

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 December 2022 Accepted 3 February 2023

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; cobalt(II)isothiocyante; diethylcarbamazine; Scott test.

CCDC reference: 2239646

Supporting information: this article has supporting information at journals.iucr.org/e

Bis(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis(isothiocyanato- κN)cobalt(II), a model compound for the blue color developed in the Scott test

Allen G. Oliver, Tracy-Lynn E. Lockwood, Jessica Zinna and Marya Lieberman*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. *Correspondence e-mail: mlieberm@nd.edu

The complex, bis(*N*,*N*-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis-(isothiocyanato- κN)cobalt(II) (*N*,*N*-diethyl-4-methyl-4-piperazine-1-carboxamide = diethylcarbamazine), (C₁₀H₂₂N₃O)₂[Co(NCS)₄], is presented. This complex is a blue precipitate, insoluble in water but soluble in organic solvents, that is formed from the reaction of diethylcarbamazine citrate, a protonated tertiary amine, with cobalt(II) and thiocyanate. This reaction, in the form of the Scott test, is a common presumptive test for cocaine hydrochloride. The known cobalt compound, [K₂Co(NCS)₄]·3H₂O, has a deep-blue coloration due to the tetrahedral [Co(NCS)₄]²⁻ that is also present in the ion pair with bulky amines, and is similar to the color of other tetrahedral cobalt(II) complex ions, such as [CoCl₄]²⁻. The structure is consistent with a previous proposal that a hydrophobic ion pair formed between [Co(NCS)₄]²⁻ and two protonated molecules of cocaine is responsible for the blue hydrophobic products formed by cocaine in the Scott test.

1. Chemical context

In forensics and law enforcement, the Scott test, and modifications to that test (Scott, 1973; Fansello & Higgins, 1986; Tsujikawa *et al.*, 2017), provide identification of tertiary amines from opioids present in a sample. However, there are few reports on the nature of the coloration that is observed during this test, which can vary from powder blue to royal blue, purple, blue–green, or green depending on the identity of the tertiary amine being tested. Oguri and co-workers found that the blue precipitates from cocaine hydrochloride have a 1:2 cobalt:cocaine stoichiometry (Oguri *et al.*, 1995), and IR spectra show the blue precipitates contain one or more thiocyanate units (Morris, 2007). However, the strong blue color is consistent with a tetrahedral Co^{II} species, rather than the octahedral structure postulated by Oguri and co-workers.

As part of our on-going research into detection of functional groups using Paper Analytical Devices (PADs, Weaver *et al.*, 2013; idPADs Lockwood *et al.*, 2020), we sought to understand why tertiary amines give blue precipitates of so many colors in the presence of the Scott reagent. The citrate salt (diethylcarbamazinium citrate; CAS#1642-54-2) of a suitable tertiary amine (diethylcarbamazine; CAS#90-89-1) was selected as a representative tertiary amine. The title compound was prepared by extraction into a CH_2Cl_2 solution from a dried, stoichiometric mixture (1:2) of $K_2[Co(NCS)_4]$

research communications

and diethylcarbamazinium citrate that yielded the blue crystals used in this study. The tetrahedral ion $[Co(NCS)_4]^{2-}$ can also be readily formed by disproportionation of the reagent used for the Scott test [the neutral compound $Co(SCN)_2$] in the presence of a suitable amine, as demonstrated in the synthesis for the isothiopendylium tetrakis(isothiocyanato)cobalt(II) complex (refcode: QUXKOK, Arunkashi *et al.*, 2010), which, like our structure, is an ion pair between two protonated amines and $[Co(NCS)_4]^{2-}$.

This formulation for the ion pair has been proposed in the Scott test literature for cocaine: $[Co^{2+} + 4SCN^- +2B:$ (color red) $\leftarrow \rightarrow [Co(SCN)_4)B_2]^{2-}$ (color blue)] (Conceição *et al.*, 2014, in Portugese), and the [(cocaineH)₂[Co(NCS)₄] ion pair features in several flow-injection analysis methods for cocaine, see for example Eisman *et al.* (1992). However, there is still no crystal structure for the Scott test product with cocaine, and only three examples are available for protonated tertiary amine ion pairs with the [Co(NCS)₄]²⁻ dianion.

The Scott test is a three-step sequence of reactions: (1) addition of 2% cobalt thiocyanate in water; (2) addition of 1.2 M HCl solution; (3) addition of chloroform. We ascribe the initial blue precipitate in the Scott test to the formation of the ion pair (amineH)₂[Co(NCS)₄]. Formation of the ion pair should be a reversible reaction, so when concentrated HCl is added in the second step and it protonates the thiocyanate ions (p K_{α} for HNCS is 1.1), the tetrahedral cobalt anion falls apart and the blue color vanishes. When chloroform is added in the final step of the Scott test, the hydrophobic ion pair reforms in the organic solvent, turning it blue.

2. Structural commentary

The complex crystallizes with two protonated diethylcarbamazine cations and one tetrakis(isothiocyanato)cobalt(II) dianion in the asymmetric unit (Fig. 1). The isothiocyanate ligands are bound to the cobalt through their nitrogen atoms, leaving the more bulky and hydrophobic sulfur atoms exposed to the solvent. Protonation of the carbamazines was confirmed by the presence of electron density on the methyl-piperazine nitrogen atoms N6 and N9. The geometry of the carbamazide molecules is unexceptional. The Co^{II} center adopts a near ideal tetrahedral geometry ($\tau_4 =$ 0.97; Yang *et al.*, 2007; Table 1) that is located in a general position within the asymmetric unit. In contrast, the cobalt

0	1 ()	/	
Co1-N3	1.9412 (18)	Co1-N1	1.9502 (17)
Co1-N4	1.9451 (18)	Co1-N2	1.9520 (18)
N3-Co1-N4	110.91 (8)	N3-Co1-N2	108.49 (7)
N3-Co1-N1	112.10 (7)	N4-Co1-N2	106.51 (8)
N4-Co1-N1	109.98 (8)	N1-Co1-N2	108.66 (8)

Fable	2
-------	---

Hydrogen-bond	geometry ([A, °]).
---------------	------------	--------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{l} N6-H6\cdotsO1^{i}\\ N9-H9\cdotsO2^{ii} \end{array}$	0.84 (2)	1.86 (2)	2.691 (2)	169 (2)
	0.88 (2)	1.82 (2)	2.694 (2)	172 (2)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

center in the parent compound K₂[Co(NCS)₄]·3H₂O is located on a twofold screw-axis (space group $P2_12_12_1$; Drew & Othman, 1975). The τ_4 metric for the parent compound is 0.94 with the largest N-Co-N angle = 114.1 (3)° [in contrast to 112.10 (7)° reported here]. Although this small change should be considered carefully because the Scott test result is a solution phase analysis and here the solid-state structures are compared, it could indicate that the colorimetric response is a change in the tetrahedral ligand field about Co.

3. Supramolecular features

Both protonated tertiary amine nitrogen atoms are involved in intermolecular hydrogen bonding with amide oxygen atoms of an identical molecule related by the screw-axis along the *b*axis, resulting in mono-periodic chains of each amide along the *b*-axis direction (Fig. 2). Thus, N6 forms a hydrogen bond to $O1^i$ and N9 to $O2^{ii}$ [symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; see Table 2 for details]. Both chains are identified as having graph-set motif $C_1^1(7)$ (Etter *et al.*, 1990).

Molecular structure of bis(diethylcarbamazide) tetrakis(isothiocyanato)cobalt(II). Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms are shown as spheres of an arbitrary radius.

Packing diagram of bis(diethylcarbamazide) tetrakis(isothiocyanato)cobalt(II) viewed along the b-axis. Hydrogen atoms, except for those involved in hydrogen bonding, have been omitted for clarity. Blue dashed lines represent hydrogen-bonding interactions.

4. Database survey

The core structure of N,N-diethyl-4-methyl-4-piperazine-1carboxamide is only reported in five instances in the Cambridge Structural Database (CSD, v 5.43, update 4, November 2022; Groom et al., 2016). One is a diphenyl derivative, [4-(diphenylmethyl)-piperazin-1morpholine yl](morpholin-4-yl)methanone (refcode: IDOVAB, Kumar et al., 2017). The remaining four reported structures are a series of citrates reported by da Silva and co-workers (refcodes: QURWOQ, QURWOQ01, QURWOQ02, and QURWOQ03; da Silva et al., 2010). Diethylcarbamazide citrate is used widely in the treatment of filariasis. Comparing the diethylcarbamazide molecules reported herein with those with citrate counter-ions reported by da Silva, the structures are essentially identical. Two of da Silva's structures have some ethyl chain disorder that is the only significant difference compared with the structure reported here. Tetrakis(isothiocyanato)cobalt(II) is reported in over 200 structures. At the intersection of (isothiocyanto)cobalt and tertiary amines there are five structures. Two of these structures contain hexakis(isothiocyanato)cobalt (refcode: ILOXEP, Makhlouf, 2021; KIPYUD, Mali et al., 1991) and are not pertinent to the discussion. The remaining three compounds {QUXKOK, [*N*,*N*-dimethyl-1-(10*H*-pyrido[3,2-*b*][1,4]benzothiazin-10-yl)propan-2-aminium] (isothiopendylium), Arunkashi et al., 2010; XIXQUT, [trimethylammonium], Jie et al., 2018; YEPHIK, [2-diethylamino-N-(2,6-dimethylphenyl)acetamide] (lignocainium), Qavyas et al., 1994] contain a tetrakis(iso-

Experimental details.	
Crystal data	
Chemical formula	$(C_{10}H_{22}N_{3}O)_{2}[Co(NCS)_{4}]$
M _r	691.86
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
a, b, c (Å)	17.915 (2), 9.8192 (13), 19.954 (3)
β (°)	91.150 (2)
$V(\text{\AA}^3)$	3509.4 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.76
Crystal size (mm)	$0.28 \times 0.07 \times 0.06$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Numerical (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.810, 0.979
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	66480, 8799, 6514
R _{int}	0.052
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.670
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.087, 1.01
No. of reflections	8799
No. of parameters	384
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.98, -1.11

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

thiocyanato)cobalt(II) anion and associated tertiary amine cation. Bond angles about the cobalt centers in these three structures are similar to those reported here (range for angles about Co is 104.78 to 114.05°).

5. Synthesis and crystallization

 $K_2[Co(NCS)_4]$ was prepared by the metathesis of $Co(NO_3)_2$ (3.00 g, 16.4 mmol) and K(SCN) (3.88 g, 39.9 mmol) in 20 mL of water and allowed to dry. Dark-blue crystals were harvested for subsequent reactions; note: upon dissolution in water the solution is pink. K₂[Co(NCS)₄] and diethylcarbamazide citrate were mixed in a stoichiometric (1:2) ratio in water and allowed to dry. CHCl₃ or CH₂Cl₂ was added to extract the blue complex. Crystals were grown from the CH₂Cl₂ extract by vapor diffusion of hexane at 277 K.

6. Refinement

Table 3

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms bonded to tertiary amine nitrogen atoms (N6, N9) were refined freely. All other hydrogen atoms were included in geometrically calculated positions with C-H bond distances constrained to 0.98 Å for aromatic and methylene and 0.99 Å for methyl hydrogen atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C)$ for aromatic and methylene H atoms.

Acknowledgements

This material is based upon work supported by the Army STTR Program Office and the Army Research Office. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Army STTR Program Office or the US Army Research Office.

Funding information

Funding for this research was provided by: Army Research Office (award No. W911NF-16-P-0029 to M. Lieberman).

References

- Arunkashi, H. K., Jeyaseelan, S., Vepuri, S. B., Revanasiddappa, H. D. & Devarajegowda, H. C. (2010). *Acta Cryst.* E66, m772–m773.
- Bruker (2018). *APEX3* and *SAINT*, Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.
- Conceição, V. N., Souza, L. M., Merlo, B. B., Filgueiras, P. R., Poppi, R. J. & Romão, W. (2014). *Quím. Nova* 37(9), 1538–1544.
- Drew, M. G. B. & Hamid bin Othman, A. (1975). Acta Cryst. B31, 613-614.
- Eisman, M., Gallego, M. & Valcárcel, M. (1992). Anal. Chem. 64, 1509–1512.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Fansello, J. & Higgins, P. (1986). Microgram. 19, 137-138.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jie, Y., Yuan, H., YouQuan, Z., Ting, F., Fan, H., Qian, K. & Ye, Y.-H. (2018). Z. Naturforsch. 73, 571–575.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kumar, C. S. A., Naveen, S., Prasad, S. B. B., Gowda, N. S. L. & Lokanath, N. K. (2017). J. Appl. Chem. 6, 274–281.
- Lockwood, T. E., Leong, T. X., Bliese, S. L., Helmke, A., Richard, A., Merga, G., Rorabeck, J. & Lieberman, M. (2020). J. Forensic Sci. 65, 1289–1297.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Makhlouf, J. (2021). *CSD Communication* (refcode ILOXEP, CCDC2061180). CCDC, Cambridge, England.
- Mali, T. N., Hancock, R. D., Boeyens, J. C. A. & Oosthuizen, E. L. (1991). J. Chem. Soc. Dalton Trans. pp. 1161–1163.
- Morris, J. A. (2007). J. Forensic Sci. 52, 84-87.
- Oguri, K., Wada, S., Eto, S. & Yamada, H. (1995). *Eisei Kagaku*, **41**, 274–279.
- Qayyas, N. N. A., Sridhar, M. A., Indria, A. & Prasad, J. S. (1994). Z. Kristallogr. Cryst. Mater. 209(11), 918–919.
- Scott, L. J. (1973). Microgram. 6, 179-181.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Silva, C. C. P. da, Martins, F. T., Honorato, S. B., Boechat, N., Ayala, A. P. & Ellena, J. (2010). *Cryst. Growth Des.* **10**, 3094–3101.
- Tsujikawa, K., Iwata, Y. T., Segawa, H., Yamamuro, T., Kuwayama, K., Kanamori, T. & Inoue, H. (2017). *Forensic Sci. Int.* 270, 267– 274.
- Weaver, A. A., Reiser, H., Barstis, T., Benvenuti, M., Ghosh, D., Hunckler, M., Joy, B., Koenig, L., Raddell, K. & Lieberman, M. (2013). Anal. Chem. 85, 6453–6460.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

supporting information

Acta Cryst. (2023). E79, 163-166 [https://doi.org/10.1107/S2056989023000981]

Bis(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis(isothiocyanato- κN)cobalt(II), a model compound for the blue color developed in the Scott test

Allen G. Oliver, Tracy-Lynn E. Lockwood, Jessica Zinna and Marya Lieberman

Computing details

Data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis(isothiocyanto-ĸN)cobalt(II)

Crystal data	
$(C_{10}H_{22}N_{3}O)_{2}[Co(NCS)_{4}]$	F(000) = 1460
$M_{r} = 691.86$	$D_x = 1.309 \text{ Mg m}^{-3}$
Monoclinic, $P2_{1}/c$	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
a = 17.915 (2) Å	Cell parameters from 9913 reflections
b = 9.8192 (13) Å	$\theta = 2.3-27.6^{\circ}$
c = 19.954 (3) Å	$\mu = 0.76 \text{ mm}^{-1}$
$\beta = 91.150$ (2)°	T = 120 K
V = 3509.4 (8) Å ³	Rod, blue
Z = 4	$0.28 \times 0.07 \times 0.06 \text{ mm}$
Data collection	
Bruker APEXII	66480 measured reflections
diffractometer	8799 independent reflections
Radiation source: fine-focus sealed tube	6514 reflections with $I > 2\sigma(I)$
Detector resolution: 8.33 pixels mm ⁻¹	$R_{int} = 0.052$
combination of ω and φ -scans	$\theta_{max} = 28.4^{\circ}, \theta_{min} = 1.1^{\circ}$
Absorption correction: numerical	$h = -23 \rightarrow 23$
(SADABS; Krause <i>et al.</i> , 2015)	$k = -13 \rightarrow 13$
$T_{\min} = 0.810, T_{\max} = 0.979$	$l = -26 \rightarrow 26$
Refinement	Secondary atom site location: difference Fourier
Refinement on F^2	map
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent
$wR(F^2) = 0.087$	and constrained refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.030P)^2 + 2.9287P]$
8799 reflections	where $P = (F_o^2 + 2F_c^2)/3$
384 parameters	$(\Delta/\sigma)_{max} = 0.002$
0 restraints	$\Delta\rho_{max} = 0.98$ e Å ⁻³
Primary atom site location: dual	$\Delta\rho_{min} = -1.11$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.74254 (2)	0.61672 (3)	0.54618 (2)	0.02168 (7)
S1	0.92990 (4)	0.81311 (8)	0.41695 (4)	0.05019 (18)
S2	0.87654 (4)	0.32929 (6)	0.69618 (3)	0.03974 (15)
S3	0.57552 (3)	0.33888 (7)	0.42353 (3)	0.03850 (14)
S4	0.60666 (5)	0.89379 (7)	0.69206 (6)	0.0898 (4)
N1	0.81550 (10)	0.72430 (18)	0.49788 (8)	0.0287 (4)
N2	0.79572 (10)	0.49630 (18)	0.60861 (9)	0.0296 (4)
N3	0.68112 (10)	0.50601 (18)	0.48628 (8)	0.0286 (4)
N4	0.68106 (10)	0.73551 (18)	0.60020 (9)	0.0313 (4)
C1	0.86334 (12)	0.7621 (2)	0.46387 (10)	0.0264 (4)
C2	0.83000 (11)	0.4275 (2)	0.64557 (10)	0.0247 (4)
C3	0.63674 (12)	0.4369 (2)	0.45962 (9)	0.0249 (4)
C4	0.64989 (13)	0.8006 (2)	0.63879 (13)	0.0373 (6)
01	0.47917 (7)	1.15381 (14)	0.69673 (7)	0.0262 (3)
N5	0.40377 (9)	0.99660 (16)	0.74649 (8)	0.0205 (3)
N6	0.39973 (9)	0.78750 (17)	0.84633 (8)	0.0209 (3)
H6	0.4399 (12)	0.747 (2)	0.8383 (10)	0.022 (6)*
N7	0.36711 (10)	1.10644 (18)	0.64724 (9)	0.0324 (4)
C5	0.39077 (11)	0.85401 (18)	0.72708 (9)	0.0210 (4)
H5A	0.438946	0.809565	0.717291	0.025*
H5B	0.358850	0.850411	0.686039	0.025*
C6	0.35303 (10)	0.7795 (2)	0.78338 (9)	0.0222 (4)
H6A	0.303459	0.820433	0.791130	0.027*
H6B	0.345499	0.682859	0.770736	0.027*
C7	0.41778 (11)	0.9324 (2)	0.86332 (10)	0.0241 (4)
H7A	0.451831	0.935096	0.902995	0.029*
H7B	0.371368	0.981171	0.874750	0.029*
C8	0.45436 (11)	1.0032 (2)	0.80495 (9)	0.0216 (4)
H8A	0.464916	1.099404	0.816562	0.026*
H8B	0.502182	0.957921	0.794761	0.026*
C9	0.36244 (12)	0.7175 (2)	0.90305 (10)	0.0304 (5)
H9A	0.393790	0.725334	0.943679	0.046*
H9B	0.355143	0.621148	0.891989	0.046*
H9C	0.313896	0.760209	0.910702	0.046*
C10	0.41985 (11)	1.08939 (19)	0.69569 (10)	0.0223 (4)
C11	0.28776 (13)	1.0721 (3)	0.65439 (14)	0.0458 (6)
H11A	0.258149	1.157241	0.654449	0.055*
H11B	0.280949	1.026491	0.698088	0.055*
C12	0.25841 (16)	0.9804 (3)	0.59917 (17)	0.0664 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12A	0.260202	1.028600	0.556220	0.100*
H12B	0.206713	0.954935	0.608292	0.100*
H12C	0.289270	0.898163	0.597135	0.100*
C13	0.38615 (16)	1.1942 (3)	0.59024 (14)	0.0519(7)
H13A	0.413605	1.275130	0.607109	0.062*
H13B	0.339571	1.226213	0.567837	0.062*
C14	0.43331 (19)	1.1209 (4)	0.53983 (14)	0.0682 (9)
H14A	0.446433	1.183855	0.503827	0.102*
H14B	0.405125	1.043954	0.520909	0.102*
H14C	0.478997	1.087235	0.562009	0.102*
02	0.94210 (8)	0.06408 (14)	0.77411 (7)	0.0263 (3)
N8	1.00777 (9)	0.22499 (16)	0.83271 (8)	0.0212 (3)
N9	1.12181 (9)	0.42920 (17)	0.82969 (9)	0.0230 (3)
H9	1.1052 (12)	0.478 (2)	0.7954 (11)	0.034 (6)*
N10	0.90345 (9)	0.11786 (17)	0.87878 (8)	0.0240 (3)
C15	1.06216 (11)	0.2245 (2)	0.77881 (10)	0.0249 (4)
H15A	1.042531	0.277347	0.740055	0.030*
H15B	1.071278	0.129933	0.763850	0.030*
C16	1.13451 (11)	0.2875 (2)	0.80479 (10)	0.0261 (4)
H16A	1.155428	0.230933	0.841675	0.031*
H16B	1.171222	0.289546	0.768375	0.031*
C17	1.06253 (10)	0.4300 (2)	0.88160 (9)	0.0229 (4)
H17A	1.051975	0.525004	0.895086	0.028*
H17B	1.080422	0.379663	0.921790	0.028*
C18	0.99185 (10)	0.36465 (18)	0.85434 (9)	0.0209 (4)
H18A	0.953590	0.363374	0.889451	0.025*
H18B	0.972047	0.418252	0.815905	0.025*
C19	1.19218 (11)	0.4913 (2)	0.85676 (12)	0.0329 (5)
H19A	1.183296	0.587218	0.867644	0.049*
H19B	1.231081	0.485059	0.823061	0.049*
H19C	1.208379	0.442525	0.897345	0.049*
C20	0.94966 (10)	0.13172 (18)	0.82610 (9)	0.0209 (4)
C21	0.92829 (12)	0.1378 (2)	0.94905 (10)	0.0303 (5)
H21A	0.978919	0.178300	0.949711	0.036*
H21B	0.931594	0.048027	0.971455	0.036*
C22	0.87648 (14)	0.2293 (3)	0.98833 (11)	0.0408 (6)
H22A	0.876818	0.321136	0.969135	0.061*
H22B	0.893574	0.233173	1.035258	0.061*
H22C	0.825651	0.192474	0.985933	0.061*
C23	0.83827 (11)	0.0288 (2)	0.86836 (11)	0.0291 (4)
H23A	0.819629	0.000020	0.912537	0.035*
H23B	0.853961	-0.054001	0.844096	0.035*
C24	0.77536 (12)	0.0968 (2)	0.82916 (11)	0.0334 (5)
H24A	0.793927	0.129085	0.786114	0.050*
H24B	0.756463	0.174142	0.854792	0.050*
H24C	0.734967	0.031080	0.821181	0.050*
				2.020

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Col	0.02440 (13)	0.02027 (13)	0.02043 (13)	-0.00148 (11)	0.00194 (10)	0.00012 (11)
S 1	0.0401 (4)	0.0601 (4)	0.0510 (4)	-0.0233 (3)	0.0147 (3)	0.0044 (3)
S2	0.0480 (4)	0.0311 (3)	0.0393 (3)	-0.0055 (3)	-0.0194 (3)	0.0092 (2)
S3	0.0379 (3)	0.0448 (3)	0.0323 (3)	-0.0053 (3)	-0.0132 (2)	-0.0080 (3)
S4	0.0949 (6)	0.0321 (4)	0.1462 (9)	-0.0231 (4)	0.0978 (7)	-0.0344 (5)
N1	0.0318 (10)	0.0283 (9)	0.0260 (9)	-0.0050 (8)	0.0033 (7)	0.0005 (7)
N2	0.0343 (10)	0.0263 (9)	0.0282 (9)	0.0004 (8)	-0.0015 (8)	-0.0002 (7)
N3	0.0345 (10)	0.0271 (9)	0.0242 (9)	-0.0035 (8)	-0.0002 (7)	0.0006 (7)
N4	0.0283 (9)	0.0266 (9)	0.0393 (10)	-0.0023 (8)	0.0067 (8)	-0.0045 (8)
C1	0.0304 (11)	0.0226 (10)	0.0261 (10)	-0.0058 (8)	-0.0033 (9)	-0.0026 (8)
C2	0.0282 (10)	0.0213 (10)	0.0247 (10)	-0.0065 (8)	-0.0007 (8)	-0.0027 (8)
C3	0.0307 (11)	0.0263 (10)	0.0177 (9)	0.0046 (9)	0.0005 (8)	0.0025 (8)
C4	0.0333 (12)	0.0190 (10)	0.0604 (15)	-0.0071 (9)	0.0214 (11)	-0.0025 (10)
01	0.0246 (7)	0.0281 (7)	0.0261 (7)	-0.0076 (6)	0.0031 (6)	0.0000 (6)
N5	0.0212 (8)	0.0165 (8)	0.0238 (8)	-0.0024 (6)	-0.0023 (6)	-0.0015 (6)
N6	0.0189 (8)	0.0209 (8)	0.0229 (8)	0.0017 (7)	0.0025 (6)	-0.0008 (6)
N7	0.0294 (9)	0.0268 (9)	0.0406 (10)	-0.0038 (8)	-0.0102 (8)	0.0111 (8)
C5	0.0225 (9)	0.0174 (9)	0.0229 (9)	-0.0010 (7)	-0.0062 (7)	-0.0025 (7)
C6	0.0188 (9)	0.0196 (9)	0.0281 (10)	-0.0024 (7)	-0.0046 (8)	0.0006 (8)
C7	0.0284 (10)	0.0205 (9)	0.0236 (10)	-0.0014 (8)	0.0044 (8)	-0.0047 (8)
C8	0.0221 (9)	0.0210 (9)	0.0216 (9)	-0.0037 (8)	0.0004 (7)	-0.0038 (7)
C9	0.0344 (12)	0.0283 (11)	0.0287 (11)	-0.0033 (9)	0.0071 (9)	0.0054 (9)
C10	0.0232 (10)	0.0176 (9)	0.0261 (10)	0.0009 (7)	0.0010 (8)	-0.0018 (7)
C11	0.0265 (12)	0.0362 (13)	0.0738 (18)	-0.0012 (10)	-0.0165 (12)	0.0140 (13)
C12	0.0529 (17)	0.0469 (17)	0.097 (2)	-0.0115 (14)	-0.0454 (17)	0.0176 (16)
C13	0.0565 (17)	0.0458 (16)	0.0523 (16)	-0.0158 (13)	-0.0244 (13)	0.0284 (13)
C14	0.076 (2)	0.094 (3)	0.0339 (14)	-0.0269 (19)	-0.0073 (14)	0.0207 (16)
O2	0.0295 (7)	0.0231 (7)	0.0260 (7)	0.0027 (6)	-0.0047 (6)	-0.0068 (6)
N8	0.0246 (8)	0.0180 (8)	0.0212 (8)	-0.0009 (6)	0.0046 (6)	-0.0029 (6)
N9	0.0203 (8)	0.0206 (8)	0.0280 (9)	0.0013 (7)	-0.0026 (7)	0.0067 (7)
N10	0.0270 (8)	0.0249 (8)	0.0201 (8)	-0.0042 (7)	-0.0019 (6)	0.0050 (7)
C15	0.0279 (10)	0.0222 (10)	0.0250 (10)	0.0027 (8)	0.0060 (8)	-0.0032 (8)
C16	0.0244 (10)	0.0238 (10)	0.0304 (11)	0.0050 (8)	0.0039 (8)	0.0006 (8)
C17	0.0244 (10)	0.0211 (9)	0.0233 (9)	0.0021 (8)	-0.0004 (8)	-0.0011 (8)
C18	0.0227 (9)	0.0177 (9)	0.0225 (9)	0.0019 (7)	0.0018 (7)	-0.0005 (7)
C19	0.0230 (10)	0.0282 (11)	0.0472 (13)	-0.0028 (9)	-0.0060 (9)	0.0044 (10)
C20	0.0245 (9)	0.0157 (9)	0.0225 (9)	0.0045 (7)	-0.0031 (7)	0.0040 (7)
C21	0.0360 (12)	0.0347 (12)	0.0201 (10)	-0.0050 (9)	-0.0039 (8)	0.0082 (8)
C22	0.0464 (14)	0.0538 (15)	0.0227 (11)	-0.0084 (12)	0.0076 (10)	0.0005 (10)
C23	0.0290 (11)	0.0260 (11)	0.0322 (11)	-0.0061 (9)	-0.0015 (9)	0.0072 (9)
C24	0.0257 (11)	0.0375 (13)	0.0369 (12)	-0.0022 (9)	0.0011 (9)	0.0055 (10)

Geometric parameters (Å, °)

Co1—N3	1.9412 (18)	C13—C14	1.509 (4)
Co1—N4	1.9451 (18)	C13—H13A	0.9900
Co1—N1	1.9502 (17)	C13—H13B	0.9900
Co1—N2	1.9520 (18)	C14—H14A	0.9800
S1—C1	1.611 (2)	C14—H14B	0.9800
S2—C2	1.616 (2)	C14—H14C	0.9800
S3—C3	1.618 (2)	Ω^2 — C^20	1.237 (2)
S4—C4	1.613 (2)	N8—C20	1.391 (2)
N1—C1	1.165 (3)	N8—C15	1.466 (2)
N2—C2	1,166 (3)	N8—C18	1.467 (2)
N3—C3	1.165 (3)	N9—C19	1.492 (3)
N4—C4	1.153 (3)	N9—C16	1.496 (3)
Ω_1 — C_10	1.236 (2)	N9—C17	1.498 (2)
N5-C10	1 397 (2)	N9—H9	0.88(2)
N5—C8	1.397(2) 1 464(2)	N10-C20	1.358(2)
N5-C5	1470(2)	N10-C23	1.550(2) 1 470(3)
N6-C9	1 493 (2)	N10-C21	1.476(2)
N6—C7	1 497 (2)	C_{15} $-C_{16}$	1 518 (3)
N6—C6	1.497(2)	C15—H15A	0.9900
N6—H6	0.84(2)	C15—H15B	0.9900
N7—C10	1349(3)	C16—H16A	0.9900
N7—C11	1.471 (3)	C16—H16B	0.9900
N7—C13	1.472 (3)	C17—C18	1.511 (3)
C5—C6	1.512 (3)	C17—H17A	0.9900
С5—Н5А	0.9900	C17—H17B	0.9900
С5—Н5В	0.9900	C18—H18A	0.9900
С6—Н6А	0.9900	C18—H18B	0.9900
С6—Н6В	0.9900	C19—H19A	0.9800
C7—C8	1.516 (3)	C19—H19B	0.9800
С7—Н7А	0.9900	С19—Н19С	0.9800
С7—Н7В	0.9900	C21—C22	1.520 (3)
C8—H8A	0.9900	C21—H21A	0.9900
C8—H8B	0.9900	C21—H21B	0.9900
С9—Н9А	0.9800	C22—H22A	0.9800
С9—Н9В	0.9800	C22—H22B	0.9800
С9—Н9С	0.9800	С22—Н22С	0.9800
C11—C12	1.509 (4)	C23—C24	1.514 (3)
C11—H11A	0.9900	С23—Н23А	0.9900
C11—H11B	0.9900	С23—Н23В	0.9900
C12—H12A	0.9800	C24—H24A	0.9800
C12—H12B	0.9800	C24—H24B	0.9800
C12—H12C	0.9800	C24—H24C	0.9800
N3—Co1—N4	110.91 (8)	H13A—C13—H13B	107.9
N3—Co1—N1	112.10 (7)	C13—C14—H14A	109.5
N4—Co1—N1	109.98 (8)	C13—C14—H14B	109.5

N3—Co1—N2	108.49 (7)	H14A—C14—H14B	109.5
N4—Co1—N2	106.51 (8)	C13—C14—H14C	109.5
N1—Co1—N2	108.66 (8)	H14A—C14—H14C	109.5
C1—N1—Co1	165.66 (17)	H14B—C14—H14C	109.5
C2—N2—Co1	177.29 (17)	C20—N8—C15	115.83 (15)
C3—N3—Co1	168.53 (16)	C20—N8—C18	119.59 (15)
C4—N4—Co1	171.6 (2)	C15—N8—C18	110.79 (15)
N1-C1-S1	179.5 (2)	C19—N9—C16	111.56 (16)
N2—C2—S2	178.74 (19)	C19—N9—C17	110.67 (16)
N3—C3—S3	179.0 (2)	C16—N9—C17	110.44 (15)
N4—C4—S4	179.1 (2)	C19—N9—H9	109.3 (15)
C10—N5—C8	114.57 (15)	C16—N9—H9	107.2 (15)
C10—N5—C5	117.62 (15)	C17—N9—H9	107.5 (15)
C8—N5—C5	110.14 (14)	$C_{20} = N_{10} = C_{23}$	116.42 (16)
C9-N6-C7	111 33 (15)	$C_{20} = N_{10} = C_{21}$	123.05 (16)
C9—N6—C6	111.14 (15)	$C_{23} = N_{10} = C_{21}$	115.91 (16)
C7 - N6 - C6	110.78 (15)	N8-C15-C16	108 90 (16)
C9—N6—H6	108.9(14)	N8-C15-H15A	109.9
C7—N6—H6	108.3(15)	C16-C15-H15A	109.9
C6—N6—H6	106.3(14)	N8_C15_H15B	109.9
C10 - N7 - C11	124 52 (19)	C16-C15-H15B	109.9
C10 - N7 - C13	117 16 (18)	H15A - C15 - H15B	108.3
$C_{11} = N_7 = C_{13}$	116 64 (19)	N9-C16-C15	110.97 (16)
N5 C5 C6	100.64 (15)	N9 C16 H16A	100 /
N5 C5 H5A	109.04 (15)	$C_{15} = C_{16} = H_{16A}$	109.4
N_{3} C_{5} H_{5} Λ	109.7	N0 C16 H16P	109.4
N5 C5 H5B	109.7	C15 C16 H16P	109.4
N3-C5-H5B	109.7		109.4
	109.7	N0 C17 C19	100.0
NG CG C5	100.2	N9 - C17 - C18	110.44 (13)
	100.6	$N_{2} = C_{1}^{2} = H_{1}^{2} A$	109.0
	109.0	C10 - C17 - H17A	109.0
$C_{0} = C_{0} = H_{0}A$	109.0	N9-C1/-H1/B	109.6
	109.0		109.0
	109.0	HI/A - CI/-HI/B	108.1
H0A - C0 - H0B	108.1	$N\delta = C1\delta = C17$	109.00 (15)
NO-C/-C8	110.88 (15)	$N\delta = C1\delta = H18A$	109.7
NO-C/-H/A	109.5	C1/-C18-H18A	109.7
$C_8 - C_7 - H_7 A$	109.5	N8 - C18 - H18B	109.7
NO-C/-H/B	109.5	C1/-C18H18B	109.7
	109.5	HI8A—CI8—HI8B	108.2
H/A - C/ - H/B	108.1	N9—C19—H19A	109.5
N5-C8-C7	108.76 (15)	N9—C19—H19B	109.5
ND-C8-H8A	109.9	H19A—C19—H19B	109.5
С/—С8—Н8А	109.9	N9—C19—H19C	109.5
N5—C8—H8B	109.9	H19A—C19—H19C	109.5
С/—С8—Н8В	109.9	H19B—C19—H19C	109.5
H8A—C8—H8B	108.3	O2—C20—N10	122.49 (18)
N6—C9—H9A	109.5	O2—C20—N8	120.16 (17)

N6—C9—H9B	109.5	N10-C20-N8	117.35 (16)
H9A—C9—H9B	109.5	N10-C21-C22	113.13 (18)
N6—C9—H9C	109.5	N10—C21—H21A	109.0
Н9А—С9—Н9С	109.5	C22—C21—H21A	109.0
H9B—C9—H9C	109.5	N10-C21-H21B	109.0
01-C10-N7	122.55 (18)	C22—C21—H21B	109.0
01	120.73 (17)	$H_{21}A - C_{21} - H_{21}B$	107.8
N7-C10-N5	116.70 (17)	C21—C22—H22A	109.5
N7-C11-C12	112.9(2)	C21—C22—H22B	109.5
N7-C11-H11A	109.0	H22A-C22-H22B	109.5
C12— $C11$ — $H11A$	109.0	C_{21} C_{22} H_{22}	109.5
N7—C11—H11B	109.0	$H_{22}^{2} = H_{22}^{2} = H_{22}^{2}$	109.5
C_{12} C_{11} H_{11B}	109.0	$H_{22}R_{-}C_{22} = H_{22}C_{-}$	109.5
$H_{11}A = C_{11} = H_{11}B$	107.8	N10-C23-C24	109.5 113.06(17)
C11 - C12 - H12A	109.5	N10_C23_H23A	109.0
$C_{11} - C_{12} - H_{12R}$	109.5	C_{24} C_{23} H_{23A}	109.0
H_{12} C_{12} H_{12} H_{2}	109.5	N10 C23 H23R	109.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	C_{24} C_{23} H_{23} H	109.0
H_{12} H_{12} H_{12}	109.5	$123 \wedge 123 = 1123 \square 123 \square 123$	109.0
$H_{12} = C_{12} = H_{12} C_{12}$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8
$M_{12} = C_{12} = M_{12} C_{14}$	109.5	$C_{23} = C_{24} = H_{24} = H_{24}$	109.5
N7 C12 H12A	112.2 (2)	123 - 124 - 1124 D	109.5
N = C13 = H13A	109.2	H24A - C24 - H24B	109.5
N7 C12 U12D	109.2	123 - 124 - 124C	109.5
N = C13 = H12D	109.2	H24A - C24 - H24C	109.5
C14—C13—H13B	109.2	H24B—C24—H24C	109.5
C10-N5-C5-C6	-163 66 (16)	C20-N8-C15-C16	-158 44 (16)
C8 - N5 - C5 - C6	62 57 (19)	C18 - N8 - C15 - C16	61 2 (2)
C9-N6-C6-C5	178 50 (16)	C19 - N9 - C16 - C15	17876(17)
C7 - N6 - C6 - C5	54 2 (2)	C17 - N9 - C16 - C15	55 2 (2)
N_{5} C_{5} C_{6} N_{6}	-57.8(2)	N8-C15-C16-N9	-57.8(2)
C9 N6 C7 C8	-178.98(16)	C19 N9 C17 C18	-178.96(16)
C6 - N6 - C7 - C8	-54.8(2)	$C_{10} = C_{10} = C_{10} = C_{10}$	-549(2)
$C_{10} N_{5} C_{8} C_{7}$	162.42.(16)	$C_{10} = 10^{-10} = C_{17} = C_{18}$	159.67(16)
$C_{10} = 10^{-1} C_{10} = 0^{-1} C_{10} = 0^{-1} C_{10}$	-62.29(19)	$C_{10} = C_{10} = C_{17}$	-61.6(2)
N6-C7-C8-N5	58 3 (2)	N9-C17-C18-N8	57.8(2)
10 - 07 - 03 - 103	-1577(2)	C_{23} N10 C_{20} C_{23}	-66(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70(3)	$C_{23} = 110 - C_{20} = 02$	148.25(10)
$C_{11} N_7 C_{10} N_5$	7.0(3)	$C_{21} = 110 = C_{20} = 02$	174 26 (16)
C13 N7 C10 N5	-1745(2)	$C_{23} = 110 - C_{20} = 103$	-30.9(3)
$C_{13} = 10^{-10} = 10^{-10}$	1/4.3(2)	$C_{21} = N_{10} = C_{20} = N_{3}$	-6.9(3)
C_{5} N5 C_{10} O_{1}	-120.47(10)	C13 = 108 = C20 = 02	120.85(18)
C_{3} N5 C_{10} N7	-167.22(17)	$C_{10} = N_0 = C_{20} = 0_2$	129.85 (18)
$C_{0} = 10 = 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 = 10 / 10 /$	610(2)	$C_{13} = N_0 = C_{20} = N_{10}$	-510(2)
$C_{10} = N_{7} = C_{10} = N_{7}$	-127.1(2)	$C_{10} = 10 = C_{20} = 1010$	31.0(2)
C10 - N/ - C11 - C12	12/.1(2)	C_{20} N10 C_{21} C_{22}	-73.2(2)
$C_{13} = N / - C_{11} = C_{12} / C_{14}$	00.1(3)	C_{23} N10 C_{21} C_{24}	-78.8(2)
C10 - N/ - C13 - C14	19.1(3)	C_{20} N10 C_{23} C_{24}	-70.0(2)
$U_{11} - N_{12} - U_{13} - U_{14}$	-114.4 (3)	$U_2 I = I N I U = U_2 J = U_2 4$	124.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N6—H6…O1 ⁱ	0.84 (2)	1.86 (2)	2.691 (2)	169 (2)
N9—H9…O2 ⁱⁱ	0.88 (2)	1.82 (2)	2.694 (2)	172 (2)

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x+2, y+1/2, -z+3/2.