence sum of 2.03 valence units for Co. The Rb+ cation has a coordination number of eight and lies between the layers formed by the Co2+ chains (Fig. 4[link]), with no direct connectivity between the chains. Each of the atoms lies on a special position within the unit cell with Wyckoff positions/site symmetries: Rb+ (4i, mm2), Co2+ (2d, mmm), Cl (4j, mm2), O (8n,. .m) and C (4h, m2m). The presence of the oxalate-bridged Co2+ chain could allow for magnetic exchange (García-Couceiro et al., 2004[Garciacute;a-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Inorg. Chim. Acta, 357, 339-344.]), hence the magnetic properties of the compound should also be investigated in the future.

[Figure 3]
Figure 3
Coordination environment of Co2+ in Rb2CoCl2(C2O4) (II). Colour code: Co (blue), Cl (green), C (black) and O (red). Displacement ellipsoids are drawn at 50% probability level. [Symmetry codes: (i) −x + 1, y, −z + 1; (vii) x, −y + 2, z; (viii) −x + 1, −y + 2, −z + 1; (ix) −x + 2, −y + 2, −z + 1; (xii) x − 1, y, z].
[Figure 4]
Figure 4
The crystal structure of Rb2CoCl2(C2O4) (II) in a view approximately along the a axis.

The Cu2+ and Li+ binding environments of K2Li2Cu(C2O4)3·2H2O (III) are shown in Fig. 5[link]. The d9 Cu2+ cations display classic Jahn–Teller distortion with elongation of the axial Cu—O bonds. The equatorial Cu—O bond lengths are 1.938 (3) (O2) and 1.942 (3) (O1) Å whilst the axial bonds are significantly longer at 2.473 (4) Å (O6). The Cu2+ ion lies on a special position with Wyckoff position and site symmetry of 6b and [\overline{3}], respectively. The Cu2+ coordination environment consists of four oxalate ligands, two of which act as bidentate bridging ligands and two of which are axially oriented and bind to four metal cations with a tricoordinate oxygen atom. The Li+ cation is tetra­hedrally coordinated by three oxalate mol­ecules, one of which is bidentate whilst the other two are monodentate. The Cu2+ and Li+-centred polyhedra are inter­connected into a tri-periodic network, as shown in Fig. 6[link]. The coordination environment of the K+ cation lies within this network and consists of eight oxygen atoms from the oxalate ligands and two water mol­ecules. These water mol­ecules exhibit disorder of the O7 atom, which is split into two positions. The inter­atomic distances between the water mol­ecules is ∼3.7 Å, which is too far apart to facilitate hydrogen bonding.

[Figure 5]
Figure 5
Coordination environments of Cu2+ and of Li+ in the crystal structure of K2Li2Cu(C2O4)3·2H2O (III). Colour code: Li (green), Cu (Blue), C (black) and O (red). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 2, −y + 2, −z + 2; (vii) −x, −y, −z + 1; (ix) x + 1, y + 1, z; (xi) x − 1, y, z; (xii) −x + 1, −y + 1, −z + 1; (xiii) x + 1, y + 1, z + 1].
[Figure 6]
Figure 6
The crystal structure of K2Li2Cu(C2O4)3·2H2O (III) viewed along the a axis.

3. Database survey

Database surveys were carried out using the Cambridge Structural Database (CSD, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds with structural similarities to the three new oxalate coordination compounds reported here. For (I), a search for first-row transition metals with the same coordination environment produced numerous results for a range of transition metals. The most similar is DIHXID [dipotassium bis­(oxalato)di­aqua­cobalt(II) tetra­hydrate; Chylewska et al., 2013[Chylewska, A., Sikorski, A., Dąbrowska, A. & Chmurzyński, L. (2013). Cent. Eur. J. Chem. 11, 8-15.]), which has the same formula type and coordination environment as (I) although with K+ rather Rb+ cations, but is not isostructural. For (II), there are several compounds containing transition-metal oxalate chains with the same binding environment, although with quite different cations involved. For example BEJHOQ {catena-[bis­(2-(5,6-di­hydro-2H-[1,3]di­thiolo[4,5-b][1,4]dithiin-2-yl­idene)-5,6-di­hydro-2H-[1,3]di­thiolo[4,5-b][1,4]dithiin-1-ium) bis­(μ-oxalato)tetra­chloro­diiron(III) di­chloro­methane solvate]} and EYALIB {catena-[bis­(2-(5,6-di­hydro-2H-[1,3]di­selenolo[4,5-b][1,4]dithiin-2-yl­idene)-5,6-di­hydro-2H-[1,3]di­selenolo[4,5-b][1,4]dithiin-1-ium) bis­(μ-oxalato)tetra­chloro­diiron(III)]; Zhang, 2016[Zhang, B. (2016). Private communication (refcode: EYALIB). CCDC, Cambridge, England.], 2017[Zhang, B. (2017). Private communication (refcode: BEJHOQ). CCDC, Cambridge, England.]). The database survey of compounds with similar binding environments to (III) focused on first-row transition metals with two bidentate and two mutually trans monodentate oxalate ligands, containing a tricoordinating oxygen atom. The search revealed evidence of only two similar compounds, viz. ADAJUL [octa­ammonium hexa­kis­(μ2-oxalato-O,O,O′)bis­(oxalato-O,O′)di­aqua­tetra­copper(II) tetra­hydrate] and ASOXOV {bis­[1,4-diazo­niabi­cyclo­(2.2.2)octa­ne]bis­(μ2-oxalato)di­aqua­bis­(oxalato)dicopper(II) tetra­hydrate; Kadir et al., 2006[Kadir, K., Mohammad Ahmed, T., Noreús, D. & Eriksson, L. (2006). Acta Cryst. E62, m1139-m1141.]; Keene et al., 2004[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Acta Cryst. E60, m378-m380.]}. These contain similar types of linkages, although with only one type of cation and only as discrete mol­ecules rather than coordination polymers. Hence, (III) represents the first example of this type of binding environment.

4. Synthesis and crystallization

The samples were synthesized via hydro­thermal syntheses in the temperature range 433–463 K over four days, from commercially available starting reagents. Compounds (I) and (II) were synthesized as by-products from the reaction of rubidium carbonate, sodium carbonate, cobalt chloride hexa­hydrate and oxalic acid dihydrate in molar ratios of 2:2:1:1.5 and 1:1.5:1:1.5 at 433 and 463 K, respectively. Compound (III) was synthesized by the reaction of potassium carbonate, lithium carbonate, copper chloride dihydrate and oxalic acid dihydrate (1:3:1:3) at 463 K. Single crystals were isolated from a mixture of products for further analysis. The resulting crystals were filtered and dried overnight at 323 K prior to analysis by X-ray diffraction.

5. Refinement

Crystal data and refinement details of the three compounds are summarized in Table 2[link]. The H atoms in (I) and (III) were allowed to refine freely. The disordered oxygen atom in compound III (O7) was split over two positions with their occupancies fixed at 0.5 while their atomic coordinates and Uijs were refined independently.

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula Rb2[Co(C2O4)2(H2O)2]·2H2O Rb2[CoCl2(C2O4)] K2[Li2Cu(C2O4)3]·2H2O
Mr 477.97 388.79 455.71
Crystal system, space group Monoclinic, P21/n Orthorhombic, Immm Triclinic, P[\overline{1}]
Temperature (K) 173 173 173
a, b, c (Å) 7.8434 (5), 7.0795 (4), 10.9133 (7) 5.3445 (3), 6.4380 (4), 12.5866 (8) 6.1847 (4), 7.2575 (5), 8.1795 (5)
α, β, γ (°) 90, 102.836 (8), 90 90, 90, 90 101.327 (11), 91.723 (11), 113.563 (11)
V3) 590.84 (7) 433.08 (5) 327.56 (5)
Z 2 2 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 9.70 13.73 2.39
Crystal size (mm) 0.21 × 0.16 × 0.08 0.20 × 0.15 × 0.07 0.14 × 0.14 × 0.07
 
Data collection
Diffractometer Rigaku Mercury2 (2x2 bin mode) Rigaku Mercury2 (2x2 bin mode) Rigaku Mercury2 (2x2 bin mode)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.681, 1.00 0.671, 1.00 0.610, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 5799, 1343, 1169 2218, 310, 296 3403, 1500, 1077
Rint 0.039 0.034 0.095
(sin θ/λ)max−1) 0.650 0.649 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 0.97 0.018, 0.043, 1.11 0.045, 0.114, 0.94
No. of reflections 1343 310 1500
No. of parameters 104 22 132
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.65, −0.64 0.63, −0.53 1.03, −1.01
Computer programs: CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear (Rigaku, 2015); cell refinement: CrystalClear (Rigaku, 2015); data reduction: CrystalClear (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Dirubidium diaquadioxalatocobalt(II) dihydrate (I) top
Crystal data top
Rb2[Co(C2O4)2(H2O)2]·2H2OF(000) = 458
Mr = 477.97Dx = 2.687 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 935 reflections
a = 7.8434 (5) Åθ = 1.9–27.5°
b = 7.0795 (4) ŵ = 9.70 mm1
c = 10.9133 (7) ÅT = 173 K
β = 102.836 (8)°Prism, orange
V = 590.84 (7) Å30.21 × 0.16 × 0.08 mm
Z = 2
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
1343 independent reflections
Radiation source: Sealed Tube1169 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.039
profile data from ω–scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.681, Tmax = 1.00k = 99
5799 measured reflectionsl = 1413
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1343 reflectionsΔρmax = 0.65 e Å3
104 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.81534 (3)0.66030 (3)0.37962 (2)0.01935 (9)
Co10.5000000.0000000.5000000.01014 (11)
O10.5165 (2)0.2912 (2)0.49112 (17)0.0160 (3)
O20.8705 (2)0.2408 (3)0.39553 (17)0.0236 (4)
O30.50631 (18)0.0198 (2)0.69060 (13)0.0143 (3)
O40.77067 (18)0.0152 (2)0.57235 (13)0.0139 (3)
O50.6916 (2)0.0314 (2)0.87422 (14)0.0186 (3)
O60.96271 (19)0.0330 (2)0.75326 (14)0.0191 (3)
C10.6578 (3)0.0014 (3)0.75938 (19)0.0118 (4)
C20.8121 (3)0.0076 (3)0.69128 (19)0.0122 (4)
H10.828 (5)0.168 (5)0.449 (4)0.056 (11)*
H20.942 (6)0.173 (6)0.367 (4)0.079 (15)*
H30.594 (4)0.342 (4)0.532 (3)0.023 (8)*
H40.494 (4)0.345 (4)0.427 (3)0.029 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.01880 (14)0.02412 (14)0.01580 (13)0.00190 (8)0.00529 (9)0.00010 (8)
Co10.0105 (2)0.01303 (19)0.00658 (19)0.00024 (14)0.00112 (15)0.00043 (14)
O10.0195 (9)0.0142 (7)0.0118 (8)0.0033 (6)0.0020 (7)0.0004 (6)
O20.0248 (10)0.0268 (9)0.0231 (9)0.0002 (8)0.0138 (8)0.0007 (7)
O30.0123 (7)0.0216 (7)0.0083 (7)0.0009 (6)0.0011 (6)0.0011 (6)
O40.0121 (7)0.0202 (7)0.0093 (7)0.0010 (6)0.0024 (6)0.0012 (6)
O50.0180 (8)0.0291 (8)0.0081 (7)0.0000 (6)0.0016 (6)0.0021 (6)
O60.0126 (8)0.0305 (9)0.0126 (7)0.0007 (7)0.0009 (6)0.0005 (7)
C10.0138 (10)0.0119 (9)0.0099 (9)0.0008 (7)0.0031 (8)0.0019 (8)
C20.0134 (10)0.0103 (9)0.0130 (10)0.0020 (8)0.0032 (8)0.0014 (8)
Geometric parameters (Å, º) top
Rb1—O23.0003 (18)Co1—O1viii2.0690 (16)
Rb1—O5i3.0209 (16)Co1—O12.0690 (16)
Rb1—O3ii3.0819 (15)Co1—O3viii2.0744 (14)
Rb1—O2iii3.0856 (19)Co1—O32.0744 (14)
Rb1—O5ii3.1023 (16)Co1—O42.0969 (14)
Rb1—O6iv3.1190 (15)Co1—O4viii2.0969 (14)
Rb1—O2v3.1461 (19)O3—C11.265 (2)
Rb1—O4vi3.1862 (15)O4—C21.276 (3)
Rb1—O1vii3.2421 (17)O5—C11.240 (3)
Rb1—O6v3.3122 (16)O6—C21.237 (3)
Rb1—O3vii3.3497 (15)C1—C21.556 (3)
O2—Rb1—O5i62.28 (5)O2iii—Rb1—O3vii58.91 (4)
O2—Rb1—O3ii62.87 (4)O5ii—Rb1—O3vii149.98 (4)
O5i—Rb1—O3ii121.12 (4)O6iv—Rb1—O3vii69.30 (4)
O2—Rb1—O2iii105.67 (5)O2v—Rb1—O3vii116.60 (4)
O5i—Rb1—O2iii148.26 (5)O4vi—Rb1—O3vii58.39 (4)
O3ii—Rb1—O2iii67.65 (4)O1vii—Rb1—O3vii52.51 (4)
O2—Rb1—O5ii65.45 (5)O6v—Rb1—O3vii84.20 (4)
O5i—Rb1—O5ii95.16 (4)O1viii—Co1—O1180.0
O3ii—Rb1—O5ii42.24 (4)O1viii—Co1—O3viii89.52 (6)
O2iii—Rb1—O5ii106.35 (5)O1—Co1—O3viii90.48 (6)
O2—Rb1—O6iv72.16 (5)O1viii—Co1—O390.48 (6)
O5i—Rb1—O6iv90.38 (4)O1—Co1—O389.52 (6)
O3ii—Rb1—O6iv92.16 (4)O3viii—Co1—O3180.0
O2iii—Rb1—O6iv58.00 (5)O1viii—Co1—O489.98 (6)
O5ii—Rb1—O6iv128.06 (4)O1—Co1—O490.02 (6)
O2—Rb1—O2v95.58 (5)O3viii—Co1—O499.83 (6)
O5i—Rb1—O2v64.67 (5)O3—Co1—O480.17 (6)
O3ii—Rb1—O2v101.60 (4)O1viii—Co1—O4viii90.02 (6)
O2iii—Rb1—O2v146.79 (5)O1—Co1—O4viii89.98 (6)
O5ii—Rb1—O2v59.77 (4)O3viii—Co1—O4viii80.17 (6)
O6iv—Rb1—O2v155.02 (4)O3—Co1—O4viii99.83 (6)
O2—Rb1—O4vi135.32 (4)O4—Co1—O4viii180.0
O5i—Rb1—O4vi73.17 (4)Co1—O1—Rb1vii91.19 (6)
O3ii—Rb1—O4vi151.80 (4)Rb1—O2—Rb1ix95.49 (5)
O2iii—Rb1—O4vi114.32 (4)Rb1—O2—Rb1v84.42 (4)
O5ii—Rb1—O4vi117.99 (4)Rb1ix—O2—Rb1v156.77 (7)
O6iv—Rb1—O4vi113.04 (4)C1—O3—Co1113.38 (13)
O2v—Rb1—O4vi60.44 (4)C1—O3—Rb1x94.92 (12)
O2—Rb1—O1vii101.48 (5)Co1—O3—Rb1x137.42 (6)
O5i—Rb1—O1vii59.06 (4)C1—O3—Rb1vii140.90 (12)
O3ii—Rb1—O1vii153.07 (4)Co1—O3—Rb1vii88.13 (5)
O2iii—Rb1—O1vii98.78 (5)Rb1x—O3—Rb1vii88.83 (4)
O5ii—Rb1—O1vii153.95 (4)C2—O4—Co1112.61 (13)
O6iv—Rb1—O1vii61.33 (4)C2—O4—Rb1xi136.21 (12)
O2v—Rb1—O1vii101.68 (5)Co1—O4—Rb1xi92.24 (5)
O4vi—Rb1—O1vii54.53 (4)C1—O5—Rb1xii141.22 (13)
O2—Rb1—O6v126.25 (5)C1—O5—Rb1x94.51 (12)
O5i—Rb1—O6v143.03 (4)Rb1xii—O5—Rb1x84.84 (4)
O3ii—Rb1—O6v66.26 (4)C2—O6—Rb1xiii145.41 (13)
O2iii—Rb1—O6v68.49 (4)C2—O6—Rb1v112.75 (13)
O5ii—Rb1—O6v65.79 (4)Rb1xiii—O6—Rb1v88.88 (4)
O6iv—Rb1—O6v126.49 (2)O5—C1—O3125.57 (19)
O2v—Rb1—O6v78.39 (4)O5—C1—C2118.35 (18)
O4vi—Rb1—O6v87.81 (4)O3—C1—C2116.07 (17)
O1vii—Rb1—O6v132.20 (4)O6—C2—O4124.8 (2)
O2—Rb1—O3vii140.70 (5)O6—C2—C1119.63 (18)
O5i—Rb1—O3vii110.22 (4)O4—C2—C1115.52 (18)
O3ii—Rb1—O3vii125.45 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+2, y+1, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x+3/2, y1/2, z+1/2; (x) x1/2, y+1/2, z+1/2; (xi) x, y1, z; (xii) x+3/2, y1/2, z+3/2; (xiii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O40.89 (4)2.00 (4)2.880 (2)171 (4)
O2—H2···O4xiv0.85 (5)2.47 (5)3.187 (2)143 (4)
O2—H2···O6xiv0.85 (5)2.20 (5)3.008 (2)159 (4)
O1—H3···O5i0.76 (3)1.98 (3)2.736 (2)174 (3)
O1—H4···O6iv0.78 (3)2.05 (3)2.825 (2)172 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z1/2; (xiv) x+2, y, z+1.
catena-Poly[dirubidium [[dichloridocobalt(II)]-µ-oxalato]] (II) top
Crystal data top
Rb2[CoCl2(C2O4)]F(000) = 358
Mr = 388.79Dx = 2.981 Mg m3
Orthorhombic, ImmmMo Kα radiation, λ = 0.71075 Å
Hall symbol: -I 2 2Cell parameters from 800 reflections
a = 5.3445 (3) Åθ = 3.2–27.5°
b = 6.4380 (4) ŵ = 13.73 mm1
c = 12.5866 (8) ÅT = 173 K
V = 433.08 (5) Å3Prism, purple
Z = 20.20 × 0.15 × 0.07 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
310 independent reflections
Radiation source: Sealed Tube296 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.034
profile data from ω–scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 66
Tmin = 0.671, Tmax = 1.00k = 88
2218 measured reflectionsl = 1616
Refinement top
Refinement on F222 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.63 e Å3
310 reflectionsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.5000000.5000000.34642 (3)0.01924 (15)
Co10.5000001.0000000.5000000.01332 (18)
Cl10.5000001.0000000.30247 (7)0.0198 (2)
O10.7911 (3)0.7898 (2)0.5000000.0154 (4)
C11.0000000.8775 (5)0.5000000.0123 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0230 (2)0.0136 (2)0.0211 (2)0.0000.0000.000
Co10.0072 (3)0.0105 (3)0.0222 (3)0.0000.0000.000
Cl10.0233 (4)0.0172 (4)0.0190 (4)0.0000.0000.000
O10.0106 (9)0.0106 (7)0.0251 (8)0.0006 (6)0.0000.000
C10.0119 (16)0.0125 (16)0.0125 (14)0.0000.0000.000
Geometric parameters (Å, º) top
Rb1—O13.1045 (13)Co1—O1vii2.0616 (17)
Rb1—O1i3.1045 (13)Co1—O1i2.0616 (17)
Rb1—O1ii3.1045 (13)Co1—O1viii2.0616 (17)
Rb1—O1iii3.1045 (13)Co1—O12.0616 (17)
Rb1—Cl1iv3.2639 (6)Co1—Cl1viii2.4863 (9)
Rb1—Cl1v3.2639 (6)Co1—Cl12.4863 (9)
Rb1—Cl1vi3.2662 (3)O1—C11.251 (2)
Rb1—Cl13.2662 (3)C1—C1ix1.577 (6)
O1—Rb1—O1i60.14 (6)O1vii—Co1—O182.03 (9)
O1—Rb1—O1ii73.89 (5)O1i—Co1—O197.97 (9)
O1i—Rb1—O1ii102.98 (4)O1viii—Co1—O1180.0
O1—Rb1—O1iii102.98 (4)O1vii—Co1—Cl1viii90.0
O1i—Rb1—O1iii73.89 (5)O1i—Co1—Cl1viii90.0
O1ii—Rb1—O1iii60.14 (6)O1viii—Co1—Cl1viii90.0
O1—Rb1—Cl1iv140.15 (3)O1—Co1—Cl1viii90.0
O1i—Rb1—Cl1iv86.98 (3)O1vii—Co1—Cl190.0
O1ii—Rb1—Cl1iv140.15 (3)O1i—Co1—Cl190.0
O1iii—Rb1—Cl1iv86.98 (3)O1viii—Co1—Cl190.0
O1—Rb1—Cl1v86.98 (3)O1—Co1—Cl190.0
O1i—Rb1—Cl1v140.15 (3)Cl1viii—Co1—Cl1180.0
O1ii—Rb1—Cl1v86.98 (3)Co1—Cl1—Rb1iv125.042 (14)
O1iii—Rb1—Cl1v140.15 (3)Co1—Cl1—Rb1v125.042 (14)
Cl1iv—Rb1—Cl1v109.92 (3)Rb1iv—Cl1—Rb1v109.92 (3)
O1—Rb1—Cl1vi134.25 (3)Co1—Cl1—Rb180.247 (16)
O1i—Rb1—Cl1vi134.25 (3)Rb1iv—Cl1—Rb195.582 (8)
O1ii—Rb1—Cl1vi60.86 (3)Rb1v—Cl1—Rb195.582 (8)
O1iii—Rb1—Cl1vi60.86 (3)Co1—Cl1—Rb1x80.246 (16)
Cl1iv—Rb1—Cl1vi84.419 (8)Rb1iv—Cl1—Rb1x95.582 (8)
Cl1v—Rb1—Cl1vi84.419 (8)Rb1v—Cl1—Rb1x95.582 (8)
O1—Rb1—Cl160.86 (3)Rb1—Cl1—Rb1x160.49 (3)
O1i—Rb1—Cl160.86 (3)C1—O1—Co1112.18 (16)
O1ii—Rb1—Cl1134.25 (3)C1—O1—Rb1iii135.91 (8)
O1iii—Rb1—Cl1134.25 (3)Co1—O1—Rb1iii90.94 (5)
Cl1iv—Rb1—Cl184.418 (8)C1—O1—Rb1135.91 (8)
Cl1v—Rb1—Cl184.418 (8)Co1—O1—Rb190.94 (5)
Cl1vi—Rb1—Cl1160.49 (3)Rb1iii—O1—Rb177.02 (4)
O1vii—Co1—O1i180.0O1xi—C1—O1126.4 (3)
O1vii—Co1—O1viii97.97 (9)O1xi—C1—C1ix116.81 (15)
O1i—Co1—O1viii82.03 (9)O1—C1—C1ix116.81 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y+3/2, z+1/2; (vi) x, y1, z; (vii) x, y+2, z; (viii) x+1, y+2, z+1; (ix) x+2, y+2, z+1; (x) x, y+1, z; (xi) x+2, y, z+1.
Poly[dipotassium [tri-µ-oxalatocopper(II)dilithium] dihydrate] (III) top
Crystal data top
K2[Li2Cu(C2O4)3]·2H2OZ = 1
Mr = 455.71F(000) = 225
Triclinic, P1Dx = 2.310 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 6.1847 (4) ÅCell parameters from 888 reflections
b = 7.2575 (5) Åθ = 2.5–27.5°
c = 8.1795 (5) ŵ = 2.38 mm1
α = 101.327 (11)°T = 173 K
β = 91.723 (11)°Prism, blue
γ = 113.563 (11)°0.14 × 0.14 × 0.07 mm
V = 327.56 (5) Å3
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
1500 independent reflections
Radiation source: Sealed Tube1077 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.095
profile data from ω–scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.610, Tmax = 1.00k = 99
3403 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
1500 reflectionsΔρmax = 1.03 e Å3
132 parametersΔρmin = 1.01 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.0000001.0000001.0000000.0141 (2)
K10.53561 (17)0.08774 (15)0.80051 (12)0.0182 (2)
O11.1046 (5)0.7828 (4)0.9188 (4)0.0139 (6)
O20.6795 (5)0.7931 (5)0.9232 (4)0.0139 (6)
O30.9423 (5)0.4577 (5)0.7685 (4)0.0166 (7)
O40.5056 (5)0.4613 (4)0.7870 (4)0.0168 (7)
O50.1518 (5)0.2387 (4)0.4512 (4)0.0174 (7)
O60.0303 (6)0.0777 (5)0.2817 (4)0.0194 (7)
O7A0.3910 (18)0.2142 (15)0.5335 (14)0.028 (2)0.5
O7B0.3555 (18)0.3016 (16)0.5653 (14)0.027 (2)0.5
C10.9305 (7)0.6178 (6)0.8431 (5)0.0125 (8)
C20.6818 (7)0.6206 (6)0.8495 (5)0.0129 (8)
C30.0359 (7)0.0482 (6)0.4216 (6)0.0138 (8)
Li10.1867 (13)0.3767 (13)0.6931 (10)0.0205 (17)
H10.481 (15)0.288 (12)0.557 (10)0.06 (3)*
H20.283 (15)0.343 (13)0.491 (11)0.07 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0105 (4)0.0100 (4)0.0191 (4)0.0037 (3)0.0009 (3)0.0015 (3)
K10.0195 (5)0.0173 (5)0.0177 (5)0.0079 (4)0.0026 (4)0.0031 (4)
O10.0106 (14)0.0118 (14)0.0176 (16)0.0044 (11)0.0000 (11)0.0000 (12)
O20.0119 (14)0.0156 (15)0.0133 (15)0.0064 (12)0.0018 (11)0.0001 (12)
O30.0171 (15)0.0116 (14)0.0204 (17)0.0064 (12)0.0047 (13)0.0005 (12)
O40.0108 (14)0.0102 (14)0.0229 (17)0.0003 (12)0.0022 (12)0.0014 (12)
O50.0223 (16)0.0086 (14)0.0159 (16)0.0012 (12)0.0031 (13)0.0018 (12)
O60.0236 (17)0.0182 (16)0.0121 (16)0.0051 (13)0.0001 (13)0.0014 (13)
O7A0.026 (5)0.012 (4)0.043 (6)0.012 (4)0.003 (4)0.011 (4)
O7B0.019 (5)0.014 (5)0.036 (6)0.007 (4)0.009 (4)0.017 (4)
C10.014 (2)0.0117 (19)0.013 (2)0.0048 (16)0.0038 (16)0.0050 (16)
C20.013 (2)0.016 (2)0.0092 (19)0.0061 (17)0.0011 (15)0.0027 (16)
C30.016 (2)0.011 (2)0.017 (2)0.0089 (17)0.0019 (17)0.0034 (17)
Li10.010 (3)0.029 (4)0.021 (4)0.010 (3)0.000 (3)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O21.938 (3)O2—C21.284 (5)
Cu1—O2i1.938 (3)O3—C11.233 (5)
Cu1—O1i1.942 (3)O3—Li1viii1.907 (8)
Cu1—O11.942 (3)O4—C21.230 (5)
K1—O7A2.609 (10)O4—Li11.901 (8)
K1—O42.814 (3)O5—C31.245 (5)
K1—O2ii2.821 (3)O5—Li11.997 (9)
K1—O7B2.854 (10)O6—C31.255 (5)
K1—O1iii2.878 (3)O6—Li1vii2.049 (9)
K1—O32.919 (3)O7A—H10.95 (8)
K1—O2iv2.946 (3)O7A—H20.89 (9)
K1—O1v3.036 (3)O7B—H10.75 (8)
K1—O7Avi3.039 (12)O7B—H20.68 (9)
K1—O6vii3.146 (3)C1—C21.549 (6)
K1—O6vi3.178 (3)C3—C3vii1.571 (9)
O1—C11.271 (5)
O2—Cu1—O2i180.0O1iii—K1—O6vi63.34 (8)
O2—Cu1—O1i93.40 (12)O3—K1—O6vi58.18 (8)
O2i—Cu1—O1i86.60 (12)O2iv—K1—O6vi61.26 (8)
O2—Cu1—O186.60 (12)O1v—K1—O6vi131.85 (9)
O2i—Cu1—O193.40 (12)O7Avi—K1—O6vi75.66 (19)
O1i—Cu1—O1180.00 (9)O6vii—K1—O6vi155.90 (12)
O7A—K1—O4119.6 (2)C1—O1—Cu1110.8 (3)
O7A—K1—O2ii134.7 (2)C1—O1—K1iii137.7 (3)
O4—K1—O2ii70.35 (9)Cu1—O1—K1iii94.37 (11)
O7A—K1—O7B13.6 (3)C1—O1—K1ix133.0 (3)
O4—K1—O7B131.3 (3)Cu1—O1—K1ix90.46 (11)
O2ii—K1—O7B127.0 (2)K1iii—O1—K1ix77.56 (8)
O7A—K1—O1iii133.6 (2)C2—O2—Cu1110.7 (3)
O4—K1—O1iii101.72 (9)C2—O2—K1ii133.6 (3)
O2ii—K1—O1iii76.43 (9)Cu1—O2—K1ii97.23 (11)
O7B—K1—O1iii125.6 (2)C2—O2—K1x132.4 (3)
O7A—K1—O3114.9 (3)Cu1—O2—K1x92.37 (11)
O4—K1—O356.61 (8)K1ii—O2—K1x79.95 (8)
O2ii—K1—O3106.84 (9)C1—O3—Li1viii136.6 (4)
O7B—K1—O3125.5 (2)C1—O3—K1112.5 (3)
O1iii—K1—O370.04 (9)Li1viii—O3—K1107.9 (3)
O7A—K1—O2iv80.2 (2)C2—O4—Li1139.7 (4)
O4—K1—O2iv159.58 (9)C2—O4—K1116.4 (3)
O2ii—K1—O2iv100.05 (8)Li1—O4—K1103.7 (3)
O7B—K1—O2iv69.0 (2)C3—O5—Li1113.3 (4)
O1iii—K1—O2iv57.99 (8)C3—O6—Li1vii111.7 (4)
O3—K1—O2iv112.41 (9)C3—O6—K1vii100.4 (3)
O7A—K1—O1v80.5 (3)Li1vii—O6—K1vii89.8 (2)
O4—K1—O1v113.85 (9)C3—O6—K1vi99.4 (3)
O2ii—K1—O1v57.50 (8)Li1vii—O6—K1vi95.6 (2)
O7B—K1—O1v70.1 (2)K1vii—O6—K1vi155.90 (12)
O1iii—K1—O1v102.44 (8)K1—O7A—K1vi115.8 (4)
O3—K1—O1v164.28 (9)K1—O7A—H1100 (5)
O2iv—K1—O1v72.19 (8)K1vi—O7A—H1113 (5)
O7A—K1—O7Avi64.2 (4)K1—O7A—H2144 (6)
O4—K1—O7Avi64.04 (18)K1vi—O7A—H296 (6)
O2ii—K1—O7Avi132.00 (18)H1—O7A—H281 (7)
O7B—K1—O7Avi77.7 (4)K1—O7B—H189 (6)
O1iii—K1—O7Avi126.0 (2)K1—O7B—H2135 (8)
O3—K1—O7Avi58.7 (2)H1—O7B—H2113 (9)
O2iv—K1—O7Avi127.94 (18)O3—C1—O1126.1 (4)
O1v—K1—O7Avi131.4 (2)O3—C1—C2118.0 (4)
O7A—K1—O6vii82.2 (2)O1—C1—C2115.9 (4)
O4—K1—O6vii61.81 (9)O4—C2—O2125.6 (4)
O2ii—K1—O6vii63.59 (8)O4—C2—C1118.7 (4)
O7B—K1—O6vii84.8 (2)O2—C2—C1115.7 (3)
O1iii—K1—O6vii139.77 (9)O5—C3—O6128.1 (4)
O3—K1—O6vii116.35 (9)O5—C3—C3vii116.4 (5)
O2iv—K1—O6vii131.16 (9)O6—C3—C3vii115.6 (5)
O1v—K1—O6vii60.12 (8)O4—Li1—O3xi131.6 (5)
O7Avi—K1—O6vii81.9 (2)O4—Li1—O5108.5 (4)
O7A—K1—O6vi80.2 (2)O3xi—Li1—O5117.8 (4)
O4—K1—O6vi114.08 (9)O4—Li1—O6vii102.2 (4)
O2ii—K1—O6vi139.69 (9)O3xi—Li1—O6vii97.4 (4)
O7B—K1—O6vi82.0 (2)O5—Li1—O6vii82.4 (3)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+2; (iv) x, y1, z; (v) x1, y1, z; (vi) x+1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x1, y, z.
Cu—O bond Lengths of Compound III top
BondBond distance (Å)
Cu—O11.942 (3)
Cu—O1i1.942 (3)
Cu—O21.938 (3)
Cu—O2i1.938 (3)
Cu—O62.473 (4)
Cu—O6i2.473 (4)
Symmetry codes: (i) -x + 2, -y + 2, -z + 2.

Funding information

The authors would like to acknowledge the EPSRC for a Doctoral studentship to RC DTG012 EP/K503162–1 and the Swedish foundation for strategic research (SSF), project contract EM-16–0039.

References

First citationBaran, E. J. (2014). J. Coord. Chem. 67, 3734–3768.  Web of Science CrossRef CAS Google Scholar
First citationCai, J., Lan, Y., He, H., Zhang, X., Armstrong, A. R., Yao, W., Lightfoot, P. & Tang, Y. (2020). Inorg. Chem. 59, 16936–16943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChylewska, A., Sikorski, A., Dąbrowska, A. & Chmurzyński, L. (2013). Cent. Eur. J. Chem. 11, 8–15.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarciacute;a-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Inorg. Chim. Acta, 357, 339–344.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKadir, K., Mohammad Ahmed, T., Noreús, D. & Eriksson, L. (2006). Acta Cryst. E62, m1139–m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKeene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Acta Cryst. E60, m378–m380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMiller, J. S. & Drillon, M. (2002). Magnetism: Molecules to Materials IV. Weinheim: Wiley-VCH.  Google Scholar
First citationPramanik, A., Manche, A. G., Clulow, R., Lightfoot, P. & Armstrong, A. R. (2022). Dalton Trans. 51, 12467–12475.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYao, W., Armstrong, A. R., Zhou, X., Sougrati, M. T., Kidkhunthod, P., Tunmee, S., Sun, C., Sattayaporn, S., Lightfoot, P., Ji, B., Jiang, C., Wu, N., Tang, Y. & Cheng, H. M. (2019). Nat. Commun. 10, 33483. https://doi.org/10.1038/s41467-019-11077-0  Google Scholar
First citationZhang, B. (2016). Private communication (refcode: EYALIB). CCDC, Cambridge, England.  Google Scholar
First citationZhang, B. (2017). Private communication (refcode: BEJHOQ). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds