

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 30 January 2023
Accepted 1 February 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: synthesis; crystal structure; $\mathrm{Zn}(\mathrm{NCSe})_{2} ; \mathrm{Cd}(\mathrm{NCSe})_{2} ;$ coordination compounds; 4-methylpyridine.

CCDC references: 2239352; 2239351

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Syntheses and crystal structures of bis(4-methyl-pyridine- κN)bis(selenocyanato- κN)zinc(II) and catena-poly[[bis(4-methylpyridine-кN)-cadmium(II)]-di- μ-selenocyanato- $\kappa^{2} N: S e ; \kappa^{2}$ Se: N]

Christian Näther* and Inke Jess

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth Str. 2, 24118 Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The reactions of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with KSeCN and 4-methylpyridine ($\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$; 4-picoline) lead to the formation of crystals of bis(4-methylpyridine- κN)bis(selenocyanato- κN)zinc(II), $\left[\mathrm{Cd}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ (1), and catena-poly[[bis(4-methylpyridine- κN)cadmium(II)]-di- μ-seleno-cyanato- $\left.\kappa^{2} N: S e ; \kappa^{2} S e: N\right],\left[\mathrm{Cd}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]_{n}(2)$, suitable for single-crystal X-ray diffraction. The asymmetric unit of compound $\mathbf{1}$ consists of one Zn cation that is located on a twofold rotation axis as well as one selenocyanate anion and one 4-methylpyridine ligand in general positions. The Zn cations are tetrahedrally coordinated by two terminal N -bonding thiocyanate anions and two 4-methylpyridine ligands, forming discrete complexes. The asymmetric unit of compound 2 consists of two crystallographically independent Cd cations, of which one is located on a twofold rotation axis and the second on a center of inversion, as well as two crystallographically independent selenocyanate anions and two crystallographically independent 4-methylpyridine ligands in general positions. The Cd cations are octahedrally coordinated by two N - and two S bonding selenocyanate anions and two 4-methylpyridine ligands and are linked into chains by pairs of selenocyanate anions. Within the chains, the Cd cations show an alternating cis-cis-trans and all-trans coordination and therefore, the chains are corrugated. PXRD investigations prove that the Zn compound was obtained as a pure phase and that the Cd compound contains a very small amount of an additional and unknown phase. In the IR spectrum of $\mathbf{1}$, the CN stretching vibration of the selenocyanate anion is observed at $2072 \mathrm{~cm}^{-1}$, whereas in the 2 it is shifted to $2094 \mathrm{~cm}^{-1}$, in agreement with the crystal structures.

1. Chemical context

Thio- and selenocyanate anions are versatile ligands because of their variable coordination modes (Buckingham, 1994; Barnett et al., 2002; Werner et al., 2015a). The most common mode is the terminal coordination and $\mu-1,3$-bridging mode, where the latter is more pronounced for chalcophilic metal cations, whereas the former dominates for less chalcophilic metal cations. For a given metal thio- or selenocyanate and a given mono-coordinating coligand, usually several compounds with a different ratio between the metal cation and the coligand are observed, for example $M(\mathrm{NCX})_{2}(L)_{4}$ and $M(\mathrm{NCX})_{2}(L)_{2}$, or in very few cases also $M(\mathrm{NCX})_{2}(L)(M=+2$ charge transition-metal cation, $X=\mathrm{S}$, Se and $L=$ neutral mono coordinating coligand). For compounds with the composition $M(\mathrm{NCX})_{2}(L)_{4}$ and octahedrally coordinated metal cations
mostly discrete complexes are observed and hundreds of them are reported in the literature. For ligand-deficient compounds with the composition $M(\mathrm{NCS})_{2}(L)_{2}$, the octahedral coordination still dominates, but some metal ions such as Co^{2+} can show both octahedral and tetrahedral coordination (Mautner et al., 2018), whereas for $\mathrm{Zn}^{\mathrm{II}}$, the tetrahedral coordination is found exclusively.

1

For simple geometrical considerations, compounds with the composition $M(\mathrm{NCX})_{2}(L)_{2}$ and cations that shows an octahedral coordination must contain $\mu-1,3$-bridging thio or selenocyanate anions, and in this case the structural variability is much larger. In practically all cases they consist of $M(\mathrm{NCX})_{2}$ chains or layers, but compared to chain compounds, layered structures are rare. In most of the layered compounds, the transition-metal cations are linked by single μ-1,3-bridging anionic ligands into layers (Werner et al., 2015b) or two metal cations are connected via pairs of anionic ligands into dinuclear units that condense into layers via single μ-1,3-bridging anions (Suckert et al., 2016). Moreover, for an octahedral coordination, in principle five different isomers exist, including the all-trans, the all-cis and three cis-cis-trans coordinations. The majority of chain compounds show an alltrans coordination in which the metal cations are linked by pairs of anionic ligands, leading to the formation of linear chains (Banerjee et al., 2005; Mautner et al., 2018; Werner et al., 2014; Rams et al., 2020). Linear chains are also observed in compounds where the coligands are still in the trans-position, whereas the thiocyanate N and S atoms are in the cis-position (Rams et al., 2017; Jochim et al., 2018), but there are very few examples where the coligands are in the cis-position, leading to the formation of corrugated chains (Banerjee et al., 2005; Shi, Chen \& Liu, 2006; Makhlouf et al., 2022; Böhme et al., 2020). Corrugated chains are also observed for an all-cis coordination, but only very few examples have been reported (Shi, Sun et al., 2006; Zhang et al., 2006; Marsh, 2009).

However, all of the structure types mentioned above are well known for thiocyanate coordination compounds, whereas the structures of selenocyanate compounds are not as well explored and it has not been thoroughly investigated whether compounds with thio- or selenocyanate anions and the same metal:coligand ratio always show the same structures and are, for example, isotypic. This might partly be traced back to the fact that some of the selenocyanate compounds are not very stable and that compounds with bridging anionic ligands are more difficult to prepare if less chalcophilic metal cations are used (Wriedt \& Näther, 2010).

To investigate this in more detail, we prepared compounds based on $\mathrm{Zn}(\mathrm{NCSe})_{2}$ and $\mathrm{Cd}(\mathrm{NCSe})_{2}$, where the former metal ion prefers a tetrahedral and the latter an octahedral coordination. $\mathrm{Cd}^{\text {II }}$ is also very chalcophilic, which means that compounds with bridging anionic ligands can easily be prepared. 4-Methylpyridine $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)$ was selected as coligand, for which the corresponding thiocyanate compounds have been reported, whereas compounds with selenocyanate are unknown.

With $\mathrm{Zn}(\mathrm{NCS})_{2}$, compounds include three discrete complexes with the composition $\mathrm{Zn}(\mathrm{NCS})_{2}$ (4-methylpyridine $)_{4}$, in which the Zn cations are octahedrally coordinated by two terminal N -bonded thiocyanate anions and four 4-methylpyridine ligands [Cambridge Structural Database (Groom et al., 2016) refcodes EFESOX and YORHAO (Lipkowski et al., 1994) as well as QQQBUD (Ratho \& Patel, 1969)]. Two of them (EFESOX and YORHAO) represent clathrates with additional 4-methylpyridine molecules or 4-methylpyridine and water molecules. There is also one 4-methylpyridine-deficient compound with the composition $\mathrm{Zn}(\mathrm{NCS})_{2}$ (4-methylpyridine) $)_{2}$, in which the Zn cations are tetrahedrally coordinated by two terminal N -bonded thiocyanate anions and two 4-methylpyridine ligands (refcode VONTEX; Lipkowski, 1990).

With $\operatorname{Cd}(\mathrm{NCS})_{2}$, a solvate with the composition $\mathrm{Cd}(\mathrm{NCS})_{2}$ (4-methylpyridine) $)_{4} \cdot 4$-methylpyridine \cdot water has been reported, in which the Cd cations are octahedrally coordinated by two terminal N -bonded selenocyanate anions and four 4-methylpyridine ligands [refcodes DEXYIO (Dyadin et al., 1984), DEXYIO10, (Pervukhina et al., 1986) and DEXYIO11 (Marsh, 1995)]. More importantly, two compounds with the composition $\mathrm{Cd}(\mathrm{NCS})_{2}$ (4-methylpyridine $)_{2}$ are found that represent isomers. In one of these, the Cd cations are octahedrally coordinated by two terminal N - and S-bonded selenocyanate anions and two 4-methylpyridine ligands in an all-trans coordination. The Cd cations are linked by pairs of selenocyanate anions into chains, which because of the all-trans coordination are linear (FAPCOO02; Neumann et al., 2020). The second isomer was first reported in the triclinic space group $P \overline{1}$ (FAPCOO; Taniguchi et al., 1986) but it was later pointed out that it is better described as monoclinic, in space group C2/c (FAPCOO01; Marsh, 1995). In this compound, the Cd cations are also octahedrally coordinated, linked into chains, but they are corrugated because an alternating all-trans and cis-cis-trans coordination is observed. The thermodynamic relations were determined

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$ for $\mathbf{1}$.

$\mathrm{Zn} 1-\mathrm{N} 1$	$1.945(4)$	$\mathrm{Zn} 1-\mathrm{N} 11$	$2.021(3)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$120.0(3)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11$	$106.45(15)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11^{\mathrm{i}}$	$106.61(15)$	$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 11$	$110.59(18)$

Symmetry code: (i) $-x,-y+1, z$.
for both isomers, indicating that they are related by monotropism with the isomer with corrugated chains as the thermodynamically stable phase (Neumann et al., 2020). Finally there is one 4-methylpyridine-deficient compound with the composition $\mathrm{Cd}(\mathrm{NCS})_{2}$ (4-methylpyridine), in which the Cd cations are linked by pairs of anionic ligands into chains and each two of these chains are condensed into double chains via $\mu-1,1,3-(S, N, N)$-bridging thiocyanate anions (refcode VUCBUT; Neumann et al., 2020).

To search for new compounds related to those noted above, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ were reacted with KSeCN and 4-methylpyridine (4-picoline) ${ }_{2}$, which led to the formation of two compounds with the composition $\mathrm{Zn}(\mathrm{NCSe})_{2}$ (4-methylpyridine) $)_{2} \quad$ (1) and $\mathrm{Cd}(\mathrm{NCeS})_{2}(4-$ methylpyridine $)_{2}$ (2). IR spectroscopic investigations revealed that the CN stretching vibration is located at $2072 \mathrm{~cm}^{-1}$ for $\mathbf{1}$ and at $2094 \mathrm{~cm}^{-1}$ for $\mathbf{2}$, indicating that compound $\mathbf{1}$ contains terminally coordinated anionic ligands, whereas in 2 this value is at the borderline between that expected for a terminal and a bridging coordination (Figs. S1 and S2 in the supporting information). For both compounds, single crystals were obtained and characterized by single-crystal X-ray diffraction. Based on the crystallographic data, PXRD patterns were calculated and compared with the experimental pattern, showing that compound $\mathbf{1}$ was obtained as a pure phase, whereas compound 2 is contaminated with a very small amount of an unknown phase (Figs. S3 and S4). It is noted that

Figure 1
The molecular structure of $\mathbf{1}$ with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) $-x,-y+1, z$.
even if $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and KSeCN are used in excess in the synthesis, there are no hints of the formation of a 4-methyl-pyridine-deficient compound with the composition $\mathrm{Cd}(\mathrm{NCSe})_{2}$ (4-methylpyridine), as observed with $\mathrm{Cd}(\mathrm{NCS})_{2}$ (Neumann et al., 2020).

2. Structural commentary

The asymmetric unit of compound $\mathbf{1}$ consists of one selenocyanate anion and one 4-methylpyridine ligand in general positions, as well as one $\mathrm{Zn}^{\text {II }}$ cation that is located on a twofold rotation axis (Fig. 1). The Zn cations are tetrahedrally coordinated by two symmetry-related terminal N -bonded selenocyanate anions and two symmetry-related 4-methylpyridine ligands (Fig. 1). The tetrahedra are slightly distorted with the $\mathrm{N}_{\mathrm{s}}-\mathrm{Zn}-\mathrm{N}_{\mathrm{s}}(\mathrm{s}=$ selenocyanate $)$ angle as the largest (Table 1). It is noted that compound $\mathbf{1}$ is isotypic to $\mathrm{Zn}(\mathrm{NCS})_{2}(4-$ methylpyridine) ${ }_{2}$ reported by Lipkowski (1990).

The asymmetric unit of compound 2 consists of two crystallographically independent Cd cations, of which Cd 1 is located on a twofold rotation axis whereas Cd 2 is located on a center of inversion, as well as two crystallographically independent selenocyanate anions and two crystallographically independent 4-methylpyridine ligands (Fig. 2). Both Cd cations are octahedrally coordinated by two N - and two Sbonding selenocyanate anions and two 4-methylpyridine ligands but Cd1 is in a cis-cis-trans coordination with the pyridine N atoms of the 4-methylpyridine ligand in the cis position, whereas Cd2 is in an all-trans coordination (Fig. 2). Both octahedra are slightly distorted but Cd 1 is more distorted than Cd2 (Table 2). The Cd cations are linked by pairs of selenocyanate anions into chains that show an alternating cis-cis-trans and all-trans coordination. Because of the former, these chains are corrugated (Fig. 3).

Figure 2
The coordination spheres of the two Cd cations in 2 with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) $-x+1$, $y,-z+\frac{1}{2} ;$ (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$.

Table 2
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for 2.

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.338(3)$	$\mathrm{Cd} 2-\mathrm{N} 2$	$2.328(4)$
$\mathrm{Cd} 1-\mathrm{N} 11$	$2.362(4)$	$\mathrm{Cd} 2-\mathrm{N} 21$	$2.370(4)$
$\mathrm{Cd} 1-\mathrm{Se} 2$	$2.8085(6)$	$\mathrm{Cd} 2-\mathrm{Se} 1$	$2.8073(5)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$178.5(2)$	$\mathrm{N} 2^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{N} 2$	180.0
$\mathrm{~N} 1-\mathrm{Cd} 1-\mathrm{N} 11^{\mathrm{i}}$	$92.29(13)$	$\mathrm{N} 2-\mathrm{Cd} 2-\mathrm{N} 21^{\mathrm{ii}}$	$90.70(14)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 11$	$86.63(14)$	$\mathrm{N} 2-\mathrm{Cd} 2-\mathrm{N} 21$	$89.30(14)$
$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 11$	$87.53(18)$	$\mathrm{N} 21^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{N} 21$	180.0
$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Se} 2$	$82.62(11)$	$\mathrm{N} 2-\mathrm{Cd} 2-\mathrm{Se} 1^{\mathrm{ii}}$	$84.99(10)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Se} 2$	$98.42(10)$	$\mathrm{N} 21-\mathrm{Cd} 2-\mathrm{Se} 1^{\mathrm{ii}}$	$89.86(9)$
$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Se} 2$	$169.06(8)$	$\mathrm{N} 2-\mathrm{Cd} 2-\mathrm{Se} 1$	$95.01(10)$
$\mathrm{N} 11-\mathrm{Cd} 1-\mathrm{Se} 2$	$90.90(9)$	$\mathrm{N} 21-\mathrm{Cd} 2-\mathrm{Se} 1$	$90.14(9)$
$\mathrm{Se} 2-\mathrm{Cd} 1-\mathrm{Se} 2^{\mathrm{i}}$	$92.64(3)$	$\mathrm{Se} 1^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{Se} 1$	$180.000(16)$

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$.
Compound 2 is isotypic to the second isomer of $\mathrm{Cd}(\mathrm{NCS})_{2}$ (4-methylpyridine) $)_{2}$ that crystallizes in the monoclinic space group $C 2 / c$ (Marsh, 1995). In this context, it is noted that two modifications are also known for the corresponding Fe compound $\mathrm{Fe}(\mathrm{NCS})_{2}$ (4-methylpyridine) 2_{2} (Neumann et al., 2020), of which form I is isotypic to compound 2 and the corrugated chain isomer of $\operatorname{Cd}(\mathrm{NCS})_{2}$ (4-methylpyridine) $)_{2}$, whereas form II of the Fe compound is isotypic to the linear chain isomer. For the Fe isomers, the same thermodynamic relations were found as for the isomers with $\mathrm{Cd}(\mathrm{NCS})_{2}$ with the corrugated chain isomer as the thermodynamically stable form (Neumann et al., 2020). Moreover, compound 2 is also isotypic to $\mathrm{Cd}(\mathrm{NCS})_{2}(4 \text {-chloropyridine })_{2}$ reported by Goher et al. (2003; refcode EMASIU). This can be traced back to the fact that the van der Waals radii of a methyl

Figure 3
View of part of a chain in the crystal structure of compound 2 showing the alternating cis-cis-trans and all-trans coordination.

Figure 4
Crystal structure of compound $\mathbf{1}$ viewed along the b-axis direction.

Figure 5
Crystal structure of compound 2 viewed along [101].
group and a chlorine atom are comparable, which is expressed by the so-called chloro-methyl exchange rule (Desiraju \& Sarma, 1986 and references cited therein).

Finally, it is noted that some compounds with the general composition $\mathrm{Cd}(\mathrm{NCSe})_{2}(L)_{2}$ with L as a monocoordinating coligand are reported, in which the Cd cations are linked by pairs of anionic ligands into chains, but the majority of compounds show an all-trans coordination and the formation of linear chains. An overview is given in the database survey.

3. Supramolecular features

In the crystal structure of compound $\mathbf{1}$, the discrete complexes are arranged into columns that propagate along the c-axis direction (Fig. 4). Within these columns, the selenocyanate anions and the 4-methylpyridine ligands always point in the same direction, from which the non-centrosymmetric arrangement is visible (Fig. 4). There are no directional intermolecular interactions between the complexes and nor is there any indication of $\pi-\pi$ interactions.

In compound 2, the chains are closely packed and propagate along the [101] direction (Fig. 5). As in compound 1, no pronounced intermolecular interactions are observed.

4. Database survey

According to a search in the Cambridge Structural Database (CSD Version 5.43, March 2022; Groom et al., 2016), no selenocyanate coordination compounds with 4-methylpyridine as anionic ligand have been reported but many compounds with the thiocyanate as anion can be found. Those with $\mathrm{Zn}(\mathrm{NCS})_{2}$ and $\mathrm{Cd}(\mathrm{NCS})_{2}$ were already mentioned in the Chemical context section (see above).

research communications

Table 3
Experimental details.

	1	2
Crystal data		
Chemical formula	$\left[\mathrm{Zn}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$	$\left[\mathrm{Cd}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{\text {r }}$	461.58	508.61
Crystal system, space group	Orthorhombic, Fdd2	Monoclinic, C2/c
Temperature (K)	293	293
$a, b, c(\mathrm{~A})$	37.3964 (18), 18.4780 (7), 5.1164 (2)	20.7296 (11), 9.4896 (3), 19.7364 (10)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 113.794 (3), 90
$V\left(\AA^{3}\right)$	3535.5 (3)	3552.5 (3)
Z	8	8
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	5.51	5.33
Crystal size (mm)	$0.25 \times 0.20 \times 0.20$	$0.18 \times 0.14 \times 0.10$
Data collection		
Diffractometer	Stoe IPDS2	Stoe IPDS2
Absorption correction	Numerical (X-RED and X-SHAPE; Stoe, 2008)	Numerical (X-RED and X-SHAPE; Stoe, 2008)
$T_{\text {min }}, T_{\text {max }}$	0.305, 0.547	$0.321,0.446$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	14188, 1953, 1823	17056, 3469, 2911
$R_{\text {int }}$	0.027	0.038
$(\sin \theta / \lambda)_{\max }\left(\mathrm{A}^{-1}\right)$	0.649	0.617
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.029, 0.067, 1.13	0.039, 0.076, 1.13
No. of reflections	1953	3469
No. of parameters	97	194
No. of restraints	1	0
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.26,-0.22$	$0.74,-0.63$
Absolute structure	Flack x determined using 675 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)	-
Absolute structure parameter	0.012 (8)	-

Computer programs: X-AREA (Stoe, 2008), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 1999) and publCIF (Westrip, 2010).

It is also noted that several $\mathrm{Cd}(\mathrm{NCSe})_{2}$ chain compounds are reported in the CSD, but in all of them the Cd cations show an all-trans coordination and are linked into linear chains [BIWTOR (Fettouhi et al., 2008), DAYWAE (Sadhu et al., 2017), DOJBEK (Choudhury et al., 2008), FAPGAG (Jess et al., 2012), FIMJIW (Werner et al., 2013), NAQXIO (Boeckmann, Jess et al., 2011), OLOZAQ (Li \& Liu, 2003), OWOHOY (Boeckmann, Reinert \& Näther, 2011), QIPYAP (Secondo et al., 2000) and ZANQAI (Werner et al., 2012)].

However, in this context it is noted that some selenocyanate compounds with pyridine as coligand are found, of which those with the composition $M(\mathrm{NCSe})_{2}(\text { pyridine })_{2}(M=\mathrm{Zn}$, $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cd})$ are of the most interest. The Zn compound crystallizes as discrete complexes with a tetrahedral coordination (OWOJEQ; Boeckmann, Reinert \& Näther, 2011), wheres the compounds with $\mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$ crystallize as linear chains with an all-trans coordination [CAQVIB (Boeckmann et al., 2012), ITISUA (Boeckmann \& Näther, 2011)].

5. Synthesis and crystallization

Synthesis

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ were purchased from Sigma Aldrich and KSeCN was purchased from Alfa Aesar. All chemicals were used without any further purification.

Synthesis of compound 1.

$0.5 \mathrm{mmol}(143 \mathrm{mg})$ of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 1 mmol $(144 \mathrm{mg})$ of KSeCN were reacted with $1 \mathrm{mmol}(97.2 \mu \mathrm{l})$ of 4 -methylpyridine in 2 ml of ethanol. The reaction mixture was stirred for 2 d and the colorless precipitate was filtered off, washed with a very small amount of ethanol and dried at room temperature. Single crystals were obtained from the filtrate by slow evaporation of the solvent.

Synthesis of compound 2.
$0.5 \mathrm{mmol}(154 \mathrm{mg})$ of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and 1 mmol $(144 \mathrm{mg})$ of KSeCN were reacted with $1 \mathrm{mmol}(97.2 \mu \mathrm{l})$ of 4-methylpyridine in 2 ml of ethanol. The reaction mixture was stirred for 2 d and the colorless precipitate was filtered off, washed with a very small amount of ethanol and dried at room temperature. Single crystals were obtained from the filtrate by slow evaporation of the solvent.

Experimental details

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using $\mathrm{Cu} K \alpha_{1}$ radiation $(\lambda=1.540598 \AA)$.

The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

Thermogravimetry and differential thermoanalysis (TGDTA) measurements were performed in a dynamic nitrogen
atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned with idealized geometry $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$; methyl H atoms allowed to rotate but not to tip) and were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})(1.5$ for methyl H atoms) using a riding model.

Acknowledgements

This work was supported by the state of Schleswig-Holstein.

References

Banerjee, S., Wu, B., Lassahn, P. G., Janiak, C. \& Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.
Barnett, S. A., Blake, A. J., Champness, N. R. \& Wilson, C. (2002). Chem. Commun. pp. 1640-1641.
Boeckmann, J., Jess, I., Reinert, T. \& Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502-5511.
Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106.
Boeckmann, J., Reinert, T. \& Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.
Boeckmann, J., Wriedt, M. \& Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.
Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 5325-5338.

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.
Choudhury, R. R., Choudhury, C. R., Batten, S. R. \& Mitra, S. (2008). Struct. Chem. 19, 645-649.
Desiraju, G. R. \& Sarma, J. A. R. P. (1986). Proc. Indian Acad. Sci. Chem. Sci. 96, 599-605.
Dyadin, Yu. A., Kislykh, N. V., Chekhova, G. N., Podberezskaya, N. V., Pervukhina, N. V., Logvinenko, V. A. \& Oglezneva, I. M. J. (1984). J. Inclusion Phenom. Mol. Recognit. Chem. 2, 233-240.

Fettouhi, M., Wazeer, M. I. M. \& Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252-255.
Goher, A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M. A. \& Gspan, C. (2003). Polyhedron, 22, 3137-3143.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jess, I., Boeckmann, J. \& Näther, C. (2012). Dalton Trans. 41, 228236.

Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. \& Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.
Li, D. \& Liu, D. (2003). Appl. Organomet. Chem. 17, 321-322.

Lipkowski, J. (1990). J. Coord. Chem. 22, 153-158.
Lipkowski, J., Soldatov, D. V., Kislykh, N. V., Pervukhina, N. V. \& Dyadin, Y. A. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 17, 305-316.
Makhlouf, J., Valkonen, A. \& Smirani, W. (2022). Polyhedron, 213, 115625.

Marsh, R. E. (1995). Acta Cryst. B51, 897-907.
Marsh, R. E. (2009). Acta Cryst. B65, 782-783.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. \& Näther, C. (2020). CrystEngComm, 22, 184-194.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Pervukhina, N. V., Podberezskaya, N. V., Bakakin, V. V., Kislikh, N. V., Chekhova, G. N. \& Dyadin, Yu. A. (1986). J. Struct. Chem. 26, 934941.

Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.
Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 32323243.

Ratho, T. \& Patel, T. (1969). Indian J. Phys. 43, 166-169.
Sadhu, M. H., Solanki, A., Kundu, T., Hingu, V., Ganguly, B. \& Kumar, S. B. (2017). Polyhedron, 133, 8-15.
Secondo, P. M., Land, J. M., Baughman, R. G. \& Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13-22.
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
Shi, J. M., Chen, J. N. \& Liu, L. D. (2006). Pol. J. Chem. 80, 1909-1912.
Shi, J. M., Sun, Y. M., Liu, Z. \& Liu, L. D. (2006). Chem. Phys. Lett. 418, 84-89.
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. \& Näther, C. (2016). Dalton Trans. 45, 1819018201.

Taniguchi, M., Shimoi, M. \& Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 2299-2302.
Werner, J., Boeckmann, J., Jess, I. \& Näther, C. (2012). Acta Cryst. E68, m704.
Werner, J., Jess, I. \& Näther, C. (2013). Z. Naturforsch. Teil B, 68, 643-652.
Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015a). Eur. J. Inorg. Chem. 2015, 3236-3245.

Werner, J., Tomkowicz, Z., Reinert, T. \& Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3066-3075.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wriedt, M. \& Näther, C. (2010). Chem. Commun. 46, 4707-4709.
Zhang, S.-G., Li, W.-N. \& Shi, J.-M. (2006). Acta Cryst. E62, m3506m3608.

supporting information

Syntheses and crystal structures of bis(4-methylpyridine- κN)bis(selenocyanatoκN)zinc(II) and catena-poly[[bis(4-methylpyridine- κN)cadmium(II)]-di- μ -selenocyanato- $\left.\kappa^{2} N: S e ; \kappa^{2} \operatorname{Se}: N\right]$

Christian Näther and Inke Jess

Computing details

For both structures, data collection: X-AREA (Stoe, 2008); cell refinement: X - $A R E A$ (Stoe, 2008); data reduction: X AREA (Stoe, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-methylpyridine- κN)bis(selenocyanato- κN)zinc(II) (I)

Crystal data

$\left[\mathrm{Zn}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=461.58$
Orthorhombic, Fdd2
$a=37.3964$ (18) \AA
$b=18.4780(7) \AA$
$c=5.1164$ (2) \AA
$V=3535.5(3) \AA^{3}$
$Z=8$
$F(000)=1792$

Data collection

STOE IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
$T_{\text {min }}=0.305, T_{\text {max }}=0.547$
14188 measured reflections
$D_{\mathrm{x}}=1.734 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 14188 reflections
$\theta=2.2-27.5^{\circ}$
$\mu=5.51 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$

1953 independent reflections
1823 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-48 \rightarrow 48$
$k=-23 \rightarrow 23$
$l=-6 \rightarrow 5$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0306 P)^{2}+2.9003 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.26 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Absolute structure: Flack x determined using 675 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.012 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Zn1	0.000000	0.500000	$0.44116(13)$	$0.05955(17)$
Se1	$0.05719(2)$	$0.30585(3)$	$0.91932(12)$	$0.1023(2)$
N11	$0.03820(7)$	$0.54594(16)$	$0.2162(7)$	$0.0548(7)$
C11	$0.03560(12)$	$0.6142(2)$	$0.1324(10)$	$0.0702(12)$
H11	0.016846	0.642476	0.193939	0.084^{*}
C1	$0.03662(12)$	$0.3754(3)$	$0.7402(9)$	$0.0681(11)$
N1	$0.02308(11)$	$0.4217(2)$	$0.6310(9)$	$0.0806(11)$
C15	$0.06600(11)$	$0.5073(2)$	$0.1294(9)$	$0.0651(10)$
H15	0.068456	0.459745	0.185725	0.078^{*}
C12	$0.05934(12)$	$0.6443(2)$	$-0.0402(10)$	$0.0748(12)$
H12	0.056342	0.691924	-0.095090	0.090^{*}
C16	$0.11412(15)$	$0.6356(4)$	$-0.3232(15)$	$0.0985(16)$
H16A	0.115697	0.686987	-0.298495	0.148^{*}
H16B	0.106438	0.625496	-0.498454	0.148^{*}
H16C	0.137157	0.614117	-0.294057	0.148^{*}
C14	$0.09088(11)$	$0.5347(2)$	$-0.0380(11)$	$0.0734(11)$
H14	0.110202	0.506325	-0.089267	0.088^{*}
C13	$0.08745(11)$	$0.6043(3)$	$-0.1317(9)$	$0.0670(11)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.0556(3)$	$0.0672(3)$	$0.0558(3)$	$-0.0044(3)$	0.000	0.000
Se 1	$0.1184(4)$	$0.0790(3)$	$0.1095(5)$	$0.0235(3)$	$-0.0162(4)$	$0.0132(4)$
N 11	$0.0497(14)$	$0.0573(16)$	$0.0573(19)$	$-0.0027(12)$	$-0.0047(14)$	$0.0011(15)$
C 11	$0.065(2)$	$0.064(2)$	$0.081(3)$	$0.0077(18)$	$0.007(2)$	$0.006(2)$
C 1	$0.069(2)$	$0.073(3)$	$0.063(3)$	$-0.007(2)$	$-0.002(2)$	$0.002(2)$
N 1	$0.081(2)$	$0.088(3)$	$0.073(3)$	$0.002(2)$	$-0.007(2)$	$0.017(2)$
C 15	$0.063(2)$	$0.0566(19)$	$0.076(3)$	$0.0029(16)$	$0.0013(19)$	$-0.001(2)$
C 12	$0.080(3)$	$0.069(2)$	$0.075(3)$	$-0.001(2)$	$0.008(3)$	$0.013(2)$
C 16	$0.090(3)$	$0.120(4)$	$0.085(3)$	$-0.019(3)$	$0.021(3)$	$0.015(4)$
C 14	$0.063(2)$	$0.076(3)$	$0.081(3)$	$0.0048(18)$	$0.011(2)$	$-0.007(3)$
C 13	$0.064(2)$	$0.079(3)$	$0.057(3)$	$-0.014(2)$	$0.0001(18)$	$-0.0001(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

Zn1-N1	1.945 (4)	C15-C14	1.362 (7)
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	1.945 (4)	C15-H15	0.9300
$\mathrm{Zn} 1-\mathrm{N} 11^{\text {i }}$	2.021 (3)	C12-C13	1.368 (6)
Zn1-N11	2.021 (3)	C12-H12	0.9300
Se1-C1	1.756 (5)	C16-C13	1.513 (7)
N11-C11	1.335 (5)	C16-H16A	0.9600
N11-C15	1.337 (5)	C16-H16B	0.9600
C11-C12	1.371 (6)	C16-H16C	0.9600
C11-H11	0.9300	C14-C13	1.379 (6)
C1-N1	1.140 (5)	C14-H14	0.9300
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{1}$	120.0 (3)	C14-C15-H15	118.6
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11^{\mathrm{i}}$	106.61 (15)	C13-C12-C11	119.9 (4)
N1 ${ }^{\text {i }}$-Znn1-N11 ${ }^{\text {i }}$	106.44 (15)	C13-C12-H12	120.1
N1-Zn1-N11	106.45 (15)	C11-C12-H12	120.1
N1 ${ }^{\text {i }}$ - Znl-N11	106.61 (15)	C13-C16-H16A	109.5
N11-Z C 1 1-N11	110.59 (18)	C13-C16-H16B	109.5
C11-N11-C15	117.0 (4)	H16A-C16-H16B	109.5
C11-N11-Zn1	121.9 (3)	C13-C16-H16C	109.5
C15-N11-Zn1	121.0 (3)	H16A-C16-H16C	109.5
N11-C11-C12	122.9 (4)	H16B-C16-H16C	109.5
N11-C11-H11	118.5	C15-C14-C13	120.1 (4)
C12-C11-H11	118.5	C15-C14-H14	120.0
N1-C1-Se1	177.9 (4)	C13-C14-H14	120.0
C1-N1-Zn1	179.3 (4)	C12-C13-C14	117.2 (4)
N11-C15-C14	122.9 (4)	C12-C13-C16	121.4 (4)
N11-C15-H15	118.6	C14-C13-C16	121.3 (5)

Symmetry code: (i) $-x,-y+1, z$.
catena-Poly[[bis(4-methylpyridine- κN)cadmium(II)]-di- μ-selenocyanato- $\left.\kappa^{2} N: S e ; \kappa^{2} S e: N\right]$ (II)

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=508.61$
Monoclinic, $C 2 / c$
$a=20.7296$ (11) \AA
$b=9.4896$ (3) \AA
$c=19.7364$ (10) \AA
$\beta=113.794(3)^{\circ}$
$V=3552.5(3) \AA^{3}$
$Z=8$

Data collection

STOE IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
$F(000)=1936$
$D_{\mathrm{x}}=1.902 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17056 reflections
$\theta=2.2-26.0^{\circ}$
$\mu=5.33 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.18 \times 0.14 \times 0.10 \mathrm{~mm}$
$T_{\text {min }}=0.321, T_{\text {max }}=0.446$
17056 measured reflections
3469 independent reflections
2911 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.076$
$S=1.13$
3469 reflections
194 parameters
0 restraints
Primary atom site location: dual

$$
\begin{aligned}
& k=-8 \rightarrow 11 \\
& l=-24 \rightarrow 24
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd1	0.500000	$0.47303(5)$	0.250000	$0.05827(14)$
Cd2	0.750000	0.250000	0.500000	$0.05746(13)$
N1	$0.5569(2)$	$0.4762(5)$	$0.37921(19)$	$0.0724(11)$
C1	$0.5986(2)$	$0.4628(4)$	$0.4381(2)$	$0.0539(10)$
Se1	$0.66318(2)$	$0.44348(6)$	$0.53116(2)$	$0.06746(15)$
N2	$0.6944(2)$	$0.2763(5)$	$0.3720(2)$	$0.0715(11)$
C2	$0.6512(2)$	$0.2729(5)$	$0.3135(2)$	$0.0582(10)$
Se2	$0.58388(3)$	$0.26863(6)$	$0.22157(3)$	$0.07812(18)$
N11	$0.57906(18)$	$0.6528(4)$	$0.2507(2)$	$0.0640(9)$
C11	$0.6021(2)$	$0.6648(5)$	$0.1971(2)$	$0.0700(12)$
H11	0.585089	0.601802	0.157671	0.084^{*}
C12	$0.6496(3)$	$0.7651(5)$	$0.1968(3)$	$0.0679(12)$
H12	0.663234	0.769834	0.157369	0.081^{*}
C13	$0.6773(2)$	$0.8592(5)$	$0.2548(3)$	$0.0629(11)$
C14	$0.6536(3)$	$0.8466(6)$	$0.3102(3)$	$0.0938(18)$
H14	0.670037	0.907735	0.350437	0.113^{*}
C15	$0.6059(3)$	$0.7438(6)$	$0.3062(3)$	$0.0909(18)$
H15	0.591248	0.737234	0.344883	0.109^{*}
C16	$0.7307(3)$	$0.9687(6)$	$0.2579(3)$	$0.0824(15)$
H16A	0.776309	0.925625	0.273302	0.124^{*}
H16B	0.732202	1.040818	0.292621	0.124^{*}
H16C	0.717741	1.009812	0.209722	0.124^{*}
N21	$0.67039(19)$	$0.0657(4)$	$0.4930(2)$	$0.0641(9)$
C21	$0.6897(3)$	$-0.0359(6)$	$0.5440(3)$	$0.0803(15)$
H21	0.736013	-0.036657	0.578951	0.096^{*}
C22	$0.6451(3)$	$-0.1392(6)$	$0.5477(3)$	$0.0844(15)$
H22	0.661708	-0.207526	0.584525	0.101^{*}

C23	$0.5759(3)$	$-0.1424(5)$	$0.4974(3)$	$0.0708(13)$
C24	$0.5563(3)$	$-0.0392(6)$	$0.4441(3)$	$0.0744(13)$
H24	0.510543	-0.037549	0.407877	0.089^{*}
C25	$0.6039(3)$	$0.0619(6)$	$0.4438(3)$	$0.0736(13)$
H25	0.588663	0.130929	0.407229	0.088^{*}
C26	$0.5257(3)$	$-0.2518(6)$	$0.5017(4)$	$0.0890(17)$
H26A	0.479146	-0.212412	0.484738	0.133^{*}
H26B	0.540300	-0.282538	0.552103	0.133^{*}
H26C	0.525360	-0.330752	0.471169	0.133^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0473 (2)	0.0720 (3)	0.0452 (2)	0.000	0.00794 (18)	0.000
Cd2	0.0497 (2)	0.0680 (3)	0.0476 (2)	0.0026 (2)	0.01232 (19)	0.00515 (19)
N1	0.061 (2)	0.095 (3)	0.045 (2)	0.012 (2)	0.0049 (17)	-0.0056 (19)
C1	0.051 (2)	0.058 (3)	0.052 (2)	0.0048 (18)	0.021 (2)	-0.0023 (18)
Se1	0.0620 (3)	0.0856 (4)	0.0431 (2)	0.0160 (2)	0.0091 (2)	-0.0016 (2)
N2	0.068 (2)	0.097 (3)	0.044 (2)	0.018 (2)	0.0162 (18)	0.0062 (19)
C2	0.062 (3)	0.059 (3)	0.055 (2)	0.008 (2)	0.025 (2)	0.0001 (19)
Se2	0.0686 (3)	0.0937 (4)	0.0547 (3)	0.0124 (3)	0.0068 (2)	-0.0188 (2)
N11	0.056 (2)	0.078 (3)	0.059 (2)	-0.0090 (19)	0.0253 (17)	-0.0172 (19)
C11	0.070 (3)	0.083 (3)	0.056 (2)	-0.013 (3)	0.024 (2)	-0.019 (2)
C12	0.071 (3)	0.077 (3)	0.061 (3)	-0.003 (2)	0.033 (2)	-0.010 (2)
C13	0.054 (2)	0.065 (3)	0.070 (3)	-0.001 (2)	0.025 (2)	-0.012 (2)
C14	0.113 (4)	0.100 (4)	0.084 (4)	-0.043 (4)	0.057 (3)	-0.045 (3)
C15	0.110 (4)	0.102 (4)	0.084 (4)	-0.035 (4)	0.063 (3)	-0.039 (3)
C16	0.077 (3)	0.081 (4)	0.096 (4)	-0.012 (3)	0.042 (3)	-0.018 (3)
N21	0.061 (2)	0.069 (2)	0.062 (2)	0.0001 (19)	0.0245 (18)	0.0037 (19)
C21	0.073 (3)	0.079 (4)	0.073 (3)	-0.007 (3)	0.014 (3)	0.007 (3)
C22	0.088 (4)	0.074 (3)	0.082 (3)	-0.009 (3)	0.025 (3)	0.006 (3)
C23	0.076 (3)	0.064 (3)	0.082 (3)	-0.006 (3)	0.042 (3)	-0.019 (3)
C24	0.054 (3)	0.082 (4)	0.083 (3)	-0.005 (2)	0.023 (2)	-0.014 (3)
C25	0.060 (3)	0.082 (3)	0.074 (3)	0.004 (3)	0.022 (2)	0.003 (3)
C26	0.089 (4)	0.080 (4)	0.114 (5)	-0.018 (3)	0.058 (4)	-0.022 (3)

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.338(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.373(6)$
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.338(3)$	$\mathrm{C} 13-\mathrm{C} 16$	$1.501(7)$
$\mathrm{Cd} 1-\mathrm{N} 11^{\mathrm{i}}$	$2.362(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.370(7)$
$\mathrm{Cd} 1-\mathrm{N} 11$	$2.362(4)$	$\mathrm{C} 14-\mathrm{H} 14$	0.9300
$\mathrm{Cd} 1-\mathrm{Se} 2$	$2.8085(6)$	$\mathrm{C} 15-\mathrm{H} 15$	0.9300
$\mathrm{Cd} 1-\mathrm{Se} 2^{\mathrm{i}}$	$2.8086(6)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9600
$\mathrm{Cd} 2-\mathrm{N} 2^{\mathrm{ii}}$	$2.328(4)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9600
$\mathrm{Cd} 2-\mathrm{N} 2$	$2.328(4)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	0.9600
$\mathrm{Cd} 2-\mathrm{N} 21^{\mathrm{ii}}$	$2.370(4)$	$\mathrm{N} 21-\mathrm{C} 25$	$1.329(6)$
$\mathrm{Cd} 2-\mathrm{N} 21$	$2.370(4)$	$\mathrm{N} 21-\mathrm{C} 21$	$1.332(6)$

$\mathrm{Cd} 2-\mathrm{Se} 1^{\text {ii }}$	2.8073 (5)
Cd2-Se1	2.8073 (5)
N1-C1	1.142 (5)
C1—Se1	1.793 (4)
N2-C2	1.141 (5)
C2-Se2	1.788 (5)
N11-C15	1.329 (6)
N11-C11	1.329 (5)
C11-C12	1.372 (6)
C11-H11	0.9300
C12-C13	1.381 (6)
C12-H12	0.9300
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	178.5 (2)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 11^{\text {i }}$	86.63 (14)
N1-Cd1-N11 ${ }^{\text {i }}$	92.29 (13)
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 11$	92.30 (13)
N1-Cd1-N11	86.63 (14)
N11-Cd1-N11	87.53 (18)
N1 1 - $\mathrm{Cd} 1-\mathrm{Se} 2$	82.62 (11)
N1—Cd1-Se2	98.42 (10)
N11 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Se} 2$	169.06 (8)
N11-Cd1-Se2	90.90 (9)
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Se} 2^{\text {i }}$	98.42 (10)
N1-Cd1-Se2 ${ }^{\text {i }}$	82.62 (11)
N11 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Se} 2^{\mathrm{i}}$	90.90 (9)
N11-Cd1-Se2 ${ }^{\text {i }}$	169.06 (8)
$\mathrm{Se} 2-\mathrm{Cd} 1-\mathrm{Se}^{2}{ }^{\text {i }}$	92.64 (3)
$\mathrm{N} 2 \mathrm{ii}-\mathrm{Cd} 2-\mathrm{N} 2$	180.0
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Cd} 2-\mathrm{N} 21^{\text {ii }}$	89.30 (14)
$\mathrm{N} 2-\mathrm{Cd} 2-\mathrm{N} 21{ }^{\text {ii }}$	90.70 (14)
$\mathrm{N} 2{ }^{\text {ii }}$ - $\mathrm{Cd} 2-\mathrm{N} 21$	90.70 (14)
N2-Cd2-N21	89.30 (14)
N21ii-Cd2-N21	180.0
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{Sel}^{\text {ii }}$	95.00 (10)
$\mathrm{N} 2-\mathrm{Cd} 2-\mathrm{Se} 1^{\text {ii }}$	84.99 (10)
N21ii- ${ }^{\text {ii }}$ 2- $\mathrm{Se}^{1 i}$	90.14 (9)
$\mathrm{N} 21-\mathrm{Cd} 2-\mathrm{Sel}^{\text {ii }}$	89.86 (9)
N2 ${ }^{\text {ii }}$ - $\mathrm{Cd} 2-\mathrm{Se} 1$	85.00 (10)
N2-Cd2-Se1	95.01 (10)
N21i- ${ }^{\text {ii }}$ - 2 - Se 1	89.86 (9)
N21-Cd2-Se1	90.14 (9)
Se1ii-Cd2—Se1	180.000 (16)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	161.8 (4)
N1—C1—Se1	179.0 (4)
C1-Se1-Cd2	97.03 (13)
C2-N2-Cd2	159.7 (4)
N2-C2-Se2	179.5 (5)

$\mathrm{C} 21-\mathrm{C} 22$
$\mathrm{C} 21-\mathrm{H} 21$
$\mathrm{C} 22-\mathrm{C} 23$
$\mathrm{C} 22-\mathrm{H} 22$
$\mathrm{C} 23-\mathrm{C} 24$
$\mathrm{C} 23-\mathrm{C} 26$
$\mathrm{C} 24-\mathrm{C} 25$
$\mathrm{C} 24-\mathrm{H} 24$
$\mathrm{C} 25-\mathrm{H} 25$
$\mathrm{C} 26-\mathrm{H} 26 \mathrm{~A}$
$\mathrm{C} 26-\mathrm{H} 26 \mathrm{~B}$
$\mathrm{C} 26-\mathrm{H} 26 \mathrm{C}$

C11-C12-C13
C11- $\mathrm{C} 12-\mathrm{H} 12$
C13-C12-H12
C14-C13-C12
C14-C13-C16
C12-C13-C16
C15-C14-C13
C15-C14-H14
C13-C14-H14
N11-C15-C14
N11-C15-H15
C14-C15-H15
C13-C16-H16A
C13-C16-H16B
H16A-C16-H16B
C13-C16-H16C
H16A-C16-H16C
H16B-C16-H16C
C25-N21-C21
C25-N21-Cd2
C21—N21—Cd2
N21-C21-C22
$\mathrm{N} 21-\mathrm{C} 21-\mathrm{H} 21$
C22-C21—H21
C21-C22-C23
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$
C23-C22-H22
C24-C23-C22
C24-C23-C26
C22-C23-C26
C23-C24-C25
C23-C24-H24
C25-C24-H24
N21-C25-C24
N21-C25-H25
1.369 (7)
0.9300
1.378 (7)
0.9300
1.373 (7)
1.497 (7)
1.377 (7)
0.9300
0.9300
0.9600
0.9600
0.9600
120.3 (4)
119.8
119.8
116.2 (4)
121.5 (4)
122.3 (4)
119.9 (5)
120.0
120.0
124.2 (5)
117.9
117.9
109.5
109.5
109.5
109.5
109.5
109.5
116.0 (4)
123.7 (3)
120.0 (3)
123.7 (5)
118.1
118.1
120.4 (5)
119.8
119.8
115.8 (5)
122.8 (5)
121.4 (5)
120.7 (5)
119.7
119.7
123.3 (5)
118.4

supporting information

$\mathrm{C} 2-\mathrm{Se} 2-\mathrm{Cd} 1$	$94.25(14)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 25$	118.4
$\mathrm{C} 15-\mathrm{N} 11-\mathrm{C} 11$	$115.8(4)$	$\mathrm{C} 23-\mathrm{C} 26-\mathrm{H} 26 \mathrm{~A}$	109.5
$\mathrm{C} 15-\mathrm{N} 11-\mathrm{Cd} 1$	$122.2(3)$	$\mathrm{C} 23-\mathrm{C} 26-\mathrm{H} 26 \mathrm{~B}$	109.5
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{Cd} 1$	$121.9(3)$	$\mathrm{H} 26 \mathrm{~A}-\mathrm{C} 26-\mathrm{H} 26 \mathrm{~B}$	109.5
$\mathrm{~N} 11-\mathrm{C} 11-\mathrm{C} 12$	$123.5(4)$	$\mathrm{C} 23-\mathrm{C} 26-\mathrm{H} 26 \mathrm{C}$	109.5
$\mathrm{~N} 11-\mathrm{C} 11-\mathrm{H} 11$	118.3	$\mathrm{H} 26 \mathrm{~A}-\mathrm{C} 26-\mathrm{H} 26 \mathrm{C}$	109.5
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	118.3	$\mathrm{H} 26 \mathrm{~B}-\mathrm{C} 26-\mathrm{H} 26 \mathrm{C}$	109.5

[^0]
[^0]: Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+3 / 2,-y+1 / 2,-z+1$.

