research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of sodium thio­sulfate dihydrate and comparison to the penta­hydrate

crossmark logo

aTechnische Universität München, School of Natural Sciences, Lichtenbergstrasse 4, 85747 Garching, Germany
*Correspondence e-mail: wilhelm.klein@tum.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 7 December 2022; accepted 18 December 2022; online 1 January 2023)

Na2S2O3·2H2O has been mentioned in the literature for more than a hundred years and pure samples were prepared and investigated, however, no structural data except for a set of lattice parameters were known to date. Now crystals of this compound have been grown at the surface of an aqueous solution of Na2S2O3 and the structure has been determined at 200 and 100 K. Na2S2O3·2H2O crystallizes in the space group P21/n with two formula units in the asymmetric unit and all atoms occupying general positions. The sodium cations are five- to seven-coordinate by thio­sulfate anions and water mol­ecules and the anions act as mono- and bidentate ligands. In the extended structure, the thio­sulfate anions and water mol­ecules are connected by O—H⋯O and O—H⋯S hydrogen bonds of medium strength to form corrugated layers, which are linked by sodium cations. For comparison, the crystal structure of Na2S2O3·5H2O has been determined at the same conditions, i.e. for the first time below room temperature.

1. Chemical context

Thio­sulfates containing the S2O32– anion have been studied for more than 150 years (Bunte, 1874[Bunte, H. (1874). Ber. Dtsch. Chem. Ges. 7, 646-648.]). Nowadays, Na2S2O3 and (NH4)2S2O3 are produced on an industrial scale (Barberá et al., 2012[Barberá, J. J., Metzger, A. & Wolf, M. (2012). Ullmanns Encyclopedia of Industrial Chemistry, vol. 34, pp. 695-704. Weinheim: Wiley-CH.]), and the applications of thio­sulfates are growing (Kumar Paul et al., 2009[Kumar Paul, A., Madras, G. & Natarajan, S. (2009). Phys. Chem. Chem. Phys. 11, 11285-11296.]). One of the most characteristic features of the thio­sulfate anion is the enhanced reactivity including changes of the sulfur oxidation state, which hampered the preparation of pure compounds. For example, the synthesis of pure thio­sulfuric acid succeeded just lately via the reaction of Na2S2O3 and anhydrous HF (Hopfinger et al., 2018[Hopfinger, M., Zischka, F., Seifert, M. & Kornath, A. J. (2018). Z. Anorg. Allg. Chem. 644, 574-579.]), and the first pure thio­sulfate complexes of lanthanides were characterized very recently (Dalton et al., 2021[Dalton, E. Z., Blomberg, W. R. & Villa, E. M. (2021). Cryst. Growth Des. 21, 3071-3081.]).

The reactivity also might hinder the preparation of pure anhydrous compounds suitable for structural investigation, and thus, only a few anhydrous thio­sulfate structures are known so far: Na2S2O3 (Sándor & Csordás, 1961[Sándor, E. & Csordás, L. (1961). Acta Cryst. 14, 237-243.]; Teng et al., 1984[Teng, S. T., Fuess, H. & Bats, J. W. (1984). Acta Cryst. C40, 1785-1787.]), K2S2O3 (Lehner et al., 2013[Lehner, A. J., Schindler, L. V. & Röhr, C. (2013). Z. Naturforsch. Teil B, 68, 323-337.]) and PbS2O3 (Christensen et al., 1991[Christensen, A. N., Hazell, R. G., Hewat, A. W. & O'Reilly, K. P. J. (1991). Acta Chem. Scand. 45, 469-473.]). In contrast, numerous hydrates of thio­sulfate compounds have been structurally characterized, and in some classes such as the alkaline-earth metal thio­sulfates, some water mol­ecules of crystallization seem to be crucial for the formation of crystalline matter, indicated by the so far exclusive appearance of hydrated structures AES2O3·nH2O with AE = Mg (n = 6: Elerman et al., 1983[Elerman, Y., Bats, J. W. & Fuess, H. (1983). Acta Cryst. C39, 515-518.]), Ca (n = 6: Held & Bohatý, 2004[Held, P. & Bohatý, L. (2004). Acta Cryst. C60, i97-i100.]), Sr (n = 5: Held & Bohatý, 2004[Held, P. & Bohatý, L. (2004). Acta Cryst. C60, i97-i100.]; n = 1: Klein, 2020[Klein, W. (2020). Acta Cryst. E76, 197-200.]), and Ba (n = 1: Manojlović-Muir, 1975[Manojlović-Muir, L. A. (1975). Acta Cryst. B31, 135-139.]).

The nature of the hydrates in the Na2S2O3 system was intensively studied by Young & Burke (1906[Young, S. W. & Burke, W. E. (1906). J. Am. Chem. Soc. 28, 315-347.]) and by Picon (1924[Picon, M. (1924). C. R. Hebd. Seances Acad. Sci. 178, 700-703.]), who identified either twelve or even fourteen different crystalline hydrates of Na2S2O3, respectively, among them two different dihydrates, by means of their crystalline appearance and by thio­sulfate analysis. The penta­hydrate is by far the most stable compound at ambient conditions, and all other hydrates were found to convert into this phase more or less rapidly. Extended studies of its full dehydration including thermal analyses, Raman spectroscopy and optical microscopy revealed the dihydrate as an inter­mediate phase (Nirsha et al., 1982[Nirsha, B. H., Serebrennikova, G. M., Oboznenko, Yu. V., Zhadanov, B. V., Safonova, V. I. & Olikova, V. A. (1982). Zh. Neorg. Khim. 27, 3035-3038.]; Edwards & Woolf, 1985[Edwards, D. A. & Woolf, A. A. (1985). Polyhedron, 4, 513-516.]; Guarini & Piccini, 1988[Guarini, G. G. T. & Piccini, S. (1988). J. Chem. Soc. Faraday Trans. 1, 84, 331-342.]). Finally, Edwards and Woolf (1985[Edwards, D. A. & Woolf, A. A. (1985). Polyhedron, 4, 513-516.]) synthesized dihydrate samples with an analytical water content of 1.999 eq. via shaking the penta­hydrate in MeOH at room temperature and presented lattice parameters for a monoclinic cell (a = 11.431, b = 4.452, c = 20.368 Å, b = 93.79°, V = 1034.4 Å3), but no further structural information was given. A different, but unindexed XRD powder pattern was reported for a sample without given composition, which was prepared through dehydration of the penta­hydrate between 338 and 378 K (Nirsha et al., 1982[Nirsha, B. H., Serebrennikova, G. M., Oboznenko, Yu. V., Zhadanov, B. V., Safonova, V. I. & Olikova, V. A. (1982). Zh. Neorg. Khim. 27, 3035-3038.]). Besides these results, the large amount of defined hydrates of Na2S2O3, as implied by the early works, is supported by the structure determinations on single crystals of Na2S2O3·2/3H2O (Hesse et al., 1993[Hesse, W., Leutner, B., Böhn, K.-H. & Walker, N. P. C. (1993). Acta Cryst. C49, 363-365.]), Na2S2O3·5/4H2O (Chan et al., 2008[Chan, E. J., Skelton, B. W. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2825-2844.]) and Na2S2O3·5H2O (Taylor & Beevers, 1952[Taylor, P. G. & Beevers, C. A. (1952). Acta Cryst. 5, 341-344.]; Padmanabhan et al., 1971[Padmanabhan, V. M., Yadava, V. S., Navarro, Q. O., Garcia, A., Karsono, L., Suh, I. H. & Chien, L. S. (1971). Acta Cryst. B27, 253-257.]; Uraz & Armaǧan, 1977[Uraz, A. A. & Armaǧan, N. (1977). Acta Cryst. B33, 1396-1399.]; Lisensky & Levy, 1978[Lisensky, G. C. & Levy, H. A. (1978). Acta Cryst. B34, 1975-1977.]; Prasad & Rani, 2001[Prasad, S. M. & Rani, A. (2001). Acta Cryst. E57, i67-i69.]). Nevertheless, despite the evidence for its existence, for the dihydrate no structure information is available to date.

For the present paper, the crystal structure of the dihydrate was characterized at 100 and 200 K. For comparison, the structure of the penta­hydrate was determined at the same conditions, i.e., for the first time below ambient temperature.

2. Structural commentary

The crystal structure of the dihydrate of Na2S2O3 has been determined for the first time. Although this phase has been mentioned in the respective literature for many decades and some sophisticated experiments to synthesize pure samples, usually via controlled dehydration of the penta­hydrate, are described, no structural information besides a set of monoclinic lattice parameters is known to date. In the present case, the dihydrate was formed by crystallization at room temperature at the surface of a concentrated aqueous solution, and all dihydrate crystals that have been identified by indexing were isolated from this region. After disturbing the surface tension, most of these crystals subsided immediately to the bottom of the vessel, adding to the bulky crystalline precipitate, which has been identified from X-ray powder patterns as the penta­hydrate without visible impurities. After indexing at room temperature, the crystals were cooled down and datasets were recorded at 200 K and 100 K. Besides slight thermal contraction of lattice parameters and a decrease of displacement parameters (see Fig. 1[link]a), no structural change has been observed down to 100 K. The same is true for the crystal structure of the penta­hydrate, Na2S2O3·5H2O (Fig. 1[link]b), which has been published formerly and is not discussed here in detail, but was used for comparison. All values mentioned in the structure description below are taken from the structure determinations at 100 K.

[Figure 1]
Figure 1
The asymmetric units (a) of Na2S2O3·2 H2O, and (b) of Na2S2O3·5 H2O, with a comparison of relative positions and displacement ellipsoids of the non-hydrogen atoms obtained from structure determinations at 100 K (filled atoms) and at 200 K (contours of ellipsoids drawn around filled atoms). Ellipsoids are drawn at the 80% probability level, hydrogen bonds as dashed lines.

Na2S2O3·2H2O (Fig. 2[link]) crystallizes in space group P21/n with two formula units in the asymmetric unit and all atoms (4 Na, 4 S, 10 O, and 8 H) lying on general positions. The two independent thio­sulfate anions adopt slightly distorted tetra­hedral shapes with average O—S—O angles (110.30°) above and S—S—O angles (108.63°) below the mean bond angle of 109.46°. The S—S bond lengths of 2.0047 (2) Å and 2.0078 (2) Å are similar to that found in the penta­hydrate [2.0266 (1) Å], and, thus, are shorter than the single bond of 2.055 Å in crystalline S8 (Rettig & Trotter, 1987[Rettig, S. J. & Trotter, J. (1987). Acta Cryst. C43, 2260-2262.]), but substanti­ally longer than the double bond of 1.883 Å in S2O (Tiemann et al., 1974[Tiemann, E., Hoeft, J., Lovas, F. J. & Johnson, D. R. (1974). J. Chem. Phys. 60, 5000-5004.]) or 1.889 Å in S2 (Pyykkö & Atsumi, 2009[Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770-12779.]). Also, the S—O bond lengths, which lie between 1.4722 (4) and 1.4841 (4) Å are in the same range as those of the penta­hydrate [1.4665 (4)–1.4867 (4) Å]. The bond-valence sums (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for the central sulfur atoms, as calculated with the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), are 5.87 and 5.88 valence units (v.u.) for S1 and S3, respectively, and are in good agreement with a formal charge of +VI as well as with the value of 5.86 v.u. obtained for the corres­ponding S atom in the penta­hydrate. The anions coordinate to the Na+ cations and form hydrogen bonds with the water mol­ecules of crystallization: in detail the terminal S and O atoms are surrounded by one Na+ and one H2O (O1, O4, O6), two Na+ and one H2O (O2, O3), three Na+ (O5), three Na+ and two H2O (S2), or four Na+ and one H2O (S4).

[Figure 2]
Figure 2
Crystal structure of Na2S2O3·2H2O: (a) extended unit cell, view along [[\overline{1}]00]; (b) section of two layers of S2O32− anions and H2O mol­ecules connected by hydrogen bonds, view along [[\overline{1}]01], differently coloured tetra­hedra belong to different layers. Anisotropic displacement ellipsoids of non-H atoms are drawn with 80% probability, S2O32− ions as tetra­hedra, and hydrogen bonds as dashed lines.

The four independent Na+ cations are coordinated irregularly by the S2O32− dianions in mono- or bidentate manner and by H2O, as illustrated in Fig. 3[link]ad. The shortest Na—O distances are in the range between 2.3169 (5) Å and 2.4884 (4) Å, with Na—S between 2.9296 (3) and 2.9695 Å. If these environments are considered exclusively, the resulting coordination polyhedra can be inter­preted as an octa­hedron for Na3, mainly distorted due to two S2O32– ions coordinating as bidentate ligands, a trigonal prism with one missing corner for Na2 or an octa­hedron with one (Na1) or two (Na4) missing corners. This construction starting from six-vertex polyhedra seems to be justified due to the clearly favoured sixfold coordination for Na+ in an environment of oxygen atoms (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). However, for the latter cases of open octa­hedra, S2O32– ions as additional ligands with longer bond distances of about 2.5 Å for Na—O and 3.2 Å for Na—S are found, resulting in seven-coordinate polyhedra around Na1 and Na4. For Na2, the H2O mol­ecule located above the open side of the polyhedron can be excluded from the coord­ination sphere due to the too large Na—O distance of 3.52 Å and the orientation of the H atoms. The bond-valence sums for the Na cations are 1.08, 1.05, 1.15, and 1.06 v.u. with the highest value for the most conventionally coordinated Na3 ion while reduced values indicate weaker bonds in the coordination spheres of Na1 and Na4 or even an apparently incomplete coordination of Na2. This generally `overbonded' situation for the Na cations as well as the trend to higher values for regular coordination polyhedra is similarly found in the penta­hydrate, the respective values are 1.14 and 1.18 v.u. for the two independent cations in relatively regular octa­hedral coordinations, shown in Fig. 3[link]e,f.

[Figure 3]
Figure 3
Coordination polyhedra around the Na+ cations in Na2S2O3·2H2O (ad) and in Na2S2O3·5H2O (ef). Anisotropic displacement ellipsoids of non-H atoms are drawn with 80% probability, weakly or non-coordinating distances above 2.55 Å for Na—O and 3.18 Å for Na—S as dashed lines.

The four independent water mol­ecules show quite similar, roughly tetra­hedral surroundings, as shown in Fig. 4[link]. Each H2O mol­ecule coordinates to two Na+ ions, i.e., as a common vertex of neighbouring coordination polyhedra. All the H atoms form one hydrogen bond of moderate strength with O—H⋯O or O—H⋯S angles above 164°, see Table 1[link]. This is another similarity to observations in the penta­hydrate, where each H atom is part of one almost linear hydrogen bond (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for Na2S2O3·2H2O at 100 K

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O2i 0.844 (11) 2.090 (11) 2.9246 (5) 170.1 (11)
O7—H2⋯O3 0.782 (12) 2.190 (12) 2.9498 (6) 164.3 (12)
O8—H3⋯O6ii 0.827 (12) 2.211 (12) 3.0282 (6) 170.1 (11)
O8—H4⋯S2 0.772 (14) 2.545 (14) 3.3142 (4) 174.5 (13)
O9—H5⋯O1 0.851 (15) 1.966 (15) 2.8142 (6) 174.7 (15)
O9—H6⋯S4ii 0.825 (13) 2.471 (13) 3.2959 (4) 177.9 (12)
O10—H7⋯O4iii 0.828 (13) 1.936 (13) 2.7585 (5) 172.4 (12)
O10—H8⋯S2iii 0.810 (13) 2.421 (13) 3.2183 (4) 168.3 (12)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y, -z+1]; (iii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for Na2S2O3·5H2O at 100 K

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O3 0.808 (12) 2.001 (12) 2.8067 (5) 176.1 (13)
O4—H2⋯O2i 0.812 (12) 2.017 (12) 2.8175 (5) 168.6 (12)
O5—H3⋯O3 0.820 (13) 1.973 (13) 2.7912 (5) 174.9 (12)
O5—H4⋯O3ii 0.809 (13) 2.074 (13) 2.8736 (5) 169.2 (12)
O6—H5⋯O4ii 0.847 (14) 1.993 (14) 2.8365 (6) 173.8 (13)
O6—H6⋯S2iii 0.850 (13) 2.495 (13) 3.3404 (4) 173.6 (12)
O7—H7⋯S2iv 0.824 (13) 2.527 (13) 3.3356 (4) 167.5 (11)
O7—H8⋯O8v 0.812 (13) 2.017 (13) 2.8280 (6) 177.2 (12)
O8—H9⋯S2i 0.792 (13) 2.554 (13) 3.3147 (4) 161.6 (12)
O8—H10⋯S2 0.785 (14) 2.558 (14) 3.3381 (4) 173.0 (13)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Environments of the crystal water mol­ecules in Na2S2O3·2H2O. Anisotropic displacement ellipsoids of non-H atoms are drawn with a probability of 80%, hydrogen bonds as dashed lines, and short contacts to coordinating Na+ ions as thin lines.

The highly irregular coordination of the Na+ cations in the dihydrate is conspicuous with respect to other more conventional structural features, like the usual bond lengths in the anions or the near-linear hydrogen bonds. Obviously, the structure directing effect of the Na+ cations is the weakest among the present building units, although more regular coordination polyhedra, particularly octa­hedra, would have been possible as found in the penta­hydrate as well as in the related structures of Na6(S2O3)3·2H2O (Hesse et al., 1993[Hesse, W., Leutner, B., Böhn, K.-H. & Walker, N. P. C. (1993). Acta Cryst. C49, 363-365.]) and Na8(S2O3)4·5H2O (Chan et al., 2008[Chan, E. J., Skelton, B. W. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2825-2844.]). Such open, or at least higher coordinated, polyhedra including weaker bonded ligands as observed in Na2S2O3·2H2O should represent an easy possibility to incorporate further water mol­ecules into the structure and, therefore, a hint for the low stability relative to higher hydrates and the retardation of this structure determination.

3. Supra­molecular features

In Na2S2O3·2 H2O the thio­sulfate anions and water mol­ecules are connected via hydrogen bonds of medium strength, see Table 1[link], with all H atoms forming one almost linear bond. Two S2O32– ions are connected by two H2O mol­ecules to form the building units shown in Fig. 5[link]a. These dimeric units (e.g. blue S2O3 tetra­hedra and H2O mol­ecules in Fig. 5[link]b) are connected via two further H2O mol­ecules (pink in Fig. 5[link]b) with a second dimer (green in Fig. 5[link]b). The resulting tetra­mers are again inter­linked with neighbouring tetra­mers (yellow and red tetra­hedra in Fig. 5[link]b) by water mol­ecules, thereby forming corrugated layers lying parallel to (101), also shown in Fig. 2[link]b. The number of H atoms nicely matches the number of corners of the S2O32– tetra­hedra; however, by realizing this connection pattern, six of the eight possible corners of the tetra­hedra dimers accept one hydrogen bond, but one corner (S2) accepts two while one corner (O5) is exclusively surrounded by Na+ cations. The layers are not inter­connected by hydrogen bonds but only by Na+ cations. This is another difference to the penta­hydrate where the S2O32– ions and H2O mol­ecules form a three-dimensional framework including hydrogen bonds between water mol­ecules, obviously due to the higher number of H2O mol­ecules and, thus, possible hydrogen bonds.

[Figure 5]
Figure 5
(a) A pair of S2O32– anions in Na2S2O3·2H2O connected by two H2O mol­ecules via hydrogen bonds. (b) Illustration of the hydrogen-bond network between thio­sulfate anions, drawn as tetra­hedra, and water mol­ecules in Na2S2O3·2H2O: two S2O3 tetra­hedra (e.g., the blue ones) are bonded by two H2O (blue) to form dimers, which are connected by two H2O (pink) with another dimer (green). These tetra­meric units are inter­connected by H2O with neighbouring tetra­mers (yellow and red tetra­hedra).

4. Database survey

Na2S2O3 and its hydrates have been structurally investigated several times within the second half of the last century. Besides the anhydrous phase (Sándor & Csordás, 1961[Sándor, E. & Csordás, L. (1961). Acta Cryst. 14, 237-243.]; Teng et al., 1984[Teng, S. T., Fuess, H. & Bats, J. W. (1984). Acta Cryst. C40, 1785-1787.]), including a thorough examination of its temperature dependent polymorphism (von Benda & von Benda, 1979[Benda, H. von & von Benda, K. (1979). Z. Naturforsch. Teil B, 34, 957-968.]), some structure determinations of hydrates are reported, namely Na2S2O3·2/3H2O (Hesse et al., 1993[Hesse, W., Leutner, B., Böhn, K.-H. & Walker, N. P. C. (1993). Acta Cryst. C49, 363-365.]), Na2S2O3·5/4H2O (Chan et al., 2008[Chan, E. J., Skelton, B. W. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2825-2844.]) and Na2S2O3·5H2O (Taylor & Beevers, 1952[Taylor, P. G. & Beevers, C. A. (1952). Acta Cryst. 5, 341-344.]; Padmanabhan et al., 1971[Padmanabhan, V. M., Yadava, V. S., Navarro, Q. O., Garcia, A., Karsono, L., Suh, I. H. & Chien, L. S. (1971). Acta Cryst. B27, 253-257.]; Uraz & Armaǧan, 1977[Uraz, A. A. & Armaǧan, N. (1977). Acta Cryst. B33, 1396-1399.]; Lisensky & Levy, 1978[Lisensky, G. C. & Levy, H. A. (1978). Acta Cryst. B34, 1975-1977.]; Prasad & Rani, 2001[Prasad, S. M. & Rani, A. (2001). Acta Cryst. E57, i67-i69.]), with the sheer number of references obviously illustrating the high stability of the latter phase. For other alkali metal thio­sulfates, the structures of anhydrous K2S2O3 (Lehner et al., 2013[Lehner, A. J., Schindler, L. V. & Röhr, C. (2013). Z. Naturforsch. Teil B, 68, 323-337.]) and K2S2O3·1/3H2O (Csordás, 1969[Csordás, L. (1969). Acta Chim. Acad. Sci. Hung. 62, 371-393.]; Chan et al., 2008[Chan, E. J., Skelton, B. W. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2825-2844.]; Lehner et al., 2013[Lehner, A. J., Schindler, L. V. & Röhr, C. (2013). Z. Naturforsch. Teil B, 68, 323-337.]) as well as of the monohydrates of Rb2S2O3 (Lehner et al., 2013[Lehner, A. J., Schindler, L. V. & Röhr, C. (2013). Z. Naturforsch. Teil B, 68, 323-337.]) and Cs2S2O3 (Winkler et al., 2016[Winkler, V., Schlosser, M. & Pfitzner, A. (2016). Z. Naturforsch. Teil B, 71, 579-584.]) have been reported.

5. Synthesis and crystallization

Colourless crystals of Na2S2O3·2H2O were grown at ambient conditions from an aqueous solution of Na2S2O3. The crystals were found floating at the surface of the mother liquor, but sank down to the bottom of the crystallization vessel immediately after disturbing the surface tension. A batch of crystals was immersed into perfluoro­ether, and the crystals were found to be unscathed and stable at room temperature for days. In contrast, no crystals of the dihydrate could be found from the crystal bulk at the bottom of the vessel, but all crystals isolated later from there were penta­hydrate crystals. In addition, an X-ray powder pattern of a sample prepared from this bulk did not contain any other reflections than those of the penta­hydrate.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. In all presented structure refinements, all hydrogen atoms could be located from the difference-Fourier map and were refined with free atomic coordinates and isotropic displacement parameters.

Table 3
Experimental details

  Na2S2O3·2H2O at 100 K Na2S2O3·2H2O at 200 K Na2S2O3·5H2O at 100 K Na2S2O3·5H2O at 200 K
Crystal data
Chemical formula Na2S2O3·2H2O Na2S2O3·2H2O Na2S2O3·5H2O Na2S2O3·5H2O
Mr 194.13 194.13 248.18 248.18
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 200 100 200
a, b, c (Å) 5.7719 (1), 19.3257 (3), 11.5162 (3) 5.8003 (1), 19.3713 (4), 11.5520 (3) 5.9187 (1), 21.5173 (4), 7.4979 (1) 5.9357 (1), 21.5424 (7), 7.5026 (2)
β (°) 102.388 (2) 102.331 (2) 103.722 (1) 103.722 (2)
V3) 1254.68 (4) 1268.03 (5) 927.64 (3) 931.97 (4)
Z 8 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.93 0.92 0.67 0.67
Crystal size (mm) 0.25 × 0.2 × 0.15 0.25 × 0.2 × 0.15 0.6 × 0.3 × 0.15 0.6 × 0.3 × 0.15
 
Data collection
Diffractometer Stoe StadiVari Stoe StadiVari Stoe StadiVari Stoe StadiVari
Absorption correction Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.919, 1.000 0.920, 1.000 0.868, 1.000 0.869, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52592, 8735, 7524 55208, 8848, 7181 64240, 6486, 5525 56700, 5006, 4212
Rint 0.019 0.024 0.026 0.023
(sin θ/λ)max−1) 0.946 0.948 0.948 0.869
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.047, 1.02 0.022, 0.057, 1.01 0.020, 0.047, 1.06 0.019, 0.052, 1.08
No. of reflections 8735 8848 6486 5006
No. of parameters 195 195 149 149
H-atom treatment All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.55, −0.41 0.58, −0.34 0.54, −0.27 0.42, −0.28
Computer programs: X-AREA (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

For all structures, data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012).

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K) top
Crystal data top
Na2S2O3·2H2OF(000) = 784
Mr = 194.13Dx = 2.055 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.7719 (1) ÅCell parameters from 74172 reflections
b = 19.3257 (3) Åθ = 3.6–42.6°
c = 11.5162 (3) ŵ = 0.93 mm1
β = 102.388 (2)°T = 100 K
V = 1254.68 (4) Å3Block, colourless
Z = 80.25 × 0.2 × 0.15 mm
Data collection top
Stoe StadiVari
diffractometer
8735 independent reflections
Radiation source: Genix 3D HF Mo7524 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.019
Detector resolution: 5.81 pixels mm-1θmax = 42.3°, θmin = 3.6°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(X-AREA; Stoe & Cie, 2015)
k = 2436
Tmin = 0.919, Tmax = 1.000l = 2121
52592 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: difference Fourier map
wR(F2) = 0.047All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.0499P]
where P = (Fo2 + 2Fc2)/3
8735 reflections(Δ/σ)max = 0.002
195 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.76421 (4)0.06060 (2)0.07970 (2)0.01045 (4)
Na20.77035 (4)0.05630 (2)0.42885 (2)0.01123 (4)
Na30.69690 (4)0.18045 (2)0.68402 (2)0.00931 (4)
Na40.25074 (4)0.16699 (2)0.96445 (2)0.01068 (4)
S10.40448 (2)0.21188 (2)0.40032 (2)0.00580 (2)
S20.05139 (2)0.22163 (2)0.34974 (2)0.00789 (2)
O10.46625 (7)0.13787 (2)0.40401 (4)0.01077 (6)
O20.48663 (6)0.24383 (2)0.51923 (3)0.00914 (5)
O30.51216 (6)0.24942 (2)0.31289 (3)0.00948 (5)
S30.50073 (2)0.04913 (2)0.80268 (2)0.00634 (2)
S40.85520 (2)0.05914 (2)0.83904 (2)0.00764 (2)
O40.40222 (7)0.09813 (2)0.70691 (4)0.01385 (7)
O50.41409 (7)0.06361 (2)0.91219 (3)0.01001 (6)
O60.43732 (7)0.02303 (2)0.76485 (3)0.01022 (6)
O70.62228 (7)0.17816 (2)0.10472 (4)0.01099 (6)
H10.721 (2)0.2050 (6)0.0833 (10)0.020 (2)*
H20.610 (2)0.1913 (6)0.1672 (11)0.024 (3)*
O80.14212 (7)0.11545 (2)0.13791 (4)0.01073 (6)
H30.250 (2)0.0899 (6)0.1722 (10)0.022 (3)*
H40.117 (2)0.1420 (8)0.1836 (12)0.036 (3)*
O90.16296 (7)0.02476 (2)0.41193 (4)0.01152 (6)
H50.249 (3)0.0597 (8)0.4053 (13)0.040 (4)*
H60.162 (2)0.0032 (7)0.3500 (11)0.028 (3)*
O100.96285 (7)0.13736 (2)0.57734 (4)0.01076 (6)
H71.090 (2)0.1261 (7)0.6218 (11)0.028 (3)*
H80.987 (2)0.1637 (7)0.5266 (11)0.030 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.01049 (8)0.01158 (9)0.00939 (9)0.00200 (7)0.00237 (7)0.00018 (7)
Na20.01055 (9)0.01247 (9)0.00991 (9)0.00314 (7)0.00051 (7)0.00119 (7)
Na30.00991 (8)0.00920 (8)0.00892 (8)0.00016 (6)0.00226 (6)0.00054 (6)
Na40.01100 (8)0.00982 (9)0.01091 (9)0.00286 (7)0.00168 (7)0.00021 (7)
S10.00541 (4)0.00571 (4)0.00618 (4)0.00005 (3)0.00100 (3)0.00008 (3)
S20.00558 (4)0.01003 (4)0.00789 (4)0.00030 (3)0.00106 (3)0.00014 (3)
O10.00952 (13)0.00573 (13)0.01647 (16)0.00125 (10)0.00145 (11)0.00059 (11)
O20.00966 (13)0.01030 (14)0.00666 (12)0.00023 (10)0.00002 (10)0.00154 (10)
O30.00852 (12)0.01143 (14)0.00930 (13)0.00052 (10)0.00372 (10)0.00192 (10)
S30.00611 (4)0.00644 (4)0.00640 (4)0.00036 (3)0.00113 (3)0.00010 (3)
S40.00626 (4)0.00816 (4)0.00842 (4)0.00021 (3)0.00138 (3)0.00005 (3)
O40.00915 (13)0.01576 (16)0.01486 (16)0.00036 (12)0.00138 (12)0.00848 (13)
O50.00940 (13)0.01171 (14)0.00994 (14)0.00015 (11)0.00431 (11)0.00291 (11)
O60.01128 (13)0.00868 (13)0.01099 (14)0.00318 (10)0.00305 (11)0.00345 (10)
O70.01116 (14)0.01221 (15)0.00987 (14)0.00230 (11)0.00287 (11)0.00060 (11)
O80.01084 (14)0.00978 (14)0.01119 (14)0.00123 (11)0.00152 (11)0.00083 (11)
O90.01357 (15)0.01038 (14)0.01172 (15)0.00148 (11)0.00516 (12)0.00135 (11)
O100.00916 (13)0.01293 (15)0.01009 (14)0.00096 (11)0.00183 (11)0.00219 (11)
Geometric parameters (Å, º) top
Na1—O8i2.3882 (5)Na4—Na3x3.9395 (3)
Na1—O6ii2.4451 (5)Na4—Na3xi4.0357 (3)
Na1—O72.4529 (5)S1—O11.4725 (4)
Na1—O5iii2.4771 (5)S1—O31.4815 (4)
Na1—O5ii2.6214 (5)S1—O21.4841 (4)
Na1—S4iii2.9296 (3)S1—S22.0047 (2)
Na1—S3ii3.0917 (3)S1—Na4viii3.0636 (3)
Na1—S4iv3.1898 (3)S1—Na3xiii3.2694 (3)
Na1—S3iii3.2338 (3)S2—Na3xiii2.9354 (3)
Na1—Na4iii3.6173 (3)S2—Na4xiii3.2208 (3)
Na1—Na4v3.9337 (3)O2—Na4viii2.4708 (4)
Na1—Na1vi3.9694 (5)O3—Na3xiii2.4883 (4)
Na2—O12.3307 (4)O3—Na4viii2.5536 (4)
Na2—O9ii2.3794 (5)S3—O41.4722 (4)
Na2—O6ii2.3831 (4)S3—O51.4797 (4)
Na2—O9i2.3947 (5)S3—O61.4832 (4)
Na2—O102.4078 (5)S3—S42.0078 (2)
Na2—Na2iv3.5475 (5)S3—Na1ii3.0917 (3)
Na2—Na33.8866 (3)S3—Na1ix3.2338 (3)
Na2—H82.557 (12)S4—Na1ix2.9295 (3)
Na3—O102.3169 (5)S4—Na1iv3.1897 (3)
Na3—O22.3636 (4)S4—Na4i3.1981 (3)
Na3—O42.3845 (5)O5—Na1ix2.4771 (5)
Na3—O3vii2.4884 (4)O5—Na1ii2.6213 (5)
Na3—S2vii2.9354 (3)O6—Na2ii2.3831 (4)
Na3—S42.9695 (3)O6—Na1ii2.4451 (5)
Na3—S33.2022 (3)O7—Na4iii2.4018 (5)
Na3—S1vii3.2694 (3)O7—H10.844 (11)
Na3—Na4viii3.9395 (3)O7—H20.782 (12)
Na3—Na4i4.0357 (3)O8—Na1xi2.3882 (5)
Na4—O52.3423 (4)O8—Na4iii2.4316 (5)
Na4—O7ix2.4017 (5)O8—H30.827 (12)
Na4—O8ix2.4317 (5)O8—H40.772 (14)
Na4—O2x2.4708 (4)O9—Na2ii2.3793 (5)
Na4—O3x2.5536 (4)O9—Na2xi2.3947 (5)
Na4—S1x3.0636 (2)O9—H50.851 (15)
Na4—S4xi3.1981 (3)O9—H60.825 (13)
Na4—S2vii3.2208 (3)O10—H70.828 (13)
Na4—Na1ix3.6173 (3)O10—H80.810 (13)
Na4—Na1xii3.9337 (3)
O8i—Na1—O6ii118.400 (16)O5—Na4—O7ix84.197 (15)
O8i—Na1—O782.178 (15)O5—Na4—O8ix92.899 (16)
O6ii—Na1—O788.032 (15)O7ix—Na4—O8ix80.483 (15)
O8i—Na1—O5iii138.729 (17)O5—Na4—O2x164.794 (17)
O6ii—Na1—O5iii98.068 (15)O7ix—Na4—O2x106.048 (16)
O7—Na1—O5iii80.357 (15)O8ix—Na4—O2x78.118 (14)
O8i—Na1—O5ii137.591 (16)O5—Na4—O3x123.483 (16)
O6ii—Na1—O5ii56.628 (13)O7ix—Na4—O3x132.507 (17)
O7—Na1—O5ii134.460 (16)O8ix—Na4—O3x128.636 (15)
O5iii—Na1—O5ii77.780 (15)O2x—Na4—O3x57.417 (12)
O8i—Na1—S4iii86.073 (12)O5—Na4—S1x150.169 (14)
O6ii—Na1—S4iii154.130 (13)O7ix—Na4—S1x122.393 (13)
O7—Na1—S4iii104.610 (12)O8ix—Na4—S1x103.959 (12)
O5iii—Na1—S4iii62.959 (10)O2x—Na4—S1x28.631 (9)
O5ii—Na1—S4iii100.155 (11)O3x—Na4—S1x28.794 (9)
O8i—Na1—S3ii133.571 (13)O5—Na4—S4xi67.401 (11)
O6ii—Na1—S3ii28.098 (9)O7ix—Na4—S4xi144.113 (14)
O7—Na1—S3ii112.008 (13)O8ix—Na4—S4xi79.579 (12)
O5iii—Na1—S3ii87.693 (11)O2x—Na4—S4xi98.634 (12)
O5ii—Na1—S3ii28.531 (9)O3x—Na4—S4xi82.850 (11)
S4iii—Na1—S3ii127.864 (9)S1x—Na4—S4xi91.346 (7)
O8i—Na1—S4iv73.118 (12)O5—Na4—S2vii100.525 (12)
O6ii—Na1—S4iv88.603 (12)O7ix—Na4—S2vii74.571 (12)
O7—Na1—S4iv149.747 (13)O8ix—Na4—S2vii150.145 (13)
O5iii—Na1—S4iv129.865 (13)O2x—Na4—S2vii93.140 (11)
O5ii—Na1—S4iv64.918 (10)O3x—Na4—S2vii63.633 (10)
S4iii—Na1—S4iv91.068 (7)S1x—Na4—S2vii76.791 (6)
S3ii—Na1—S4iv75.409 (6)S4xi—Na4—S2vii130.207 (8)
O8i—Na1—S3iii121.015 (13)O5—Na4—Na1ix42.791 (11)
O6ii—Na1—S3iii120.330 (12)O7ix—Na4—Na1ix42.373 (11)
O7—Na1—S3iii94.657 (12)O8ix—Na4—Na1ix78.527 (12)
O5iii—Na1—S3iii25.963 (9)O2x—Na4—Na1ix143.576 (12)
O5ii—Na1—S3iii82.368 (11)O3x—Na4—Na1ix152.820 (13)
S4iii—Na1—S3iii37.616 (4)S1x—Na4—Na1ix164.477 (9)
S3ii—Na1—S3iii102.300 (7)S4xi—Na4—Na1ix104.156 (8)
S4iv—Na1—S3iii112.843 (8)S2vii—Na4—Na1ix93.397 (7)
O8i—Na1—Na4iii118.543 (13)O5—Na4—Na1xii89.810 (12)
O6ii—Na1—Na4iii87.500 (12)O7ix—Na4—Na1xii114.775 (13)
O7—Na1—Na4iii41.293 (11)O8ix—Na4—Na1xii34.934 (10)
O5iii—Na1—Na4iii39.967 (10)O2x—Na4—Na1xii75.773 (11)
O5ii—Na1—Na4iii103.685 (11)O3x—Na4—Na1xii104.000 (11)
S4iii—Na1—Na4iii87.559 (7)S1x—Na4—Na1xii90.270 (7)
S3ii—Na1—Na4iii96.159 (8)S4xi—Na4—Na1xii47.125 (5)
S4iv—Na1—Na4iii168.094 (9)S2vii—Na4—Na1xii166.945 (8)
S3iii—Na1—Na4iii60.141 (6)Na1ix—Na4—Na1xii99.620 (8)
O8i—Na1—Na4v35.666 (11)O5—Na4—Na3x153.485 (13)
O6ii—Na1—Na4v152.675 (13)O7ix—Na4—Na3x71.525 (12)
O7—Na1—Na4v80.568 (11)O8ix—Na4—Na3x73.117 (12)
O5iii—Na1—Na4v104.310 (12)O2x—Na4—Na3x34.529 (10)
O5ii—Na1—Na4v143.591 (12)O3x—Na4—Na3x81.957 (11)
S4iii—Na1—Na4v53.130 (5)S1x—Na4—Na3x56.340 (6)
S3ii—Na1—Na4v164.219 (9)S4xi—Na4—Na3x129.098 (8)
S4iv—Na1—Na4v88.948 (7)S2vii—Na4—Na3x83.498 (7)
S3iii—Na1—Na4v85.509 (7)Na1ix—Na4—Na3x111.170 (8)
Na4iii—Na1—Na4v99.621 (8)Na1xii—Na4—Na3x90.819 (7)
O8i—Na1—Na1vi163.063 (16)O5—Na4—Na3xi98.206 (12)
O6ii—Na1—Na1vi73.997 (11)O7ix—Na4—Na3xi166.439 (14)
O7—Na1—Na1vi110.978 (14)O8ix—Na4—Na3xi112.594 (12)
O5iii—Na1—Na1vi40.198 (10)O2x—Na4—Na3xi74.523 (10)
O5ii—Na1—Na1vi37.582 (9)O3x—Na4—Na3xi36.277 (10)
S4iii—Na1—Na1vi80.371 (8)S1x—Na4—Na3xi52.703 (5)
S3ii—Na1—Na1vi52.748 (6)S4xi—Na4—Na3xi46.719 (5)
S4iv—Na1—Na1vi96.895 (9)S2vii—Na4—Na3xi91.873 (7)
S3iii—Na1—Na1vi49.552 (6)Na1ix—Na4—Na3xi140.915 (8)
Na4iii—Na1—Na1vi71.213 (8)Na1xii—Na4—Na3xi78.663 (6)
Na4v—Na1—Na1vi133.293 (10)Na3x—Na4—Na3xi107.902 (7)
O1—Na2—O9ii122.205 (18)O1—S1—O3111.16 (2)
O1—Na2—O6ii81.562 (16)O1—S1—O2110.48 (2)
O9ii—Na2—O6ii120.629 (17)O3—S1—O2109.02 (2)
O1—Na2—O9i149.663 (18)O1—S1—S2108.927 (16)
O9ii—Na2—O9i84.012 (16)O3—S1—S2107.764 (16)
O6ii—Na2—O9i98.619 (16)O2—S1—S2109.430 (16)
O1—Na2—O1082.399 (15)O1—S1—Na4viii126.430 (16)
O9ii—Na2—O1084.685 (15)O3—S1—Na4viii56.126 (16)
O6ii—Na2—O10154.570 (17)O2—S1—Na4viii52.913 (16)
O9i—Na2—O1085.577 (16)S2—S1—Na4viii124.628 (7)
O1—Na2—Na2iv160.062 (17)O1—S1—Na3xiii133.400 (18)
O9ii—Na2—Na2iv42.172 (11)O3—S1—Na3xiii46.304 (15)
O6ii—Na2—Na2iv116.288 (15)O2—S1—Na3xiii115.505 (16)
O9i—Na2—Na2iv41.840 (11)S2—S1—Na3xiii62.309 (6)
O10—Na2—Na2iv83.443 (13)Na4viii—S1—Na3xiii79.101 (7)
O1—Na2—Na358.255 (12)S1—S2—Na3xiii80.481 (7)
O9ii—Na2—Na381.351 (12)S1—S2—Na4xiii123.174 (7)
O6ii—Na2—Na3139.441 (13)Na3xiii—S2—Na4xiii95.180 (7)
O9i—Na2—Na3118.510 (13)S1—O1—Na2146.29 (2)
O10—Na2—Na333.899 (10)S1—O2—Na3122.18 (2)
Na2iv—Na2—Na3102.788 (10)S1—O2—Na4viii98.46 (2)
O1—Na2—Na191.058 (13)Na3—O2—Na4viii109.136 (16)
O9ii—Na2—Na1138.654 (13)S1—O3—Na3xiii108.20 (2)
O6ii—Na2—Na134.248 (10)S1—O3—Na4viii95.079 (19)
O9i—Na2—Na174.270 (12)Na3xiii—O3—Na4viii106.335 (16)
O10—Na2—Na1126.973 (13)O4—S3—O5111.71 (2)
Na2iv—Na2—Na1108.694 (10)O4—S3—O6110.70 (2)
Na3—Na2—Na1139.958 (8)O5—S3—O6108.72 (2)
O1—Na2—H877.9 (3)O4—S3—S4107.862 (17)
O9ii—Na2—H8102.3 (3)O5—S3—S4108.640 (16)
O6ii—Na2—H8137.0 (3)O6—S3—S4109.151 (17)
O9i—Na2—H882.0 (3)O4—S3—Na1ii128.431 (17)
O10—Na2—H818.5 (3)O5—S3—Na1ii57.791 (16)
Na2iv—Na2—H892.7 (3)O6—S3—Na1ii50.932 (16)
Na3—Na2—H844.6 (3)S4—S3—Na1ii123.533 (7)
Na1—Na2—H8108.8 (3)O4—S3—Na344.406 (17)
O10—Na3—O292.578 (16)O5—S3—Na3115.395 (17)
O10—Na3—O4112.849 (18)O6—S3—Na3135.020 (17)
O2—Na3—O4100.309 (15)S4—S3—Na364.837 (6)
O10—Na3—O3vii91.667 (15)Na1ii—S3—Na3169.724 (7)
O2—Na3—O3vii112.361 (16)O4—S3—Na1ix135.99 (2)
O4—Na3—O3vii138.171 (17)O5—S3—Na1ix47.128 (16)
O10—Na3—S2vii152.992 (14)O6—S3—Na1ix112.854 (17)
O2—Na3—S2vii91.069 (12)S4—S3—Na1ix62.944 (6)
O4—Na3—S2vii92.745 (14)Na1ii—S3—Na1ix77.699 (7)
O3vii—Na3—S2vii62.335 (10)Na3—S3—Na1ix103.422 (7)
O10—Na3—S483.204 (12)S3—S4—Na1ix79.440 (7)
O2—Na3—S4158.528 (13)S3—S4—Na377.431 (6)
O4—Na3—S462.715 (11)Na1ix—S4—Na3117.818 (8)
O3vii—Na3—S488.861 (11)S3—S4—Na1iv126.733 (7)
S2vii—Na3—S4102.249 (8)Na1ix—S4—Na1iv88.932 (7)
O10—Na3—S3106.058 (13)Na3—S4—Na1iv148.524 (7)
O2—Na3—S3125.851 (13)S3—S4—Na4i138.919 (7)
O4—Na3—S325.595 (10)Na1ix—S4—Na4i79.744 (7)
O3vii—Na3—S3117.222 (12)Na3—S4—Na4i81.648 (7)
S2vii—Na3—S393.258 (7)Na1iv—S4—Na4i87.727 (7)
S4—Na3—S337.733 (4)S3—O4—Na3110.00 (2)
O10—Na3—S1vii117.162 (13)S3—O5—Na4127.49 (2)
O2—Na3—S1vii108.846 (12)S3—O5—Na1ix106.91 (2)
O4—Na3—S1vii119.596 (14)Na4—O5—Na1ix97.241 (16)
O3vii—Na3—S1vii25.496 (9)S3—O5—Na1ii93.680 (19)
S2vii—Na3—S1vii37.209 (4)Na4—O5—Na1ii126.101 (17)
S4—Na3—S1vii91.674 (7)Na1ix—O5—Na1ii102.221 (15)
S3—Na3—S1vii106.535 (7)S3—O6—Na2ii124.85 (2)
O10—Na3—Na235.423 (11)S3—O6—Na1ii100.97 (2)
O2—Na3—Na280.408 (11)Na2ii—O6—Na1ii112.489 (17)
O4—Na3—Na282.405 (14)Na4iii—O7—Na196.333 (16)
O3vii—Na3—Na2127.067 (12)Na4iii—O7—H1114.7 (8)
S2vii—Na3—Na2169.225 (9)Na1—O7—H1105.9 (8)
S4—Na3—Na284.133 (7)Na4iii—O7—H2113.7 (9)
S3—Na3—Na286.521 (7)Na1—O7—H2120.6 (9)
S1vii—Na3—Na2152.539 (8)H1—O7—H2105.7 (11)
O10—Na3—Na4viii77.064 (12)Na1xi—O8—Na4iii109.400 (17)
O2—Na3—Na4viii36.336 (10)Na1xi—O8—H3114.8 (8)
O4—Na3—Na4viii136.606 (12)Na4iii—O8—H3109.6 (8)
O3vii—Na3—Na4viii80.031 (11)Na1xi—O8—H4100.9 (10)
S2vii—Na3—Na4viii90.445 (7)Na4iii—O8—H4114.1 (10)
S4—Na3—Na4viii156.961 (8)H3—O8—H4107.9 (13)
S3—Na3—Na4viii161.959 (8)Na2ii—O9—Na2xi95.988 (16)
S1vii—Na3—Na4viii86.918 (7)Na2ii—O9—H5126.2 (10)
Na2—Na3—Na4viii86.578 (7)Na2xi—O9—H5112.6 (10)
O10—Na3—Na4i84.262 (12)Na2ii—O9—H6107.7 (9)
O2—Na3—Na4i149.099 (13)Na2xi—O9—H6111.6 (9)
O4—Na3—Na4i109.260 (12)H5—O9—H6102.7 (12)
O3vii—Na3—Na4i37.389 (10)Na3—O10—Na2110.678 (17)
S2vii—Na3—Na4i79.004 (6)Na3—O10—H7111.4 (8)
S4—Na3—Na4i51.632 (5)Na2—O10—H7118.7 (9)
S3—Na3—Na4i84.222 (6)Na3—O10—H8113.2 (9)
S1vii—Na3—Na4i48.197 (5)Na2—O10—H891.3 (9)
Na2—Na3—Na4i111.661 (7)H7—O10—H8110.2 (12)
Na4viii—Na3—Na4i113.819 (7)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+2, y, z+1; (v) x+1, y, z1; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x, y, z+1; (x) x1/2, y+1/2, z+1/2; (xi) x1, y, z; (xii) x1, y, z+1; (xiii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O2viii0.844 (11)2.090 (11)2.9246 (5)170.1 (11)
O7—H2···O30.782 (12)2.190 (12)2.9498 (6)164.3 (12)
O8—H3···O6ii0.827 (12)2.211 (12)3.0282 (6)170.1 (11)
O8—H4···S20.772 (14)2.545 (14)3.3142 (4)174.5 (13)
O9—H5···O10.851 (15)1.966 (15)2.8142 (6)174.7 (15)
O9—H6···S4ii0.825 (13)2.471 (13)3.2959 (4)177.9 (12)
O10—H7···O4i0.828 (13)1.936 (13)2.7585 (5)172.4 (12)
O10—H8···S2i0.810 (13)2.421 (13)3.2183 (4)168.3 (12)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (viii) x+1/2, y+1/2, z1/2.
(Na2S2O3H2O2_200K) top
Crystal data top
O3S2·2(H2O)·2(Na)F(000) = 784
Mr = 194.13Dx = 2.034 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.8003 (1) ÅCell parameters from 63400 reflections
b = 19.3713 (4) Åθ = 3.2–42.5°
c = 11.5520 (3) ŵ = 0.92 mm1
β = 102.331 (2)°T = 200 K
V = 1268.03 (5) Å3Block, colourless
Z = 80.25 × 0.2 × 0.15 mm
Data collection top
Stoe StadiVari
diffractometer
8848 independent reflections
Radiation source: Genix 3D HF Mo7181 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.024
Detector resolution: 5.81 pixels mm-1θmax = 42.3°, θmin = 3.6°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(X-AREA; Stoe & Cie, 2015)
k = 2436
Tmin = 0.920, Tmax = 1.000l = 2121
55208 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.057All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0343P)2]
where P = (Fo2 + 2Fc2)/3
8848 reflections(Δ/σ)max = 0.002
195 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.76083 (5)0.06118 (2)0.07884 (3)0.01992 (5)
Na20.77256 (5)0.05700 (2)0.42842 (3)0.02061 (5)
Na30.69341 (5)0.18066 (2)0.68350 (2)0.01663 (5)
Na40.24774 (5)0.16710 (2)0.96288 (3)0.01997 (5)
S10.40321 (2)0.21139 (2)0.39998 (2)0.01053 (2)
S20.05175 (2)0.22031 (2)0.34932 (2)0.01460 (3)
O10.46682 (8)0.13784 (2)0.40371 (5)0.01990 (8)
O20.48340 (8)0.24334 (2)0.51827 (4)0.01645 (7)
O30.50946 (8)0.24916 (3)0.31300 (4)0.01705 (7)
S30.49533 (2)0.04958 (2)0.80242 (2)0.01214 (3)
S40.84805 (2)0.05883 (2)0.83802 (2)0.01430 (3)
O40.39836 (9)0.09907 (3)0.70831 (5)0.02776 (11)
O50.41052 (8)0.06351 (3)0.91195 (4)0.01854 (8)
O60.43089 (9)0.02198 (3)0.76389 (4)0.02031 (8)
O70.61781 (9)0.17868 (3)0.10362 (4)0.01977 (8)
H10.714 (2)0.2063 (6)0.0822 (12)0.032 (3)*
H20.603 (2)0.1921 (7)0.1666 (12)0.034 (3)*
O80.13817 (9)0.11508 (3)0.13587 (5)0.01947 (8)
H30.242 (2)0.0895 (7)0.1678 (11)0.032 (3)*
H40.116 (3)0.1393 (9)0.1796 (14)0.055 (4)*
O90.16529 (10)0.02449 (3)0.41317 (5)0.02058 (8)
H50.248 (3)0.0584 (9)0.4037 (16)0.059 (5)*
H60.165 (2)0.0039 (7)0.3523 (12)0.033 (3)*
O100.96144 (8)0.13779 (3)0.57813 (4)0.01861 (8)
H71.088 (2)0.1259 (7)0.6229 (12)0.038 (3)*
H80.990 (2)0.1628 (7)0.5310 (12)0.037 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.02111 (12)0.02219 (13)0.01677 (11)0.00539 (9)0.00473 (9)0.00005 (9)
Na20.01952 (12)0.02307 (13)0.01777 (12)0.00628 (9)0.00067 (9)0.00274 (9)
Na30.01804 (11)0.01634 (11)0.01560 (11)0.00029 (8)0.00381 (8)0.00127 (8)
Na40.02085 (12)0.01800 (12)0.02026 (12)0.00594 (9)0.00261 (9)0.00061 (9)
S10.01007 (4)0.01019 (5)0.01107 (5)0.00009 (3)0.00164 (3)0.00023 (3)
S20.01013 (5)0.01901 (6)0.01424 (5)0.00055 (4)0.00167 (4)0.00046 (4)
O10.01663 (17)0.01085 (17)0.0309 (2)0.00213 (13)0.00209 (16)0.00127 (15)
O20.01729 (17)0.01861 (18)0.01175 (16)0.00063 (14)0.00069 (13)0.00254 (13)
O30.01504 (16)0.02101 (19)0.01647 (18)0.00113 (14)0.00641 (13)0.00321 (14)
S30.01239 (5)0.01208 (5)0.01166 (5)0.00133 (4)0.00192 (4)0.00020 (4)
S40.01222 (5)0.01537 (6)0.01526 (6)0.00022 (4)0.00283 (4)0.00047 (4)
O40.01646 (19)0.0326 (3)0.0303 (3)0.00209 (18)0.00376 (17)0.0184 (2)
O50.01686 (17)0.0215 (2)0.01898 (19)0.00002 (14)0.00763 (15)0.00642 (15)
O60.0240 (2)0.01761 (19)0.0204 (2)0.00826 (16)0.00714 (16)0.00775 (15)
O70.02038 (19)0.0217 (2)0.01769 (19)0.00475 (16)0.00510 (15)0.00113 (15)
O80.02040 (19)0.01723 (19)0.0201 (2)0.00224 (15)0.00281 (16)0.00136 (15)
O90.0244 (2)0.0185 (2)0.0211 (2)0.00272 (16)0.00981 (17)0.00309 (16)
O100.01630 (18)0.0226 (2)0.01676 (18)0.00175 (15)0.00311 (14)0.00375 (15)
Geometric parameters (Å, º) top
Na1—O8i2.3873 (6)Na4—Na3x3.9539 (4)
Na1—O6ii2.4447 (6)Na4—Na3xi4.0486 (4)
Na1—O72.4602 (6)S1—O11.4702 (5)
Na1—O5iii2.4848 (6)S1—O31.4795 (5)
Na1—O5ii2.6227 (6)S1—O21.4816 (4)
Na1—S4iii2.9323 (3)S1—S22.0047 (2)
Na1—S3ii3.0924 (3)S1—Na4viii3.0727 (3)
Na1—S3iii3.2433 (3)S1—Na3xiii3.2875 (3)
Na1—S4iv3.2470 (3)S2—Na3xiii2.9490 (3)
Na1—Na4iii3.6275 (4)S2—Na4xiii3.2520 (3)
Na1—Na4v3.9492 (4)O2—Na4viii2.4878 (5)
Na1—Na1vi3.9670 (6)O3—Na3xiii2.5051 (5)
Na2—O12.3372 (5)O3—Na4viii2.5529 (6)
Na2—O6ii2.3808 (6)S3—O41.4684 (5)
Na2—O9ii2.3851 (6)S3—O51.4770 (5)
Na2—O9i2.4058 (6)S3—O61.4793 (5)
Na2—O102.4148 (6)S3—S42.0068 (2)
Na2—Na2iv3.5650 (6)S3—Na1ii3.0924 (3)
Na2—Na33.9000 (4)S3—Na1ix3.2432 (3)
Na2—H82.560 (13)S4—Na1ix2.9323 (3)
Na3—O102.3231 (6)S4—Na4i3.2288 (3)
Na3—O22.3681 (5)S4—Na1iv3.2470 (3)
Na3—O42.3914 (6)O5—Na1ix2.4848 (6)
Na3—O3vii2.5051 (5)O5—Na1ii2.6227 (6)
Na3—S2vii2.9491 (3)O6—Na2ii2.3808 (6)
Na3—S42.9794 (3)O6—Na1ii2.4447 (6)
Na3—S33.2139 (3)O7—Na4iii2.4106 (6)
Na3—S1vii3.2874 (3)O7—H10.847 (13)
Na3—Na4viii3.9540 (4)O7—H20.795 (13)
Na3—Na4i4.0486 (4)O8—Na1xi2.3872 (6)
Na4—O52.3456 (5)O8—Na4iii2.4403 (6)
Na4—O7ix2.4105 (6)O8—H30.804 (13)
Na4—O8ix2.4403 (6)O8—H40.721 (17)
Na4—O2x2.4877 (5)O9—Na2ii2.3851 (6)
Na4—O3x2.5529 (6)O9—Na2xi2.4059 (6)
Na4—S1x3.0726 (3)O9—H50.835 (17)
Na4—S4xi3.2289 (3)O9—H60.808 (14)
Na4—S2vii3.2520 (3)O10—H70.835 (14)
Na4—Na1ix3.6275 (4)O10—H80.772 (14)
Na4—Na1xii3.9493 (4)
O8i—Na1—O6ii117.81 (2)O5—Na4—O7ix84.30 (2)
O8i—Na1—O782.834 (19)O5—Na4—O8ix92.37 (2)
O6ii—Na1—O789.01 (2)O7ix—Na4—O8ix80.573 (19)
O8i—Na1—O5iii139.09 (2)O5—Na4—O2x164.65 (2)
O6ii—Na1—O5iii98.969 (19)O7ix—Na4—O2x105.701 (19)
O7—Na1—O5iii80.403 (18)O8ix—Na4—O2x78.158 (18)
O8i—Na1—O5ii136.44 (2)O5—Na4—O3x124.20 (2)
O6ii—Na1—O5ii56.453 (16)O7ix—Na4—O3x132.33 (2)
O7—Na1—O5ii135.01 (2)O8ix—Na4—O3x128.304 (19)
O5iii—Na1—O5ii78.12 (2)O2x—Na4—O3x57.124 (15)
O8i—Na1—S4iii86.263 (16)O5—Na4—S1x150.730 (17)
O6ii—Na1—S4iii153.927 (16)O7ix—Na4—S1x121.920 (17)
O7—Na1—S4iii104.804 (16)O8ix—Na4—S1x103.888 (16)
O5iii—Na1—S4iii62.763 (12)O2x—Na4—S1x28.502 (10)
O5ii—Na1—S4iii99.662 (14)O3x—Na4—S1x28.635 (10)
O8i—Na1—S3ii132.852 (17)O5—Na4—S4xi67.748 (14)
O6ii—Na1—S3ii27.992 (11)O7ix—Na4—S4xi144.363 (17)
O7—Na1—S3ii112.607 (16)O8ix—Na4—S4xi79.041 (15)
O5iii—Na1—S3ii88.056 (14)O2x—Na4—S4xi98.321 (14)
O5ii—Na1—S3ii28.468 (11)O3x—Na4—S4xi82.917 (13)
S4iii—Na1—S3ii127.348 (11)S1x—Na4—S4xi91.333 (8)
O8i—Na1—S3iii121.104 (16)O5—Na4—S2vii100.986 (16)
O6ii—Na1—S3iii120.962 (16)O7ix—Na4—S2vii74.230 (15)
O7—Na1—S3iii94.456 (15)O8ix—Na4—S2vii149.970 (17)
O5iii—Na1—S3iii25.800 (11)O2x—Na4—S2vii93.044 (14)
O5ii—Na1—S3iii82.631 (13)O3x—Na4—S2vii64.017 (12)
S4iii—Na1—S3iii37.501 (5)S1x—Na4—S2vii76.829 (8)
S3ii—Na1—S3iii102.508 (9)S4xi—Na4—S2vii130.911 (10)
O8i—Na1—S4iv71.943 (15)O5—Na4—Na1ix42.800 (14)
O6ii—Na1—S4iv87.582 (16)O7ix—Na4—Na1ix42.386 (14)
O7—Na1—S4iv149.277 (16)O8ix—Na4—Na1ix78.499 (15)
O5iii—Na1—S4iv130.273 (16)O2x—Na4—Na1ix143.281 (15)
O5ii—Na1—S4iv64.881 (13)O3x—Na4—Na1ix153.189 (16)
S4iii—Na1—S4iv91.048 (9)S1x—Na4—Na1ix164.044 (11)
S3ii—Na1—S4iv75.144 (8)S4xi—Na4—Na1ix104.579 (10)
S3iii—Na1—S4iv113.356 (10)S2vii—Na4—Na1ix93.185 (9)
O8i—Na1—Na4iii119.081 (17)O5—Na4—Na1xii89.768 (15)
O6ii—Na1—Na4iii89.002 (17)O7ix—Na4—Na1xii114.701 (16)
O7—Na1—Na4iii41.342 (13)O8ix—Na4—Na1xii34.668 (13)
O5iii—Na1—Na4iii39.891 (12)O2x—Na4—Na1xii75.547 (14)
O5ii—Na1—Na4iii104.346 (15)O3x—Na4—Na1xii103.732 (14)
S4iii—Na1—Na4iii87.283 (9)S1x—Na4—Na1xii90.121 (9)
S3ii—Na1—Na4iii97.020 (10)S4xi—Na4—Na1xii46.906 (7)
S3iii—Na1—Na4iii59.736 (7)S2vii—Na4—Na1xii166.892 (10)
S4iv—Na1—Na4iii168.666 (11)Na1ix—Na4—Na1xii99.823 (10)
O8i—Na1—Na4v35.554 (14)O5—Na4—Na3x153.064 (17)
O6ii—Na1—Na4v152.272 (16)O7ix—Na4—Na3x71.212 (15)
O7—Na1—Na4v80.915 (15)O8ix—Na4—Na3x73.120 (14)
O5iii—Na1—Na4v104.647 (15)O2x—Na4—Na3x34.492 (11)
O5ii—Na1—Na4v142.833 (15)O3x—Na4—Na3x81.785 (13)
S4iii—Na1—Na4v53.522 (7)S1x—Na4—Na3x56.206 (7)
S3ii—Na1—Na4v163.151 (11)S4xi—Na4—Na3x128.605 (10)
S3iii—Na1—Na4v85.734 (8)S2vii—Na4—Na3x83.368 (8)
S4iv—Na1—Na4v88.121 (8)Na1ix—Na4—Na3x110.847 (10)
Na4iii—Na1—Na4v99.823 (10)Na1xii—Na4—Na3x90.440 (9)
O8i—Na1—Na1vi162.27 (2)O5—Na4—Na3xi98.583 (15)
O6ii—Na1—Na1vi74.472 (14)O7ix—Na4—Na3xi166.615 (18)
O7—Na1—Na1vi111.295 (17)O8ix—Na4—Na3xi112.225 (16)
O5iii—Na1—Na1vi40.314 (13)O2x—Na4—Na3xi74.432 (12)
O5ii—Na1—Na1vi37.803 (12)O3x—Na4—Na3xi36.423 (12)
S4iii—Na1—Na1vi79.880 (10)S1x—Na4—Na3xi52.850 (6)
S3ii—Na1—Na1vi52.954 (7)S4xi—Na4—Na3xi46.673 (6)
S3iii—Na1—Na1vi49.554 (7)S2vii—Na4—Na3xi92.385 (8)
S4iv—Na1—Na1vi97.138 (11)Na1ix—Na4—Na3xi141.291 (10)
Na4iii—Na1—Na1vi71.532 (10)Na1xii—Na4—Na3xi78.487 (8)
Na4v—Na1—Na1vi133.254 (12)Na3x—Na4—Na3xi107.842 (8)
O1—Na2—O6ii82.24 (2)O1—S1—O3111.15 (3)
O1—Na2—O9ii121.57 (2)O1—S1—O2110.51 (3)
O6ii—Na2—O9ii119.40 (2)O3—S1—O2109.00 (3)
O1—Na2—O9i150.70 (2)O1—S1—S2108.98 (2)
O6ii—Na2—O9i98.37 (2)O3—S1—S2107.713 (19)
O9ii—Na2—O9i83.83 (2)O2—S1—S2109.43 (2)
O1—Na2—O1082.508 (19)O1—S1—Na4viii126.09 (2)
O6ii—Na2—O10155.73 (2)O3—S1—Na4viii55.78 (2)
O9ii—Na2—O1084.74 (2)O2—S1—Na4viii53.25 (2)
O9i—Na2—O1085.998 (19)S2—S1—Na4viii124.926 (9)
O1—Na2—Na2iv159.85 (2)O1—S1—Na3xiii133.51 (2)
O6ii—Na2—Na2iv115.254 (19)O3—S1—Na3xiii46.299 (19)
O9ii—Na2—Na2iv42.140 (14)O2—S1—Na3xiii115.357 (19)
O9i—Na2—Na2iv41.695 (14)S2—S1—Na3xiii62.288 (7)
O10—Na2—Na2iv83.775 (16)Na4viii—S1—Na3xiii78.992 (8)
O1—Na2—Na358.132 (15)S1—S2—Na3xiii80.713 (8)
O6ii—Na2—Na3139.920 (17)S1—S2—Na4xiii123.039 (9)
O9ii—Na2—Na381.357 (15)Na3xiii—S2—Na4xiii94.364 (8)
O9i—Na2—Na3118.828 (17)S1—O1—Na2146.31 (3)
O10—Na2—Na333.841 (13)S1—O2—Na3122.37 (3)
Na2iv—Na2—Na3102.995 (12)S1—O2—Na4viii98.24 (2)
O1—Na2—Na190.813 (17)Na3—O2—Na4viii109.004 (19)
O6ii—Na2—Na133.978 (14)S1—O3—Na3xiii108.43 (2)
O9ii—Na2—Na1138.631 (17)S1—O3—Na4viii95.58 (2)
O9i—Na2—Na175.239 (16)Na3xiii—O3—Na4viii106.34 (2)
O10—Na2—Na1127.834 (17)O4—S3—O5111.71 (3)
Na2iv—Na2—Na1109.277 (12)O4—S3—O6110.90 (3)
Na3—Na2—Na1140.011 (10)O5—S3—O6108.66 (3)
O1—Na2—H878.8 (3)O4—S3—S4107.82 (2)
O6ii—Na2—H8139.2 (3)O5—S3—S4108.64 (2)
O9ii—Na2—H8101.3 (3)O6—S3—S4109.05 (2)
O9i—Na2—H882.1 (3)O4—S3—Na1ii129.57 (2)
O10—Na2—H817.5 (3)O5—S3—Na1ii57.81 (2)
Na2iv—Na2—H892.2 (3)O6—S3—Na1ii50.86 (2)
Na3—Na2—H844.3 (3)S4—S3—Na1ii122.440 (9)
Na1—Na2—H8110.5 (3)O4—S3—Na344.20 (2)
O10—Na3—O292.728 (19)O5—S3—Na3115.89 (2)
O10—Na3—O4113.74 (2)O6—S3—Na3134.61 (2)
O2—Na3—O4100.217 (19)S4—S3—Na364.862 (7)
O10—Na3—O3vii91.184 (18)Na1ii—S3—Na3170.840 (9)
O2—Na3—O3vii112.831 (19)O4—S3—Na1ix135.24 (3)
O4—Na3—O3vii137.58 (2)O5—S3—Na1ix47.07 (2)
O10—Na3—S2vii152.055 (17)O6—S3—Na1ix113.42 (2)
O2—Na3—S2vii91.337 (14)S4—S3—Na1ix62.814 (7)
O4—Na3—S2vii92.654 (19)Na1ii—S3—Na1ix77.492 (9)
O3vii—Na3—S2vii61.898 (12)Na3—S3—Na1ix103.191 (8)
O10—Na3—S483.176 (15)S3—S4—Na1ix79.685 (8)
O2—Na3—S4157.854 (16)S3—S4—Na377.566 (8)
O4—Na3—S462.368 (14)Na1ix—S4—Na3117.727 (9)
O3vii—Na3—S489.069 (14)S3—S4—Na4i138.838 (9)
S2vii—Na3—S4102.479 (9)Na1ix—S4—Na4i79.571 (9)
O10—Na3—S3106.368 (16)Na3—S4—Na4i81.298 (8)
O2—Na3—S3125.470 (15)S3—S4—Na1iv127.876 (9)
O4—Na3—S325.345 (12)Na1ix—S4—Na1iv88.951 (9)
O3vii—Na3—S3117.147 (15)Na3—S4—Na1iv147.809 (9)
S2vii—Na3—S393.535 (8)Na4i—S4—Na1iv86.748 (8)
S4—Na3—S337.573 (5)S3—O4—Na3110.46 (3)
O10—Na3—S1vii116.459 (16)S3—O5—Na4126.64 (3)
O2—Na3—S1vii109.280 (14)S3—O5—Na1ix107.13 (2)
O4—Na3—S1vii119.167 (19)Na4—O5—Na1ix97.307 (19)
O3vii—Na3—S1vii25.276 (10)S3—O5—Na1ii93.72 (2)
S2vii—Na3—S1vii36.999 (5)Na4—O5—Na1ii126.97 (2)
S4—Na3—S1vii91.884 (8)Na1ix—O5—Na1ii101.88 (2)
S3—Na3—S1vii106.583 (9)S3—O6—Na2ii126.21 (3)
O10—Na3—Na235.370 (14)S3—O6—Na1ii101.14 (3)
O2—Na3—Na280.167 (14)Na2ii—O6—Na1ii113.05 (2)
O4—Na3—Na283.528 (19)Na4iii—O7—Na196.27 (2)
O3vii—Na3—Na2126.537 (14)Na4iii—O7—H1114.1 (9)
S2vii—Na3—Na2169.873 (10)Na1—O7—H1106.9 (9)
S4—Na3—Na284.098 (8)Na4iii—O7—H2113.1 (9)
S3—Na3—Na287.028 (8)Na1—O7—H2121.0 (9)
S1vii—Na3—Na2151.796 (10)H1—O7—H2105.6 (12)
O10—Na3—Na4viii76.972 (15)Na1xi—O8—Na4iii109.78 (2)
O2—Na3—Na4viii36.505 (13)Na1xi—O8—H3114.0 (9)
O4—Na3—Na4viii136.702 (15)Na4iii—O8—H3109.3 (9)
O3vii—Na3—Na4viii80.289 (14)Na1xi—O8—H4100.8 (13)
S2vii—Na3—Na4viii90.294 (9)Na4iii—O8—H4114.9 (13)
S4—Na3—Na4viii157.179 (10)H3—O8—H4107.9 (15)
S3—Na3—Na4viii161.760 (10)Na2ii—O9—Na2xi96.16 (2)
S1vii—Na3—Na4viii87.044 (8)Na2ii—O9—H5128.6 (13)
Na2—Na3—Na4viii86.141 (8)Na2xi—O9—H5112.6 (12)
O10—Na3—Na4i83.574 (15)Na2ii—O9—H6108.2 (10)
O2—Na3—Na4i149.322 (16)Na2xi—O9—H6111.5 (9)
O4—Na3—Na4i109.170 (15)H5—O9—H699.8 (14)
O3vii—Na3—Na4i37.235 (13)Na3—O10—Na2110.79 (2)
S2vii—Na3—Na4i78.954 (8)Na3—O10—H7111.9 (9)
S4—Na3—Na4i52.030 (6)Na2—O10—H7118.0 (9)
S3—Na3—Na4i84.462 (8)Na3—O10—H8114.5 (10)
S1vii—Na3—Na4i48.157 (6)Na2—O10—H892.0 (10)
Na2—Na3—Na4i111.153 (9)H7—O10—H8108.4 (13)
Na4viii—Na3—Na4i113.778 (9)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+2, y, z+1; (v) x+1, y, z1; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x, y, z+1; (x) x1/2, y+1/2, z+1/2; (xi) x1, y, z; (xii) x1, y, z+1; (xiii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O2viii0.847 (13)2.105 (13)2.9400 (7)168.4 (12)
O7—H2···O30.795 (13)2.183 (13)2.9595 (7)165.6 (13)
O8—H3···O6ii0.804 (13)2.303 (14)3.0991 (7)170.8 (12)
O8—H4···S20.721 (17)2.600 (17)3.3188 (5)175.7 (17)
O9—H5···O10.835 (17)1.994 (18)2.8237 (7)172.4 (18)
O9—H6···S4ii0.808 (14)2.499 (14)3.3069 (5)178.4 (12)
O10—H7···O4i0.835 (14)1.930 (14)2.7602 (7)172.5 (13)
O10—H8···S2i0.772 (14)2.469 (14)3.2261 (5)166.9 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (viii) x+1/2, y+1/2, z1/2.
(Na2S2O3H2O5_100K) top
Crystal data top
O3S2·5(H2O)·2(Na)F(000) = 512
Mr = 248.18Dx = 1.777 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9187 (1) ÅCell parameters from 69507 reflections
b = 21.5173 (4) Åθ = 3.0–42.4°
c = 7.4979 (1) ŵ = 0.67 mm1
β = 103.722 (1)°T = 100 K
V = 927.64 (3) Å3Block, colourless
Z = 40.6 × 0.3 × 0.15 mm
Data collection top
Stoe StadiVari
diffractometer
6486 independent reflections
Radiation source: Genix 3D HF Mo5525 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.026
Detector resolution: 5.81 pixels mm-1θmax = 42.3°, θmin = 3.0°
ω scansh = 1111
Absorption correction: empirical (using intensity measurements)
(X-AREA; Stoe & Cie, 2015)
k = 4040
Tmin = 0.868, Tmax = 1.000l = 149
64240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: difference Fourier map
wR(F2) = 0.047All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.0151P]
where P = (Fo2 + 2Fc2)/3
6486 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.72487 (4)0.34133 (2)0.07542 (3)0.01006 (3)
Na20.25504 (4)0.40853 (2)0.21568 (3)0.01143 (4)
S10.14781 (2)0.14166 (2)0.27653 (2)0.00683 (2)
S20.10308 (2)0.06742 (2)0.10544 (2)0.00895 (2)
O10.33884 (6)0.12823 (2)0.43602 (5)0.01248 (6)
O20.07043 (6)0.15368 (2)0.33255 (5)0.01157 (5)
O30.20340 (6)0.19572 (2)0.17106 (5)0.01064 (5)
O40.62384 (6)0.23471 (2)0.09598 (6)0.01306 (6)
H10.505 (2)0.2244 (6)0.1222 (17)0.029 (3)*
H20.7229 (19)0.2157 (6)0.1692 (16)0.021 (2)*
O50.09097 (6)0.31382 (2)0.27759 (5)0.01099 (5)
H30.132 (2)0.2794 (6)0.2504 (17)0.029 (3)*
H40.104 (2)0.3116 (6)0.3873 (18)0.026 (3)*
O60.61660 (6)0.36783 (2)0.35694 (5)0.01218 (6)
H50.620 (2)0.3354 (7)0.4218 (18)0.032 (3)*
H60.736 (2)0.3872 (6)0.4162 (17)0.029 (3)*
O70.86492 (7)0.44750 (2)0.10769 (5)0.01232 (5)
H70.849 (2)0.4768 (6)0.1746 (18)0.028 (3)*
H80.806 (2)0.4592 (6)0.0042 (17)0.026 (3)*
O80.64754 (6)0.01526 (2)0.24596 (6)0.01309 (6)
H90.733 (2)0.0319 (6)0.1941 (18)0.032 (3)*
H100.524 (2)0.0297 (6)0.2069 (18)0.033 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.00909 (7)0.01107 (8)0.00987 (8)0.00034 (6)0.00196 (6)0.00033 (6)
Na20.00991 (8)0.01013 (8)0.01364 (9)0.00026 (6)0.00160 (6)0.00022 (6)
S10.00648 (3)0.00759 (4)0.00631 (4)0.00005 (3)0.00127 (3)0.00026 (3)
S20.01010 (4)0.00757 (4)0.00881 (4)0.00018 (3)0.00151 (3)0.00055 (3)
O10.00991 (12)0.01622 (14)0.00904 (13)0.00008 (10)0.00225 (9)0.00048 (10)
O20.00971 (12)0.01476 (14)0.01171 (13)0.00181 (10)0.00544 (10)0.00062 (10)
O30.01410 (13)0.00786 (12)0.01111 (13)0.00165 (10)0.00524 (10)0.00061 (9)
O40.01005 (12)0.01317 (14)0.01548 (15)0.00037 (10)0.00204 (10)0.00128 (11)
O50.01314 (13)0.00956 (12)0.00996 (13)0.00146 (10)0.00211 (10)0.00052 (9)
O60.00987 (12)0.01442 (14)0.01149 (14)0.00074 (10)0.00105 (10)0.00104 (10)
O70.01419 (13)0.01036 (13)0.01148 (14)0.00069 (10)0.00118 (10)0.00052 (10)
O80.01060 (13)0.01258 (14)0.01597 (15)0.00096 (10)0.00292 (11)0.00182 (11)
Geometric parameters (Å, º) top
Na1—O1i2.3682 (4)S1—S22.0266 (1)
Na1—O42.3850 (4)S1—Na2vi3.3793 (2)
Na1—O5ii2.4052 (4)S2—Na2i3.2961 (3)
Na1—O62.4152 (4)O1—Na1vi2.3683 (4)
Na1—O2iii2.4170 (4)O1—Na2vi2.4004 (4)
Na1—O72.4227 (4)O2—Na1vii2.4170 (4)
Na1—Na2ii3.3879 (3)O4—H10.808 (12)
Na1—Na23.5095 (3)O4—H20.812 (12)
Na1—H82.658 (12)O5—Na1v2.4052 (4)
Na2—O62.3223 (4)O5—H30.820 (13)
Na2—O52.3506 (4)O5—H40.809 (13)
Na2—O8iv2.3686 (4)O6—H50.847 (14)
Na2—O1i2.4004 (4)O6—H60.850 (13)
Na2—O7v2.4090 (4)O7—Na2ii2.4090 (4)
Na2—S2vi3.2960 (3)O7—H70.824 (13)
Na2—S1i3.3793 (2)O7—H80.812 (13)
Na2—Na1v3.3879 (3)O8—Na2viii2.3687 (4)
S1—O11.4665 (4)O8—H90.792 (13)
S1—O21.4728 (3)O8—H100.785 (14)
S1—O31.4867 (4)
O1i—Na1—O493.674 (15)S2vi—Na2—S1i152.425 (7)
O1i—Na1—O5ii167.632 (16)O6—Na2—Na1v131.763 (13)
O4—Na1—O5ii85.687 (14)O5—Na2—Na1v45.224 (10)
O1i—Na1—O683.813 (14)O8iv—Na2—Na1v129.225 (13)
O4—Na1—O692.752 (15)O1i—Na2—Na1v87.492 (11)
O5ii—Na1—O683.881 (14)O7v—Na2—Na1v45.643 (10)
O1i—Na1—O2iii104.997 (15)S2vi—Na2—Na1v85.113 (6)
O4—Na1—O2iii105.640 (15)S1i—Na2—Na1v67.361 (6)
O5ii—Na1—O2iii87.024 (14)O6—Na2—Na143.228 (11)
O6—Na1—O2iii158.798 (16)O5—Na2—Na195.497 (12)
O1i—Na1—O793.139 (15)O8iv—Na2—Na1104.388 (12)
O4—Na1—O7170.292 (17)O1i—Na2—Na142.257 (10)
O5ii—Na1—O786.177 (14)O7v—Na2—Na1143.813 (13)
O6—Na1—O781.115 (14)S2vi—Na2—Na1137.109 (8)
O2iii—Na1—O779.197 (14)S1i—Na2—Na163.600 (6)
O1i—Na1—Na2ii138.122 (13)Na1v—Na2—Na1118.197 (9)
O4—Na1—Na2ii128.202 (12)O1—S1—O2111.14 (2)
O5ii—Na1—Na2ii43.924 (10)O1—S1—O3111.28 (2)
O6—Na1—Na2ii92.647 (11)O2—S1—O3109.52 (2)
O2iii—Na1—Na2ii67.791 (11)O1—S1—S2108.693 (17)
O7—Na1—Na2ii45.314 (10)O2—S1—S2109.098 (16)
O1i—Na1—Na242.968 (10)O3—S1—S2106.994 (15)
O4—Na1—Na298.530 (12)O1—S1—Na2vi38.016 (16)
O5ii—Na1—Na2124.885 (12)O2—S1—Na2vi75.695 (16)
O6—Na1—Na241.191 (10)O3—S1—Na2vi138.961 (15)
O2iii—Na1—Na2141.432 (13)S2—S1—Na2vi109.327 (6)
O7—Na1—Na281.849 (11)S1—S2—Na2i114.539 (6)
Na2ii—Na1—Na2118.197 (9)S1—O1—Na1vi141.43 (2)
O1i—Na1—H881.3 (3)S1—O1—Na2vi119.88 (2)
O4—Na1—H8172.1 (3)Na1vi—O1—Na2vi94.775 (14)
O5ii—Na1—H8100.6 (3)S1—O2—Na1vii148.53 (2)
O6—Na1—H892.8 (3)Na1—O4—H1121.7 (9)
O2iii—Na1—H870.1 (3)Na1—O4—H2112.1 (8)
O7—Na1—H817.6 (3)H1—O4—H2103.3 (12)
Na2ii—Na1—H857.2 (3)Na2—O5—Na1v90.850 (14)
Na2—Na1—H882.0 (3)Na2—O5—H3124.9 (9)
O6—Na2—O587.830 (15)Na1v—O5—H3110.0 (9)
O6—Na2—O8iv97.981 (16)Na2—O5—H4108.0 (9)
O5—Na2—O8iv156.443 (17)Na1v—O5—H4120.6 (9)
O6—Na2—O1i85.131 (15)H3—O5—H4103.7 (12)
O5—Na2—O1i93.865 (15)Na2—O6—Na195.581 (15)
O8iv—Na2—O1i109.318 (16)Na2—O6—H5117.9 (9)
O6—Na2—O7v172.157 (17)Na1—O6—H5109.3 (9)
O5—Na2—O7v87.719 (15)Na2—O6—H6128.0 (9)
O8iv—Na2—O7v83.664 (14)Na1—O6—H6102.3 (8)
O1i—Na2—O7v101.611 (15)H5—O6—H6101.4 (12)
O6—Na2—S2vi94.048 (12)Na2ii—O7—Na189.042 (14)
O5—Na2—S2vi75.443 (11)Na2ii—O7—H7107.4 (9)
O8iv—Na2—S2vi81.366 (12)Na1—O7—H7134.1 (9)
O1i—Na2—S2vi169.304 (13)Na2ii—O7—H8126.3 (8)
O7v—Na2—S2vi78.579 (11)Na1—O7—H897.8 (9)
O6—Na2—S1i105.285 (12)H7—O7—H8105.0 (12)
O5—Na2—S1i85.665 (11)Na2viii—O8—H9109.5 (10)
O8iv—Na2—S1i114.344 (13)Na2viii—O8—H10127.3 (10)
O1i—Na2—S1i22.102 (9)H9—O8—H10106.5 (13)
O7v—Na2—S1i80.806 (11)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x1, y+1/2, z+1/2; (viii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O30.808 (12)2.001 (12)2.8067 (5)176.1 (13)
O4—H2···O2ii0.812 (12)2.017 (12)2.8175 (5)168.6 (12)
O5—H3···O30.820 (13)1.973 (13)2.7912 (5)174.9 (12)
O5—H4···O3vi0.809 (13)2.074 (13)2.8736 (5)169.2 (12)
O6—H5···O4vi0.847 (14)1.993 (14)2.8365 (6)173.8 (13)
O6—H6···S2ix0.850 (13)2.495 (13)3.3404 (4)173.6 (12)
O7—H7···S2iv0.824 (13)2.527 (13)3.3356 (4)167.5 (11)
O7—H8···O8i0.812 (13)2.017 (13)2.8280 (6)177.2 (12)
O8—H9···S2ii0.792 (13)2.554 (13)3.3147 (4)161.6 (12)
O8—H10···S20.785 (14)2.558 (14)3.3381 (4)173.0 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (ix) x+1, y+1/2, z+1/2.
(Na2S2O3H2O5_200K) top
Crystal data top
O3S2·5(H2O)·2(Na)F(000) = 512
Mr = 248.18Dx = 1.769 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9357 (1) ÅCell parameters from 72911 reflections
b = 21.5424 (7) Åθ = 3.4–38.4°
c = 7.5026 (2) ŵ = 0.67 mm1
β = 103.722 (2)°T = 200 K
V = 931.97 (4) Å3Block, colourless
Z = 40.6 × 0.3 × 0.15 mm
Data collection top
Stoe StadiVari
diffractometer
5006 independent reflections
Radiation source: Genix 3D HF Mo4212 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.023
Detector resolution: 5.81 pixels mm-1θmax = 38.1°, θmin = 3.4°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(X-AREA; Stoe & Cie, 2015)
k = 3737
Tmin = 0.869, Tmax = 1.000l = 1212
56700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.052All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.0519P]
where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.72432 (4)0.34120 (2)0.07497 (3)0.01737 (5)
Na20.25469 (5)0.40844 (2)0.21534 (4)0.02015 (5)
S10.14796 (2)0.14165 (2)0.27688 (2)0.01199 (3)
S20.10261 (3)0.06772 (2)0.10611 (2)0.01584 (3)
O10.33851 (8)0.12808 (3)0.43550 (6)0.02186 (9)
O20.06889 (8)0.15357 (2)0.33334 (7)0.02022 (9)
O30.20282 (8)0.19559 (2)0.17211 (6)0.01850 (8)
O40.62336 (9)0.23466 (2)0.09666 (7)0.02250 (9)
H10.510 (3)0.2256 (6)0.1234 (19)0.050 (4)*
H20.722 (2)0.2159 (5)0.1725 (16)0.029 (3)*
O50.09082 (9)0.31379 (2)0.27781 (7)0.01859 (8)
H30.135 (2)0.2789 (6)0.2509 (17)0.041 (3)*
H40.100 (2)0.3107 (6)0.3837 (18)0.037 (3)*
O60.61589 (8)0.36779 (3)0.35662 (7)0.02082 (9)
H50.616 (2)0.3358 (6)0.4249 (18)0.042 (3)*
H60.734 (2)0.3882 (6)0.4170 (17)0.046 (3)*
O70.86448 (9)0.44752 (2)0.10841 (7)0.02104 (9)
H70.851 (2)0.4775 (6)0.1719 (18)0.042 (3)*
H80.801 (2)0.4599 (6)0.0005 (19)0.042 (3)*
O80.64707 (9)0.01512 (2)0.24637 (8)0.02268 (9)
H90.734 (3)0.0327 (7)0.194 (2)0.053 (4)*
H100.528 (3)0.0308 (6)0.2099 (19)0.049 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.01558 (11)0.01926 (12)0.01702 (11)0.00067 (9)0.00338 (9)0.00062 (8)
Na20.01729 (12)0.01729 (12)0.02491 (13)0.00058 (9)0.00308 (9)0.00077 (9)
S10.01134 (5)0.01321 (6)0.01121 (5)0.00010 (4)0.00228 (4)0.00042 (4)
S20.01840 (6)0.01296 (6)0.01544 (6)0.00045 (4)0.00258 (5)0.00103 (4)
O10.01746 (19)0.0281 (2)0.01595 (18)0.00009 (17)0.00416 (15)0.00017 (16)
O20.01731 (19)0.0257 (2)0.02027 (19)0.00338 (16)0.00971 (16)0.00130 (16)
O30.0247 (2)0.01328 (18)0.01982 (19)0.00270 (15)0.00978 (16)0.00071 (14)
O40.0169 (2)0.0227 (2)0.0272 (2)0.00065 (17)0.00376 (18)0.00230 (18)
O50.0227 (2)0.01597 (19)0.01668 (18)0.00263 (16)0.00376 (15)0.00085 (14)
O60.01690 (19)0.0251 (2)0.0192 (2)0.00092 (17)0.00170 (16)0.00212 (16)
O70.0241 (2)0.0170 (2)0.0204 (2)0.00113 (17)0.00206 (17)0.00118 (16)
O80.0185 (2)0.0208 (2)0.0287 (2)0.00186 (17)0.00558 (18)0.00340 (17)
Geometric parameters (Å, º) top
Na1—O1i2.3750 (5)S1—S22.0216 (2)
Na1—O42.3872 (6)S1—Na2vi3.3761 (3)
Na1—O5ii2.4138 (6)S2—Na2i3.3060 (3)
Na1—O62.4193 (6)O1—Na1vi2.3750 (5)
Na1—O2iii2.4210 (5)O1—Na2vi2.4020 (6)
Na1—O72.4294 (6)O2—Na1vii2.4211 (5)
Na1—Na2ii3.3978 (4)O4—H10.774 (15)
Na1—Na23.5172 (4)O4—H20.820 (12)
Na2—O62.3256 (6)O5—Na1v2.4138 (6)
Na2—O52.3536 (6)O5—H30.836 (13)
Na2—O8iv2.3717 (6)O5—H40.786 (13)
Na2—O1i2.4021 (6)O6—H50.859 (14)
Na2—O7v2.4157 (6)O6—H60.860 (14)
Na2—S2vi3.3060 (3)O7—Na2ii2.4157 (6)
Na2—S1i3.3761 (3)O7—H70.818 (14)
Na2—Na1v3.3978 (4)O7—H80.857 (14)
S1—O11.4637 (5)O8—Na2viii2.3718 (6)
S1—O21.4700 (5)O8—H90.813 (15)
S1—O31.4818 (5)O8—H100.775 (15)
O1i—Na1—O493.81 (2)O1i—Na2—Na1v87.607 (15)
O1i—Na1—O5ii167.57 (2)O7v—Na2—Na1v45.635 (14)
O4—Na1—O5ii85.708 (19)S2vi—Na2—Na1v85.025 (8)
O1i—Na1—O683.704 (19)S1i—Na2—Na1v67.409 (7)
O4—Na1—O692.58 (2)O6—Na2—Na143.196 (14)
O5ii—Na1—O683.912 (18)O5—Na2—Na195.577 (15)
O1i—Na1—O2iii105.32 (2)O8iv—Na2—Na1104.229 (16)
O4—Na1—O2iii106.02 (2)O1i—Na2—Na142.288 (13)
O5ii—Na1—O2iii86.693 (19)O7v—Na2—Na1144.062 (17)
O6—Na1—O2iii158.46 (2)S2vi—Na2—Na1137.059 (10)
O1i—Na1—O793.07 (2)S1i—Na2—Na163.609 (7)
O4—Na1—O7169.96 (2)Na1v—Na2—Na1118.260 (11)
O5ii—Na1—O785.995 (19)O1—S1—O2111.17 (3)
O6—Na1—O780.912 (19)O1—S1—O3111.30 (3)
O2iii—Na1—O779.125 (19)O2—S1—O3109.48 (3)
O1i—Na1—Na2ii138.025 (17)O1—S1—S2108.60 (2)
O4—Na1—Na2ii128.156 (17)O2—S1—S2109.04 (2)
O5ii—Na1—Na2ii43.834 (13)O3—S1—S2107.13 (2)
O6—Na1—Na2ii92.705 (15)O1—S1—Na2vi38.16 (2)
O2iii—Na1—Na2ii67.367 (14)O2—S1—Na2vi75.51 (2)
O7—Na1—Na2ii45.307 (14)O3—S1—Na2vi138.89 (2)
O1i—Na1—Na242.885 (14)S2—S1—Na2vi109.377 (8)
O4—Na1—Na298.391 (16)S1—S2—Na2i114.600 (8)
O5ii—Na1—Na2124.870 (16)S1—O1—Na1vi141.35 (3)
O6—Na1—Na241.148 (13)S1—O1—Na2vi119.72 (3)
O2iii—Na1—Na2141.592 (17)Na1vi—O1—Na2vi94.828 (18)
O7—Na1—Na281.785 (15)S1—O2—Na1vii149.10 (3)
Na2ii—Na1—Na2118.261 (11)Na1—O4—H1120.6 (10)
O6—Na2—O587.88 (2)Na1—O4—H2111.8 (8)
O6—Na2—O8iv97.82 (2)H1—O4—H2102.6 (12)
O5—Na2—O8iv156.45 (2)Na2—O5—Na1v90.905 (19)
O6—Na2—O1i85.146 (19)Na2—O5—H3124.4 (9)
O5—Na2—O1i94.10 (2)Na1v—O5—H3110.7 (8)
O8iv—Na2—O1i109.10 (2)Na2—O5—H4110.0 (9)
O6—Na2—O7v171.97 (2)Na1v—O5—H4119.5 (9)
O5—Na2—O7v87.654 (19)H3—O5—H4102.6 (12)
O8iv—Na2—O7v83.76 (2)Na2—O6—Na195.66 (2)
O1i—Na2—O7v101.82 (2)Na2—O6—H5116.3 (9)
O6—Na2—S2vi94.040 (15)Na1—O6—H5111.7 (9)
O5—Na2—S2vi75.245 (14)Na2—O6—H6126.7 (9)
O8iv—Na2—S2vi81.549 (16)Na1—O6—H6103.2 (9)
O1i—Na2—S2vi169.337 (17)H5—O6—H6102.2 (12)
O7v—Na2—S2vi78.368 (15)Na2ii—O7—Na189.058 (19)
O6—Na2—S1i105.273 (16)Na2ii—O7—H7107.5 (9)
O5—Na2—S1i85.774 (14)Na1—O7—H7136.6 (9)
O8iv—Na2—S1i114.306 (17)Na2ii—O7—H8126.5 (9)
O1i—Na2—S1i22.118 (12)Na1—O7—H897.7 (9)
O7v—Na2—S1i81.039 (15)H7—O7—H8103.1 (12)
S2vi—Na2—S1i152.391 (10)Na2viii—O8—H9110.1 (10)
O6—Na2—Na1v131.833 (17)Na2viii—O8—H10130.1 (10)
O5—Na2—Na1v45.260 (14)H9—O8—H10105.0 (13)
O8iv—Na2—Na1v129.328 (17)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x1, y+1/2, z+1/2; (viii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O30.774 (15)2.045 (15)2.8161 (7)174.2 (14)
O4—H2···O2ii0.820 (12)2.022 (12)2.8290 (7)168.0 (11)
O5—H3···O30.836 (13)1.961 (13)2.7937 (7)173.8 (12)
O5—H4···O3vi0.786 (13)2.109 (13)2.8811 (7)167.3 (12)
O6—H5···O4vi0.859 (14)1.984 (14)2.8423 (8)176.3 (13)
O6—H6···S2ix0.860 (14)2.495 (14)3.3488 (5)171.7 (12)
O7—H7···S2iv0.818 (14)2.531 (14)3.3365 (5)168.3 (12)
O7—H8···O8i0.857 (14)1.977 (14)2.8334 (8)177.3 (13)
O8—H9···S2ii0.813 (15)2.544 (15)3.3245 (6)161.3 (13)
O8—H10···S20.775 (15)2.583 (15)3.3499 (5)171.0 (14)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (ix) x+1, y+1/2, z+1/2.
 

References

First citationBarberá, J. J., Metzger, A. & Wolf, M. (2012). Ullmanns Encyclopedia of Industrial Chemistry, vol. 34, pp. 695–704. Weinheim: Wiley-CH.  Google Scholar
First citationBenda, H. von & von Benda, K. (1979). Z. Naturforsch. Teil B, 34, 957–968.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBunte, H. (1874). Ber. Dtsch. Chem. Ges. 7, 646–648.  CrossRef Google Scholar
First citationChan, E. J., Skelton, B. W. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2825–2844.  CrossRef CAS Google Scholar
First citationChristensen, A. N., Hazell, R. G., Hewat, A. W. & O'Reilly, K. P. J. (1991). Acta Chem. Scand. 45, 469–473.  CrossRef ICSD CAS Web of Science Google Scholar
First citationCsordás, L. (1969). Acta Chim. Acad. Sci. Hung. 62, 371–393.  Google Scholar
First citationDalton, E. Z., Blomberg, W. R. & Villa, E. M. (2021). Cryst. Growth Des. 21, 3071–3081.  CrossRef CAS Google Scholar
First citationEdwards, D. A. & Woolf, A. A. (1985). Polyhedron, 4, 513–516.  CrossRef CAS Google Scholar
First citationElerman, Y., Bats, J. W. & Fuess, H. (1983). Acta Cryst. C39, 515–518.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuarini, G. G. T. & Piccini, S. (1988). J. Chem. Soc. Faraday Trans. 1, 84, 331–342.  Google Scholar
First citationHeld, P. & Bohatý, L. (2004). Acta Cryst. C60, i97–i100.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationHesse, W., Leutner, B., Böhn, K.-H. & Walker, N. P. C. (1993). Acta Cryst. C49, 363–365.  CrossRef CAS IUCr Journals Google Scholar
First citationHopfinger, M., Zischka, F., Seifert, M. & Kornath, A. J. (2018). Z. Anorg. Allg. Chem. 644, 574–579.  Web of Science CrossRef CAS Google Scholar
First citationKlein, W. (2020). Acta Cryst. E76, 197–200.  CrossRef IUCr Journals Google Scholar
First citationKumar Paul, A., Madras, G. & Natarajan, S. (2009). Phys. Chem. Chem. Phys. 11, 11285–11296.  CrossRef CAS PubMed Google Scholar
First citationLehner, A. J., Schindler, L. V. & Röhr, C. (2013). Z. Naturforsch. Teil B, 68, 323–337.  CrossRef CAS Google Scholar
First citationLisensky, G. C. & Levy, H. A. (1978). Acta Cryst. B34, 1975–1977.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationManojlović-Muir, L. A. (1975). Acta Cryst. B31, 135–139.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationNirsha, B. H., Serebrennikova, G. M., Oboznenko, Yu. V., Zhadanov, B. V., Safonova, V. I. & Olikova, V. A. (1982). Zh. Neorg. Khim. 27, 3035–3038.  CAS Google Scholar
First citationPadmanabhan, V. M., Yadava, V. S., Navarro, Q. O., Garcia, A., Karsono, L., Suh, I. H. & Chien, L. S. (1971). Acta Cryst. B27, 253–257.  CrossRef IUCr Journals Google Scholar
First citationPicon, M. (1924). C. R. Hebd. Seances Acad. Sci. 178, 700–703.  CAS Google Scholar
First citationPrasad, S. M. & Rani, A. (2001). Acta Cryst. E57, i67–i69.  CrossRef IUCr Journals Google Scholar
First citationPyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770–12779.  Web of Science CrossRef PubMed Google Scholar
First citationRettig, S. J. & Trotter, J. (1987). Acta Cryst. C43, 2260–2262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSándor, E. & Csordás, L. (1961). Acta Cryst. 14, 237–243.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaylor, P. G. & Beevers, C. A. (1952). Acta Cryst. 5, 341–344.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationTeng, S. T., Fuess, H. & Bats, J. W. (1984). Acta Cryst. C40, 1785–1787.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationTiemann, E., Hoeft, J., Lovas, F. J. & Johnson, D. R. (1974). J. Chem. Phys. 60, 5000–5004.  CrossRef CAS Google Scholar
First citationUraz, A. A. & Armaǧan, N. (1977). Acta Cryst. B33, 1396–1399.  CrossRef CAS IUCr Journals Google Scholar
First citationWinkler, V., Schlosser, M. & Pfitzner, A. (2016). Z. Naturforsch. Teil B, 71, 579–584.  CrossRef CAS Google Scholar
First citationYoung, S. W. & Burke, W. E. (1906). J. Am. Chem. Soc. 28, 315–347.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds