research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of polymerized lithium chloride and di­methyl sulfoxide in the form of {2LiCl·3DMSO}n and {LiCl·DMSO}n

crossmark logo

aSandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87123, USA
*Correspondence e-mail: nrvalde@sandia.gov

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 25 October 2022; accepted 13 December 2022; online 1 January 2023)

Two novel LiCl·DMSO polymer structures were created by combining dry LiCl salt with dimethyl sulfoxide (DMSO), namely, catena-poly[[chlorido­lithium(I)]-μ-(dimethyl sulfoxide)-κ2O:O-[chlorido­lithium(I)]-di-μ-(dimethyl sulfoxide)-κ4O:O], [Li2Cl2(C2H6OS)3]n, and catena-poly[lithium(I)-μ-chlorido-μ-(dimethyl sulfoxide)-κ2O:O], [LiCl(C2H6OS)]n. The initial synthesized phase had very small block-shaped crystals (<0.08 mm) with monoclinic symmetry and a 2 LiCl: 3 DMSO ratio. As the solution evaporated, a second phase formed with a plate-shaped crystal morphology. After about 20 minutes, large (>0.20 mm) octa­hedron-shaped crystals formed. The plate crystals and the octa­hedron crystals are the same tetra­gonal structure with a 1 LiCl: 1 DMSO ratio. These structures are reported and compared to other known LiCl·solvent compounds.

1. Chemical context

Lithium salts are soluble in a wide range of solvents and are widely used in lithium-metal and lithium-ion battery applications (Bushkova et al., 2017[Bushkova, O. V., Yaroslavtseva, T. V. & Dobrovolsky, Y. A. (2017). Russ. J. Electrochem. 53, 677-699.]; Mauger et al., 2018[Mauger, A., Julien, C. M., Paolella, A., Armand, M. & Zaghib, K. (2018). Mater. Sci. Eng. Rep. 134, 1-21.]; Younesi et al. 2015[Younesi, R., Veith, G. M., Johansson, P., Edström, K. & Vegge, T. (2015). Energy Environ. Sci. 8, 1905-1922.]). While typically implemented as liquid electrolyte solutions, the lithium salt and solvent systems can also form complex mol­ecular phases, including inter­calating compounds (Yamada et al., 2010[Yamada, Y., Takazawa, Y., Miyazaki, K. & Abe, T. (2010). J. Phys. Chem. C, 114, 11680-11685.]), crystalline solvates (Ugata et al., 2021[Ugata, Y., Shigenobu, K., Tatara, R., Ueno, K., Watanabe, M. & Dokko, K. (2021). Phys. Chem. Chem. Phys. 23, 21419-21436.]), and polymeric structures (Rao et al., 1984[Rao, C. P., Rao, A. M. & Rao, C. N. R. (1984). Inorg. Chem. 23, 2080-2085.]; Chivers et al., 2001[Chivers, T., Downard, A., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1975-1977.]).

Dimethyl sulfoxide (DMSO) and lithium chloride (LiCl) are very common materials in many industries, and have each been used in novel battery systems, including solid-polymer (Voigt & van Wüllen, 2012[Voigt, N. & van Wüllen, L. (2012). Solid State Ionics, 208, 8-16.]), dual-ion (Wang et al., 2022[Wang, F., Wang, J., Li, G., Guo, Z., Chu, J., Ai, X. & Song, Z. (2022). Energy Storage Mater. 50, 658-667, doi: 10.1016/j. ensm. 2022.05.055.]), lithium–oxygen (Togasaki et al., 2016[Togasaki, N., Momma, T. & Osaka, T. (2016). J. Power Sources, 307, 98-104.]; Reddy et al., 2018[Pranay Reddy, K., Fischer, P., Marinaro, M. & Wohlfahrt-Mehrens, M. (2018). ChemElectroChem, 5, 2758-2766.]; Zhang et al., 2021[Zhang, Q., Zhou, Y., Dai, W., Cui, X., Lyu, Z., Hu, Z. & Chen, W. (2021). Batteries & Supercaps. 4, 232-239.]) and molten-salt electrolyte batteries (Allcorn et al., 2020[Allcorn, E., Nagasubramanian, G. & Apblett, C. A. (2020). U. S. Patent No. 10,727,474. Washington, DC: U. S. Patent and Trademark Office.]). Given that DMSO and water both exhibit a coordination number of four solvent mol­ecules per cation (Megyes et al., 2006[Megyes, T., Bakó, I., Radnai, T., Grósz, T., Kosztolányi, T., Mroz, B. & Probst, M. (2006). Chem. Phys. 321, 100-110.]; Bouazizi & Nasr, 2007[Bouazizi, S. & Nasr, S. (2007). J. Mol. Struct. 837, 206-213.]), it is reasonable to hypothesize that the two solvents solvate lithium ions similarly. For Li+ cations in binary solvent solutions of DMSO and water, the solvent mol­ecules are analogous; there is effectively no selective solvation of Li+ cations for either DMSO or water (Pasgreta et al., 2007[Pasgreta, E., Puchta, R., Galle, M., van Eikema Hommes, N., Zahl, A. & van Eldik, R. (2007). ChemPhysChem, 8, 1315-1320.]). Thus it is not surprising that lithium salts would form similar crystalline phases when comparing phase diagrams in pure DMSO (Kirillov et al., 2015[Kirillov, S. A., Gorobets, M. I., Tretyakov, D. O., Ataev, M. B. & Gafurov, M. M. (2015). J. Mol. Liq. 205, 78-84.]) and pure water (Perron et al., 1997[Perron, G., Brouillette, D. & Desnoyers, J. E. (1997). Can. J. Chem. 75, 1608-1614.]). Since LiCl is hydrated with 1–2 water mol­ecules per Li+ cation in ambient conditions (Conde, 2004[Conde, M. R. (2004). Int. J. Therm. Sci. 43, 367-382.]; Pátek & Klomfar, 2006[Pátek, J. & Klomfar, J. (2006). Fluid Phase Equilib. 250, 138-149.]), it is reasonable to expect that LiCl would form similar if not analogous solvate phases in DMSO (1–2 DMSO mol­ecules per Li+ cation).

[Scheme 1]

2. Synthesis and crystallization

Material samples were prepared using lithium chloride (Acros Organics, LiCl 99% anhydrous) and dimethyl sulfoxide (Sigma-Aldrich, C2H6OS ≥99.9% anhydrous). Before use, the LiCl was heated to 423.15 K (150°C) under vacuum to remove any trace moisture, and the sample preparation was carried out in a humidity-controlled dry room, dew point below 223.15 K (−50°C).

Dry LiCl was added to a jar of DMSO at a ratio of 5 g LiCl per 25 g DMSO, approximately twice the limit at 298.15 K (25°C) before saturation is initially observed (Xin et al., 2018[Xin, N., Sun, Y., He, M., Radke, C. & Prausnitz, J. (2018). Fluid Phase Equilib. 461, 1-7.]). As the salt tends to agglomerate quickly upon being added to the DMSO, the initial larger agglomerates were manually broken up. The jar was then sealed and the entire solution was stirred vigorously with a magnetic stir bar for 3 days. An aliquot of the sample (solids and saturated DMSO combined) was removed for analysis. During sample preparation for single crystal X-ray diffraction analysis, DMSO evaporated from the sample aliquot, resulting in a second, likely metastable, phase with different crystal morphology.

3. Structural Commentary

Monoclinic Crystals

The initial crystals synthesized as described in the previous section are small (<0.08 mm), block-shaped, and have monoclinic symmetry C2/c. The polymer has a 2 LiCl: 3 DMSO ratio, and the repeating unit is composed of four LiCl, and six DMSO, see Fig. 1[link] and Scheme.

[Figure 1]
Figure 1
Monoclinic structure: asymmetric unit (a) and polymeric chain view (b). The repeating unit of the polymer has four LiCl and six DMSO. The sulfur atom of the DMSO is disordered across two positions. Only one position is shown.

The polymers appear to be held together by hydrogen bonding, see Table 1[link] and packing diagram Fig. 2[link]. The most notable bond is between Cl1 and H2B (2.730 Å), where the Cl atom on one polymer chain is connected to one of the hydrogen atoms on one of the methyl groups of the non-disordered DMSO mol­ecule of another polymer chain. There is likely some hydrogen bond contribution from the adjacent H3B, which is located on the other methyl group of the same DMSO mol­ecule (hydrogen-bond length 2.88 Å). If the disordered DMSO mol­ecule contributes to hydrogen bonding between polymer chains, it would be through hydrogen H1A and Cl1, however this bond is very long [2.98 (3) Å]. The other values in the table represent hydrogen bonding between a DMSO mol­ecule and a Cl atom along the same polymer chain.

Table 1
Hydrogen-bond geometry (Å, °) for the monoclinic structure[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1i 0.97 (1) 2.98 (4) 3.569 (3) 120 (3)
C1—H1B⋯Cl1ii 0.97 (1) 2.79 (2) 3.690 (3) 156 (3)
C2—H2A⋯Cl1iii 0.98 2.71 3.680 (3) 169
C2—H2B⋯Cl1iv 0.98 2.73 3.632 (3) 153
C3—H3B⋯Cl1iv 0.98 2.88 3.752 (3) 149
Symmetry codes: (i) [-x+1, y-1, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Monoclinic structure: packing diagram. The structure is held together by hydrogen bonding. The hydrogen bonds between Cl1 and H2B as well as Cl1 and H3B are shown.

Tetra­gonal Crystals

The second crystal phase formed during sample preparation as DMSO evaporated. At first, plate-shaped crystals appeared among the smaller block-shaped crystals. As more time passed (∼20 minutes), much larger (0.2–0.4 mm) octa­hedron-shaped crystals formed. The plate crystals and the octa­hedron crystals are the same tetra­gonal I41/a structure with a 1 LiCl: 1 DMSO ratio. The repeating unit has four LiCl, and four DMSO. The DMSO mol­ecules are not disordered in this structure, see Fig. 3[link] and Scheme.

[Figure 3]
Figure 3
Tetra­gonal structure: asymmetric unit (a) and polymeric chain view (b). The repeating unit of the polymer has four LiCl and four DMSO. The DMSO mol­ecules in this structure are not disordered.

As with the monoclinic structure, the tetra­gonal structure is composed of polymer chains held together by hydrogen bonding, see Table 2[link] and the packing diagram Fig. 4[link]. The Cl1 of one chain is linked to the DMSO of another chain through H2A [2.84 (2) Å] and H2C [2.83 (2) Å]. There may be some contribution from H1B, though the bond is much longer [2.95 (2) Å].

Table 2
Hydrogen-bond geometry (Å, °) for the tetragonal structure[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl1i 0.98 (2) 2.95 (2) 3.821 (2) 148 (2)
C2—H2A⋯Cl1ii 0.95 (2) 2.84 (2) 3.768 (2) 165 (2)
C2—H2C⋯Cl1i 0.96 (2) 2.83 (2) 3.716 (2) 153 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Tetra­gonal structure: packing diagram. The structure is held together by hydrogen bonding. The hydrogen bonds between Cl1 and H2A and Cl1 and H2C are shown. The atoms involved in hydrogen bonding are darkened for clarity.

4. Database Survey

After the structures were solved, a search was performed on the Cambridge Structural Database (CSD, version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). There were only two results with the relevant chemistry, and neither had DMSO. One was a LiCl sulfolane adduct (SIWFOT; Harvey et al., 1991[Harvey, S., Skelton, B. W. & White, A. H. (1991). Aust. J. Chem. 44, 309-312.]), and the other was a crown ether complex (XEGBIX; Reuter et al., 2017[Reuter, K., Rudel, S. S., Buchner, M. R., Kraus, F. & von Hänisch, C. (2017). Chem. Eur. J. 23, 9607-9617.]). These two LiCl·DMSO structures are novel, and other phases likely exist in the LiCl–DMSO system as a function of temperature, analogous to the LiCl–H2O system (Perron et al., 1997[Perron, G., Brouillette, D. & Desnoyers, J. E. (1997). Can. J. Chem. 75, 1608-1614.]). An extensive list of LiCl structures with various other ligands can be found in Chivers et al. (2001[Chivers, T., Downard, A., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1975-1977.]).

5. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. One of the DMSO mol­ecules on the monoclinic structure is disordered. The two positions of the sulfur atom show a C2 symmetry-related disorder about the oxygen atom in the b-axis direction of the unit cell. An attempt was made to model the disorder using a lower space group (Cc); however, the refinement was unstable. Without the ability to use a PART instruction, the DMSO mol­ecule was fixed to an occupancy of 0.5. The hydrogen atoms on the disordered DMSO mol­ecule were placed manually. For the monclinic structure, all H atoms were refined with Uiso(H) = 1.5Ueq(C). Bond-length restraints of 0.98 ± 0.02 Å were applied to the H atoms on C2 and C3.

Table 3
Experimental details

  Monoclinic Tetragonal
Crystal data
Chemical formula [Li2Cl2(C2H6OS)3] [LiCl(C2H6OS)]
Mr 319.16 120.52
Crystal system, space group Monoclinic, C2/c Tetragonal, I41/a
Temperature (K) 100 100
a, b, c (Å) 19.2841 (17), 7.6436 (7), 11.5335 (10) 14.2411 (14), 14.2411 (14), 10.8809 (16)
α, β, γ (°) 90, 118.315 (5), 90 90, 90, 90
V3) 1496.6 (2) 2206.7 (5)
Z 4 16
Radiation type Cu Kα Cu Kα
μ (mm−1) 7.72 8.49
Crystal size (mm) 0.07 × 0.07 × 0.05 0.4 × 0.4 × 0.4
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.639, 0.754 0.513, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 10606, 1417, 1166 8174, 1072, 1030
Rint 0.064 0.047
(sin θ/λ)max−1) 0.610 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.09 0.028, 0.073, 1.07
No. of reflections 1417 1072
No. of parameters 92 79
No. of restraints 68 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.46, −0.39 0.32, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

catena-Poly[[chloridolithium(I)]-µ-(dimethyl sulfoxide)-κ2O:O-[chloridolithium(I)]-di-µ-(dimethyl sulfoxide)-κ4O:O] (Monoclinic) top
Crystal data top
[Li2Cl2(C2H6OS)3]F(000) = 664
Mr = 319.16Dx = 1.416 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 19.2841 (17) ÅCell parameters from 4022 reflections
b = 7.6436 (7) Åθ = 5.2–71.2°
c = 11.5335 (10) ŵ = 7.72 mm1
β = 118.315 (5)°T = 100 K
V = 1496.6 (2) Å3Block, colourless
Z = 40.07 × 0.07 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1166 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 70.0°, θmin = 5.2°
Tmin = 0.639, Tmax = 0.754h = 2223
10606 measured reflectionsk = 99
1417 independent reflectionsl = 1414
Refinement top
Refinement on F268 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0023P)2 + 6.8363P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1417 reflectionsΔρmax = 0.46 e Å3
92 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.4831 (3)0.5661 (7)0.3715 (4)0.0215 (10)
Cl10.39011 (4)0.78167 (9)0.26503 (6)0.02346 (19)
O10.5000000.4171 (4)0.2500000.0231 (6)
S10.46168 (7)0.23074 (17)0.24491 (12)0.0150 (3)0.5
C10.46522 (18)0.1205 (4)0.1177 (3)0.0227 (6)
H1A0.463 (2)0.006 (2)0.125 (4)0.052 (12)*
H1B0.439 (2)0.178 (5)0.033 (2)0.052 (12)*
H1C0.519 (2)0.121 (12)0.129 (9)0.21 (4)*
O20.57073 (10)0.5856 (3)0.55161 (17)0.0184 (4)
S20.65940 (4)0.60785 (9)0.63468 (6)0.01629 (18)
C20.68091 (16)0.8173 (4)0.5918 (3)0.0207 (6)
H2A0.6590050.8249180.4960070.031*
H2B0.7381100.8338300.6339750.031*
H2C0.6574310.9085210.6219510.031*
C30.70219 (17)0.4751 (4)0.5580 (3)0.0229 (6)
H3A0.6945450.3513520.5711550.034*
H3B0.7586740.5002050.5972970.034*
H3C0.6768540.5007990.4635010.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.017 (2)0.032 (3)0.014 (2)0.001 (2)0.0064 (18)0.0028 (19)
Cl10.0195 (3)0.0272 (4)0.0174 (3)0.0028 (3)0.0037 (3)0.0043 (3)
O10.0408 (17)0.0139 (13)0.0175 (14)0.0000.0162 (13)0.000
S10.0136 (6)0.0169 (6)0.0141 (6)0.0003 (5)0.0063 (5)0.0001 (5)
C10.0275 (16)0.0185 (15)0.0152 (14)0.0019 (13)0.0045 (13)0.0008 (11)
O20.0111 (9)0.0284 (11)0.0139 (9)0.0011 (8)0.0046 (7)0.0003 (8)
S20.0125 (3)0.0213 (4)0.0138 (3)0.0014 (3)0.0052 (3)0.0013 (3)
C20.0189 (14)0.0214 (15)0.0198 (14)0.0024 (11)0.0074 (12)0.0001 (11)
C30.0202 (14)0.0260 (16)0.0238 (15)0.0008 (12)0.0114 (12)0.0019 (12)
Geometric parameters (Å, º) top
Li1—Li1i3.162 (9)C1—H1A0.972 (14)
Li1—Li1ii2.899 (9)C1—H1B0.967 (14)
Li1—Cl12.313 (5)C1—H1C0.974 (15)
Li1—O11.949 (5)O2—S21.5219 (18)
Li1—S12.881 (5)S2—C21.782 (3)
Li1—O2ii2.021 (5)S2—C31.785 (3)
Li1—O21.966 (5)C2—H2A0.9800
Li1—S2ii3.024 (5)C2—H2B0.9800
O1—S11.593 (3)C2—H2C0.9800
O1—S1i1.593 (3)C3—H3A0.9800
S1—S1i1.426 (2)C3—H3B0.9800
S1—C11.721 (3)C3—H3C0.9800
S1—C1i1.758 (3)
Li1ii—Li1—Li1i149.9 (3)S1i—S1—O163.41 (6)
Li1ii—Li1—S2ii68.36 (17)S1i—S1—C1i64.48 (13)
Cl1—Li1—Li1ii122.2 (3)S1i—S1—C167.14 (13)
Cl1—Li1—Li1i87.91 (16)C1i—S1—Li196.24 (14)
Cl1—Li1—S1118.43 (18)C1—S1—Li1144.41 (15)
Cl1—Li1—S2ii80.40 (13)C1—S1—C1i101.25 (18)
O1—Li1—Li1ii119.9 (3)S1—C1—S1i48.38 (11)
O1—Li1—Li1i35.76 (16)S1i—C1—H1A117 (2)
O1—Li1—Cl1112.8 (2)S1—C1—H1A113 (2)
O1—Li1—S131.64 (11)S1—C1—H1B115 (2)
O1—Li1—O2116.8 (2)S1i—C1—H1B120 (2)
O1—Li1—O2ii106.0 (3)S1—C1—H1C111 (5)
O1—Li1—S2ii100.72 (19)S1i—C1—H1C62 (5)
S1—Li1—Li1i65.90 (10)H1A—C1—H1B121 (3)
S1—Li1—Li1ii96.7 (2)H1A—C1—H1C95 (5)
S1—Li1—S2ii71.72 (12)H1B—C1—H1C98 (5)
O2ii—Li1—Li1ii42.59 (14)Li1—O2—Li1ii93.3 (2)
O2—Li1—Li1i120.1 (3)S2—O2—Li1ii116.46 (16)
O2—Li1—Li1ii44.10 (13)S2—O2—Li1145.04 (17)
O2ii—Li1—Li1i138.89 (18)O2—S2—Li1ii36.75 (11)
O2ii—Li1—Cl1102.2 (2)O2—S2—C2105.41 (12)
O2—Li1—Cl1124.6 (2)O2—S2—C3105.66 (12)
O2ii—Li1—S174.44 (17)C2—S2—Li1ii135.83 (14)
O2—Li1—S1116.6 (2)C2—S2—C398.65 (14)
O2—Li1—O2ii86.7 (2)C3—S2—Li1ii111.54 (14)
O2ii—Li1—S2ii26.78 (8)S2—C2—H2A109.5
O2—Li1—S2ii111.96 (19)S2—C2—H2B109.5
S2ii—Li1—Li1i123.1 (2)S2—C2—H2C109.5
Li1i—O1—Li1108.5 (3)H2A—C2—H2B109.5
S1—O1—Li1i136.79 (16)H2A—C2—H2C109.5
S1i—O1—Li1i108.45 (16)H2B—C2—H2C109.5
S1—O1—Li1108.45 (16)S2—C3—H3A109.5
S1i—O1—Li1136.79 (16)S2—C3—H3B109.5
S1—O1—S1i53.18 (13)S2—C3—H3C109.5
O1—S1—Li139.92 (10)H3A—C3—H3B109.5
O1—S1—C1i103.64 (12)H3A—C3—H3C109.5
O1—S1—C1105.29 (13)H3B—C3—H3C109.5
S1i—S1—Li193.68 (11)
Li1i—O1—S1—Li1147.5 (2)Li1—O2—S2—C263.5 (4)
Li1i—O1—S1—S1i77.3 (2)Li1ii—O2—S2—C2151.0 (2)
Li1—O1—S1—S1i135.24 (17)Li1ii—O2—S2—C3105.2 (2)
Li1i—O1—S1—C1i129.2 (2)Li1—O2—S2—C340.4 (4)
Li1—O1—S1—C1170.72 (19)O1—S1—C1—S1i51.77 (9)
Li1i—O1—S1—C123.3 (3)S1i—O1—S1—Li1135.24 (17)
Li1—O1—S1—C1i83.35 (19)S1i—O1—S1—C1i51.89 (13)
Li1—S1—C1—S1i62.0 (2)S1i—O1—S1—C154.04 (13)
Li1—O2—S2—Li1ii145.5 (3)C1i—S1—C1—S1i55.91 (15)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1iii0.97 (1)2.98 (4)3.569 (3)120 (3)
C1—H1B···Cl1iv0.97 (1)2.79 (2)3.690 (3)156 (3)
C2—H2A···Cl1i0.982.713.680 (3)169
C2—H2B···Cl1v0.982.733.632 (3)153
C3—H3B···Cl1v0.982.883.752 (3)149
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+1, y1, z+1/2; (iv) x, y+1, z1/2; (v) x+1/2, y+3/2, z+1/2.
catena-Poly[lithium(I)-µ-chlorido-µ-(dimethyl sulfoxide)-κ2O:O] (Tetragonal) top
Crystal data top
[LiCl(C2H6OS)]Dx = 1.451 Mg m3
Mr = 120.52Cu Kα radiation, λ = 1.54178 Å
Tetragonal, I41/aCell parameters from 6535 reflections
a = 14.2411 (14) Åθ = 4.4–72.3°
c = 10.8809 (16) ŵ = 8.49 mm1
V = 2206.7 (5) Å3T = 100 K
Z = 16Octahedron, clear colourless
F(000) = 9920.4 × 0.4 × 0.4 mm
Data collection top
Bruker APEXII CCD
diffractometer
1030 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 72.3°, θmin = 5.1°
Tmin = 0.513, Tmax = 0.754h = 1716
8174 measured reflectionsk = 1617
1072 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.762P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1072 reflectionsΔρmax = 0.32 e Å3
79 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81811 (3)0.36163 (2)0.89755 (3)0.02090 (17)
S10.58855 (3)0.44534 (2)0.62126 (3)0.01513 (16)
O10.69499 (7)0.45632 (8)0.62414 (8)0.0182 (3)
C10.56163 (11)0.37206 (12)0.74923 (14)0.0238 (3)
H1A0.6017 (15)0.3177 (14)0.7468 (19)0.035 (5)*
H1B0.4949 (14)0.3561 (14)0.7438 (18)0.032 (5)*
H1C0.5707 (14)0.4087 (14)0.822 (2)0.030 (5)*
C20.56716 (10)0.36370 (11)0.50047 (14)0.0194 (3)
H2A0.6049 (14)0.3099 (14)0.5150 (18)0.030 (5)*
H2B0.5842 (13)0.3952 (14)0.425 (2)0.029 (5)*
H2C0.5011 (14)0.3503 (14)0.5012 (18)0.030 (5)*
Li10.77950 (17)0.48024 (16)0.7596 (2)0.0185 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0232 (2)0.0197 (2)0.0198 (2)0.00734 (14)0.00006 (13)0.00281 (13)
S10.0163 (2)0.0145 (2)0.0145 (2)0.00053 (13)0.00054 (12)0.00014 (11)
O10.0173 (6)0.0243 (6)0.0128 (5)0.0070 (4)0.0005 (3)0.0004 (4)
C10.0222 (8)0.0307 (9)0.0184 (8)0.0065 (7)0.0026 (6)0.0052 (6)
C20.0176 (7)0.0212 (7)0.0193 (7)0.0011 (6)0.0023 (5)0.0025 (6)
Li10.0216 (12)0.0206 (12)0.0133 (10)0.0025 (10)0.0006 (9)0.0006 (9)
Geometric parameters (Å, º) top
Cl1—Li12.326 (2)C1—H1B0.98 (2)
Cl1—Li1i2.336 (2)C1—H1C0.96 (2)
S1—O11.5241 (11)C2—H2A0.95 (2)
S1—C11.7819 (15)C2—H2B0.97 (2)
S1—C21.7810 (15)C2—H2C0.96 (2)
O1—Li1ii1.943 (3)Li1—Li1i2.8126 (10)
O1—Li11.933 (3)Li1—Li1ii2.8127 (10)
C1—H1A0.96 (2)
Li1—Cl1—Li1i74.22 (7)H2A—C2—H2C113.1 (18)
O1—S1—C1104.95 (7)H2B—C2—H2C110.1 (16)
O1—S1—C2104.61 (6)Cl1—Li1—Cl1ii124.69 (11)
C2—S1—C199.06 (8)Cl1ii—Li1—Li1i134.17 (10)
S1—O1—Li1130.77 (9)Cl1—Li1—Li1ii144.79 (11)
S1—O1—Li1ii125.94 (9)Cl1ii—Li1—Li1ii52.72 (8)
Li1—O1—Li1ii93.06 (8)Cl1—Li1—Li1i53.05 (7)
S1—C1—H1A108.8 (12)O1i—Li1—Cl196.36 (10)
S1—C1—H1B107.3 (12)O1i—Li1—Cl1ii113.41 (11)
S1—C1—H1C107.3 (12)O1—Li1—Cl1ii96.30 (10)
H1A—C1—H1B112.8 (18)O1—Li1—Cl1120.75 (12)
H1A—C1—H1C112.5 (17)O1—Li1—O1i104.58 (12)
H1B—C1—H1C107.9 (16)O1—Li1—Li1i124.99 (13)
S1—C2—H2A107.9 (12)O1i—Li1—Li1i43.34 (7)
S1—C2—H2B106.4 (12)O1i—Li1—Li1ii117.22 (12)
S1—C2—H2C107.0 (12)O1—Li1—Li1ii43.60 (6)
H2A—C2—H2B111.9 (16)Li1i—Li1—Li1ii159.29 (10)
C1—S1—O1—Li1ii179.33 (12)C2—S1—O1—Li1ii76.90 (13)
C1—S1—O1—Li143.92 (15)C2—S1—O1—Li1147.69 (13)
Symmetry codes: (i) y+1/4, x+5/4, z+1/4; (ii) y+5/4, x1/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1iii0.98 (2)2.95 (2)3.821 (2)148 (2)
C2—H2A···Cl1iv0.95 (2)2.84 (2)3.768 (2)165 (2)
C2—H2C···Cl1iii0.96 (2)2.83 (2)3.716 (2)153 (2)
Symmetry codes: (iii) x1/2, y, z+3/2; (iv) x+3/2, y+1/2, z+3/2.
 

Footnotes

1819 Materials Characterization & Performance.

§7546 Power Sources R&D.

1512 Diagnostic Science & Engineering.

Acknowledgements

The authors wish to thank Bertha Montoya and Claudina Cammack for aiding the synthesis. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inter­national Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References

First citationAllcorn, E., Nagasubramanian, G. & Apblett, C. A. (2020). U. S. Patent No. 10,727,474. Washington, DC: U. S. Patent and Trademark Office.  Google Scholar
First citationBouazizi, S. & Nasr, S. (2007). J. Mol. Struct. 837, 206–213.  CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBushkova, O. V., Yaroslavtseva, T. V. & Dobrovolsky, Y. A. (2017). Russ. J. Electrochem. 53, 677–699.  CrossRef CAS Google Scholar
First citationChivers, T., Downard, A., Parvez, M. & Schatte, G. (2001). Inorg. Chem. 40, 1975–1977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationConde, M. R. (2004). Int. J. Therm. Sci. 43, 367–382.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarvey, S., Skelton, B. W. & White, A. H. (1991). Aust. J. Chem. 44, 309–312.  CrossRef CAS Google Scholar
First citationKirillov, S. A., Gorobets, M. I., Tretyakov, D. O., Ataev, M. B. & Gafurov, M. M. (2015). J. Mol. Liq. 205, 78–84.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMauger, A., Julien, C. M., Paolella, A., Armand, M. & Zaghib, K. (2018). Mater. Sci. Eng. Rep. 134, 1–21.  CrossRef Google Scholar
First citationMegyes, T., Bakó, I., Radnai, T., Grósz, T., Kosztolányi, T., Mroz, B. & Probst, M. (2006). Chem. Phys. 321, 100–110.  CrossRef CAS Google Scholar
First citationPasgreta, E., Puchta, R., Galle, M., van Eikema Hommes, N., Zahl, A. & van Eldik, R. (2007). ChemPhysChem, 8, 1315–1320.  CrossRef PubMed CAS Google Scholar
First citationPátek, J. & Klomfar, J. (2006). Fluid Phase Equilib. 250, 138–149.  Google Scholar
First citationPerron, G., Brouillette, D. & Desnoyers, J. E. (1997). Can. J. Chem. 75, 1608–1614.  CrossRef CAS Google Scholar
First citationPranay Reddy, K., Fischer, P., Marinaro, M. & Wohlfahrt-Mehrens, M. (2018). ChemElectroChem, 5, 2758–2766.  Google Scholar
First citationRao, C. P., Rao, A. M. & Rao, C. N. R. (1984). Inorg. Chem. 23, 2080–2085.  CSD CrossRef CAS Web of Science Google Scholar
First citationReuter, K., Rudel, S. S., Buchner, M. R., Kraus, F. & von Hänisch, C. (2017). Chem. Eur. J. 23, 9607–9617.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTogasaki, N., Momma, T. & Osaka, T. (2016). J. Power Sources, 307, 98–104.  CrossRef CAS Google Scholar
First citationUgata, Y., Shigenobu, K., Tatara, R., Ueno, K., Watanabe, M. & Dokko, K. (2021). Phys. Chem. Chem. Phys. 23, 21419–21436.  CrossRef CAS PubMed Google Scholar
First citationVoigt, N. & van Wüllen, L. (2012). Solid State Ionics, 208, 8–16.  CrossRef CAS Google Scholar
First citationWang, F., Wang, J., Li, G., Guo, Z., Chu, J., Ai, X. & Song, Z. (2022). Energy Storage Mater. 50, 658-667, doi: 10.1016/j. ensm. 2022.05.055.  Google Scholar
First citationXin, N., Sun, Y., He, M., Radke, C. & Prausnitz, J. (2018). Fluid Phase Equilib. 461, 1–7.  CrossRef CAS Google Scholar
First citationYamada, Y., Takazawa, Y., Miyazaki, K. & Abe, T. (2010). J. Phys. Chem. C, 114, 11680–11685.  CrossRef CAS Google Scholar
First citationYounesi, R., Veith, G. M., Johansson, P., Edström, K. & Vegge, T. (2015). Energy Environ. Sci. 8, 1905–1922.  CrossRef CAS Google Scholar
First citationZhang, Q., Zhou, Y., Dai, W., Cui, X., Lyu, Z., Hu, Z. & Chen, W. (2021). Batteries & Supercaps. 4, 232-239.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds